builtins-arm.cc revision 3fb3ca8c7ca439d408449a395897395c0faae8d1
1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "codegen.h"
33#include "debug.h"
34#include "deoptimizer.h"
35#include "full-codegen.h"
36#include "runtime.h"
37
38namespace v8 {
39namespace internal {
40
41
42#define __ ACCESS_MASM(masm)
43
44
45void Builtins::Generate_Adaptor(MacroAssembler* masm,
46                                CFunctionId id,
47                                BuiltinExtraArguments extra_args) {
48  // ----------- S t a t e -------------
49  //  -- r0                 : number of arguments excluding receiver
50  //  -- r1                 : called function (only guaranteed when
51  //                          extra_args requires it)
52  //  -- cp                 : context
53  //  -- sp[0]              : last argument
54  //  -- ...
55  //  -- sp[4 * (argc - 1)] : first argument (argc == r0)
56  //  -- sp[4 * argc]       : receiver
57  // -----------------------------------
58
59  // Insert extra arguments.
60  int num_extra_args = 0;
61  if (extra_args == NEEDS_CALLED_FUNCTION) {
62    num_extra_args = 1;
63    __ push(r1);
64  } else {
65    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
66  }
67
68  // JumpToExternalReference expects r0 to contain the number of arguments
69  // including the receiver and the extra arguments.
70  __ add(r0, r0, Operand(num_extra_args + 1));
71  __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
72}
73
74
75// Load the built-in Array function from the current context.
76static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
77  // Load the global context.
78
79  __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
80  __ ldr(result,
81         FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
82  // Load the Array function from the global context.
83  __ ldr(result,
84         MemOperand(result,
85                    Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
86}
87
88
89// This constant has the same value as JSArray::kPreallocatedArrayElements and
90// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
91// below should be reconsidered.
92static const int kLoopUnfoldLimit = 4;
93
94
95// Allocate an empty JSArray. The allocated array is put into the result
96// register. An elements backing store is allocated with size initial_capacity
97// and filled with the hole values.
98static void AllocateEmptyJSArray(MacroAssembler* masm,
99                                 Register array_function,
100                                 Register result,
101                                 Register scratch1,
102                                 Register scratch2,
103                                 Register scratch3,
104                                 int initial_capacity,
105                                 Label* gc_required) {
106  ASSERT(initial_capacity > 0);
107  // Load the initial map from the array function.
108  __ ldr(scratch1, FieldMemOperand(array_function,
109                                   JSFunction::kPrototypeOrInitialMapOffset));
110
111  // Allocate the JSArray object together with space for a fixed array with the
112  // requested elements.
113  int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
114  __ AllocateInNewSpace(size,
115                        result,
116                        scratch2,
117                        scratch3,
118                        gc_required,
119                        TAG_OBJECT);
120
121  // Allocated the JSArray. Now initialize the fields except for the elements
122  // array.
123  // result: JSObject
124  // scratch1: initial map
125  // scratch2: start of next object
126  __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
127  __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
128  __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
129  // Field JSArray::kElementsOffset is initialized later.
130  __ mov(scratch3,  Operand(0, RelocInfo::NONE));
131  __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
132
133  // Calculate the location of the elements array and set elements array member
134  // of the JSArray.
135  // result: JSObject
136  // scratch2: start of next object
137  __ add(scratch1, result, Operand(JSArray::kSize));
138  __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
139
140  // Clear the heap tag on the elements array.
141  ASSERT(kSmiTag == 0);
142  __ sub(scratch1, scratch1, Operand(kHeapObjectTag));
143
144  // Initialize the FixedArray and fill it with holes. FixedArray length is
145  // stored as a smi.
146  // result: JSObject
147  // scratch1: elements array (untagged)
148  // scratch2: start of next object
149  __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
150  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
151  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
152  __ mov(scratch3,  Operand(Smi::FromInt(initial_capacity)));
153  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
154  __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
155
156  // Fill the FixedArray with the hole value.
157  ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
158  ASSERT(initial_capacity <= kLoopUnfoldLimit);
159  __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
160  for (int i = 0; i < initial_capacity; i++) {
161    __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
162  }
163}
164
165// Allocate a JSArray with the number of elements stored in a register. The
166// register array_function holds the built-in Array function and the register
167// array_size holds the size of the array as a smi. The allocated array is put
168// into the result register and beginning and end of the FixedArray elements
169// storage is put into registers elements_array_storage and elements_array_end
170// (see  below for when that is not the case). If the parameter fill_with_holes
171// is true the allocated elements backing store is filled with the hole values
172// otherwise it is left uninitialized. When the backing store is filled the
173// register elements_array_storage is scratched.
174static void AllocateJSArray(MacroAssembler* masm,
175                            Register array_function,  // Array function.
176                            Register array_size,  // As a smi.
177                            Register result,
178                            Register elements_array_storage,
179                            Register elements_array_end,
180                            Register scratch1,
181                            Register scratch2,
182                            bool fill_with_hole,
183                            Label* gc_required) {
184  Label not_empty, allocated;
185
186  // Load the initial map from the array function.
187  __ ldr(elements_array_storage,
188         FieldMemOperand(array_function,
189                         JSFunction::kPrototypeOrInitialMapOffset));
190
191  // Check whether an empty sized array is requested.
192  __ tst(array_size, array_size);
193  __ b(ne, &not_empty);
194
195  // If an empty array is requested allocate a small elements array anyway. This
196  // keeps the code below free of special casing for the empty array.
197  int size = JSArray::kSize +
198             FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
199  __ AllocateInNewSpace(size,
200                        result,
201                        elements_array_end,
202                        scratch1,
203                        gc_required,
204                        TAG_OBJECT);
205  __ jmp(&allocated);
206
207  // Allocate the JSArray object together with space for a FixedArray with the
208  // requested number of elements.
209  __ bind(&not_empty);
210  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
211  __ mov(elements_array_end,
212         Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
213  __ add(elements_array_end,
214         elements_array_end,
215         Operand(array_size, ASR, kSmiTagSize));
216  __ AllocateInNewSpace(
217      elements_array_end,
218      result,
219      scratch1,
220      scratch2,
221      gc_required,
222      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
223
224  // Allocated the JSArray. Now initialize the fields except for the elements
225  // array.
226  // result: JSObject
227  // elements_array_storage: initial map
228  // array_size: size of array (smi)
229  __ bind(&allocated);
230  __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
231  __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
232  __ str(elements_array_storage,
233         FieldMemOperand(result, JSArray::kPropertiesOffset));
234  // Field JSArray::kElementsOffset is initialized later.
235  __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
236
237  // Calculate the location of the elements array and set elements array member
238  // of the JSArray.
239  // result: JSObject
240  // array_size: size of array (smi)
241  __ add(elements_array_storage, result, Operand(JSArray::kSize));
242  __ str(elements_array_storage,
243         FieldMemOperand(result, JSArray::kElementsOffset));
244
245  // Clear the heap tag on the elements array.
246  ASSERT(kSmiTag == 0);
247  __ sub(elements_array_storage,
248         elements_array_storage,
249         Operand(kHeapObjectTag));
250  // Initialize the fixed array and fill it with holes. FixedArray length is
251  // stored as a smi.
252  // result: JSObject
253  // elements_array_storage: elements array (untagged)
254  // array_size: size of array (smi)
255  __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
256  ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
257  __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
258  ASSERT(kSmiTag == 0);
259  __ tst(array_size, array_size);
260  // Length of the FixedArray is the number of pre-allocated elements if
261  // the actual JSArray has length 0 and the size of the JSArray for non-empty
262  // JSArrays. The length of a FixedArray is stored as a smi.
263  __ mov(array_size,
264         Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)),
265         LeaveCC,
266         eq);
267  ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
268  __ str(array_size,
269         MemOperand(elements_array_storage, kPointerSize, PostIndex));
270
271  // Calculate elements array and elements array end.
272  // result: JSObject
273  // elements_array_storage: elements array element storage
274  // array_size: smi-tagged size of elements array
275  ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
276  __ add(elements_array_end,
277         elements_array_storage,
278         Operand(array_size, LSL, kPointerSizeLog2 - kSmiTagSize));
279
280  // Fill the allocated FixedArray with the hole value if requested.
281  // result: JSObject
282  // elements_array_storage: elements array element storage
283  // elements_array_end: start of next object
284  if (fill_with_hole) {
285    Label loop, entry;
286    __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
287    __ jmp(&entry);
288    __ bind(&loop);
289    __ str(scratch1,
290           MemOperand(elements_array_storage, kPointerSize, PostIndex));
291    __ bind(&entry);
292    __ cmp(elements_array_storage, elements_array_end);
293    __ b(lt, &loop);
294  }
295}
296
297// Create a new array for the built-in Array function. This function allocates
298// the JSArray object and the FixedArray elements array and initializes these.
299// If the Array cannot be constructed in native code the runtime is called. This
300// function assumes the following state:
301//   r0: argc
302//   r1: constructor (built-in Array function)
303//   lr: return address
304//   sp[0]: last argument
305// This function is used for both construct and normal calls of Array. The only
306// difference between handling a construct call and a normal call is that for a
307// construct call the constructor function in r1 needs to be preserved for
308// entering the generic code. In both cases argc in r0 needs to be preserved.
309// Both registers are preserved by this code so no need to differentiate between
310// construct call and normal call.
311static void ArrayNativeCode(MacroAssembler* masm,
312                            Label* call_generic_code) {
313  Counters* counters = masm->isolate()->counters();
314  Label argc_one_or_more, argc_two_or_more;
315
316  // Check for array construction with zero arguments or one.
317  __ cmp(r0, Operand(0, RelocInfo::NONE));
318  __ b(ne, &argc_one_or_more);
319
320  // Handle construction of an empty array.
321  AllocateEmptyJSArray(masm,
322                       r1,
323                       r2,
324                       r3,
325                       r4,
326                       r5,
327                       JSArray::kPreallocatedArrayElements,
328                       call_generic_code);
329  __ IncrementCounter(counters->array_function_native(), 1, r3, r4);
330  // Setup return value, remove receiver from stack and return.
331  __ mov(r0, r2);
332  __ add(sp, sp, Operand(kPointerSize));
333  __ Jump(lr);
334
335  // Check for one argument. Bail out if argument is not smi or if it is
336  // negative.
337  __ bind(&argc_one_or_more);
338  __ cmp(r0, Operand(1));
339  __ b(ne, &argc_two_or_more);
340  ASSERT(kSmiTag == 0);
341  __ ldr(r2, MemOperand(sp));  // Get the argument from the stack.
342  __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
343  __ b(ne, call_generic_code);
344
345  // Handle construction of an empty array of a certain size. Bail out if size
346  // is too large to actually allocate an elements array.
347  ASSERT(kSmiTag == 0);
348  __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
349  __ b(ge, call_generic_code);
350
351  // r0: argc
352  // r1: constructor
353  // r2: array_size (smi)
354  // sp[0]: argument
355  AllocateJSArray(masm,
356                  r1,
357                  r2,
358                  r3,
359                  r4,
360                  r5,
361                  r6,
362                  r7,
363                  true,
364                  call_generic_code);
365  __ IncrementCounter(counters->array_function_native(), 1, r2, r4);
366  // Setup return value, remove receiver and argument from stack and return.
367  __ mov(r0, r3);
368  __ add(sp, sp, Operand(2 * kPointerSize));
369  __ Jump(lr);
370
371  // Handle construction of an array from a list of arguments.
372  __ bind(&argc_two_or_more);
373  __ mov(r2, Operand(r0, LSL, kSmiTagSize));  // Convet argc to a smi.
374
375  // r0: argc
376  // r1: constructor
377  // r2: array_size (smi)
378  // sp[0]: last argument
379  AllocateJSArray(masm,
380                  r1,
381                  r2,
382                  r3,
383                  r4,
384                  r5,
385                  r6,
386                  r7,
387                  false,
388                  call_generic_code);
389  __ IncrementCounter(counters->array_function_native(), 1, r2, r6);
390
391  // Fill arguments as array elements. Copy from the top of the stack (last
392  // element) to the array backing store filling it backwards. Note:
393  // elements_array_end points after the backing store therefore PreIndex is
394  // used when filling the backing store.
395  // r0: argc
396  // r3: JSArray
397  // r4: elements_array storage start (untagged)
398  // r5: elements_array_end (untagged)
399  // sp[0]: last argument
400  Label loop, entry;
401  __ jmp(&entry);
402  __ bind(&loop);
403  __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex));
404  __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
405  __ bind(&entry);
406  __ cmp(r4, r5);
407  __ b(lt, &loop);
408
409  // Remove caller arguments and receiver from the stack, setup return value and
410  // return.
411  // r0: argc
412  // r3: JSArray
413  // sp[0]: receiver
414  __ add(sp, sp, Operand(kPointerSize));
415  __ mov(r0, r3);
416  __ Jump(lr);
417}
418
419
420void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
421  // ----------- S t a t e -------------
422  //  -- r0     : number of arguments
423  //  -- lr     : return address
424  //  -- sp[...]: constructor arguments
425  // -----------------------------------
426  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
427
428  // Get the Array function.
429  GenerateLoadArrayFunction(masm, r1);
430
431  if (FLAG_debug_code) {
432    // Initial map for the builtin Array functions should be maps.
433    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
434    __ tst(r2, Operand(kSmiTagMask));
435    __ Assert(ne, "Unexpected initial map for Array function");
436    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
437    __ Assert(eq, "Unexpected initial map for Array function");
438  }
439
440  // Run the native code for the Array function called as a normal function.
441  ArrayNativeCode(masm, &generic_array_code);
442
443  // Jump to the generic array code if the specialized code cannot handle
444  // the construction.
445  __ bind(&generic_array_code);
446
447  Handle<Code> array_code =
448      masm->isolate()->builtins()->ArrayCodeGeneric();
449  __ Jump(array_code, RelocInfo::CODE_TARGET);
450}
451
452
453void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
454  // ----------- S t a t e -------------
455  //  -- r0     : number of arguments
456  //  -- r1     : constructor function
457  //  -- lr     : return address
458  //  -- sp[...]: constructor arguments
459  // -----------------------------------
460  Label generic_constructor;
461
462  if (FLAG_debug_code) {
463    // The array construct code is only set for the builtin and internal
464    // Array functions which always have a map.
465    // Initial map for the builtin Array function should be a map.
466    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
467    __ tst(r2, Operand(kSmiTagMask));
468    __ Assert(ne, "Unexpected initial map for Array function");
469    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
470    __ Assert(eq, "Unexpected initial map for Array function");
471  }
472
473  // Run the native code for the Array function called as a constructor.
474  ArrayNativeCode(masm, &generic_constructor);
475
476  // Jump to the generic construct code in case the specialized code cannot
477  // handle the construction.
478  __ bind(&generic_constructor);
479  Handle<Code> generic_construct_stub =
480      masm->isolate()->builtins()->JSConstructStubGeneric();
481  __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
482}
483
484
485void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
486  // ----------- S t a t e -------------
487  //  -- r0                     : number of arguments
488  //  -- r1                     : constructor function
489  //  -- lr                     : return address
490  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
491  //  -- sp[argc * 4]           : receiver
492  // -----------------------------------
493  Counters* counters = masm->isolate()->counters();
494  __ IncrementCounter(counters->string_ctor_calls(), 1, r2, r3);
495
496  Register function = r1;
497  if (FLAG_debug_code) {
498    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r2);
499    __ cmp(function, Operand(r2));
500    __ Assert(eq, "Unexpected String function");
501  }
502
503  // Load the first arguments in r0 and get rid of the rest.
504  Label no_arguments;
505  __ cmp(r0, Operand(0, RelocInfo::NONE));
506  __ b(eq, &no_arguments);
507  // First args = sp[(argc - 1) * 4].
508  __ sub(r0, r0, Operand(1));
509  __ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
510  // sp now point to args[0], drop args[0] + receiver.
511  __ Drop(2);
512
513  Register argument = r2;
514  Label not_cached, argument_is_string;
515  NumberToStringStub::GenerateLookupNumberStringCache(
516      masm,
517      r0,        // Input.
518      argument,  // Result.
519      r3,        // Scratch.
520      r4,        // Scratch.
521      r5,        // Scratch.
522      false,     // Is it a Smi?
523      &not_cached);
524  __ IncrementCounter(counters->string_ctor_cached_number(), 1, r3, r4);
525  __ bind(&argument_is_string);
526
527  // ----------- S t a t e -------------
528  //  -- r2     : argument converted to string
529  //  -- r1     : constructor function
530  //  -- lr     : return address
531  // -----------------------------------
532
533  Label gc_required;
534  __ AllocateInNewSpace(JSValue::kSize,
535                        r0,  // Result.
536                        r3,  // Scratch.
537                        r4,  // Scratch.
538                        &gc_required,
539                        TAG_OBJECT);
540
541  // Initialising the String Object.
542  Register map = r3;
543  __ LoadGlobalFunctionInitialMap(function, map, r4);
544  if (FLAG_debug_code) {
545    __ ldrb(r4, FieldMemOperand(map, Map::kInstanceSizeOffset));
546    __ cmp(r4, Operand(JSValue::kSize >> kPointerSizeLog2));
547    __ Assert(eq, "Unexpected string wrapper instance size");
548    __ ldrb(r4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
549    __ cmp(r4, Operand(0, RelocInfo::NONE));
550    __ Assert(eq, "Unexpected unused properties of string wrapper");
551  }
552  __ str(map, FieldMemOperand(r0, HeapObject::kMapOffset));
553
554  __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
555  __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
556  __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
557
558  __ str(argument, FieldMemOperand(r0, JSValue::kValueOffset));
559
560  // Ensure the object is fully initialized.
561  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
562
563  __ Ret();
564
565  // The argument was not found in the number to string cache. Check
566  // if it's a string already before calling the conversion builtin.
567  Label convert_argument;
568  __ bind(&not_cached);
569  __ JumpIfSmi(r0, &convert_argument);
570
571  // Is it a String?
572  __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
573  __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
574  ASSERT(kNotStringTag != 0);
575  __ tst(r3, Operand(kIsNotStringMask));
576  __ b(ne, &convert_argument);
577  __ mov(argument, r0);
578  __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
579  __ b(&argument_is_string);
580
581  // Invoke the conversion builtin and put the result into r2.
582  __ bind(&convert_argument);
583  __ push(function);  // Preserve the function.
584  __ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
585  __ EnterInternalFrame();
586  __ push(r0);
587  __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
588  __ LeaveInternalFrame();
589  __ pop(function);
590  __ mov(argument, r0);
591  __ b(&argument_is_string);
592
593  // Load the empty string into r2, remove the receiver from the
594  // stack, and jump back to the case where the argument is a string.
595  __ bind(&no_arguments);
596  __ LoadRoot(argument, Heap::kEmptyStringRootIndex);
597  __ Drop(1);
598  __ b(&argument_is_string);
599
600  // At this point the argument is already a string. Call runtime to
601  // create a string wrapper.
602  __ bind(&gc_required);
603  __ IncrementCounter(counters->string_ctor_gc_required(), 1, r3, r4);
604  __ EnterInternalFrame();
605  __ push(argument);
606  __ CallRuntime(Runtime::kNewStringWrapper, 1);
607  __ LeaveInternalFrame();
608  __ Ret();
609}
610
611
612void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
613  // ----------- S t a t e -------------
614  //  -- r0     : number of arguments
615  //  -- r1     : constructor function
616  //  -- lr     : return address
617  //  -- sp[...]: constructor arguments
618  // -----------------------------------
619
620  Label non_function_call;
621  // Check that the function is not a smi.
622  __ JumpIfSmi(r1, &non_function_call);
623  // Check that the function is a JSFunction.
624  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
625  __ b(ne, &non_function_call);
626
627  // Jump to the function-specific construct stub.
628  __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
629  __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
630  __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
631
632  // r0: number of arguments
633  // r1: called object
634  __ bind(&non_function_call);
635  // Set expected number of arguments to zero (not changing r0).
636  __ mov(r2, Operand(0, RelocInfo::NONE));
637  __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
638  __ SetCallKind(r5, CALL_AS_METHOD);
639  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
640          RelocInfo::CODE_TARGET);
641}
642
643
644static void Generate_JSConstructStubHelper(MacroAssembler* masm,
645                                           bool is_api_function,
646                                           bool count_constructions) {
647  // Should never count constructions for api objects.
648  ASSERT(!is_api_function || !count_constructions);
649
650  Isolate* isolate = masm->isolate();
651
652  // Enter a construct frame.
653  __ EnterConstructFrame();
654
655  // Preserve the two incoming parameters on the stack.
656  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
657  __ push(r0);  // Smi-tagged arguments count.
658  __ push(r1);  // Constructor function.
659
660  // Try to allocate the object without transitioning into C code. If any of the
661  // preconditions is not met, the code bails out to the runtime call.
662  Label rt_call, allocated;
663  if (FLAG_inline_new) {
664    Label undo_allocation;
665#ifdef ENABLE_DEBUGGER_SUPPORT
666    ExternalReference debug_step_in_fp =
667        ExternalReference::debug_step_in_fp_address(isolate);
668    __ mov(r2, Operand(debug_step_in_fp));
669    __ ldr(r2, MemOperand(r2));
670    __ tst(r2, r2);
671    __ b(ne, &rt_call);
672#endif
673
674    // Load the initial map and verify that it is in fact a map.
675    // r1: constructor function
676    __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
677    __ JumpIfSmi(r2, &rt_call);
678    __ CompareObjectType(r2, r3, r4, MAP_TYPE);
679    __ b(ne, &rt_call);
680
681    // Check that the constructor is not constructing a JSFunction (see comments
682    // in Runtime_NewObject in runtime.cc). In which case the initial map's
683    // instance type would be JS_FUNCTION_TYPE.
684    // r1: constructor function
685    // r2: initial map
686    __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
687    __ b(eq, &rt_call);
688
689    if (count_constructions) {
690      Label allocate;
691      // Decrease generous allocation count.
692      __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
693      MemOperand constructor_count =
694          FieldMemOperand(r3, SharedFunctionInfo::kConstructionCountOffset);
695      __ ldrb(r4, constructor_count);
696      __ sub(r4, r4, Operand(1), SetCC);
697      __ strb(r4, constructor_count);
698      __ b(ne, &allocate);
699
700      __ Push(r1, r2);
701
702      __ push(r1);  // constructor
703      // The call will replace the stub, so the countdown is only done once.
704      __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
705
706      __ pop(r2);
707      __ pop(r1);
708
709      __ bind(&allocate);
710    }
711
712    // Now allocate the JSObject on the heap.
713    // r1: constructor function
714    // r2: initial map
715    __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
716    __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);
717
718    // Allocated the JSObject, now initialize the fields. Map is set to initial
719    // map and properties and elements are set to empty fixed array.
720    // r1: constructor function
721    // r2: initial map
722    // r3: object size
723    // r4: JSObject (not tagged)
724    __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
725    __ mov(r5, r4);
726    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
727    __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
728    ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
729    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
730    ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
731    __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
732
733    // Fill all the in-object properties with the appropriate filler.
734    // r1: constructor function
735    // r2: initial map
736    // r3: object size (in words)
737    // r4: JSObject (not tagged)
738    // r5: First in-object property of JSObject (not tagged)
739    __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
740    ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
741    { Label loop, entry;
742      if (count_constructions) {
743        // To allow for truncation.
744        __ LoadRoot(r7, Heap::kOnePointerFillerMapRootIndex);
745      } else {
746        __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
747      }
748      __ b(&entry);
749      __ bind(&loop);
750      __ str(r7, MemOperand(r5, kPointerSize, PostIndex));
751      __ bind(&entry);
752      __ cmp(r5, r6);
753      __ b(lt, &loop);
754    }
755
756    // Add the object tag to make the JSObject real, so that we can continue and
757    // jump into the continuation code at any time from now on. Any failures
758    // need to undo the allocation, so that the heap is in a consistent state
759    // and verifiable.
760    __ add(r4, r4, Operand(kHeapObjectTag));
761
762    // Check if a non-empty properties array is needed. Continue with allocated
763    // object if not fall through to runtime call if it is.
764    // r1: constructor function
765    // r4: JSObject
766    // r5: start of next object (not tagged)
767    __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
768    // The field instance sizes contains both pre-allocated property fields and
769    // in-object properties.
770    __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
771    __ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * 8, 8);
772    __ add(r3, r3, Operand(r6));
773    __ Ubfx(r6, r0, Map::kInObjectPropertiesByte * 8, 8);
774    __ sub(r3, r3, Operand(r6), SetCC);
775
776    // Done if no extra properties are to be allocated.
777    __ b(eq, &allocated);
778    __ Assert(pl, "Property allocation count failed.");
779
780    // Scale the number of elements by pointer size and add the header for
781    // FixedArrays to the start of the next object calculation from above.
782    // r1: constructor
783    // r3: number of elements in properties array
784    // r4: JSObject
785    // r5: start of next object
786    __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
787    __ AllocateInNewSpace(
788        r0,
789        r5,
790        r6,
791        r2,
792        &undo_allocation,
793        static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
794
795    // Initialize the FixedArray.
796    // r1: constructor
797    // r3: number of elements in properties array
798    // r4: JSObject
799    // r5: FixedArray (not tagged)
800    __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
801    __ mov(r2, r5);
802    ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
803    __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
804    ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
805    __ mov(r0, Operand(r3, LSL, kSmiTagSize));
806    __ str(r0, MemOperand(r2, kPointerSize, PostIndex));
807
808    // Initialize the fields to undefined.
809    // r1: constructor function
810    // r2: First element of FixedArray (not tagged)
811    // r3: number of elements in properties array
812    // r4: JSObject
813    // r5: FixedArray (not tagged)
814    __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2));  // End of object.
815    ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
816    { Label loop, entry;
817      if (count_constructions) {
818        __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
819      } else if (FLAG_debug_code) {
820        __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
821        __ cmp(r7, r8);
822        __ Assert(eq, "Undefined value not loaded.");
823      }
824      __ b(&entry);
825      __ bind(&loop);
826      __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
827      __ bind(&entry);
828      __ cmp(r2, r6);
829      __ b(lt, &loop);
830    }
831
832    // Store the initialized FixedArray into the properties field of
833    // the JSObject
834    // r1: constructor function
835    // r4: JSObject
836    // r5: FixedArray (not tagged)
837    __ add(r5, r5, Operand(kHeapObjectTag));  // Add the heap tag.
838    __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
839
840    // Continue with JSObject being successfully allocated
841    // r1: constructor function
842    // r4: JSObject
843    __ jmp(&allocated);
844
845    // Undo the setting of the new top so that the heap is verifiable. For
846    // example, the map's unused properties potentially do not match the
847    // allocated objects unused properties.
848    // r4: JSObject (previous new top)
849    __ bind(&undo_allocation);
850    __ UndoAllocationInNewSpace(r4, r5);
851  }
852
853  // Allocate the new receiver object using the runtime call.
854  // r1: constructor function
855  __ bind(&rt_call);
856  __ push(r1);  // argument for Runtime_NewObject
857  __ CallRuntime(Runtime::kNewObject, 1);
858  __ mov(r4, r0);
859
860  // Receiver for constructor call allocated.
861  // r4: JSObject
862  __ bind(&allocated);
863  __ push(r4);
864
865  // Push the function and the allocated receiver from the stack.
866  // sp[0]: receiver (newly allocated object)
867  // sp[1]: constructor function
868  // sp[2]: number of arguments (smi-tagged)
869  __ ldr(r1, MemOperand(sp, kPointerSize));
870  __ push(r1);  // Constructor function.
871  __ push(r4);  // Receiver.
872
873  // Reload the number of arguments from the stack.
874  // r1: constructor function
875  // sp[0]: receiver
876  // sp[1]: constructor function
877  // sp[2]: receiver
878  // sp[3]: constructor function
879  // sp[4]: number of arguments (smi-tagged)
880  __ ldr(r3, MemOperand(sp, 4 * kPointerSize));
881
882  // Setup pointer to last argument.
883  __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
884
885  // Setup number of arguments for function call below
886  __ mov(r0, Operand(r3, LSR, kSmiTagSize));
887
888  // Copy arguments and receiver to the expression stack.
889  // r0: number of arguments
890  // r2: address of last argument (caller sp)
891  // r1: constructor function
892  // r3: number of arguments (smi-tagged)
893  // sp[0]: receiver
894  // sp[1]: constructor function
895  // sp[2]: receiver
896  // sp[3]: constructor function
897  // sp[4]: number of arguments (smi-tagged)
898  Label loop, entry;
899  __ b(&entry);
900  __ bind(&loop);
901  __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
902  __ push(ip);
903  __ bind(&entry);
904  __ sub(r3, r3, Operand(2), SetCC);
905  __ b(ge, &loop);
906
907  // Call the function.
908  // r0: number of arguments
909  // r1: constructor function
910  if (is_api_function) {
911    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
912    Handle<Code> code =
913        masm->isolate()->builtins()->HandleApiCallConstruct();
914    ParameterCount expected(0);
915    __ InvokeCode(code, expected, expected,
916                  RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD);
917  } else {
918    ParameterCount actual(r0);
919    __ InvokeFunction(r1, actual, CALL_FUNCTION,
920                      NullCallWrapper(), CALL_AS_METHOD);
921  }
922
923  // Pop the function from the stack.
924  // sp[0]: constructor function
925  // sp[2]: receiver
926  // sp[3]: constructor function
927  // sp[4]: number of arguments (smi-tagged)
928  __ pop();
929
930  // Restore context from the frame.
931  // r0: result
932  // sp[0]: receiver
933  // sp[1]: constructor function
934  // sp[2]: number of arguments (smi-tagged)
935  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
936
937  // If the result is an object (in the ECMA sense), we should get rid
938  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
939  // on page 74.
940  Label use_receiver, exit;
941
942  // If the result is a smi, it is *not* an object in the ECMA sense.
943  // r0: result
944  // sp[0]: receiver (newly allocated object)
945  // sp[1]: constructor function
946  // sp[2]: number of arguments (smi-tagged)
947  __ JumpIfSmi(r0, &use_receiver);
948
949  // If the type of the result (stored in its map) is less than
950  // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
951  __ CompareObjectType(r0, r3, r3, FIRST_SPEC_OBJECT_TYPE);
952  __ b(ge, &exit);
953
954  // Throw away the result of the constructor invocation and use the
955  // on-stack receiver as the result.
956  __ bind(&use_receiver);
957  __ ldr(r0, MemOperand(sp));
958
959  // Remove receiver from the stack, remove caller arguments, and
960  // return.
961  __ bind(&exit);
962  // r0: result
963  // sp[0]: receiver (newly allocated object)
964  // sp[1]: constructor function
965  // sp[2]: number of arguments (smi-tagged)
966  __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
967  __ LeaveConstructFrame();
968  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
969  __ add(sp, sp, Operand(kPointerSize));
970  __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2);
971  __ Jump(lr);
972}
973
974
975void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
976  Generate_JSConstructStubHelper(masm, false, true);
977}
978
979
980void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
981  Generate_JSConstructStubHelper(masm, false, false);
982}
983
984
985void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
986  Generate_JSConstructStubHelper(masm, true, false);
987}
988
989
990static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
991                                             bool is_construct) {
992  // Called from Generate_JS_Entry
993  // r0: code entry
994  // r1: function
995  // r2: receiver
996  // r3: argc
997  // r4: argv
998  // r5-r7, cp may be clobbered
999
1000  // Clear the context before we push it when entering the JS frame.
1001  __ mov(cp, Operand(0, RelocInfo::NONE));
1002
1003  // Enter an internal frame.
1004  __ EnterInternalFrame();
1005
1006  // Set up the context from the function argument.
1007  __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1008
1009  // Set up the roots register.
1010  ExternalReference roots_address =
1011      ExternalReference::roots_address(masm->isolate());
1012  __ mov(r10, Operand(roots_address));
1013
1014  // Push the function and the receiver onto the stack.
1015  __ push(r1);
1016  __ push(r2);
1017
1018  // Copy arguments to the stack in a loop.
1019  // r1: function
1020  // r3: argc
1021  // r4: argv, i.e. points to first arg
1022  Label loop, entry;
1023  __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
1024  // r2 points past last arg.
1025  __ b(&entry);
1026  __ bind(&loop);
1027  __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
1028  __ ldr(r0, MemOperand(r0));  // dereference handle
1029  __ push(r0);  // push parameter
1030  __ bind(&entry);
1031  __ cmp(r4, r2);
1032  __ b(ne, &loop);
1033
1034  // Initialize all JavaScript callee-saved registers, since they will be seen
1035  // by the garbage collector as part of handlers.
1036  __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
1037  __ mov(r5, Operand(r4));
1038  __ mov(r6, Operand(r4));
1039  __ mov(r7, Operand(r4));
1040  if (kR9Available == 1) {
1041    __ mov(r9, Operand(r4));
1042  }
1043
1044  // Invoke the code and pass argc as r0.
1045  __ mov(r0, Operand(r3));
1046  if (is_construct) {
1047    __ Call(masm->isolate()->builtins()->JSConstructCall());
1048  } else {
1049    ParameterCount actual(r0);
1050    __ InvokeFunction(r1, actual, CALL_FUNCTION,
1051                      NullCallWrapper(), CALL_AS_METHOD);
1052  }
1053
1054  // Exit the JS frame and remove the parameters (except function), and return.
1055  // Respect ABI stack constraint.
1056  __ LeaveInternalFrame();
1057  __ Jump(lr);
1058
1059  // r0: result
1060}
1061
1062
1063void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
1064  Generate_JSEntryTrampolineHelper(masm, false);
1065}
1066
1067
1068void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
1069  Generate_JSEntryTrampolineHelper(masm, true);
1070}
1071
1072
1073void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
1074  // Enter an internal frame.
1075  __ EnterInternalFrame();
1076
1077  // Preserve the function.
1078  __ push(r1);
1079  // Push call kind information.
1080  __ push(r5);
1081
1082  // Push the function on the stack as the argument to the runtime function.
1083  __ push(r1);
1084  __ CallRuntime(Runtime::kLazyCompile, 1);
1085  // Calculate the entry point.
1086  __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
1087
1088  // Restore call kind information.
1089  __ pop(r5);
1090  // Restore saved function.
1091  __ pop(r1);
1092
1093  // Tear down temporary frame.
1094  __ LeaveInternalFrame();
1095
1096  // Do a tail-call of the compiled function.
1097  __ Jump(r2);
1098}
1099
1100
1101void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
1102  // Enter an internal frame.
1103  __ EnterInternalFrame();
1104
1105  // Preserve the function.
1106  __ push(r1);
1107  // Push call kind information.
1108  __ push(r5);
1109
1110  // Push the function on the stack as the argument to the runtime function.
1111  __ push(r1);
1112  __ CallRuntime(Runtime::kLazyRecompile, 1);
1113  // Calculate the entry point.
1114  __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
1115
1116  // Restore call kind information.
1117  __ pop(r5);
1118  // Restore saved function.
1119  __ pop(r1);
1120
1121  // Tear down temporary frame.
1122  __ LeaveInternalFrame();
1123
1124  // Do a tail-call of the compiled function.
1125  __ Jump(r2);
1126}
1127
1128
1129static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
1130                                             Deoptimizer::BailoutType type) {
1131  __ EnterInternalFrame();
1132  // Pass the function and deoptimization type to the runtime system.
1133  __ mov(r0, Operand(Smi::FromInt(static_cast<int>(type))));
1134  __ push(r0);
1135  __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
1136  __ LeaveInternalFrame();
1137
1138  // Get the full codegen state from the stack and untag it -> r6.
1139  __ ldr(r6, MemOperand(sp, 0 * kPointerSize));
1140  __ SmiUntag(r6);
1141  // Switch on the state.
1142  Label with_tos_register, unknown_state;
1143  __ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS));
1144  __ b(ne, &with_tos_register);
1145  __ add(sp, sp, Operand(1 * kPointerSize));  // Remove state.
1146  __ Ret();
1147
1148  __ bind(&with_tos_register);
1149  __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
1150  __ cmp(r6, Operand(FullCodeGenerator::TOS_REG));
1151  __ b(ne, &unknown_state);
1152  __ add(sp, sp, Operand(2 * kPointerSize));  // Remove state.
1153  __ Ret();
1154
1155  __ bind(&unknown_state);
1156  __ stop("no cases left");
1157}
1158
1159
1160void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1161  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1162}
1163
1164
1165void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1166  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1167}
1168
1169
1170void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
1171  // For now, we are relying on the fact that Runtime::NotifyOSR
1172  // doesn't do any garbage collection which allows us to save/restore
1173  // the registers without worrying about which of them contain
1174  // pointers. This seems a bit fragile.
1175  __ stm(db_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
1176  __ EnterInternalFrame();
1177  __ CallRuntime(Runtime::kNotifyOSR, 0);
1178  __ LeaveInternalFrame();
1179  __ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
1180  __ Ret();
1181}
1182
1183
1184void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1185  CpuFeatures::TryForceFeatureScope scope(VFP3);
1186  if (!CpuFeatures::IsSupported(VFP3)) {
1187    __ Abort("Unreachable code: Cannot optimize without VFP3 support.");
1188    return;
1189  }
1190
1191  // Lookup the function in the JavaScript frame and push it as an
1192  // argument to the on-stack replacement function.
1193  __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1194  __ EnterInternalFrame();
1195  __ push(r0);
1196  __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1197  __ LeaveInternalFrame();
1198
1199  // If the result was -1 it means that we couldn't optimize the
1200  // function. Just return and continue in the unoptimized version.
1201  Label skip;
1202  __ cmp(r0, Operand(Smi::FromInt(-1)));
1203  __ b(ne, &skip);
1204  __ Ret();
1205
1206  __ bind(&skip);
1207  // Untag the AST id and push it on the stack.
1208  __ SmiUntag(r0);
1209  __ push(r0);
1210
1211  // Generate the code for doing the frame-to-frame translation using
1212  // the deoptimizer infrastructure.
1213  Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
1214  generator.Generate();
1215}
1216
1217
1218void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1219  // 1. Make sure we have at least one argument.
1220  // r0: actual number of arguments
1221  { Label done;
1222    __ tst(r0, Operand(r0));
1223    __ b(ne, &done);
1224    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1225    __ push(r2);
1226    __ add(r0, r0, Operand(1));
1227    __ bind(&done);
1228  }
1229
1230  // 2. Get the function to call (passed as receiver) from the stack, check
1231  //    if it is a function.
1232  // r0: actual number of arguments
1233  Label non_function;
1234  __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1235  __ JumpIfSmi(r1, &non_function);
1236  __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
1237  __ b(ne, &non_function);
1238
1239  // 3a. Patch the first argument if necessary when calling a function.
1240  // r0: actual number of arguments
1241  // r1: function
1242  Label shift_arguments;
1243  { Label convert_to_object, use_global_receiver, patch_receiver;
1244    // Change context eagerly in case we need the global receiver.
1245    __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
1246
1247    // Do not transform the receiver for strict mode functions.
1248    __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1249    __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset));
1250    __ tst(r3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1251                             kSmiTagSize)));
1252    __ b(ne, &shift_arguments);
1253
1254    // Do not transform the receiver for native (Compilerhints already in r3).
1255    __ tst(r3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1256    __ b(ne, &shift_arguments);
1257
1258    // Compute the receiver in non-strict mode.
1259    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1260    __ ldr(r2, MemOperand(r2, -kPointerSize));
1261    // r0: actual number of arguments
1262    // r1: function
1263    // r2: first argument
1264    __ JumpIfSmi(r2, &convert_to_object);
1265
1266    __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1267    __ cmp(r2, r3);
1268    __ b(eq, &use_global_receiver);
1269    __ LoadRoot(r3, Heap::kNullValueRootIndex);
1270    __ cmp(r2, r3);
1271    __ b(eq, &use_global_receiver);
1272
1273    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1274    __ CompareObjectType(r2, r3, r3, FIRST_SPEC_OBJECT_TYPE);
1275    __ b(ge, &shift_arguments);
1276
1277    __ bind(&convert_to_object);
1278    __ EnterInternalFrame();  // In order to preserve argument count.
1279    __ mov(r0, Operand(r0, LSL, kSmiTagSize));  // Smi-tagged.
1280    __ push(r0);
1281
1282    __ push(r2);
1283    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1284    __ mov(r2, r0);
1285
1286    __ pop(r0);
1287    __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1288    __ LeaveInternalFrame();
1289    // Restore the function to r1.
1290    __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1291    __ jmp(&patch_receiver);
1292
1293    // Use the global receiver object from the called function as the
1294    // receiver.
1295    __ bind(&use_global_receiver);
1296    const int kGlobalIndex =
1297        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1298    __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
1299    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
1300    __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
1301    __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
1302
1303    __ bind(&patch_receiver);
1304    __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
1305    __ str(r2, MemOperand(r3, -kPointerSize));
1306
1307    __ jmp(&shift_arguments);
1308  }
1309
1310  // 3b. Patch the first argument when calling a non-function.  The
1311  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1312  //     receiver, so overwrite the first argument which will ultimately
1313  //     become the receiver.
1314  // r0: actual number of arguments
1315  // r1: function
1316  __ bind(&non_function);
1317  __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1318  __ str(r1, MemOperand(r2, -kPointerSize));
1319  // Clear r1 to indicate a non-function being called.
1320  __ mov(r1, Operand(0, RelocInfo::NONE));
1321
1322  // 4. Shift arguments and return address one slot down on the stack
1323  //    (overwriting the original receiver).  Adjust argument count to make
1324  //    the original first argument the new receiver.
1325  // r0: actual number of arguments
1326  // r1: function
1327  __ bind(&shift_arguments);
1328  { Label loop;
1329    // Calculate the copy start address (destination). Copy end address is sp.
1330    __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1331
1332    __ bind(&loop);
1333    __ ldr(ip, MemOperand(r2, -kPointerSize));
1334    __ str(ip, MemOperand(r2));
1335    __ sub(r2, r2, Operand(kPointerSize));
1336    __ cmp(r2, sp);
1337    __ b(ne, &loop);
1338    // Adjust the actual number of arguments and remove the top element
1339    // (which is a copy of the last argument).
1340    __ sub(r0, r0, Operand(1));
1341    __ pop();
1342  }
1343
1344  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
1345  // r0: actual number of arguments
1346  // r1: function
1347  { Label function;
1348    __ tst(r1, r1);
1349    __ b(ne, &function);
1350    // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1351    __ mov(r2, Operand(0, RelocInfo::NONE));
1352    __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1353    __ SetCallKind(r5, CALL_AS_METHOD);
1354    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1355            RelocInfo::CODE_TARGET);
1356    __ bind(&function);
1357  }
1358
1359  // 5b. Get the code to call from the function and check that the number of
1360  //     expected arguments matches what we're providing.  If so, jump
1361  //     (tail-call) to the code in register edx without checking arguments.
1362  // r0: actual number of arguments
1363  // r1: function
1364  __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1365  __ ldr(r2,
1366         FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
1367  __ mov(r2, Operand(r2, ASR, kSmiTagSize));
1368  __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
1369  __ SetCallKind(r5, CALL_AS_METHOD);
1370  __ cmp(r2, r0);  // Check formal and actual parameter counts.
1371  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1372          RelocInfo::CODE_TARGET,
1373          ne);
1374
1375  ParameterCount expected(0);
1376  __ InvokeCode(r3, expected, expected, JUMP_FUNCTION,
1377                NullCallWrapper(), CALL_AS_METHOD);
1378}
1379
1380
1381void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1382  const int kIndexOffset    = -5 * kPointerSize;
1383  const int kLimitOffset    = -4 * kPointerSize;
1384  const int kArgsOffset     =  2 * kPointerSize;
1385  const int kRecvOffset     =  3 * kPointerSize;
1386  const int kFunctionOffset =  4 * kPointerSize;
1387
1388  __ EnterInternalFrame();
1389
1390  __ ldr(r0, MemOperand(fp, kFunctionOffset));  // get the function
1391  __ push(r0);
1392  __ ldr(r0, MemOperand(fp, kArgsOffset));  // get the args array
1393  __ push(r0);
1394  __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
1395
1396  // Check the stack for overflow. We are not trying need to catch
1397  // interruptions (e.g. debug break and preemption) here, so the "real stack
1398  // limit" is checked.
1399  Label okay;
1400  __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1401  // Make r2 the space we have left. The stack might already be overflowed
1402  // here which will cause r2 to become negative.
1403  __ sub(r2, sp, r2);
1404  // Check if the arguments will overflow the stack.
1405  __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1406  __ b(gt, &okay);  // Signed comparison.
1407
1408  // Out of stack space.
1409  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1410  __ push(r1);
1411  __ push(r0);
1412  __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
1413  // End of stack check.
1414
1415  // Push current limit and index.
1416  __ bind(&okay);
1417  __ push(r0);  // limit
1418  __ mov(r1, Operand(0, RelocInfo::NONE));  // initial index
1419  __ push(r1);
1420
1421  // Change context eagerly to get the right global object if necessary.
1422  __ ldr(r0, MemOperand(fp, kFunctionOffset));
1423  __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
1424  // Load the shared function info while the function is still in r0.
1425  __ ldr(r1, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
1426
1427  // Compute the receiver.
1428  Label call_to_object, use_global_receiver, push_receiver;
1429  __ ldr(r0, MemOperand(fp, kRecvOffset));
1430
1431  // Do not transform the receiver for strict mode functions.
1432  __ ldr(r2, FieldMemOperand(r1, SharedFunctionInfo::kCompilerHintsOffset));
1433  __ tst(r2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1434                           kSmiTagSize)));
1435  __ b(ne, &push_receiver);
1436
1437  // Do not transform the receiver for strict mode functions.
1438  __ tst(r2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1439  __ b(ne, &push_receiver);
1440
1441  // Compute the receiver in non-strict mode.
1442  __ JumpIfSmi(r0, &call_to_object);
1443  __ LoadRoot(r1, Heap::kNullValueRootIndex);
1444  __ cmp(r0, r1);
1445  __ b(eq, &use_global_receiver);
1446  __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1447  __ cmp(r0, r1);
1448  __ b(eq, &use_global_receiver);
1449
1450  // Check if the receiver is already a JavaScript object.
1451  // r0: receiver
1452  STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1453  __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
1454  __ b(ge, &push_receiver);
1455
1456  // Convert the receiver to a regular object.
1457  // r0: receiver
1458  __ bind(&call_to_object);
1459  __ push(r0);
1460  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1461  __ b(&push_receiver);
1462
1463  // Use the current global receiver object as the receiver.
1464  __ bind(&use_global_receiver);
1465  const int kGlobalOffset =
1466      Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1467  __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
1468  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1469  __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
1470  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1471
1472  // Push the receiver.
1473  // r0: receiver
1474  __ bind(&push_receiver);
1475  __ push(r0);
1476
1477  // Copy all arguments from the array to the stack.
1478  Label entry, loop;
1479  __ ldr(r0, MemOperand(fp, kIndexOffset));
1480  __ b(&entry);
1481
1482  // Load the current argument from the arguments array and push it to the
1483  // stack.
1484  // r0: current argument index
1485  __ bind(&loop);
1486  __ ldr(r1, MemOperand(fp, kArgsOffset));
1487  __ push(r1);
1488  __ push(r0);
1489
1490  // Call the runtime to access the property in the arguments array.
1491  __ CallRuntime(Runtime::kGetProperty, 2);
1492  __ push(r0);
1493
1494  // Use inline caching to access the arguments.
1495  __ ldr(r0, MemOperand(fp, kIndexOffset));
1496  __ add(r0, r0, Operand(1 << kSmiTagSize));
1497  __ str(r0, MemOperand(fp, kIndexOffset));
1498
1499  // Test if the copy loop has finished copying all the elements from the
1500  // arguments object.
1501  __ bind(&entry);
1502  __ ldr(r1, MemOperand(fp, kLimitOffset));
1503  __ cmp(r0, r1);
1504  __ b(ne, &loop);
1505
1506  // Invoke the function.
1507  ParameterCount actual(r0);
1508  __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1509  __ ldr(r1, MemOperand(fp, kFunctionOffset));
1510  __ InvokeFunction(r1, actual, CALL_FUNCTION,
1511                    NullCallWrapper(), CALL_AS_METHOD);
1512
1513  // Tear down the internal frame and remove function, receiver and args.
1514  __ LeaveInternalFrame();
1515  __ add(sp, sp, Operand(3 * kPointerSize));
1516  __ Jump(lr);
1517}
1518
1519
1520static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1521  __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1522  __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1523  __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1524  __ add(fp, sp, Operand(3 * kPointerSize));
1525}
1526
1527
1528static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1529  // ----------- S t a t e -------------
1530  //  -- r0 : result being passed through
1531  // -----------------------------------
1532  // Get the number of arguments passed (as a smi), tear down the frame and
1533  // then tear down the parameters.
1534  __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1535  __ mov(sp, fp);
1536  __ ldm(ia_w, sp, fp.bit() | lr.bit());
1537  __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1538  __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1539}
1540
1541
1542void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1543  // ----------- S t a t e -------------
1544  //  -- r0 : actual number of arguments
1545  //  -- r1 : function (passed through to callee)
1546  //  -- r2 : expected number of arguments
1547  //  -- r3 : code entry to call
1548  //  -- r5 : call kind information
1549  // -----------------------------------
1550
1551  Label invoke, dont_adapt_arguments;
1552
1553  Label enough, too_few;
1554  __ cmp(r0, r2);
1555  __ b(lt, &too_few);
1556  __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1557  __ b(eq, &dont_adapt_arguments);
1558
1559  {  // Enough parameters: actual >= expected
1560    __ bind(&enough);
1561    EnterArgumentsAdaptorFrame(masm);
1562
1563    // Calculate copy start address into r0 and copy end address into r2.
1564    // r0: actual number of arguments as a smi
1565    // r1: function
1566    // r2: expected number of arguments
1567    // r3: code entry to call
1568    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1569    // adjust for return address and receiver
1570    __ add(r0, r0, Operand(2 * kPointerSize));
1571    __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1572
1573    // Copy the arguments (including the receiver) to the new stack frame.
1574    // r0: copy start address
1575    // r1: function
1576    // r2: copy end address
1577    // r3: code entry to call
1578
1579    Label copy;
1580    __ bind(&copy);
1581    __ ldr(ip, MemOperand(r0, 0));
1582    __ push(ip);
1583    __ cmp(r0, r2);  // Compare before moving to next argument.
1584    __ sub(r0, r0, Operand(kPointerSize));
1585    __ b(ne, &copy);
1586
1587    __ b(&invoke);
1588  }
1589
1590  {  // Too few parameters: Actual < expected
1591    __ bind(&too_few);
1592    EnterArgumentsAdaptorFrame(masm);
1593
1594    // Calculate copy start address into r0 and copy end address is fp.
1595    // r0: actual number of arguments as a smi
1596    // r1: function
1597    // r2: expected number of arguments
1598    // r3: code entry to call
1599    __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1600
1601    // Copy the arguments (including the receiver) to the new stack frame.
1602    // r0: copy start address
1603    // r1: function
1604    // r2: expected number of arguments
1605    // r3: code entry to call
1606    Label copy;
1607    __ bind(&copy);
1608    // Adjust load for return address and receiver.
1609    __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1610    __ push(ip);
1611    __ cmp(r0, fp);  // Compare before moving to next argument.
1612    __ sub(r0, r0, Operand(kPointerSize));
1613    __ b(ne, &copy);
1614
1615    // Fill the remaining expected arguments with undefined.
1616    // r1: function
1617    // r2: expected number of arguments
1618    // r3: code entry to call
1619    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1620    __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1621    __ sub(r2, r2, Operand(4 * kPointerSize));  // Adjust for frame.
1622
1623    Label fill;
1624    __ bind(&fill);
1625    __ push(ip);
1626    __ cmp(sp, r2);
1627    __ b(ne, &fill);
1628  }
1629
1630  // Call the entry point.
1631  __ bind(&invoke);
1632  __ Call(r3);
1633
1634  // Exit frame and return.
1635  LeaveArgumentsAdaptorFrame(masm);
1636  __ Jump(lr);
1637
1638
1639  // -------------------------------------------
1640  // Dont adapt arguments.
1641  // -------------------------------------------
1642  __ bind(&dont_adapt_arguments);
1643  __ Jump(r3);
1644}
1645
1646
1647#undef __
1648
1649} }  // namespace v8::internal
1650
1651#endif  // V8_TARGET_ARCH_ARM
1652