1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "codegen.h"
33#include "debug.h"
34#include "deoptimizer.h"
35#include "full-codegen.h"
36#include "runtime.h"
37
38namespace v8 {
39namespace internal {
40
41
42#define __ ACCESS_MASM(masm)
43
44
45void Builtins::Generate_Adaptor(MacroAssembler* masm,
46                                CFunctionId id,
47                                BuiltinExtraArguments extra_args) {
48  // ----------- S t a t e -------------
49  //  -- r0                 : number of arguments excluding receiver
50  //  -- r1                 : called function (only guaranteed when
51  //                          extra_args requires it)
52  //  -- cp                 : context
53  //  -- sp[0]              : last argument
54  //  -- ...
55  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
56  //  -- sp[4 * argc]       : receiver
57  // -----------------------------------
58
59  // Insert extra arguments.
60  int num_extra_args = 0;
61  if (extra_args == NEEDS_CALLED_FUNCTION) {
62    num_extra_args = 1;
63    __ push(r1);
64  } else {
65    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
66  }
67
68  // JumpToExternalReference expects r0 to contain the number of arguments
69  // including the receiver and the extra arguments.
70  __ add(r0, r0, Operand(num_extra_args + 1));
71  __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
72}
73
74
75// Load the built-in InternalArray function from the current context.
76static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
77                                              Register result) {
78  // Load the global context.
79
80  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
81  __ ldr(result,
82         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
83  // Load the InternalArray function from the global context.
84  __ ldr(result,
85         MemOperand(result,
86                    Context::SlotOffset(
87                        Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
88}
89
90
91// Load the built-in Array function from the current context.
92static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
93  // Load the global context.
94
95  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
96  __ ldr(result,
97         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
98  // Load the Array function from the global context.
99  __ ldr(result,
100         MemOperand(result,
101                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
102}
103
104
105// Allocate an empty JSArray. The allocated array is put into the result
106// register. An elements backing store is allocated with size initial_capacity
107// and filled with the hole values.
108static void AllocateEmptyJSArray(MacroAssembler* masm,
109                                 Register array_function,
110                                 Register result,
111                                 Register scratch1,
112                                 Register scratch2,
113                                 Register scratch3,
114                                 Label* gc_required) {
115  const int initial_capacity = JSArray::kPreallocatedArrayElements;
116  STATIC_ASSERT(initial_capacity >= 0);
117  __ LoadInitialArrayMap(array_function, scratch2, scratch1);
118
119  // Allocate the JSArray object together with space for a fixed array with the
120  // requested elements.
121  int size = JSArray::kSize;
122  if (initial_capacity > 0) {
123    size += FixedArray::SizeFor(initial_capacity);
124  }
125  __ AllocateInNewSpace(size,
126                        result,
127                        scratch2,
128                        scratch3,
129                        gc_required,
130                        TAG_OBJECT);
131
132  // Allocated the JSArray. Now initialize the fields except for the elements
133  // array.
134  // result: JSObject
135  // scratch1: initial map
136  // scratch2: start of next object
137  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
138  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
139  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
140  // Field JSArray::kElementsOffset is initialized later.
141  __ mov(scratch3,  Operand(0, RelocInfo::NONE));
142  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
143
144  if (initial_capacity == 0) {
145    __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
146    return;
147  }
148
149  // Calculate the location of the elements array and set elements array member
150  // of the JSArray.
151  // result: JSObject
152  // scratch2: start of next object
153  __ add(scratch1, result, Operand(JSArray::kSize));
154  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
155
156  // Clear the heap tag on the elements array.
157  __ sub(scratch1, scratch1, Operand(kHeapObjectTag));
158
159  // Initialize the FixedArray and fill it with holes. FixedArray length is
160  // stored as a smi.
161  // result: JSObject
162  // scratch1: elements array (untagged)
163  // scratch2: start of next object
164  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
165  STATIC_ASSERT(0 * kPointerSize == FixedArray::kMapOffset);
166  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
167  __ mov(scratch3,  Operand(Smi::FromInt(initial_capacity)));
168  STATIC_ASSERT(1 * kPointerSize == FixedArray::kLengthOffset);
169  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
170
171  // Fill the FixedArray with the hole value. Inline the code if short.
172  STATIC_ASSERT(2 * kPointerSize == FixedArray::kHeaderSize);
173  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
174  static const int kLoopUnfoldLimit = 4;
175  if (initial_capacity <= kLoopUnfoldLimit) {
176    for (int i = 0; i < initial_capacity; i++) {
177      __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
178    }
179  } else {
180    Label loop, entry;
181    __ add(scratch2, scratch1, Operand(initial_capacity * kPointerSize));
182    __ b(&entry);
183    __ bind(&loop);
184    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
185    __ bind(&entry);
186    __ cmp(scratch1, scratch2);
187    __ b(lt, &loop);
188  }
189}
190
191// Allocate a JSArray with the number of elements stored in a register. The
192// register array_function holds the built-in Array function and the register
193// array_size holds the size of the array as a smi. The allocated array is put
194// into the result register and beginning and end of the FixedArray elements
195// storage is put into registers elements_array_storage and elements_array_end
196// (see  below for when that is not the case). If the parameter fill_with_holes
197// is true the allocated elements backing store is filled with the hole values
198// otherwise it is left uninitialized. When the backing store is filled the
199// register elements_array_storage is scratched.
200static void AllocateJSArray(MacroAssembler* masm,
201                            Register array_function,  // Array function.
202                            Register array_size,  // As a smi, cannot be 0.
203                            Register result,
204                            Register elements_array_storage,
205                            Register elements_array_end,
206                            Register scratch1,
207                            Register scratch2,
208                            bool fill_with_hole,
209                            Label* gc_required) {
210  // Load the initial map from the array function.
211  __ LoadInitialArrayMap(array_function, scratch2, elements_array_storage);
212
213  if (FLAG_debug_code) {  // Assert that array size is not zero.
214    __ tst(array_size, array_size);
215    __ Assert(ne, "array size is unexpectedly 0");
216  }
217
218  // Allocate the JSArray object together with space for a FixedArray with the
219  // requested number of elements.
220  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
221  __ mov(elements_array_end,
222         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
223  __ add(elements_array_end,
224         elements_array_end,
225         Operand(array_size, ASR, kSmiTagSize));
226  __ AllocateInNewSpace(
227      elements_array_end,
228      result,
229      scratch1,
230      scratch2,
231      gc_required,
232      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
233
234  // Allocated the JSArray. Now initialize the fields except for the elements
235  // array.
236  // result: JSObject
237  // elements_array_storage: initial map
238  // array_size: size of array (smi)
239  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
240  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
241  __ str(elements_array_storage,
242         FieldMemOperand(result, JSArray::kPropertiesOffset));
243  // Field JSArray::kElementsOffset is initialized later.
244  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
245
246  // Calculate the location of the elements array and set elements array member
247  // of the JSArray.
248  // result: JSObject
249  // array_size: size of array (smi)
250  __ add(elements_array_storage, result, Operand(JSArray::kSize));
251  __ str(elements_array_storage,
252         FieldMemOperand(result, JSArray::kElementsOffset));
253
254  // Clear the heap tag on the elements array.
255  STATIC_ASSERT(kSmiTag == 0);
256  __ sub(elements_array_storage,
257         elements_array_storage,
258         Operand(kHeapObjectTag));
259  // Initialize the fixed array and fill it with holes. FixedArray length is
260  // stored as a smi.
261  // result: JSObject
262  // elements_array_storage: elements array (untagged)
263  // array_size: size of array (smi)
264  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
265  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
266  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
267  STATIC_ASSERT(kSmiTag == 0);
268  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
269  __ str(array_size,
270         MemOperand(elements_array_storage, kPointerSize, PostIndex));
271
272  // Calculate elements array and elements array end.
273  // result: JSObject
274  // elements_array_storage: elements array element storage
275  // array_size: smi-tagged size of elements array
276  STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
277  __ add(elements_array_end,
278         elements_array_storage,
279         Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize));
280
281  // Fill the allocated FixedArray with the hole value if requested.
282  // result: JSObject
283  // elements_array_storage: elements array element storage
284  // elements_array_end: start of next object
285  if (fill_with_hole) {
286    Label loop, entry;
287    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
288    __ jmp(&entry);
289    __ bind(&loop);
290    __ str(scratch1,
291           MemOperand(elements_array_storage, kPointerSize, PostIndex));
292    __ bind(&entry);
293    __ cmp(elements_array_storage, elements_array_end);
294    __ b(lt, &loop);
295  }
296}
297
298// Create a new array for the built-in Array function. This function allocates
299// the JSArray object and the FixedArray elements array and initializes these.
300// If the Array cannot be constructed in native code the runtime is called. This
301// function assumes the following state:
302//   r0: argc
303//   r1: constructor (built-in Array function)
304//   lr: return address
305//   sp[0]: last argument
306// This function is used for both construct and normal calls of Array. The only
307// difference between handling a construct call and a normal call is that for a
308// construct call the constructor function in r1 needs to be preserved for
309// entering the generic code. In both cases argc in r0 needs to be preserved.
310// Both registers are preserved by this code so no need to differentiate between
311// construct call and normal call.
312static void ArrayNativeCode(MacroAssembler* masm,
313                            Label* call_generic_code) {
314  Counters* counters = masm->isolate()->counters();
315  Label argc_one_or_more, argc_two_or_more, not_empty_array, empty_array,
316      has_non_smi_element, finish, cant_transition_map, not_double;
317
318  // Check for array construction with zero arguments or one.
319  __ cmp(r0, Operand(0, RelocInfo::NONE));
320  __ b(ne, &argc_one_or_more);
321
322  // Handle construction of an empty array.
323  __ bind(&empty_array);
324  AllocateEmptyJSArray(masm,
325                       r1,
326                       r2,
327                       r3,
328                       r4,
329                       r5,
330                       call_generic_code);
331  __ IncrementCounter(counters->array_function_native(), 1, r3, r4);
332  // Set up return value, remove receiver from stack and return.
333  __ mov(r0, r2);
334  __ add(sp, sp, Operand(kPointerSize));
335  __ Jump(lr);
336
337  // Check for one argument. Bail out if argument is not smi or if it is
338  // negative.
339  __ bind(&argc_one_or_more);
340  __ cmp(r0, Operand(1));
341  __ b(ne, &argc_two_or_more);
342  STATIC_ASSERT(kSmiTag == 0);
343  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
344  __ tst(r2, r2);
345  __ b(ne, &not_empty_array);
346  __ Drop(1);  // Adjust stack.
347  __ mov(r0, Operand(0));  // Treat this as a call with argc of zero.
348  __ b(&empty_array);
349
350  __ bind(&not_empty_array);
351  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
352  __ b(ne, call_generic_code);
353
354  // Handle construction of an empty array of a certain size. Bail out if size
355  // is too large to actually allocate an elements array.
356  STATIC_ASSERT(kSmiTag == 0);
357  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
358  __ b(ge, call_generic_code);
359
360  // r0: argc
361  // r1: constructor
362  // r2: array_size (smi)
363  // sp[0]: argument
364  AllocateJSArray(masm,
365                  r1,
366                  r2,
367                  r3,
368                  r4,
369                  r5,
370                  r6,
371                  r7,
372                  true,
373                  call_generic_code);
374  __ IncrementCounter(counters->array_function_native(), 1, r2, r4);
375  // Set up return value, remove receiver and argument from stack and return.
376  __ mov(r0, r3);
377  __ add(sp, sp, Operand(2 * kPointerSize));
378  __ Jump(lr);
379
380  // Handle construction of an array from a list of arguments.
381  __ bind(&argc_two_or_more);
382  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.
383
384  // r0: argc
385  // r1: constructor
386  // r2: array_size (smi)
387  // sp[0]: last argument
388  AllocateJSArray(masm,
389                  r1,
390                  r2,
391                  r3,
392                  r4,
393                  r5,
394                  r6,
395                  r7,
396                  false,
397                  call_generic_code);
398  __ IncrementCounter(counters->array_function_native(), 1, r2, r6);
399
400  // Fill arguments as array elements. Copy from the top of the stack (last
401  // element) to the array backing store filling it backwards. Note:
402  // elements_array_end points after the backing store therefore PreIndex is
403  // used when filling the backing store.
404  // r0: argc
405  // r3: JSArray
406  // r4: elements_array storage start (untagged)
407  // r5: elements_array_end (untagged)
408  // sp[0]: last argument
409  Label loop, entry;
410  __ mov(r7, sp);
411  __ jmp(&entry);
412  __ bind(&loop);
413  __ ldr(r2, MemOperand(r7, kPointerSize, PostIndex));
414  if (FLAG_smi_only_arrays) {
415    __ JumpIfNotSmi(r2, &has_non_smi_element);
416  }
417  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
418  __ bind(&entry);
419  __ cmp(r4, r5);
420  __ b(lt, &loop);
421
422  __ bind(&finish);
423  __ mov(sp, r7);
424
425  // Remove caller arguments and receiver from the stack, setup return value and
426  // return.
427  // r0: argc
428  // r3: JSArray
429  // sp[0]: receiver
430  __ add(sp, sp, Operand(kPointerSize));
431  __ mov(r0, r3);
432  __ Jump(lr);
433
434  __ bind(&has_non_smi_element);
435  // Double values are handled by the runtime.
436  __ CheckMap(
437      r2, r9, Heap::kHeapNumberMapRootIndex, &not_double, DONT_DO_SMI_CHECK);
438  __ bind(&cant_transition_map);
439  __ UndoAllocationInNewSpace(r3, r4);
440  __ b(call_generic_code);
441
442  __ bind(&not_double);
443  // Transition FAST_SMI_ONLY_ELEMENTS to FAST_ELEMENTS.
444  // r3: JSArray
445  __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
446  __ LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
447                                         FAST_ELEMENTS,
448                                         r2,
449                                         r9,
450                                         &cant_transition_map);
451  __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
452  __ RecordWriteField(r3,
453                      HeapObject::kMapOffset,
454                      r2,
455                      r9,
456                      kLRHasNotBeenSaved,
457                      kDontSaveFPRegs,
458                      EMIT_REMEMBERED_SET,
459                      OMIT_SMI_CHECK);
460  Label loop2;
461  __ sub(r7, r7, Operand(kPointerSize));
462  __ bind(&loop2);
463  __ ldr(r2, MemOperand(r7, kPointerSize, PostIndex));
464  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
465  __ cmp(r4, r5);
466  __ b(lt, &loop2);
467  __ b(&finish);
468}
469
470
471void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
472  // ----------- S t a t e -------------
473  //  -- r0     : number of arguments
474  //  -- lr     : return address
475  //  -- sp[...]: constructor arguments
476  // -----------------------------------
477  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
478
479  // Get the InternalArray function.
480  GenerateLoadInternalArrayFunction(masm, r1);
481
482  if (FLAG_debug_code) {
483    // Initial map for the builtin InternalArray functions should be maps.
484    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
485    __ tst(r2, Operand(kSmiTagMask));
486    __ Assert(ne, "Unexpected initial map for InternalArray function");
487    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
488    __ Assert(eq, "Unexpected initial map for InternalArray function");
489  }
490
491  // Run the native code for the InternalArray function called as a normal
492  // function.
493  ArrayNativeCode(masm, &generic_array_code);
494
495  // Jump to the generic array code if the specialized code cannot handle the
496  // construction.
497  __ bind(&generic_array_code);
498
499  Handle<Code> array_code =
500      masm->isolate()->builtins()->InternalArrayCodeGeneric();
501  __ Jump(array_code, RelocInfo::CODE_TARGET);
502}
503
504
505void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
506  // ----------- S t a t e -------------
507  //  -- r0     : number of arguments
508  //  -- lr     : return address
509  //  -- sp[...]: constructor arguments
510  // -----------------------------------
511  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
512
513  // Get the Array function.
514  GenerateLoadArrayFunction(masm, r1);
515
516  if (FLAG_debug_code) {
517    // Initial map for the builtin Array functions should be maps.
518    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
519    __ tst(r2, Operand(kSmiTagMask));
520    __ Assert(ne, "Unexpected initial map for Array function");
521    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
522    __ Assert(eq, "Unexpected initial map for Array function");
523  }
524
525  // Run the native code for the Array function called as a normal function.
526  ArrayNativeCode(masm, &generic_array_code);
527
528  // Jump to the generic array code if the specialized code cannot handle
529  // the construction.
530  __ bind(&generic_array_code);
531
532  Handle<Code> array_code =
533      masm->isolate()->builtins()->ArrayCodeGeneric();
534  __ Jump(array_code, RelocInfo::CODE_TARGET);
535}
536
537
538void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
539  // ----------- S t a t e -------------
540  //  -- r0     : number of arguments
541  //  -- r1     : constructor function
542  //  -- lr     : return address
543  //  -- sp[...]: constructor arguments
544  // -----------------------------------
545  Label generic_constructor;
546
547  if (FLAG_debug_code) {
548    // The array construct code is only set for the builtin and internal
549    // Array functions which always have a map.
550    // Initial map for the builtin Array function should be a map.
551    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
552    __ tst(r2, Operand(kSmiTagMask));
553    __ Assert(ne, "Unexpected initial map for Array function");
554    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
555    __ Assert(eq, "Unexpected initial map for Array function");
556  }
557
558  // Run the native code for the Array function called as a constructor.
559  ArrayNativeCode(masm, &generic_constructor);
560
561  // Jump to the generic construct code in case the specialized code cannot
562  // handle the construction.
563  __ bind(&generic_constructor);
564  Handle<Code> generic_construct_stub =
565      masm->isolate()->builtins()->JSConstructStubGeneric();
566  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
567}
568
569
570void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
571  // ----------- S t a t e -------------
572  //  -- r0                     : number of arguments
573  //  -- r1                     : constructor function
574  //  -- lr                     : return address
575  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
576  //  -- sp[argc * 4]           : receiver
577  // -----------------------------------
578  Counters* counters = masm->isolate()->counters();
579  __ IncrementCounter(counters->string_ctor_calls(), 1, r2, r3);
580
581  Register function = r1;
582  if (FLAG_debug_code) {
583    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r2);
584    __ cmp(function, Operand(r2));
585    __ Assert(eq, "Unexpected String function");
586  }
587
588  // Load the first arguments in r0 and get rid of the rest.
589  Label no_arguments;
590  __ cmp(r0, Operand(0, RelocInfo::NONE));
591  __ b(eq, &no_arguments);
592  // First args = sp[(argc - 1) * 4].
593  __ sub(r0, r0, Operand(1));
594  __ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
595  // sp now point to args[0], drop args[0] + receiver.
596  __ Drop(2);
597
598  Register argument = r2;
599  Label not_cached, argument_is_string;
600  NumberToStringStub::GenerateLookupNumberStringCache(
601      masm,
602      r0,        // Input.
603      argument,  // Result.
604      r3,        // Scratch.
605      r4,        // Scratch.
606      r5,        // Scratch.
607      false,     // Is it a Smi?
608      &not_cached);
609  __ IncrementCounter(counters->string_ctor_cached_number(), 1, r3, r4);
610  __ bind(&argument_is_string);
611
612  // ----------- S t a t e -------------
613  //  -- r2     : argument converted to string
614  //  -- r1     : constructor function
615  //  -- lr     : return address
616  // -----------------------------------
617
618  Label gc_required;
619  __ AllocateInNewSpace(JSValue::kSize,
620                        r0,  // Result.
621                        r3,  // Scratch.
622                        r4,  // Scratch.
623                        &gc_required,
624                        TAG_OBJECT);
625
626  // Initialising the String Object.
627  Register map = r3;
628  __ LoadGlobalFunctionInitialMap(function, map, r4);
629  if (FLAG_debug_code) {
630    __ ldrb(r4, FieldMemOperand(map, Map::kInstanceSizeOffset));
631    __ cmp(r4, Operand(JSValue::kSize >> kPointerSizeLog2));
632    __ Assert(eq, "Unexpected string wrapper instance size");
633    __ ldrb(r4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
634    __ cmp(r4, Operand(0, RelocInfo::NONE));
635    __ Assert(eq, "Unexpected unused properties of string wrapper");
636  }
637  __ str(map, FieldMemOperand(r0, HeapObject::kMapOffset));
638
639  __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
640  __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
641  __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
642
643  __ str(argument, FieldMemOperand(r0, JSValue::kValueOffset));
644
645  // Ensure the object is fully initialized.
646  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
647
648  __ Ret();
649
650  // The argument was not found in the number to string cache. Check
651  // if it's a string already before calling the conversion builtin.
652  Label convert_argument;
653  __ bind(&not_cached);
654  __ JumpIfSmi(r0, &convert_argument);
655
656  // Is it a String?
657  __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
658  __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
659  STATIC_ASSERT(kNotStringTag != 0);
660  __ tst(r3, Operand(kIsNotStringMask));
661  __ b(ne, &convert_argument);
662  __ mov(argument, r0);
663  __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
664  __ b(&argument_is_string);
665
666  // Invoke the conversion builtin and put the result into r2.
667  __ bind(&convert_argument);
668  __ push(function);  // Preserve the function.
669  __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
670  {
671    FrameScope scope(masm, StackFrame::INTERNAL);
672    __ push(r0);
673    __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
674  }
675  __ pop(function);
676  __ mov(argument, r0);
677  __ b(&argument_is_string);
678
679  // Load the empty string into r2, remove the receiver from the
680  // stack, and jump back to the case where the argument is a string.
681  __ bind(&no_arguments);
682  __ LoadRoot(argument, Heap::kEmptyStringRootIndex);
683  __ Drop(1);
684  __ b(&argument_is_string);
685
686  // At this point the argument is already a string. Call runtime to
687  // create a string wrapper.
688  __ bind(&gc_required);
689  __ IncrementCounter(counters->string_ctor_gc_required(), 1, r3, r4);
690  {
691    FrameScope scope(masm, StackFrame::INTERNAL);
692    __ push(argument);
693    __ CallRuntime(Runtime::kNewStringWrapper, 1);
694  }
695  __ Ret();
696}
697
698
699static void Generate_JSConstructStubHelper(MacroAssembler* masm,
700                                           bool is_api_function,
701                                           bool count_constructions) {
702  // ----------- S t a t e -------------
703  //  -- r0     : number of arguments
704  //  -- r1     : constructor function
705  //  -- lr     : return address
706  //  -- sp[...]: constructor arguments
707  // -----------------------------------
708
709  // Should never count constructions for api objects.
710  ASSERT(!is_api_function || !count_constructions);
711
712  Isolate* isolate = masm->isolate();
713
714  // Enter a construct frame.
715  {
716    FrameScope scope(masm, StackFrame::CONSTRUCT);
717
718    // Preserve the two incoming parameters on the stack.
719    __ mov(r0, Operand(r0, LSL, kSmiTagSize));
720    __ push(r0);  // Smi-tagged arguments count.
721    __ push(r1);  // Constructor function.
722
723    // Try to allocate the object without transitioning into C code. If any of
724    // the preconditions is not met, the code bails out to the runtime call.
725    Label rt_call, allocated;
726    if (FLAG_inline_new) {
727      Label undo_allocation;
728#ifdef ENABLE_DEBUGGER_SUPPORT
729      ExternalReference debug_step_in_fp =
730          ExternalReference::debug_step_in_fp_address(isolate);
731      __ mov(r2, Operand(debug_step_in_fp));
732      __ ldr(r2, MemOperand(r2));
733      __ tst(r2, r2);
734      __ b(ne, &rt_call);
735#endif
736
737      // Load the initial map and verify that it is in fact a map.
738      // r1: constructor function
739      __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
740      __ JumpIfSmi(r2, &rt_call);
741      __ CompareObjectType(r2, r3, r4, MAP_TYPE);
742      __ b(ne, &rt_call);
743
744      // Check that the constructor is not constructing a JSFunction (see
745      // comments in Runtime_NewObject in runtime.cc). In which case the
746      // initial map's instance type would be JS_FUNCTION_TYPE.
747      // r1: constructor function
748      // r2: initial map
749      __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
750      __ b(eq, &rt_call);
751
752      if (count_constructions) {
753        Label allocate;
754        // Decrease generous allocation count.
755        __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
756        MemOperand constructor_count =
757            FieldMemOperand(r3, SharedFunctionInfo::kConstructionCountOffset);
758        __ ldrb(r4, constructor_count);
759        __ sub(r4, r4, Operand(1), SetCC);
760        __ strb(r4, constructor_count);
761        __ b(ne, &allocate);
762
763        __ Push(r1, r2);
764
765        __ push(r1);  // constructor
766        // The call will replace the stub, so the countdown is only done once.
767        __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
768
769        __ pop(r2);
770        __ pop(r1);
771
772        __ bind(&allocate);
773      }
774
775      // Now allocate the JSObject on the heap.
776      // r1: constructor function
777      // r2: initial map
778      __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
779      __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);
780
781      // Allocated the JSObject, now initialize the fields. Map is set to
782      // initial map and properties and elements are set to empty fixed array.
783      // r1: constructor function
784      // r2: initial map
785      // r3: object size
786      // r4: JSObject (not tagged)
787      __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
788      __ mov(r5, r4);
789      ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
790      __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
791      ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
792      __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
793      ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
794      __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
795
796      // Fill all the in-object properties with the appropriate filler.
797      // r1: constructor function
798      // r2: initial map
799      // r3: object size (in words)
800      // r4: JSObject (not tagged)
801      // r5: First in-object property of JSObject (not tagged)
802      __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
803      ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
804      __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
805      if (count_constructions) {
806        __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
807        __ Ubfx(r0, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
808                kBitsPerByte);
809        __ add(r0, r5, Operand(r0, LSL, kPointerSizeLog2));
810        // r0: offset of first field after pre-allocated fields
811        if (FLAG_debug_code) {
812          __ cmp(r0, r6);
813          __ Assert(le, "Unexpected number of pre-allocated property fields.");
814        }
815        __ InitializeFieldsWithFiller(r5, r0, r7);
816        // To allow for truncation.
817        __ LoadRoot(r7, Heap::kOnePointerFillerMapRootIndex);
818      }
819      __ InitializeFieldsWithFiller(r5, r6, r7);
820
821      // Add the object tag to make the JSObject real, so that we can continue
822      // and jump into the continuation code at any time from now on. Any
823      // failures need to undo the allocation, so that the heap is in a
824      // consistent state and verifiable.
825      __ add(r4, r4, Operand(kHeapObjectTag));
826
827      // Check if a non-empty properties array is needed. Continue with
828      // allocated object if not fall through to runtime call if it is.
829      // r1: constructor function
830      // r4: JSObject
831      // r5: start of next object (not tagged)
832      __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
833      // The field instance sizes contains both pre-allocated property fields
834      // and in-object properties.
835      __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
836      __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
837              kBitsPerByte);
838      __ add(r3, r3, Operand(r6));
839      __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * kBitsPerByte,
840              kBitsPerByte);
841      __ sub(r3, r3, Operand(r6), SetCC);
842
843      // Done if no extra properties are to be allocated.
844      __ b(eq, &allocated);
845      __ Assert(pl, "Property allocation count failed.");
846
847      // Scale the number of elements by pointer size and add the header for
848      // FixedArrays to the start of the next object calculation from above.
849      // r1: constructor
850      // r3: number of elements in properties array
851      // r4: JSObject
852      // r5: start of next object
853      __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
854      __ AllocateInNewSpace(
855          r0,
856          r5,
857          r6,
858          r2,
859          &undo_allocation,
860          static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
861
862      // Initialize the FixedArray.
863      // r1: constructor
864      // r3: number of elements in properties array
865      // r4: JSObject
866      // r5: FixedArray (not tagged)
867      __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
868      __ mov(r2, r5);
869      ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
870      __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
871      ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
872      __ mov(r0, Operand(r3, LSL, kSmiTagSize));
873      __ str(r0, MemOperand(r2, kPointerSize, PostIndex));
874
875      // Initialize the fields to undefined.
876      // r1: constructor function
877      // r2: First element of FixedArray (not tagged)
878      // r3: number of elements in properties array
879      // r4: JSObject
880      // r5: FixedArray (not tagged)
881      __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
882      ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
883      { Label loop, entry;
884        if (count_constructions) {
885          __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
886        } else if (FLAG_debug_code) {
887          __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
888          __ cmp(r7, r8);
889          __ Assert(eq, "Undefined value not loaded.");
890        }
891        __ b(&entry);
892        __ bind(&loop);
893        __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
894        __ bind(&entry);
895        __ cmp(r2, r6);
896        __ b(lt, &loop);
897      }
898
899      // Store the initialized FixedArray into the properties field of
900      // the JSObject
901      // r1: constructor function
902      // r4: JSObject
903      // r5: FixedArray (not tagged)
904      __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
905      __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
906
907      // Continue with JSObject being successfully allocated
908      // r1: constructor function
909      // r4: JSObject
910      __ jmp(&allocated);
911
912      // Undo the setting of the new top so that the heap is verifiable. For
913      // example, the map's unused properties potentially do not match the
914      // allocated objects unused properties.
915      // r4: JSObject (previous new top)
916      __ bind(&undo_allocation);
917      __ UndoAllocationInNewSpace(r4, r5);
918    }
919
920    // Allocate the new receiver object using the runtime call.
921    // r1: constructor function
922    __ bind(&rt_call);
923    __ push(r1);  // argument for Runtime_NewObject
924    __ CallRuntime(Runtime::kNewObject, 1);
925    __ mov(r4, r0);
926
927    // Receiver for constructor call allocated.
928    // r4: JSObject
929    __ bind(&allocated);
930    __ push(r4);
931    __ push(r4);
932
933    // Reload the number of arguments and the constructor from the stack.
934    // sp[0]: receiver
935    // sp[1]: receiver
936    // sp[2]: constructor function
937    // sp[3]: number of arguments (smi-tagged)
938    __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
939    __ ldr(r3, MemOperand(sp, 3 * kPointerSize));
940
941    // Set up pointer to last argument.
942    __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
943
944    // Set up number of arguments for function call below
945    __ mov(r0, Operand(r3, LSR, kSmiTagSize));
946
947    // Copy arguments and receiver to the expression stack.
948    // r0: number of arguments
949    // r1: constructor function
950    // r2: address of last argument (caller sp)
951    // r3: number of arguments (smi-tagged)
952    // sp[0]: receiver
953    // sp[1]: receiver
954    // sp[2]: constructor function
955    // sp[3]: number of arguments (smi-tagged)
956    Label loop, entry;
957    __ b(&entry);
958    __ bind(&loop);
959    __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
960    __ push(ip);
961    __ bind(&entry);
962    __ sub(r3, r3, Operand(2), SetCC);
963    __ b(ge, &loop);
964
965    // Call the function.
966    // r0: number of arguments
967    // r1: constructor function
968    if (is_api_function) {
969      __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
970      Handle<Code> code =
971          masm->isolate()->builtins()->HandleApiCallConstruct();
972      ParameterCount expected(0);
973      __ InvokeCode(code, expected, expected,
974                    RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD);
975    } else {
976      ParameterCount actual(r0);
977      __ InvokeFunction(r1, actual, CALL_FUNCTION,
978                        NullCallWrapper(), CALL_AS_METHOD);
979    }
980
981    // Store offset of return address for deoptimizer.
982    if (!is_api_function && !count_constructions) {
983      masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
984    }
985
986    // Restore context from the frame.
987    // r0: result
988    // sp[0]: receiver
989    // sp[1]: constructor function
990    // sp[2]: number of arguments (smi-tagged)
991    __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
992
993    // If the result is an object (in the ECMA sense), we should get rid
994    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
995    // on page 74.
996    Label use_receiver, exit;
997
998    // If the result is a smi, it is *not* an object in the ECMA sense.
999    // r0: result
1000    // sp[0]: receiver (newly allocated object)
1001    // sp[1]: constructor function
1002    // sp[2]: number of arguments (smi-tagged)
1003    __ JumpIfSmi(r0, &use_receiver);
1004
1005    // If the type of the result (stored in its map) is less than
1006    // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
1007    __ CompareObjectType(r0, r3, r3, FIRST_SPEC_OBJECT_TYPE);
1008    __ b(ge, &exit);
1009
1010    // Throw away the result of the constructor invocation and use the
1011    // on-stack receiver as the result.
1012    __ bind(&use_receiver);
1013    __ ldr(r0, MemOperand(sp));
1014
1015    // Remove receiver from the stack, remove caller arguments, and
1016    // return.
1017    __ bind(&exit);
1018    // r0: result
1019    // sp[0]: receiver (newly allocated object)
1020    // sp[1]: constructor function
1021    // sp[2]: number of arguments (smi-tagged)
1022    __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
1023
1024    // Leave construct frame.
1025  }
1026
1027  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
1028  __ add(sp, sp, Operand(kPointerSize));
1029  __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2);
1030  __ Jump(lr);
1031}
1032
1033
1034void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
1035  Generate_JSConstructStubHelper(masm, false, true);
1036}
1037
1038
1039void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
1040  Generate_JSConstructStubHelper(masm, false, false);
1041}
1042
1043
1044void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
1045  Generate_JSConstructStubHelper(masm, true, false);
1046}
1047
1048
1049static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
1050                                             bool is_construct) {
1051  // Called from Generate_JS_Entry
1052  // r0: code entry
1053  // r1: function
1054  // r2: receiver
1055  // r3: argc
1056  // r4: argv
1057  // r5-r7, cp may be clobbered
1058
1059  // Clear the context before we push it when entering the internal frame.
1060  __ mov(cp, Operand(0, RelocInfo::NONE));
1061
1062  // Enter an internal frame.
1063  {
1064    FrameScope scope(masm, StackFrame::INTERNAL);
1065
1066    // Set up the context from the function argument.
1067    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1068
1069    __ InitializeRootRegister();
1070
1071    // Push the function and the receiver onto the stack.
1072    __ push(r1);
1073    __ push(r2);
1074
1075    // Copy arguments to the stack in a loop.
1076    // r1: function
1077    // r3: argc
1078    // r4: argv, i.e. points to first arg
1079    Label loop, entry;
1080    __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
1081    // r2 points past last arg.
1082    __ b(&entry);
1083    __ bind(&loop);
1084    __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
1085    __ ldr(r0, MemOperand(r0));  // dereference handle
1086    __ push(r0);  // push parameter
1087    __ bind(&entry);
1088    __ cmp(r4, r2);
1089    __ b(ne, &loop);
1090
1091    // Initialize all JavaScript callee-saved registers, since they will be seen
1092    // by the garbage collector as part of handlers.
1093    __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
1094    __ mov(r5, Operand(r4));
1095    __ mov(r6, Operand(r4));
1096    __ mov(r7, Operand(r4));
1097    if (kR9Available == 1) {
1098      __ mov(r9, Operand(r4));
1099    }
1100
1101    // Invoke the code and pass argc as r0.
1102    __ mov(r0, Operand(r3));
1103    if (is_construct) {
1104      CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
1105      __ CallStub(&stub);
1106    } else {
1107      ParameterCount actual(r0);
1108      __ InvokeFunction(r1, actual, CALL_FUNCTION,
1109                        NullCallWrapper(), CALL_AS_METHOD);
1110    }
1111    // Exit the JS frame and remove the parameters (except function), and
1112    // return.
1113    // Respect ABI stack constraint.
1114  }
1115  __ Jump(lr);
1116
1117  // r0: result
1118}
1119
1120
1121void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
1122  Generate_JSEntryTrampolineHelper(masm, false);
1123}
1124
1125
1126void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
1127  Generate_JSEntryTrampolineHelper(masm, true);
1128}
1129
1130
1131void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
1132  // Enter an internal frame.
1133  {
1134    FrameScope scope(masm, StackFrame::INTERNAL);
1135
1136    // Preserve the function.
1137    __ push(r1);
1138    // Push call kind information.
1139    __ push(r5);
1140
1141    // Push the function on the stack as the argument to the runtime function.
1142    __ push(r1);
1143    __ CallRuntime(Runtime::kLazyCompile, 1);
1144    // Calculate the entry point.
1145    __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
1146
1147    // Restore call kind information.
1148    __ pop(r5);
1149    // Restore saved function.
1150    __ pop(r1);
1151
1152    // Tear down internal frame.
1153  }
1154
1155  // Do a tail-call of the compiled function.
1156  __ Jump(r2);
1157}
1158
1159
1160void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
1161  // Enter an internal frame.
1162  {
1163    FrameScope scope(masm, StackFrame::INTERNAL);
1164
1165    // Preserve the function.
1166    __ push(r1);
1167    // Push call kind information.
1168    __ push(r5);
1169
1170    // Push the function on the stack as the argument to the runtime function.
1171    __ push(r1);
1172    __ CallRuntime(Runtime::kLazyRecompile, 1);
1173    // Calculate the entry point.
1174    __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
1175
1176    // Restore call kind information.
1177    __ pop(r5);
1178    // Restore saved function.
1179    __ pop(r1);
1180
1181    // Tear down internal frame.
1182  }
1183
1184  // Do a tail-call of the compiled function.
1185  __ Jump(r2);
1186}
1187
1188
1189static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1190                                             Deoptimizer::BailoutType type) {
1191  {
1192    FrameScope scope(masm, StackFrame::INTERNAL);
1193    // Pass the function and deoptimization type to the runtime system.
1194    __ mov(r0, Operand(Smi::FromInt(static_cast<int>(type))));
1195    __ push(r0);
1196    __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
1197  }
1198
1199  // Get the full codegen state from the stack and untag it -> r6.
1200  __ ldr(r6, MemOperand(sp, 0 * kPointerSize));
1201  __ SmiUntag(r6);
1202  // Switch on the state.
1203  Label with_tos_register, unknown_state;
1204  __ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS));
1205  __ b(ne, &with_tos_register);
1206  __ add(sp, sp, Operand(1 * kPointerSize));  // Remove state.
1207  __ Ret();
1208
1209  __ bind(&with_tos_register);
1210  __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
1211  __ cmp(r6, Operand(FullCodeGenerator::TOS_REG));
1212  __ b(ne, &unknown_state);
1213  __ add(sp, sp, Operand(2 * kPointerSize));  // Remove state.
1214  __ Ret();
1215
1216  __ bind(&unknown_state);
1217  __ stop("no cases left");
1218}
1219
1220
1221void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1222  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1223}
1224
1225
1226void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1227  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1228}
1229
1230
1231void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
1232  // For now, we are relying on the fact that Runtime::NotifyOSR
1233  // doesn't do any garbage collection which allows us to save/restore
1234  // the registers without worrying about which of them contain
1235  // pointers. This seems a bit fragile.
1236  __ stm(db_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
1237  {
1238    FrameScope scope(masm, StackFrame::INTERNAL);
1239    __ CallRuntime(Runtime::kNotifyOSR, 0);
1240  }
1241  __ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
1242  __ Ret();
1243}
1244
1245
1246void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1247  CpuFeatures::TryForceFeatureScope scope(VFP3);
1248  if (!CpuFeatures::IsSupported(VFP3)) {
1249    __ Abort("Unreachable code: Cannot optimize without VFP3 support.");
1250    return;
1251  }
1252
1253  // Lookup the function in the JavaScript frame and push it as an
1254  // argument to the on-stack replacement function.
1255  __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1256  {
1257    FrameScope scope(masm, StackFrame::INTERNAL);
1258    __ push(r0);
1259    __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1260  }
1261
1262  // If the result was -1 it means that we couldn't optimize the
1263  // function. Just return and continue in the unoptimized version.
1264  Label skip;
1265  __ cmp(r0, Operand(Smi::FromInt(-1)));
1266  __ b(ne, &skip);
1267  __ Ret();
1268
1269  __ bind(&skip);
1270  // Untag the AST id and push it on the stack.
1271  __ SmiUntag(r0);
1272  __ push(r0);
1273
1274  // Generate the code for doing the frame-to-frame translation using
1275  // the deoptimizer infrastructure.
1276  Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
1277  generator.Generate();
1278}
1279
1280
1281void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1282  // 1. Make sure we have at least one argument.
1283  // r0: actual number of arguments
1284  { Label done;
1285    __ cmp(r0, Operand(0));
1286    __ b(ne, &done);
1287    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1288    __ push(r2);
1289    __ add(r0, r0, Operand(1));
1290    __ bind(&done);
1291  }
1292
1293  // 2. Get the function to call (passed as receiver) from the stack, check
1294  //    if it is a function.
1295  // r0: actual number of arguments
1296  Label slow, non_function;
1297  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1298  __ JumpIfSmi(r1, &non_function);
1299  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
1300  __ b(ne, &slow);
1301
1302  // 3a. Patch the first argument if necessary when calling a function.
1303  // r0: actual number of arguments
1304  // r1: function
1305  Label shift_arguments;
1306  __ mov(r4, Operand(0, RelocInfo::NONE));  // indicate regular JS_FUNCTION
1307  { Label convert_to_object, use_global_receiver, patch_receiver;
1308    // Change context eagerly in case we need the global receiver.
1309    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1310
1311    // Do not transform the receiver for strict mode functions.
1312    __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1313    __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset));
1314    __ tst(r3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1315                             kSmiTagSize)));
1316    __ b(ne, &shift_arguments);
1317
1318    // Do not transform the receiver for native (Compilerhints already in r3).
1319    __ tst(r3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1320    __ b(ne, &shift_arguments);
1321
1322    // Compute the receiver in non-strict mode.
1323    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1324    __ ldr(r2, MemOperand(r2, -kPointerSize));
1325    // r0: actual number of arguments
1326    // r1: function
1327    // r2: first argument
1328    __ JumpIfSmi(r2, &convert_to_object);
1329
1330    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1331    __ cmp(r2, r3);
1332    __ b(eq, &use_global_receiver);
1333    __ LoadRoot(r3, Heap::kNullValueRootIndex);
1334    __ cmp(r2, r3);
1335    __ b(eq, &use_global_receiver);
1336
1337    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1338    __ CompareObjectType(r2, r3, r3, FIRST_SPEC_OBJECT_TYPE);
1339    __ b(ge, &shift_arguments);
1340
1341    __ bind(&convert_to_object);
1342
1343    {
1344      // Enter an internal frame in order to preserve argument count.
1345      FrameScope scope(masm, StackFrame::INTERNAL);
1346      __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
1347      __ push(r0);
1348
1349      __ push(r2);
1350      __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1351      __ mov(r2, r0);
1352
1353      __ pop(r0);
1354      __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1355
1356      // Exit the internal frame.
1357    }
1358
1359    // Restore the function to r1, and the flag to r4.
1360    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1361    __ mov(r4, Operand(0, RelocInfo::NONE));
1362    __ jmp(&patch_receiver);
1363
1364    // Use the global receiver object from the called function as the
1365    // receiver.
1366    __ bind(&use_global_receiver);
1367    const int kGlobalIndex =
1368        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1369    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
1370    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
1371    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
1372    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
1373
1374    __ bind(&patch_receiver);
1375    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
1376    __ str(r2, MemOperand(r3, -kPointerSize));
1377
1378    __ jmp(&shift_arguments);
1379  }
1380
1381  // 3b. Check for function proxy.
1382  __ bind(&slow);
1383  __ mov(r4, Operand(1, RelocInfo::NONE));  // indicate function proxy
1384  __ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE));
1385  __ b(eq, &shift_arguments);
1386  __ bind(&non_function);
1387  __ mov(r4, Operand(2, RelocInfo::NONE));  // indicate non-function
1388
1389  // 3c. Patch the first argument when calling a non-function.  The
1390  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1391  //     receiver, so overwrite the first argument which will ultimately
1392  //     become the receiver.
1393  // r0: actual number of arguments
1394  // r1: function
1395  // r4: call type (0: JS function, 1: function proxy, 2: non-function)
1396  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1397  __ str(r1, MemOperand(r2, -kPointerSize));
1398
1399  // 4. Shift arguments and return address one slot down on the stack
1400  //    (overwriting the original receiver).  Adjust argument count to make
1401  //    the original first argument the new receiver.
1402  // r0: actual number of arguments
1403  // r1: function
1404  // r4: call type (0: JS function, 1: function proxy, 2: non-function)
1405  __ bind(&shift_arguments);
1406  { Label loop;
1407    // Calculate the copy start address (destination). Copy end address is sp.
1408    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1409
1410    __ bind(&loop);
1411    __ ldr(ip, MemOperand(r2, -kPointerSize));
1412    __ str(ip, MemOperand(r2));
1413    __ sub(r2, r2, Operand(kPointerSize));
1414    __ cmp(r2, sp);
1415    __ b(ne, &loop);
1416    // Adjust the actual number of arguments and remove the top element
1417    // (which is a copy of the last argument).
1418    __ sub(r0, r0, Operand(1));
1419    __ pop();
1420  }
1421
1422  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
1423  //     or a function proxy via CALL_FUNCTION_PROXY.
1424  // r0: actual number of arguments
1425  // r1: function
1426  // r4: call type (0: JS function, 1: function proxy, 2: non-function)
1427  { Label function, non_proxy;
1428    __ tst(r4, r4);
1429    __ b(eq, &function);
1430    // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1431    __ mov(r2, Operand(0, RelocInfo::NONE));
1432    __ SetCallKind(r5, CALL_AS_METHOD);
1433    __ cmp(r4, Operand(1));
1434    __ b(ne, &non_proxy);
1435
1436    __ push(r1);  // re-add proxy object as additional argument
1437    __ add(r0, r0, Operand(1));
1438    __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
1439    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1440            RelocInfo::CODE_TARGET);
1441
1442    __ bind(&non_proxy);
1443    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1444    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1445            RelocInfo::CODE_TARGET);
1446    __ bind(&function);
1447  }
1448
1449  // 5b. Get the code to call from the function and check that the number of
1450  //     expected arguments matches what we're providing.  If so, jump
1451  //     (tail-call) to the code in register edx without checking arguments.
1452  // r0: actual number of arguments
1453  // r1: function
1454  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1455  __ ldr(r2,
1456         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
1457  __ mov(r2, Operand(r2, ASR, kSmiTagSize));
1458  __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
1459  __ SetCallKind(r5, CALL_AS_METHOD);
1460  __ cmp(r2, r0);  // Check formal and actual parameter counts.
1461  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1462          RelocInfo::CODE_TARGET,
1463          ne);
1464
1465  ParameterCount expected(0);
1466  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION,
1467                NullCallWrapper(), CALL_AS_METHOD);
1468}
1469
1470
1471void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1472  const int kIndexOffset    = -5 * kPointerSize;
1473  const int kLimitOffset    = -4 * kPointerSize;
1474  const int kArgsOffset     =  2 * kPointerSize;
1475  const int kRecvOffset     =  3 * kPointerSize;
1476  const int kFunctionOffset =  4 * kPointerSize;
1477
1478  {
1479    FrameScope frame_scope(masm, StackFrame::INTERNAL);
1480
1481    __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
1482    __ push(r0);
1483    __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
1484    __ push(r0);
1485    __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
1486
1487    // Check the stack for overflow. We are not trying to catch
1488    // interruptions (e.g. debug break and preemption) here, so the "real stack
1489    // limit" is checked.
1490    Label okay;
1491    __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1492    // Make r2 the space we have left. The stack might already be overflowed
1493    // here which will cause r2 to become negative.
1494    __ sub(r2, sp, r2);
1495    // Check if the arguments will overflow the stack.
1496    __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1497    __ b(gt, &okay);  // Signed comparison.
1498
1499    // Out of stack space.
1500    __ ldr(r1, MemOperand(fp, kFunctionOffset));
1501    __ push(r1);
1502    __ push(r0);
1503    __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
1504    // End of stack check.
1505
1506    // Push current limit and index.
1507    __ bind(&okay);
1508    __ push(r0);  // limit
1509    __ mov(r1, Operand(0, RelocInfo::NONE));  // initial index
1510    __ push(r1);
1511
1512    // Get the receiver.
1513    __ ldr(r0, MemOperand(fp, kRecvOffset));
1514
1515    // Check that the function is a JS function (otherwise it must be a proxy).
1516    Label push_receiver;
1517    __ ldr(r1, MemOperand(fp, kFunctionOffset));
1518    __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
1519    __ b(ne, &push_receiver);
1520
1521    // Change context eagerly to get the right global object if necessary.
1522    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1523    // Load the shared function info while the function is still in r1.
1524    __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1525
1526    // Compute the receiver.
1527    // Do not transform the receiver for strict mode functions.
1528    Label call_to_object, use_global_receiver;
1529    __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset));
1530    __ tst(r2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1531                             kSmiTagSize)));
1532    __ b(ne, &push_receiver);
1533
1534    // Do not transform the receiver for strict mode functions.
1535    __ tst(r2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1536    __ b(ne, &push_receiver);
1537
1538    // Compute the receiver in non-strict mode.
1539    __ JumpIfSmi(r0, &call_to_object);
1540    __ LoadRoot(r1, Heap::kNullValueRootIndex);
1541    __ cmp(r0, r1);
1542    __ b(eq, &use_global_receiver);
1543    __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1544    __ cmp(r0, r1);
1545    __ b(eq, &use_global_receiver);
1546
1547    // Check if the receiver is already a JavaScript object.
1548    // r0: receiver
1549    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1550    __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
1551    __ b(ge, &push_receiver);
1552
1553    // Convert the receiver to a regular object.
1554    // r0: receiver
1555    __ bind(&call_to_object);
1556    __ push(r0);
1557    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1558    __ b(&push_receiver);
1559
1560    // Use the current global receiver object as the receiver.
1561    __ bind(&use_global_receiver);
1562    const int kGlobalOffset =
1563        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1564    __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
1565    __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1566    __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
1567    __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1568
1569    // Push the receiver.
1570    // r0: receiver
1571    __ bind(&push_receiver);
1572    __ push(r0);
1573
1574    // Copy all arguments from the array to the stack.
1575    Label entry, loop;
1576    __ ldr(r0, MemOperand(fp, kIndexOffset));
1577    __ b(&entry);
1578
1579    // Load the current argument from the arguments array and push it to the
1580    // stack.
1581    // r0: current argument index
1582    __ bind(&loop);
1583    __ ldr(r1, MemOperand(fp, kArgsOffset));
1584    __ push(r1);
1585    __ push(r0);
1586
1587    // Call the runtime to access the property in the arguments array.
1588    __ CallRuntime(Runtime::kGetProperty, 2);
1589    __ push(r0);
1590
1591    // Use inline caching to access the arguments.
1592    __ ldr(r0, MemOperand(fp, kIndexOffset));
1593    __ add(r0, r0, Operand(1 << kSmiTagSize));
1594    __ str(r0, MemOperand(fp, kIndexOffset));
1595
1596    // Test if the copy loop has finished copying all the elements from the
1597    // arguments object.
1598    __ bind(&entry);
1599    __ ldr(r1, MemOperand(fp, kLimitOffset));
1600    __ cmp(r0, r1);
1601    __ b(ne, &loop);
1602
1603    // Invoke the function.
1604    Label call_proxy;
1605    ParameterCount actual(r0);
1606    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1607    __ ldr(r1, MemOperand(fp, kFunctionOffset));
1608    __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
1609    __ b(ne, &call_proxy);
1610    __ InvokeFunction(r1, actual, CALL_FUNCTION,
1611                      NullCallWrapper(), CALL_AS_METHOD);
1612
1613    frame_scope.GenerateLeaveFrame();
1614    __ add(sp, sp, Operand(3 * kPointerSize));
1615    __ Jump(lr);
1616
1617    // Invoke the function proxy.
1618    __ bind(&call_proxy);
1619    __ push(r1);  // add function proxy as last argument
1620    __ add(r0, r0, Operand(1));
1621    __ mov(r2, Operand(0, RelocInfo::NONE));
1622    __ SetCallKind(r5, CALL_AS_METHOD);
1623    __ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
1624    __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1625            RelocInfo::CODE_TARGET);
1626
1627    // Tear down the internal frame and remove function, receiver and args.
1628  }
1629  __ add(sp, sp, Operand(3 * kPointerSize));
1630  __ Jump(lr);
1631}
1632
1633
1634static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1635  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1636  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1637  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1638  __ add(fp, sp, Operand(3 * kPointerSize));
1639}
1640
1641
1642static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1643  // ----------- S t a t e -------------
1644  //  -- r0 : result being passed through
1645  // -----------------------------------
1646  // Get the number of arguments passed (as a smi), tear down the frame and
1647  // then tear down the parameters.
1648  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1649  __ mov(sp, fp);
1650  __ ldm(ia_w, sp, fp.bit() | lr.bit());
1651  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1652  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1653}
1654
1655
1656void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1657  // ----------- S t a t e -------------
1658  //  -- r0 : actual number of arguments
1659  //  -- r1 : function (passed through to callee)
1660  //  -- r2 : expected number of arguments
1661  //  -- r3 : code entry to call
1662  //  -- r5 : call kind information
1663  // -----------------------------------
1664
1665  Label invoke, dont_adapt_arguments;
1666
1667  Label enough, too_few;
1668  __ cmp(r0, r2);
1669  __ b(lt, &too_few);
1670  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1671  __ b(eq, &dont_adapt_arguments);
1672
1673  {  // Enough parameters: actual >= expected
1674    __ bind(&enough);
1675    EnterArgumentsAdaptorFrame(masm);
1676
1677    // Calculate copy start address into r0 and copy end address into r2.
1678    // r0: actual number of arguments as a smi
1679    // r1: function
1680    // r2: expected number of arguments
1681    // r3: code entry to call
1682    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1683    // adjust for return address and receiver
1684    __ add(r0, r0, Operand(2 * kPointerSize));
1685    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1686
1687    // Copy the arguments (including the receiver) to the new stack frame.
1688    // r0: copy start address
1689    // r1: function
1690    // r2: copy end address
1691    // r3: code entry to call
1692
1693    Label copy;
1694    __ bind(&copy);
1695    __ ldr(ip, MemOperand(r0, 0));
1696    __ push(ip);
1697    __ cmp(r0, r2);  // Compare before moving to next argument.
1698    __ sub(r0, r0, Operand(kPointerSize));
1699    __ b(ne, &copy);
1700
1701    __ b(&invoke);
1702  }
1703
1704  {  // Too few parameters: Actual < expected
1705    __ bind(&too_few);
1706    EnterArgumentsAdaptorFrame(masm);
1707
1708    // Calculate copy start address into r0 and copy end address is fp.
1709    // r0: actual number of arguments as a smi
1710    // r1: function
1711    // r2: expected number of arguments
1712    // r3: code entry to call
1713    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1714
1715    // Copy the arguments (including the receiver) to the new stack frame.
1716    // r0: copy start address
1717    // r1: function
1718    // r2: expected number of arguments
1719    // r3: code entry to call
1720    Label copy;
1721    __ bind(&copy);
1722    // Adjust load for return address and receiver.
1723    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1724    __ push(ip);
1725    __ cmp(r0, fp);  // Compare before moving to next argument.
1726    __ sub(r0, r0, Operand(kPointerSize));
1727    __ b(ne, &copy);
1728
1729    // Fill the remaining expected arguments with undefined.
1730    // r1: function
1731    // r2: expected number of arguments
1732    // r3: code entry to call
1733    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1734    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1735    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.
1736
1737    Label fill;
1738    __ bind(&fill);
1739    __ push(ip);
1740    __ cmp(sp, r2);
1741    __ b(ne, &fill);
1742  }
1743
1744  // Call the entry point.
1745  __ bind(&invoke);
1746  __ Call(r3);
1747
1748  // Store offset of return address for deoptimizer.
1749  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1750
1751  // Exit frame and return.
1752  LeaveArgumentsAdaptorFrame(masm);
1753  __ Jump(lr);
1754
1755
1756  // -------------------------------------------
1757  // Dont adapt arguments.
1758  // -------------------------------------------
1759  __ bind(&dont_adapt_arguments);
1760  __ Jump(r3);
1761}
1762
1763
1764#undef __
1765
1766} }  // namespace v8::internal
1767
1768#endif  // V8_TARGET_ARCH_ARM
1769