1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "arm/lithium-codegen-arm.h"
31#include "arm/lithium-gap-resolver-arm.h"
32#include "code-stubs.h"
33#include "stub-cache.h"
34
35namespace v8 {
36namespace internal {
37
38
39class SafepointGenerator : public CallWrapper {
40 public:
41  SafepointGenerator(LCodeGen* codegen,
42                     LPointerMap* pointers,
43                     Safepoint::DeoptMode mode)
44      : codegen_(codegen),
45        pointers_(pointers),
46        deopt_mode_(mode) { }
47  virtual ~SafepointGenerator() { }
48
49  virtual void BeforeCall(int call_size) const { }
50
51  virtual void AfterCall() const {
52    codegen_->RecordSafepoint(pointers_, deopt_mode_);
53  }
54
55 private:
56  LCodeGen* codegen_;
57  LPointerMap* pointers_;
58  Safepoint::DeoptMode deopt_mode_;
59};
60
61
62#define __ masm()->
63
64bool LCodeGen::GenerateCode() {
65  HPhase phase("Z_Code generation", chunk());
66  ASSERT(is_unused());
67  status_ = GENERATING;
68  CpuFeatures::Scope scope1(VFP3);
69  CpuFeatures::Scope scope2(ARMv7);
70
71  CodeStub::GenerateFPStubs();
72
73  // Open a frame scope to indicate that there is a frame on the stack.  The
74  // NONE indicates that the scope shouldn't actually generate code to set up
75  // the frame (that is done in GeneratePrologue).
76  FrameScope frame_scope(masm_, StackFrame::NONE);
77
78  return GeneratePrologue() &&
79      GenerateBody() &&
80      GenerateDeferredCode() &&
81      GenerateDeoptJumpTable() &&
82      GenerateSafepointTable();
83}
84
85
86void LCodeGen::FinishCode(Handle<Code> code) {
87  ASSERT(is_done());
88  code->set_stack_slots(GetStackSlotCount());
89  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
90  PopulateDeoptimizationData(code);
91}
92
93
94void LCodeGen::Abort(const char* format, ...) {
95  if (FLAG_trace_bailout) {
96    SmartArrayPointer<char> name(
97        info()->shared_info()->DebugName()->ToCString());
98    PrintF("Aborting LCodeGen in @\"%s\": ", *name);
99    va_list arguments;
100    va_start(arguments, format);
101    OS::VPrint(format, arguments);
102    va_end(arguments);
103    PrintF("\n");
104  }
105  status_ = ABORTED;
106}
107
108
109void LCodeGen::Comment(const char* format, ...) {
110  if (!FLAG_code_comments) return;
111  char buffer[4 * KB];
112  StringBuilder builder(buffer, ARRAY_SIZE(buffer));
113  va_list arguments;
114  va_start(arguments, format);
115  builder.AddFormattedList(format, arguments);
116  va_end(arguments);
117
118  // Copy the string before recording it in the assembler to avoid
119  // issues when the stack allocated buffer goes out of scope.
120  size_t length = builder.position();
121  Vector<char> copy = Vector<char>::New(length + 1);
122  memcpy(copy.start(), builder.Finalize(), copy.length());
123  masm()->RecordComment(copy.start());
124}
125
126
127bool LCodeGen::GeneratePrologue() {
128  ASSERT(is_generating());
129
130#ifdef DEBUG
131  if (strlen(FLAG_stop_at) > 0 &&
132      info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
133    __ stop("stop_at");
134  }
135#endif
136
137  // r1: Callee's JS function.
138  // cp: Callee's context.
139  // fp: Caller's frame pointer.
140  // lr: Caller's pc.
141
142  // Strict mode functions and builtins need to replace the receiver
143  // with undefined when called as functions (without an explicit
144  // receiver object). r5 is zero for method calls and non-zero for
145  // function calls.
146  if (!info_->is_classic_mode() || info_->is_native()) {
147    Label ok;
148    __ cmp(r5, Operand(0));
149    __ b(eq, &ok);
150    int receiver_offset = scope()->num_parameters() * kPointerSize;
151    __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
152    __ str(r2, MemOperand(sp, receiver_offset));
153    __ bind(&ok);
154  }
155
156  __ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
157  __ add(fp, sp, Operand(2 * kPointerSize));  // Adjust FP to point to saved FP.
158
159  // Reserve space for the stack slots needed by the code.
160  int slots = GetStackSlotCount();
161  if (slots > 0) {
162    if (FLAG_debug_code) {
163      __ mov(r0, Operand(slots));
164      __ mov(r2, Operand(kSlotsZapValue));
165      Label loop;
166      __ bind(&loop);
167      __ push(r2);
168      __ sub(r0, r0, Operand(1), SetCC);
169      __ b(ne, &loop);
170    } else {
171      __ sub(sp,  sp, Operand(slots * kPointerSize));
172    }
173  }
174
175  // Possibly allocate a local context.
176  int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
177  if (heap_slots > 0) {
178    Comment(";;; Allocate local context");
179    // Argument to NewContext is the function, which is in r1.
180    __ push(r1);
181    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
182      FastNewContextStub stub(heap_slots);
183      __ CallStub(&stub);
184    } else {
185      __ CallRuntime(Runtime::kNewFunctionContext, 1);
186    }
187    RecordSafepoint(Safepoint::kNoLazyDeopt);
188    // Context is returned in both r0 and cp.  It replaces the context
189    // passed to us.  It's saved in the stack and kept live in cp.
190    __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
191    // Copy any necessary parameters into the context.
192    int num_parameters = scope()->num_parameters();
193    for (int i = 0; i < num_parameters; i++) {
194      Variable* var = scope()->parameter(i);
195      if (var->IsContextSlot()) {
196        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
197            (num_parameters - 1 - i) * kPointerSize;
198        // Load parameter from stack.
199        __ ldr(r0, MemOperand(fp, parameter_offset));
200        // Store it in the context.
201        MemOperand target = ContextOperand(cp, var->index());
202        __ str(r0, target);
203        // Update the write barrier. This clobbers r3 and r0.
204        __ RecordWriteContextSlot(
205            cp, target.offset(), r0, r3, kLRHasBeenSaved, kSaveFPRegs);
206      }
207    }
208    Comment(";;; End allocate local context");
209  }
210
211  // Trace the call.
212  if (FLAG_trace) {
213    __ CallRuntime(Runtime::kTraceEnter, 0);
214  }
215  return !is_aborted();
216}
217
218
219bool LCodeGen::GenerateBody() {
220  ASSERT(is_generating());
221  bool emit_instructions = true;
222  for (current_instruction_ = 0;
223       !is_aborted() && current_instruction_ < instructions_->length();
224       current_instruction_++) {
225    LInstruction* instr = instructions_->at(current_instruction_);
226    if (instr->IsLabel()) {
227      LLabel* label = LLabel::cast(instr);
228      emit_instructions = !label->HasReplacement();
229    }
230
231    if (emit_instructions) {
232      Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
233      instr->CompileToNative(this);
234    }
235  }
236  EnsureSpaceForLazyDeopt();
237  return !is_aborted();
238}
239
240
241bool LCodeGen::GenerateDeferredCode() {
242  ASSERT(is_generating());
243  if (deferred_.length() > 0) {
244    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
245      LDeferredCode* code = deferred_[i];
246      __ bind(code->entry());
247      Comment(";;; Deferred code @%d: %s.",
248              code->instruction_index(),
249              code->instr()->Mnemonic());
250      code->Generate();
251      __ jmp(code->exit());
252    }
253  }
254
255  // Force constant pool emission at the end of the deferred code to make
256  // sure that no constant pools are emitted after.
257  masm()->CheckConstPool(true, false);
258
259  return !is_aborted();
260}
261
262
263bool LCodeGen::GenerateDeoptJumpTable() {
264  // Check that the jump table is accessible from everywhere in the function
265  // code, i.e. that offsets to the table can be encoded in the 24bit signed
266  // immediate of a branch instruction.
267  // To simplify we consider the code size from the first instruction to the
268  // end of the jump table. We also don't consider the pc load delta.
269  // Each entry in the jump table generates one instruction and inlines one
270  // 32bit data after it.
271  if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
272      deopt_jump_table_.length() * 2)) {
273    Abort("Generated code is too large");
274  }
275
276  // Block the constant pool emission during the jump table emission.
277  __ BlockConstPoolFor(deopt_jump_table_.length());
278  __ RecordComment("[ Deoptimisation jump table");
279  Label table_start;
280  __ bind(&table_start);
281  for (int i = 0; i < deopt_jump_table_.length(); i++) {
282    __ bind(&deopt_jump_table_[i].label);
283    __ ldr(pc, MemOperand(pc, Assembler::kInstrSize - Assembler::kPcLoadDelta));
284    __ dd(reinterpret_cast<uint32_t>(deopt_jump_table_[i].address));
285  }
286  ASSERT(masm()->InstructionsGeneratedSince(&table_start) ==
287      deopt_jump_table_.length() * 2);
288  __ RecordComment("]");
289
290  // The deoptimization jump table is the last part of the instruction
291  // sequence. Mark the generated code as done unless we bailed out.
292  if (!is_aborted()) status_ = DONE;
293  return !is_aborted();
294}
295
296
297bool LCodeGen::GenerateSafepointTable() {
298  ASSERT(is_done());
299  safepoints_.Emit(masm(), GetStackSlotCount());
300  return !is_aborted();
301}
302
303
304Register LCodeGen::ToRegister(int index) const {
305  return Register::FromAllocationIndex(index);
306}
307
308
309DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
310  return DoubleRegister::FromAllocationIndex(index);
311}
312
313
314Register LCodeGen::ToRegister(LOperand* op) const {
315  ASSERT(op->IsRegister());
316  return ToRegister(op->index());
317}
318
319
320Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
321  if (op->IsRegister()) {
322    return ToRegister(op->index());
323  } else if (op->IsConstantOperand()) {
324    LConstantOperand* const_op = LConstantOperand::cast(op);
325    Handle<Object> literal = chunk_->LookupLiteral(const_op);
326    Representation r = chunk_->LookupLiteralRepresentation(const_op);
327    if (r.IsInteger32()) {
328      ASSERT(literal->IsNumber());
329      __ mov(scratch, Operand(static_cast<int32_t>(literal->Number())));
330    } else if (r.IsDouble()) {
331      Abort("EmitLoadRegister: Unsupported double immediate.");
332    } else {
333      ASSERT(r.IsTagged());
334      if (literal->IsSmi()) {
335        __ mov(scratch, Operand(literal));
336      } else {
337       __ LoadHeapObject(scratch, Handle<HeapObject>::cast(literal));
338      }
339    }
340    return scratch;
341  } else if (op->IsStackSlot() || op->IsArgument()) {
342    __ ldr(scratch, ToMemOperand(op));
343    return scratch;
344  }
345  UNREACHABLE();
346  return scratch;
347}
348
349
350DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
351  ASSERT(op->IsDoubleRegister());
352  return ToDoubleRegister(op->index());
353}
354
355
356DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
357                                                SwVfpRegister flt_scratch,
358                                                DoubleRegister dbl_scratch) {
359  if (op->IsDoubleRegister()) {
360    return ToDoubleRegister(op->index());
361  } else if (op->IsConstantOperand()) {
362    LConstantOperand* const_op = LConstantOperand::cast(op);
363    Handle<Object> literal = chunk_->LookupLiteral(const_op);
364    Representation r = chunk_->LookupLiteralRepresentation(const_op);
365    if (r.IsInteger32()) {
366      ASSERT(literal->IsNumber());
367      __ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
368      __ vmov(flt_scratch, ip);
369      __ vcvt_f64_s32(dbl_scratch, flt_scratch);
370      return dbl_scratch;
371    } else if (r.IsDouble()) {
372      Abort("unsupported double immediate");
373    } else if (r.IsTagged()) {
374      Abort("unsupported tagged immediate");
375    }
376  } else if (op->IsStackSlot() || op->IsArgument()) {
377    // TODO(regis): Why is vldr not taking a MemOperand?
378    // __ vldr(dbl_scratch, ToMemOperand(op));
379    MemOperand mem_op = ToMemOperand(op);
380    __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
381    return dbl_scratch;
382  }
383  UNREACHABLE();
384  return dbl_scratch;
385}
386
387
388Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
389  Handle<Object> literal = chunk_->LookupLiteral(op);
390  ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
391  return literal;
392}
393
394
395bool LCodeGen::IsInteger32(LConstantOperand* op) const {
396  return chunk_->LookupLiteralRepresentation(op).IsInteger32();
397}
398
399
400int LCodeGen::ToInteger32(LConstantOperand* op) const {
401  Handle<Object> value = chunk_->LookupLiteral(op);
402  ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
403  ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
404      value->Number());
405  return static_cast<int32_t>(value->Number());
406}
407
408
409double LCodeGen::ToDouble(LConstantOperand* op) const {
410  Handle<Object> value = chunk_->LookupLiteral(op);
411  return value->Number();
412}
413
414
415Operand LCodeGen::ToOperand(LOperand* op) {
416  if (op->IsConstantOperand()) {
417    LConstantOperand* const_op = LConstantOperand::cast(op);
418    Handle<Object> literal = chunk_->LookupLiteral(const_op);
419    Representation r = chunk_->LookupLiteralRepresentation(const_op);
420    if (r.IsInteger32()) {
421      ASSERT(literal->IsNumber());
422      return Operand(static_cast<int32_t>(literal->Number()));
423    } else if (r.IsDouble()) {
424      Abort("ToOperand Unsupported double immediate.");
425    }
426    ASSERT(r.IsTagged());
427    return Operand(literal);
428  } else if (op->IsRegister()) {
429    return Operand(ToRegister(op));
430  } else if (op->IsDoubleRegister()) {
431    Abort("ToOperand IsDoubleRegister unimplemented");
432    return Operand(0);
433  }
434  // Stack slots not implemented, use ToMemOperand instead.
435  UNREACHABLE();
436  return Operand(0);
437}
438
439
440MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
441  ASSERT(!op->IsRegister());
442  ASSERT(!op->IsDoubleRegister());
443  ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
444  int index = op->index();
445  if (index >= 0) {
446    // Local or spill slot. Skip the frame pointer, function, and
447    // context in the fixed part of the frame.
448    return MemOperand(fp, -(index + 3) * kPointerSize);
449  } else {
450    // Incoming parameter. Skip the return address.
451    return MemOperand(fp, -(index - 1) * kPointerSize);
452  }
453}
454
455
456MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
457  ASSERT(op->IsDoubleStackSlot());
458  int index = op->index();
459  if (index >= 0) {
460    // Local or spill slot. Skip the frame pointer, function, context,
461    // and the first word of the double in the fixed part of the frame.
462    return MemOperand(fp, -(index + 3) * kPointerSize + kPointerSize);
463  } else {
464    // Incoming parameter. Skip the return address and the first word of
465    // the double.
466    return MemOperand(fp, -(index - 1) * kPointerSize + kPointerSize);
467  }
468}
469
470
471void LCodeGen::WriteTranslation(LEnvironment* environment,
472                                Translation* translation) {
473  if (environment == NULL) return;
474
475  // The translation includes one command per value in the environment.
476  int translation_size = environment->values()->length();
477  // The output frame height does not include the parameters.
478  int height = translation_size - environment->parameter_count();
479
480  WriteTranslation(environment->outer(), translation);
481  int closure_id = DefineDeoptimizationLiteral(environment->closure());
482  switch (environment->frame_type()) {
483    case JS_FUNCTION:
484      translation->BeginJSFrame(environment->ast_id(), closure_id, height);
485      break;
486    case JS_CONSTRUCT:
487      translation->BeginConstructStubFrame(closure_id, translation_size);
488      break;
489    case ARGUMENTS_ADAPTOR:
490      translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
491      break;
492    default:
493      UNREACHABLE();
494  }
495  for (int i = 0; i < translation_size; ++i) {
496    LOperand* value = environment->values()->at(i);
497    // spilled_registers_ and spilled_double_registers_ are either
498    // both NULL or both set.
499    if (environment->spilled_registers() != NULL && value != NULL) {
500      if (value->IsRegister() &&
501          environment->spilled_registers()[value->index()] != NULL) {
502        translation->MarkDuplicate();
503        AddToTranslation(translation,
504                         environment->spilled_registers()[value->index()],
505                         environment->HasTaggedValueAt(i));
506      } else if (
507          value->IsDoubleRegister() &&
508          environment->spilled_double_registers()[value->index()] != NULL) {
509        translation->MarkDuplicate();
510        AddToTranslation(
511            translation,
512            environment->spilled_double_registers()[value->index()],
513            false);
514      }
515    }
516
517    AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
518  }
519}
520
521
522void LCodeGen::AddToTranslation(Translation* translation,
523                                LOperand* op,
524                                bool is_tagged) {
525  if (op == NULL) {
526    // TODO(twuerthinger): Introduce marker operands to indicate that this value
527    // is not present and must be reconstructed from the deoptimizer. Currently
528    // this is only used for the arguments object.
529    translation->StoreArgumentsObject();
530  } else if (op->IsStackSlot()) {
531    if (is_tagged) {
532      translation->StoreStackSlot(op->index());
533    } else {
534      translation->StoreInt32StackSlot(op->index());
535    }
536  } else if (op->IsDoubleStackSlot()) {
537    translation->StoreDoubleStackSlot(op->index());
538  } else if (op->IsArgument()) {
539    ASSERT(is_tagged);
540    int src_index = GetStackSlotCount() + op->index();
541    translation->StoreStackSlot(src_index);
542  } else if (op->IsRegister()) {
543    Register reg = ToRegister(op);
544    if (is_tagged) {
545      translation->StoreRegister(reg);
546    } else {
547      translation->StoreInt32Register(reg);
548    }
549  } else if (op->IsDoubleRegister()) {
550    DoubleRegister reg = ToDoubleRegister(op);
551    translation->StoreDoubleRegister(reg);
552  } else if (op->IsConstantOperand()) {
553    Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
554    int src_index = DefineDeoptimizationLiteral(literal);
555    translation->StoreLiteral(src_index);
556  } else {
557    UNREACHABLE();
558  }
559}
560
561
562void LCodeGen::CallCode(Handle<Code> code,
563                        RelocInfo::Mode mode,
564                        LInstruction* instr) {
565  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
566}
567
568
569void LCodeGen::CallCodeGeneric(Handle<Code> code,
570                               RelocInfo::Mode mode,
571                               LInstruction* instr,
572                               SafepointMode safepoint_mode) {
573  ASSERT(instr != NULL);
574  LPointerMap* pointers = instr->pointer_map();
575  RecordPosition(pointers->position());
576  __ Call(code, mode);
577  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
578
579  // Signal that we don't inline smi code before these stubs in the
580  // optimizing code generator.
581  if (code->kind() == Code::BINARY_OP_IC ||
582      code->kind() == Code::COMPARE_IC) {
583    __ nop();
584  }
585}
586
587
588void LCodeGen::CallRuntime(const Runtime::Function* function,
589                           int num_arguments,
590                           LInstruction* instr) {
591  ASSERT(instr != NULL);
592  LPointerMap* pointers = instr->pointer_map();
593  ASSERT(pointers != NULL);
594  RecordPosition(pointers->position());
595
596  __ CallRuntime(function, num_arguments);
597  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
598}
599
600
601void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
602                                       int argc,
603                                       LInstruction* instr) {
604  __ CallRuntimeSaveDoubles(id);
605  RecordSafepointWithRegisters(
606      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
607}
608
609
610void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
611                                                    Safepoint::DeoptMode mode) {
612  if (!environment->HasBeenRegistered()) {
613    // Physical stack frame layout:
614    // -x ............. -4  0 ..................................... y
615    // [incoming arguments] [spill slots] [pushed outgoing arguments]
616
617    // Layout of the environment:
618    // 0 ..................................................... size-1
619    // [parameters] [locals] [expression stack including arguments]
620
621    // Layout of the translation:
622    // 0 ........................................................ size - 1 + 4
623    // [expression stack including arguments] [locals] [4 words] [parameters]
624    // |>------------  translation_size ------------<|
625
626    int frame_count = 0;
627    int jsframe_count = 0;
628    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
629      ++frame_count;
630      if (e->frame_type() == JS_FUNCTION) {
631        ++jsframe_count;
632      }
633    }
634    Translation translation(&translations_, frame_count, jsframe_count);
635    WriteTranslation(environment, &translation);
636    int deoptimization_index = deoptimizations_.length();
637    int pc_offset = masm()->pc_offset();
638    environment->Register(deoptimization_index,
639                          translation.index(),
640                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
641    deoptimizations_.Add(environment);
642  }
643}
644
645
646void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
647  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
648  ASSERT(environment->HasBeenRegistered());
649  int id = environment->deoptimization_index();
650  Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
651  if (entry == NULL) {
652    Abort("bailout was not prepared");
653    return;
654  }
655
656  ASSERT(FLAG_deopt_every_n_times < 2);  // Other values not supported on ARM.
657
658  if (FLAG_deopt_every_n_times == 1 &&
659      info_->shared_info()->opt_count() == id) {
660    __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
661    return;
662  }
663
664  if (FLAG_trap_on_deopt) __ stop("trap_on_deopt", cc);
665
666  if (cc == al) {
667    __ Jump(entry, RelocInfo::RUNTIME_ENTRY);
668  } else {
669    // We often have several deopts to the same entry, reuse the last
670    // jump entry if this is the case.
671    if (deopt_jump_table_.is_empty() ||
672        (deopt_jump_table_.last().address != entry)) {
673      deopt_jump_table_.Add(JumpTableEntry(entry));
674    }
675    __ b(cc, &deopt_jump_table_.last().label);
676  }
677}
678
679
680void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
681  int length = deoptimizations_.length();
682  if (length == 0) return;
683  Handle<DeoptimizationInputData> data =
684      factory()->NewDeoptimizationInputData(length, TENURED);
685
686  Handle<ByteArray> translations = translations_.CreateByteArray();
687  data->SetTranslationByteArray(*translations);
688  data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
689
690  Handle<FixedArray> literals =
691      factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
692  for (int i = 0; i < deoptimization_literals_.length(); i++) {
693    literals->set(i, *deoptimization_literals_[i]);
694  }
695  data->SetLiteralArray(*literals);
696
697  data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
698  data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
699
700  // Populate the deoptimization entries.
701  for (int i = 0; i < length; i++) {
702    LEnvironment* env = deoptimizations_[i];
703    data->SetAstId(i, Smi::FromInt(env->ast_id()));
704    data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
705    data->SetArgumentsStackHeight(i,
706                                  Smi::FromInt(env->arguments_stack_height()));
707    data->SetPc(i, Smi::FromInt(env->pc_offset()));
708  }
709  code->set_deoptimization_data(*data);
710}
711
712
713int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
714  int result = deoptimization_literals_.length();
715  for (int i = 0; i < deoptimization_literals_.length(); ++i) {
716    if (deoptimization_literals_[i].is_identical_to(literal)) return i;
717  }
718  deoptimization_literals_.Add(literal);
719  return result;
720}
721
722
723void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
724  ASSERT(deoptimization_literals_.length() == 0);
725
726  const ZoneList<Handle<JSFunction> >* inlined_closures =
727      chunk()->inlined_closures();
728
729  for (int i = 0, length = inlined_closures->length();
730       i < length;
731       i++) {
732    DefineDeoptimizationLiteral(inlined_closures->at(i));
733  }
734
735  inlined_function_count_ = deoptimization_literals_.length();
736}
737
738
739void LCodeGen::RecordSafepointWithLazyDeopt(
740    LInstruction* instr, SafepointMode safepoint_mode) {
741  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
742    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
743  } else {
744    ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
745    RecordSafepointWithRegisters(
746        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
747  }
748}
749
750
751void LCodeGen::RecordSafepoint(
752    LPointerMap* pointers,
753    Safepoint::Kind kind,
754    int arguments,
755    Safepoint::DeoptMode deopt_mode) {
756  ASSERT(expected_safepoint_kind_ == kind);
757
758  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
759  Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
760      kind, arguments, deopt_mode);
761  for (int i = 0; i < operands->length(); i++) {
762    LOperand* pointer = operands->at(i);
763    if (pointer->IsStackSlot()) {
764      safepoint.DefinePointerSlot(pointer->index());
765    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
766      safepoint.DefinePointerRegister(ToRegister(pointer));
767    }
768  }
769  if (kind & Safepoint::kWithRegisters) {
770    // Register cp always contains a pointer to the context.
771    safepoint.DefinePointerRegister(cp);
772  }
773}
774
775
776void LCodeGen::RecordSafepoint(LPointerMap* pointers,
777                               Safepoint::DeoptMode deopt_mode) {
778  RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
779}
780
781
782void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
783  LPointerMap empty_pointers(RelocInfo::kNoPosition);
784  RecordSafepoint(&empty_pointers, deopt_mode);
785}
786
787
788void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
789                                            int arguments,
790                                            Safepoint::DeoptMode deopt_mode) {
791  RecordSafepoint(
792      pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
793}
794
795
796void LCodeGen::RecordSafepointWithRegistersAndDoubles(
797    LPointerMap* pointers,
798    int arguments,
799    Safepoint::DeoptMode deopt_mode) {
800  RecordSafepoint(
801      pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
802}
803
804
805void LCodeGen::RecordPosition(int position) {
806  if (position == RelocInfo::kNoPosition) return;
807  masm()->positions_recorder()->RecordPosition(position);
808}
809
810
811void LCodeGen::DoLabel(LLabel* label) {
812  if (label->is_loop_header()) {
813    Comment(";;; B%d - LOOP entry", label->block_id());
814  } else {
815    Comment(";;; B%d", label->block_id());
816  }
817  __ bind(label->label());
818  current_block_ = label->block_id();
819  DoGap(label);
820}
821
822
823void LCodeGen::DoParallelMove(LParallelMove* move) {
824  resolver_.Resolve(move);
825}
826
827
828void LCodeGen::DoGap(LGap* gap) {
829  for (int i = LGap::FIRST_INNER_POSITION;
830       i <= LGap::LAST_INNER_POSITION;
831       i++) {
832    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
833    LParallelMove* move = gap->GetParallelMove(inner_pos);
834    if (move != NULL) DoParallelMove(move);
835  }
836}
837
838
839void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
840  DoGap(instr);
841}
842
843
844void LCodeGen::DoParameter(LParameter* instr) {
845  // Nothing to do.
846}
847
848
849void LCodeGen::DoCallStub(LCallStub* instr) {
850  ASSERT(ToRegister(instr->result()).is(r0));
851  switch (instr->hydrogen()->major_key()) {
852    case CodeStub::RegExpConstructResult: {
853      RegExpConstructResultStub stub;
854      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
855      break;
856    }
857    case CodeStub::RegExpExec: {
858      RegExpExecStub stub;
859      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
860      break;
861    }
862    case CodeStub::SubString: {
863      SubStringStub stub;
864      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
865      break;
866    }
867    case CodeStub::NumberToString: {
868      NumberToStringStub stub;
869      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
870      break;
871    }
872    case CodeStub::StringAdd: {
873      StringAddStub stub(NO_STRING_ADD_FLAGS);
874      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
875      break;
876    }
877    case CodeStub::StringCompare: {
878      StringCompareStub stub;
879      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
880      break;
881    }
882    case CodeStub::TranscendentalCache: {
883      __ ldr(r0, MemOperand(sp, 0));
884      TranscendentalCacheStub stub(instr->transcendental_type(),
885                                   TranscendentalCacheStub::TAGGED);
886      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
887      break;
888    }
889    default:
890      UNREACHABLE();
891  }
892}
893
894
895void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
896  // Nothing to do.
897}
898
899
900void LCodeGen::DoModI(LModI* instr) {
901  if (instr->hydrogen()->HasPowerOf2Divisor()) {
902    Register dividend = ToRegister(instr->InputAt(0));
903    Register result = ToRegister(instr->result());
904
905    int32_t divisor =
906        HConstant::cast(instr->hydrogen()->right())->Integer32Value();
907
908    if (divisor < 0) divisor = -divisor;
909
910    Label positive_dividend, done;
911    __ cmp(dividend, Operand(0));
912    __ b(pl, &positive_dividend);
913    __ rsb(result, dividend, Operand(0));
914    __ and_(result, result, Operand(divisor - 1), SetCC);
915    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
916      DeoptimizeIf(eq, instr->environment());
917    }
918    __ rsb(result, result, Operand(0));
919    __ b(&done);
920    __ bind(&positive_dividend);
921    __ and_(result, dividend, Operand(divisor - 1));
922    __ bind(&done);
923    return;
924  }
925
926  // These registers hold untagged 32 bit values.
927  Register left = ToRegister(instr->InputAt(0));
928  Register right = ToRegister(instr->InputAt(1));
929  Register result = ToRegister(instr->result());
930
931  Register scratch = scratch0();
932  Register scratch2 = ToRegister(instr->TempAt(0));
933  DwVfpRegister dividend = ToDoubleRegister(instr->TempAt(1));
934  DwVfpRegister divisor = ToDoubleRegister(instr->TempAt(2));
935  DwVfpRegister quotient = double_scratch0();
936
937  ASSERT(!dividend.is(divisor));
938  ASSERT(!dividend.is(quotient));
939  ASSERT(!divisor.is(quotient));
940  ASSERT(!scratch.is(left));
941  ASSERT(!scratch.is(right));
942  ASSERT(!scratch.is(result));
943
944  Label done, vfp_modulo, both_positive, right_negative;
945
946  // Check for x % 0.
947  if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
948    __ cmp(right, Operand(0));
949    DeoptimizeIf(eq, instr->environment());
950  }
951
952  __ Move(result, left);
953
954  // (0 % x) must yield 0 (if x is finite, which is the case here).
955  __ cmp(left, Operand(0));
956  __ b(eq, &done);
957  // Preload right in a vfp register.
958  __ vmov(divisor.low(), right);
959  __ b(lt, &vfp_modulo);
960
961  __ cmp(left, Operand(right));
962  __ b(lt, &done);
963
964  // Check for (positive) power of two on the right hand side.
965  __ JumpIfNotPowerOfTwoOrZeroAndNeg(right,
966                                     scratch,
967                                     &right_negative,
968                                     &both_positive);
969  // Perform modulo operation (scratch contains right - 1).
970  __ and_(result, scratch, Operand(left));
971  __ b(&done);
972
973  __ bind(&right_negative);
974  // Negate right. The sign of the divisor does not matter.
975  __ rsb(right, right, Operand(0));
976
977  __ bind(&both_positive);
978  const int kUnfolds = 3;
979  // If the right hand side is smaller than the (nonnegative)
980  // left hand side, the left hand side is the result.
981  // Else try a few subtractions of the left hand side.
982  __ mov(scratch, left);
983  for (int i = 0; i < kUnfolds; i++) {
984    // Check if the left hand side is less or equal than the
985    // the right hand side.
986    __ cmp(scratch, Operand(right));
987    __ mov(result, scratch, LeaveCC, lt);
988    __ b(lt, &done);
989    // If not, reduce the left hand side by the right hand
990    // side and check again.
991    if (i < kUnfolds - 1) __ sub(scratch, scratch, right);
992  }
993
994  __ bind(&vfp_modulo);
995  // Load the arguments in VFP registers.
996  // The divisor value is preloaded before. Be careful that 'right' is only live
997  // on entry.
998  __ vmov(dividend.low(), left);
999  // From here on don't use right as it may have been reallocated (for example
1000  // to scratch2).
1001  right = no_reg;
1002
1003  __ vcvt_f64_s32(dividend, dividend.low());
1004  __ vcvt_f64_s32(divisor, divisor.low());
1005
1006  // We do not care about the sign of the divisor.
1007  __ vabs(divisor, divisor);
1008  // Compute the quotient and round it to a 32bit integer.
1009  __ vdiv(quotient, dividend, divisor);
1010  __ vcvt_s32_f64(quotient.low(), quotient);
1011  __ vcvt_f64_s32(quotient, quotient.low());
1012
1013  // Compute the remainder in result.
1014  DwVfpRegister double_scratch = dividend;
1015  __ vmul(double_scratch, divisor, quotient);
1016  __ vcvt_s32_f64(double_scratch.low(), double_scratch);
1017  __ vmov(scratch, double_scratch.low());
1018
1019  if (!instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1020    __ sub(result, left, scratch);
1021  } else {
1022    Label ok;
1023    // Check for -0.
1024    __ sub(scratch2, left, scratch, SetCC);
1025    __ b(ne, &ok);
1026    __ cmp(left, Operand(0));
1027    DeoptimizeIf(mi, instr->environment());
1028    __ bind(&ok);
1029    // Load the result and we are done.
1030    __ mov(result, scratch2);
1031  }
1032
1033  __ bind(&done);
1034}
1035
1036
1037void LCodeGen::DoDivI(LDivI* instr) {
1038  class DeferredDivI: public LDeferredCode {
1039   public:
1040    DeferredDivI(LCodeGen* codegen, LDivI* instr)
1041        : LDeferredCode(codegen), instr_(instr) { }
1042    virtual void Generate() {
1043      codegen()->DoDeferredBinaryOpStub(instr_, Token::DIV);
1044    }
1045    virtual LInstruction* instr() { return instr_; }
1046   private:
1047    LDivI* instr_;
1048  };
1049
1050  const Register left = ToRegister(instr->InputAt(0));
1051  const Register right = ToRegister(instr->InputAt(1));
1052  const Register scratch = scratch0();
1053  const Register result = ToRegister(instr->result());
1054
1055  // Check for x / 0.
1056  if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
1057    __ cmp(right, Operand(0));
1058    DeoptimizeIf(eq, instr->environment());
1059  }
1060
1061  // Check for (0 / -x) that will produce negative zero.
1062  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1063    Label left_not_zero;
1064    __ cmp(left, Operand(0));
1065    __ b(ne, &left_not_zero);
1066    __ cmp(right, Operand(0));
1067    DeoptimizeIf(mi, instr->environment());
1068    __ bind(&left_not_zero);
1069  }
1070
1071  // Check for (-kMinInt / -1).
1072  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1073    Label left_not_min_int;
1074    __ cmp(left, Operand(kMinInt));
1075    __ b(ne, &left_not_min_int);
1076    __ cmp(right, Operand(-1));
1077    DeoptimizeIf(eq, instr->environment());
1078    __ bind(&left_not_min_int);
1079  }
1080
1081  Label done, deoptimize;
1082  // Test for a few common cases first.
1083  __ cmp(right, Operand(1));
1084  __ mov(result, left, LeaveCC, eq);
1085  __ b(eq, &done);
1086
1087  __ cmp(right, Operand(2));
1088  __ tst(left, Operand(1), eq);
1089  __ mov(result, Operand(left, ASR, 1), LeaveCC, eq);
1090  __ b(eq, &done);
1091
1092  __ cmp(right, Operand(4));
1093  __ tst(left, Operand(3), eq);
1094  __ mov(result, Operand(left, ASR, 2), LeaveCC, eq);
1095  __ b(eq, &done);
1096
1097  // Call the stub. The numbers in r0 and r1 have
1098  // to be tagged to Smis. If that is not possible, deoptimize.
1099  DeferredDivI* deferred = new DeferredDivI(this, instr);
1100
1101  __ TrySmiTag(left, &deoptimize, scratch);
1102  __ TrySmiTag(right, &deoptimize, scratch);
1103
1104  __ b(al, deferred->entry());
1105  __ bind(deferred->exit());
1106
1107  // If the result in r0 is a Smi, untag it, else deoptimize.
1108  __ JumpIfNotSmi(result, &deoptimize);
1109  __ SmiUntag(result);
1110  __ b(&done);
1111
1112  __ bind(&deoptimize);
1113  DeoptimizeIf(al, instr->environment());
1114  __ bind(&done);
1115}
1116
1117
1118template<int T>
1119void LCodeGen::DoDeferredBinaryOpStub(LTemplateInstruction<1, 2, T>* instr,
1120                                      Token::Value op) {
1121  Register left = ToRegister(instr->InputAt(0));
1122  Register right = ToRegister(instr->InputAt(1));
1123
1124  PushSafepointRegistersScope scope(this, Safepoint::kWithRegistersAndDoubles);
1125  // Move left to r1 and right to r0 for the stub call.
1126  if (left.is(r1)) {
1127    __ Move(r0, right);
1128  } else if (left.is(r0) && right.is(r1)) {
1129    __ Swap(r0, r1, r2);
1130  } else if (left.is(r0)) {
1131    ASSERT(!right.is(r1));
1132    __ mov(r1, r0);
1133    __ mov(r0, right);
1134  } else {
1135    ASSERT(!left.is(r0) && !right.is(r0));
1136    __ mov(r0, right);
1137    __ mov(r1, left);
1138  }
1139  BinaryOpStub stub(op, OVERWRITE_LEFT);
1140  __ CallStub(&stub);
1141  RecordSafepointWithRegistersAndDoubles(instr->pointer_map(),
1142                                         0,
1143                                         Safepoint::kNoLazyDeopt);
1144  // Overwrite the stored value of r0 with the result of the stub.
1145  __ StoreToSafepointRegistersAndDoublesSlot(r0, r0);
1146}
1147
1148
1149void LCodeGen::DoMulI(LMulI* instr) {
1150  Register scratch = scratch0();
1151  Register result = ToRegister(instr->result());
1152  // Note that result may alias left.
1153  Register left = ToRegister(instr->InputAt(0));
1154  LOperand* right_op = instr->InputAt(1);
1155
1156  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1157  bool bailout_on_minus_zero =
1158    instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1159
1160  if (right_op->IsConstantOperand() && !can_overflow) {
1161    // Use optimized code for specific constants.
1162    int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1163
1164    if (bailout_on_minus_zero && (constant < 0)) {
1165      // The case of a null constant will be handled separately.
1166      // If constant is negative and left is null, the result should be -0.
1167      __ cmp(left, Operand(0));
1168      DeoptimizeIf(eq, instr->environment());
1169    }
1170
1171    switch (constant) {
1172      case -1:
1173        __ rsb(result, left, Operand(0));
1174        break;
1175      case 0:
1176        if (bailout_on_minus_zero) {
1177          // If left is strictly negative and the constant is null, the
1178          // result is -0. Deoptimize if required, otherwise return 0.
1179          __ cmp(left, Operand(0));
1180          DeoptimizeIf(mi, instr->environment());
1181        }
1182        __ mov(result, Operand(0));
1183        break;
1184      case 1:
1185        __ Move(result, left);
1186        break;
1187      default:
1188        // Multiplying by powers of two and powers of two plus or minus
1189        // one can be done faster with shifted operands.
1190        // For other constants we emit standard code.
1191        int32_t mask = constant >> 31;
1192        uint32_t constant_abs = (constant + mask) ^ mask;
1193
1194        if (IsPowerOf2(constant_abs) ||
1195            IsPowerOf2(constant_abs - 1) ||
1196            IsPowerOf2(constant_abs + 1)) {
1197          if (IsPowerOf2(constant_abs)) {
1198            int32_t shift = WhichPowerOf2(constant_abs);
1199            __ mov(result, Operand(left, LSL, shift));
1200          } else if (IsPowerOf2(constant_abs - 1)) {
1201            int32_t shift = WhichPowerOf2(constant_abs - 1);
1202            __ add(result, left, Operand(left, LSL, shift));
1203          } else if (IsPowerOf2(constant_abs + 1)) {
1204            int32_t shift = WhichPowerOf2(constant_abs + 1);
1205            __ rsb(result, left, Operand(left, LSL, shift));
1206          }
1207
1208          // Correct the sign of the result is the constant is negative.
1209          if (constant < 0)  __ rsb(result, result, Operand(0));
1210
1211        } else {
1212          // Generate standard code.
1213          __ mov(ip, Operand(constant));
1214          __ mul(result, left, ip);
1215        }
1216    }
1217
1218  } else {
1219    Register right = EmitLoadRegister(right_op, scratch);
1220    if (bailout_on_minus_zero) {
1221      __ orr(ToRegister(instr->TempAt(0)), left, right);
1222    }
1223
1224    if (can_overflow) {
1225      // scratch:result = left * right.
1226      __ smull(result, scratch, left, right);
1227      __ cmp(scratch, Operand(result, ASR, 31));
1228      DeoptimizeIf(ne, instr->environment());
1229    } else {
1230      __ mul(result, left, right);
1231    }
1232
1233    if (bailout_on_minus_zero) {
1234      // Bail out if the result is supposed to be negative zero.
1235      Label done;
1236      __ cmp(result, Operand(0));
1237      __ b(ne, &done);
1238      __ cmp(ToRegister(instr->TempAt(0)), Operand(0));
1239      DeoptimizeIf(mi, instr->environment());
1240      __ bind(&done);
1241    }
1242  }
1243}
1244
1245
1246void LCodeGen::DoBitI(LBitI* instr) {
1247  LOperand* left_op = instr->InputAt(0);
1248  LOperand* right_op = instr->InputAt(1);
1249  ASSERT(left_op->IsRegister());
1250  Register left = ToRegister(left_op);
1251  Register result = ToRegister(instr->result());
1252  Operand right(no_reg);
1253
1254  if (right_op->IsStackSlot() || right_op->IsArgument()) {
1255    right = Operand(EmitLoadRegister(right_op, ip));
1256  } else {
1257    ASSERT(right_op->IsRegister() || right_op->IsConstantOperand());
1258    right = ToOperand(right_op);
1259  }
1260
1261  switch (instr->op()) {
1262    case Token::BIT_AND:
1263      __ and_(result, left, right);
1264      break;
1265    case Token::BIT_OR:
1266      __ orr(result, left, right);
1267      break;
1268    case Token::BIT_XOR:
1269      __ eor(result, left, right);
1270      break;
1271    default:
1272      UNREACHABLE();
1273      break;
1274  }
1275}
1276
1277
1278void LCodeGen::DoShiftI(LShiftI* instr) {
1279  // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1280  // result may alias either of them.
1281  LOperand* right_op = instr->InputAt(1);
1282  Register left = ToRegister(instr->InputAt(0));
1283  Register result = ToRegister(instr->result());
1284  Register scratch = scratch0();
1285  if (right_op->IsRegister()) {
1286    // Mask the right_op operand.
1287    __ and_(scratch, ToRegister(right_op), Operand(0x1F));
1288    switch (instr->op()) {
1289      case Token::SAR:
1290        __ mov(result, Operand(left, ASR, scratch));
1291        break;
1292      case Token::SHR:
1293        if (instr->can_deopt()) {
1294          __ mov(result, Operand(left, LSR, scratch), SetCC);
1295          DeoptimizeIf(mi, instr->environment());
1296        } else {
1297          __ mov(result, Operand(left, LSR, scratch));
1298        }
1299        break;
1300      case Token::SHL:
1301        __ mov(result, Operand(left, LSL, scratch));
1302        break;
1303      default:
1304        UNREACHABLE();
1305        break;
1306    }
1307  } else {
1308    // Mask the right_op operand.
1309    int value = ToInteger32(LConstantOperand::cast(right_op));
1310    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1311    switch (instr->op()) {
1312      case Token::SAR:
1313        if (shift_count != 0) {
1314          __ mov(result, Operand(left, ASR, shift_count));
1315        } else {
1316          __ Move(result, left);
1317        }
1318        break;
1319      case Token::SHR:
1320        if (shift_count != 0) {
1321          __ mov(result, Operand(left, LSR, shift_count));
1322        } else {
1323          if (instr->can_deopt()) {
1324            __ tst(left, Operand(0x80000000));
1325            DeoptimizeIf(ne, instr->environment());
1326          }
1327          __ Move(result, left);
1328        }
1329        break;
1330      case Token::SHL:
1331        if (shift_count != 0) {
1332          __ mov(result, Operand(left, LSL, shift_count));
1333        } else {
1334          __ Move(result, left);
1335        }
1336        break;
1337      default:
1338        UNREACHABLE();
1339        break;
1340    }
1341  }
1342}
1343
1344
1345void LCodeGen::DoSubI(LSubI* instr) {
1346  LOperand* left = instr->InputAt(0);
1347  LOperand* right = instr->InputAt(1);
1348  LOperand* result = instr->result();
1349  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1350  SBit set_cond = can_overflow ? SetCC : LeaveCC;
1351
1352  if (right->IsStackSlot() || right->IsArgument()) {
1353    Register right_reg = EmitLoadRegister(right, ip);
1354    __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1355  } else {
1356    ASSERT(right->IsRegister() || right->IsConstantOperand());
1357    __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1358  }
1359
1360  if (can_overflow) {
1361    DeoptimizeIf(vs, instr->environment());
1362  }
1363}
1364
1365
1366void LCodeGen::DoConstantI(LConstantI* instr) {
1367  ASSERT(instr->result()->IsRegister());
1368  __ mov(ToRegister(instr->result()), Operand(instr->value()));
1369}
1370
1371
1372void LCodeGen::DoConstantD(LConstantD* instr) {
1373  ASSERT(instr->result()->IsDoubleRegister());
1374  DwVfpRegister result = ToDoubleRegister(instr->result());
1375  double v = instr->value();
1376  __ Vmov(result, v);
1377}
1378
1379
1380void LCodeGen::DoConstantT(LConstantT* instr) {
1381  Handle<Object> value = instr->value();
1382  if (value->IsSmi()) {
1383    __ mov(ToRegister(instr->result()), Operand(value));
1384  } else {
1385    __ LoadHeapObject(ToRegister(instr->result()),
1386                      Handle<HeapObject>::cast(value));
1387  }
1388}
1389
1390
1391void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
1392  Register result = ToRegister(instr->result());
1393  Register array = ToRegister(instr->InputAt(0));
1394  __ ldr(result, FieldMemOperand(array, JSArray::kLengthOffset));
1395}
1396
1397
1398void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
1399  Register result = ToRegister(instr->result());
1400  Register array = ToRegister(instr->InputAt(0));
1401  __ ldr(result, FieldMemOperand(array, FixedArrayBase::kLengthOffset));
1402}
1403
1404
1405void LCodeGen::DoElementsKind(LElementsKind* instr) {
1406  Register result = ToRegister(instr->result());
1407  Register input = ToRegister(instr->InputAt(0));
1408
1409  // Load map into |result|.
1410  __ ldr(result, FieldMemOperand(input, HeapObject::kMapOffset));
1411  // Load the map's "bit field 2" into |result|. We only need the first byte,
1412  // but the following bit field extraction takes care of that anyway.
1413  __ ldr(result, FieldMemOperand(result, Map::kBitField2Offset));
1414  // Retrieve elements_kind from bit field 2.
1415  __ ubfx(result, result, Map::kElementsKindShift, Map::kElementsKindBitCount);
1416}
1417
1418
1419void LCodeGen::DoValueOf(LValueOf* instr) {
1420  Register input = ToRegister(instr->InputAt(0));
1421  Register result = ToRegister(instr->result());
1422  Register map = ToRegister(instr->TempAt(0));
1423  Label done;
1424
1425  // If the object is a smi return the object.
1426  __ tst(input, Operand(kSmiTagMask));
1427  __ Move(result, input, eq);
1428  __ b(eq, &done);
1429
1430  // If the object is not a value type, return the object.
1431  __ CompareObjectType(input, map, map, JS_VALUE_TYPE);
1432  __ Move(result, input, ne);
1433  __ b(ne, &done);
1434  __ ldr(result, FieldMemOperand(input, JSValue::kValueOffset));
1435
1436  __ bind(&done);
1437}
1438
1439
1440void LCodeGen::DoDateField(LDateField* instr) {
1441  Register object = ToRegister(instr->InputAt(0));
1442  Register result = ToRegister(instr->result());
1443  Register scratch = ToRegister(instr->TempAt(0));
1444  Smi* index = instr->index();
1445  Label runtime, done;
1446  ASSERT(object.is(result));
1447  ASSERT(object.is(r0));
1448  ASSERT(!scratch.is(scratch0()));
1449  ASSERT(!scratch.is(object));
1450
1451#ifdef DEBUG
1452  __ AbortIfSmi(object);
1453  __ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE);
1454  __ Assert(eq, "Trying to get date field from non-date.");
1455#endif
1456
1457  if (index->value() == 0) {
1458    __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
1459  } else {
1460    if (index->value() < JSDate::kFirstUncachedField) {
1461      ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1462      __ mov(scratch, Operand(stamp));
1463      __ ldr(scratch, MemOperand(scratch));
1464      __ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
1465      __ cmp(scratch, scratch0());
1466      __ b(ne, &runtime);
1467      __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
1468                                             kPointerSize * index->value()));
1469      __ jmp(&done);
1470    }
1471    __ bind(&runtime);
1472    __ PrepareCallCFunction(2, scratch);
1473    __ mov(r1, Operand(index));
1474    __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1475    __ bind(&done);
1476  }
1477}
1478
1479
1480void LCodeGen::DoBitNotI(LBitNotI* instr) {
1481  Register input = ToRegister(instr->InputAt(0));
1482  Register result = ToRegister(instr->result());
1483  __ mvn(result, Operand(input));
1484}
1485
1486
1487void LCodeGen::DoThrow(LThrow* instr) {
1488  Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
1489  __ push(input_reg);
1490  CallRuntime(Runtime::kThrow, 1, instr);
1491
1492  if (FLAG_debug_code) {
1493    __ stop("Unreachable code.");
1494  }
1495}
1496
1497
1498void LCodeGen::DoAddI(LAddI* instr) {
1499  LOperand* left = instr->InputAt(0);
1500  LOperand* right = instr->InputAt(1);
1501  LOperand* result = instr->result();
1502  bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1503  SBit set_cond = can_overflow ? SetCC : LeaveCC;
1504
1505  if (right->IsStackSlot() || right->IsArgument()) {
1506    Register right_reg = EmitLoadRegister(right, ip);
1507    __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond);
1508  } else {
1509    ASSERT(right->IsRegister() || right->IsConstantOperand());
1510    __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond);
1511  }
1512
1513  if (can_overflow) {
1514    DeoptimizeIf(vs, instr->environment());
1515  }
1516}
1517
1518
1519void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1520  DoubleRegister left = ToDoubleRegister(instr->InputAt(0));
1521  DoubleRegister right = ToDoubleRegister(instr->InputAt(1));
1522  DoubleRegister result = ToDoubleRegister(instr->result());
1523  switch (instr->op()) {
1524    case Token::ADD:
1525      __ vadd(result, left, right);
1526      break;
1527    case Token::SUB:
1528      __ vsub(result, left, right);
1529      break;
1530    case Token::MUL:
1531      __ vmul(result, left, right);
1532      break;
1533    case Token::DIV:
1534      __ vdiv(result, left, right);
1535      break;
1536    case Token::MOD: {
1537      // Save r0-r3 on the stack.
1538      __ stm(db_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
1539
1540      __ PrepareCallCFunction(0, 2, scratch0());
1541      __ SetCallCDoubleArguments(left, right);
1542      __ CallCFunction(
1543          ExternalReference::double_fp_operation(Token::MOD, isolate()),
1544          0, 2);
1545      // Move the result in the double result register.
1546      __ GetCFunctionDoubleResult(result);
1547
1548      // Restore r0-r3.
1549      __ ldm(ia_w, sp, r0.bit() | r1.bit() | r2.bit() | r3.bit());
1550      break;
1551    }
1552    default:
1553      UNREACHABLE();
1554      break;
1555  }
1556}
1557
1558
1559void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1560  ASSERT(ToRegister(instr->InputAt(0)).is(r1));
1561  ASSERT(ToRegister(instr->InputAt(1)).is(r0));
1562  ASSERT(ToRegister(instr->result()).is(r0));
1563
1564  BinaryOpStub stub(instr->op(), NO_OVERWRITE);
1565  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1566  __ nop();  // Signals no inlined code.
1567}
1568
1569
1570int LCodeGen::GetNextEmittedBlock(int block) {
1571  for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
1572    LLabel* label = chunk_->GetLabel(i);
1573    if (!label->HasReplacement()) return i;
1574  }
1575  return -1;
1576}
1577
1578
1579void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
1580  int next_block = GetNextEmittedBlock(current_block_);
1581  right_block = chunk_->LookupDestination(right_block);
1582  left_block = chunk_->LookupDestination(left_block);
1583
1584  if (right_block == left_block) {
1585    EmitGoto(left_block);
1586  } else if (left_block == next_block) {
1587    __ b(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1588  } else if (right_block == next_block) {
1589    __ b(cc, chunk_->GetAssemblyLabel(left_block));
1590  } else {
1591    __ b(cc, chunk_->GetAssemblyLabel(left_block));
1592    __ b(chunk_->GetAssemblyLabel(right_block));
1593  }
1594}
1595
1596
1597void LCodeGen::DoBranch(LBranch* instr) {
1598  int true_block = chunk_->LookupDestination(instr->true_block_id());
1599  int false_block = chunk_->LookupDestination(instr->false_block_id());
1600
1601  Representation r = instr->hydrogen()->value()->representation();
1602  if (r.IsInteger32()) {
1603    Register reg = ToRegister(instr->InputAt(0));
1604    __ cmp(reg, Operand(0));
1605    EmitBranch(true_block, false_block, ne);
1606  } else if (r.IsDouble()) {
1607    DoubleRegister reg = ToDoubleRegister(instr->InputAt(0));
1608    Register scratch = scratch0();
1609
1610    // Test the double value. Zero and NaN are false.
1611    __ VFPCompareAndLoadFlags(reg, 0.0, scratch);
1612    __ tst(scratch, Operand(kVFPZConditionFlagBit | kVFPVConditionFlagBit));
1613    EmitBranch(true_block, false_block, eq);
1614  } else {
1615    ASSERT(r.IsTagged());
1616    Register reg = ToRegister(instr->InputAt(0));
1617    HType type = instr->hydrogen()->value()->type();
1618    if (type.IsBoolean()) {
1619      __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1620      EmitBranch(true_block, false_block, eq);
1621    } else if (type.IsSmi()) {
1622      __ cmp(reg, Operand(0));
1623      EmitBranch(true_block, false_block, ne);
1624    } else {
1625      Label* true_label = chunk_->GetAssemblyLabel(true_block);
1626      Label* false_label = chunk_->GetAssemblyLabel(false_block);
1627
1628      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1629      // Avoid deopts in the case where we've never executed this path before.
1630      if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
1631
1632      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1633        // undefined -> false.
1634        __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
1635        __ b(eq, false_label);
1636      }
1637      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1638        // Boolean -> its value.
1639        __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1640        __ b(eq, true_label);
1641        __ CompareRoot(reg, Heap::kFalseValueRootIndex);
1642        __ b(eq, false_label);
1643      }
1644      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1645        // 'null' -> false.
1646        __ CompareRoot(reg, Heap::kNullValueRootIndex);
1647        __ b(eq, false_label);
1648      }
1649
1650      if (expected.Contains(ToBooleanStub::SMI)) {
1651        // Smis: 0 -> false, all other -> true.
1652        __ cmp(reg, Operand(0));
1653        __ b(eq, false_label);
1654        __ JumpIfSmi(reg, true_label);
1655      } else if (expected.NeedsMap()) {
1656        // If we need a map later and have a Smi -> deopt.
1657        __ tst(reg, Operand(kSmiTagMask));
1658        DeoptimizeIf(eq, instr->environment());
1659      }
1660
1661      const Register map = scratch0();
1662      if (expected.NeedsMap()) {
1663        __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset));
1664
1665        if (expected.CanBeUndetectable()) {
1666          // Undetectable -> false.
1667          __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset));
1668          __ tst(ip, Operand(1 << Map::kIsUndetectable));
1669          __ b(ne, false_label);
1670        }
1671      }
1672
1673      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1674        // spec object -> true.
1675        __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
1676        __ b(ge, true_label);
1677      }
1678
1679      if (expected.Contains(ToBooleanStub::STRING)) {
1680        // String value -> false iff empty.
1681        Label not_string;
1682        __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
1683        __ b(ge, &not_string);
1684        __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset));
1685        __ cmp(ip, Operand(0));
1686        __ b(ne, true_label);
1687        __ b(false_label);
1688        __ bind(&not_string);
1689      }
1690
1691      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1692        // heap number -> false iff +0, -0, or NaN.
1693        DoubleRegister dbl_scratch = double_scratch0();
1694        Label not_heap_number;
1695        __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
1696        __ b(ne, &not_heap_number);
1697        __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
1698        __ VFPCompareAndSetFlags(dbl_scratch, 0.0);
1699        __ b(vs, false_label);  // NaN -> false.
1700        __ b(eq, false_label);  // +0, -0 -> false.
1701        __ b(true_label);
1702        __ bind(&not_heap_number);
1703      }
1704
1705      // We've seen something for the first time -> deopt.
1706      DeoptimizeIf(al, instr->environment());
1707    }
1708  }
1709}
1710
1711
1712void LCodeGen::EmitGoto(int block) {
1713  block = chunk_->LookupDestination(block);
1714  int next_block = GetNextEmittedBlock(current_block_);
1715  if (block != next_block) {
1716    __ jmp(chunk_->GetAssemblyLabel(block));
1717  }
1718}
1719
1720
1721void LCodeGen::DoGoto(LGoto* instr) {
1722  EmitGoto(instr->block_id());
1723}
1724
1725
1726Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1727  Condition cond = kNoCondition;
1728  switch (op) {
1729    case Token::EQ:
1730    case Token::EQ_STRICT:
1731      cond = eq;
1732      break;
1733    case Token::LT:
1734      cond = is_unsigned ? lo : lt;
1735      break;
1736    case Token::GT:
1737      cond = is_unsigned ? hi : gt;
1738      break;
1739    case Token::LTE:
1740      cond = is_unsigned ? ls : le;
1741      break;
1742    case Token::GTE:
1743      cond = is_unsigned ? hs : ge;
1744      break;
1745    case Token::IN:
1746    case Token::INSTANCEOF:
1747    default:
1748      UNREACHABLE();
1749  }
1750  return cond;
1751}
1752
1753
1754void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
1755  LOperand* left = instr->InputAt(0);
1756  LOperand* right = instr->InputAt(1);
1757  int false_block = chunk_->LookupDestination(instr->false_block_id());
1758  int true_block = chunk_->LookupDestination(instr->true_block_id());
1759  Condition cond = TokenToCondition(instr->op(), false);
1760
1761  if (left->IsConstantOperand() && right->IsConstantOperand()) {
1762    // We can statically evaluate the comparison.
1763    double left_val = ToDouble(LConstantOperand::cast(left));
1764    double right_val = ToDouble(LConstantOperand::cast(right));
1765    int next_block =
1766      EvalComparison(instr->op(), left_val, right_val) ? true_block
1767                                                       : false_block;
1768    EmitGoto(next_block);
1769  } else {
1770    if (instr->is_double()) {
1771      // Compare left and right operands as doubles and load the
1772      // resulting flags into the normal status register.
1773      __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right));
1774      // If a NaN is involved, i.e. the result is unordered (V set),
1775      // jump to false block label.
1776      __ b(vs, chunk_->GetAssemblyLabel(false_block));
1777    } else {
1778      if (right->IsConstantOperand()) {
1779        __ cmp(ToRegister(left),
1780               Operand(ToInteger32(LConstantOperand::cast(right))));
1781      } else if (left->IsConstantOperand()) {
1782        __ cmp(ToRegister(right),
1783               Operand(ToInteger32(LConstantOperand::cast(left))));
1784        // We transposed the operands. Reverse the condition.
1785        cond = ReverseCondition(cond);
1786      } else {
1787        __ cmp(ToRegister(left), ToRegister(right));
1788      }
1789    }
1790    EmitBranch(true_block, false_block, cond);
1791  }
1792}
1793
1794
1795void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
1796  Register left = ToRegister(instr->InputAt(0));
1797  Register right = ToRegister(instr->InputAt(1));
1798  int false_block = chunk_->LookupDestination(instr->false_block_id());
1799  int true_block = chunk_->LookupDestination(instr->true_block_id());
1800
1801  __ cmp(left, Operand(right));
1802  EmitBranch(true_block, false_block, eq);
1803}
1804
1805
1806void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
1807  Register left = ToRegister(instr->InputAt(0));
1808  int true_block = chunk_->LookupDestination(instr->true_block_id());
1809  int false_block = chunk_->LookupDestination(instr->false_block_id());
1810
1811  __ cmp(left, Operand(instr->hydrogen()->right()));
1812  EmitBranch(true_block, false_block, eq);
1813}
1814
1815
1816void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
1817  Register scratch = scratch0();
1818  Register reg = ToRegister(instr->InputAt(0));
1819  int false_block = chunk_->LookupDestination(instr->false_block_id());
1820
1821  // If the expression is known to be untagged or a smi, then it's definitely
1822  // not null, and it can't be a an undetectable object.
1823  if (instr->hydrogen()->representation().IsSpecialization() ||
1824      instr->hydrogen()->type().IsSmi()) {
1825    EmitGoto(false_block);
1826    return;
1827  }
1828
1829  int true_block = chunk_->LookupDestination(instr->true_block_id());
1830  Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
1831      Heap::kNullValueRootIndex :
1832      Heap::kUndefinedValueRootIndex;
1833  __ LoadRoot(ip, nil_value);
1834  __ cmp(reg, ip);
1835  if (instr->kind() == kStrictEquality) {
1836    EmitBranch(true_block, false_block, eq);
1837  } else {
1838    Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
1839        Heap::kUndefinedValueRootIndex :
1840        Heap::kNullValueRootIndex;
1841    Label* true_label = chunk_->GetAssemblyLabel(true_block);
1842    Label* false_label = chunk_->GetAssemblyLabel(false_block);
1843    __ b(eq, true_label);
1844    __ LoadRoot(ip, other_nil_value);
1845    __ cmp(reg, ip);
1846    __ b(eq, true_label);
1847    __ JumpIfSmi(reg, false_label);
1848    // Check for undetectable objects by looking in the bit field in
1849    // the map. The object has already been smi checked.
1850    __ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
1851    __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1852    __ tst(scratch, Operand(1 << Map::kIsUndetectable));
1853    EmitBranch(true_block, false_block, ne);
1854  }
1855}
1856
1857
1858Condition LCodeGen::EmitIsObject(Register input,
1859                                 Register temp1,
1860                                 Label* is_not_object,
1861                                 Label* is_object) {
1862  Register temp2 = scratch0();
1863  __ JumpIfSmi(input, is_not_object);
1864
1865  __ LoadRoot(temp2, Heap::kNullValueRootIndex);
1866  __ cmp(input, temp2);
1867  __ b(eq, is_object);
1868
1869  // Load map.
1870  __ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
1871  // Undetectable objects behave like undefined.
1872  __ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
1873  __ tst(temp2, Operand(1 << Map::kIsUndetectable));
1874  __ b(ne, is_not_object);
1875
1876  // Load instance type and check that it is in object type range.
1877  __ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
1878  __ cmp(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1879  __ b(lt, is_not_object);
1880  __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
1881  return le;
1882}
1883
1884
1885void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
1886  Register reg = ToRegister(instr->InputAt(0));
1887  Register temp1 = ToRegister(instr->TempAt(0));
1888
1889  int true_block = chunk_->LookupDestination(instr->true_block_id());
1890  int false_block = chunk_->LookupDestination(instr->false_block_id());
1891  Label* true_label = chunk_->GetAssemblyLabel(true_block);
1892  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1893
1894  Condition true_cond =
1895      EmitIsObject(reg, temp1, false_label, true_label);
1896
1897  EmitBranch(true_block, false_block, true_cond);
1898}
1899
1900
1901Condition LCodeGen::EmitIsString(Register input,
1902                                 Register temp1,
1903                                 Label* is_not_string) {
1904  __ JumpIfSmi(input, is_not_string);
1905  __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
1906
1907  return lt;
1908}
1909
1910
1911void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
1912  Register reg = ToRegister(instr->InputAt(0));
1913  Register temp1 = ToRegister(instr->TempAt(0));
1914
1915  int true_block = chunk_->LookupDestination(instr->true_block_id());
1916  int false_block = chunk_->LookupDestination(instr->false_block_id());
1917  Label* false_label = chunk_->GetAssemblyLabel(false_block);
1918
1919  Condition true_cond =
1920      EmitIsString(reg, temp1, false_label);
1921
1922  EmitBranch(true_block, false_block, true_cond);
1923}
1924
1925
1926void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
1927  int true_block = chunk_->LookupDestination(instr->true_block_id());
1928  int false_block = chunk_->LookupDestination(instr->false_block_id());
1929
1930  Register input_reg = EmitLoadRegister(instr->InputAt(0), ip);
1931  __ tst(input_reg, Operand(kSmiTagMask));
1932  EmitBranch(true_block, false_block, eq);
1933}
1934
1935
1936void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
1937  Register input = ToRegister(instr->InputAt(0));
1938  Register temp = ToRegister(instr->TempAt(0));
1939
1940  int true_block = chunk_->LookupDestination(instr->true_block_id());
1941  int false_block = chunk_->LookupDestination(instr->false_block_id());
1942
1943  __ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
1944  __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
1945  __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
1946  __ tst(temp, Operand(1 << Map::kIsUndetectable));
1947  EmitBranch(true_block, false_block, ne);
1948}
1949
1950
1951static Condition ComputeCompareCondition(Token::Value op) {
1952  switch (op) {
1953    case Token::EQ_STRICT:
1954    case Token::EQ:
1955      return eq;
1956    case Token::LT:
1957      return lt;
1958    case Token::GT:
1959      return gt;
1960    case Token::LTE:
1961      return le;
1962    case Token::GTE:
1963      return ge;
1964    default:
1965      UNREACHABLE();
1966      return kNoCondition;
1967  }
1968}
1969
1970
1971void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
1972  Token::Value op = instr->op();
1973  int true_block = chunk_->LookupDestination(instr->true_block_id());
1974  int false_block = chunk_->LookupDestination(instr->false_block_id());
1975
1976  Handle<Code> ic = CompareIC::GetUninitialized(op);
1977  CallCode(ic, RelocInfo::CODE_TARGET, instr);
1978  __ cmp(r0, Operand(0));  // This instruction also signals no smi code inlined.
1979
1980  Condition condition = ComputeCompareCondition(op);
1981
1982  EmitBranch(true_block, false_block, condition);
1983}
1984
1985
1986static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
1987  InstanceType from = instr->from();
1988  InstanceType to = instr->to();
1989  if (from == FIRST_TYPE) return to;
1990  ASSERT(from == to || to == LAST_TYPE);
1991  return from;
1992}
1993
1994
1995static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
1996  InstanceType from = instr->from();
1997  InstanceType to = instr->to();
1998  if (from == to) return eq;
1999  if (to == LAST_TYPE) return hs;
2000  if (from == FIRST_TYPE) return ls;
2001  UNREACHABLE();
2002  return eq;
2003}
2004
2005
2006void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2007  Register scratch = scratch0();
2008  Register input = ToRegister(instr->InputAt(0));
2009
2010  int true_block = chunk_->LookupDestination(instr->true_block_id());
2011  int false_block = chunk_->LookupDestination(instr->false_block_id());
2012
2013  Label* false_label = chunk_->GetAssemblyLabel(false_block);
2014
2015  __ JumpIfSmi(input, false_label);
2016
2017  __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2018  EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
2019}
2020
2021
2022void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2023  Register input = ToRegister(instr->InputAt(0));
2024  Register result = ToRegister(instr->result());
2025
2026  if (FLAG_debug_code) {
2027    __ AbortIfNotString(input);
2028  }
2029
2030  __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset));
2031  __ IndexFromHash(result, result);
2032}
2033
2034
2035void LCodeGen::DoHasCachedArrayIndexAndBranch(
2036    LHasCachedArrayIndexAndBranch* instr) {
2037  Register input = ToRegister(instr->InputAt(0));
2038  Register scratch = scratch0();
2039
2040  int true_block = chunk_->LookupDestination(instr->true_block_id());
2041  int false_block = chunk_->LookupDestination(instr->false_block_id());
2042
2043  __ ldr(scratch,
2044         FieldMemOperand(input, String::kHashFieldOffset));
2045  __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask));
2046  EmitBranch(true_block, false_block, eq);
2047}
2048
2049
2050// Branches to a label or falls through with the answer in flags.  Trashes
2051// the temp registers, but not the input.
2052void LCodeGen::EmitClassOfTest(Label* is_true,
2053                               Label* is_false,
2054                               Handle<String>class_name,
2055                               Register input,
2056                               Register temp,
2057                               Register temp2) {
2058  ASSERT(!input.is(temp));
2059  ASSERT(!input.is(temp2));
2060  ASSERT(!temp.is(temp2));
2061
2062  __ JumpIfSmi(input, is_false);
2063
2064  if (class_name->IsEqualTo(CStrVector("Function"))) {
2065    // Assuming the following assertions, we can use the same compares to test
2066    // for both being a function type and being in the object type range.
2067    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2068    STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2069                  FIRST_SPEC_OBJECT_TYPE + 1);
2070    STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2071                  LAST_SPEC_OBJECT_TYPE - 1);
2072    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2073    __ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE);
2074    __ b(lt, is_false);
2075    __ b(eq, is_true);
2076    __ cmp(temp2, Operand(LAST_SPEC_OBJECT_TYPE));
2077    __ b(eq, is_true);
2078  } else {
2079    // Faster code path to avoid two compares: subtract lower bound from the
2080    // actual type and do a signed compare with the width of the type range.
2081    __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2082    __ ldrb(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset));
2083    __ sub(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2084    __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
2085                          FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2086    __ b(gt, is_false);
2087  }
2088
2089  // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2090  // Check if the constructor in the map is a function.
2091  __ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset));
2092
2093  // Objects with a non-function constructor have class 'Object'.
2094  __ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE);
2095  if (class_name->IsEqualTo(CStrVector("Object"))) {
2096    __ b(ne, is_true);
2097  } else {
2098    __ b(ne, is_false);
2099  }
2100
2101  // temp now contains the constructor function. Grab the
2102  // instance class name from there.
2103  __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2104  __ ldr(temp, FieldMemOperand(temp,
2105                               SharedFunctionInfo::kInstanceClassNameOffset));
2106  // The class name we are testing against is a symbol because it's a literal.
2107  // The name in the constructor is a symbol because of the way the context is
2108  // booted.  This routine isn't expected to work for random API-created
2109  // classes and it doesn't have to because you can't access it with natives
2110  // syntax.  Since both sides are symbols it is sufficient to use an identity
2111  // comparison.
2112  __ cmp(temp, Operand(class_name));
2113  // End with the answer in flags.
2114}
2115
2116
2117void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2118  Register input = ToRegister(instr->InputAt(0));
2119  Register temp = scratch0();
2120  Register temp2 = ToRegister(instr->TempAt(0));
2121  Handle<String> class_name = instr->hydrogen()->class_name();
2122
2123  int true_block = chunk_->LookupDestination(instr->true_block_id());
2124  int false_block = chunk_->LookupDestination(instr->false_block_id());
2125
2126  Label* true_label = chunk_->GetAssemblyLabel(true_block);
2127  Label* false_label = chunk_->GetAssemblyLabel(false_block);
2128
2129  EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
2130
2131  EmitBranch(true_block, false_block, eq);
2132}
2133
2134
2135void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2136  Register reg = ToRegister(instr->InputAt(0));
2137  Register temp = ToRegister(instr->TempAt(0));
2138  int true_block = instr->true_block_id();
2139  int false_block = instr->false_block_id();
2140
2141  __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2142  __ cmp(temp, Operand(instr->map()));
2143  EmitBranch(true_block, false_block, eq);
2144}
2145
2146
2147void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2148  ASSERT(ToRegister(instr->InputAt(0)).is(r0));  // Object is in r0.
2149  ASSERT(ToRegister(instr->InputAt(1)).is(r1));  // Function is in r1.
2150
2151  InstanceofStub stub(InstanceofStub::kArgsInRegisters);
2152  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2153
2154  __ cmp(r0, Operand(0));
2155  __ mov(r0, Operand(factory()->false_value()), LeaveCC, ne);
2156  __ mov(r0, Operand(factory()->true_value()), LeaveCC, eq);
2157}
2158
2159
2160void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2161  class DeferredInstanceOfKnownGlobal: public LDeferredCode {
2162   public:
2163    DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2164                                  LInstanceOfKnownGlobal* instr)
2165        : LDeferredCode(codegen), instr_(instr) { }
2166    virtual void Generate() {
2167      codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2168    }
2169    virtual LInstruction* instr() { return instr_; }
2170    Label* map_check() { return &map_check_; }
2171   private:
2172    LInstanceOfKnownGlobal* instr_;
2173    Label map_check_;
2174  };
2175
2176  DeferredInstanceOfKnownGlobal* deferred;
2177  deferred = new DeferredInstanceOfKnownGlobal(this, instr);
2178
2179  Label done, false_result;
2180  Register object = ToRegister(instr->InputAt(0));
2181  Register temp = ToRegister(instr->TempAt(0));
2182  Register result = ToRegister(instr->result());
2183
2184  ASSERT(object.is(r0));
2185  ASSERT(result.is(r0));
2186
2187  // A Smi is not instance of anything.
2188  __ JumpIfSmi(object, &false_result);
2189
2190  // This is the inlined call site instanceof cache. The two occurences of the
2191  // hole value will be patched to the last map/result pair generated by the
2192  // instanceof stub.
2193  Label cache_miss;
2194  Register map = temp;
2195  __ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
2196  __ bind(deferred->map_check());  // Label for calculating code patching.
2197  // We use Factory::the_hole_value() on purpose instead of loading from the
2198  // root array to force relocation to be able to later patch with
2199  // the cached map.
2200  Handle<JSGlobalPropertyCell> cell =
2201      factory()->NewJSGlobalPropertyCell(factory()->the_hole_value());
2202  __ mov(ip, Operand(Handle<Object>(cell)));
2203  __ ldr(ip, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
2204  __ cmp(map, Operand(ip));
2205  __ b(ne, &cache_miss);
2206  // We use Factory::the_hole_value() on purpose instead of loading from the
2207  // root array to force relocation to be able to later patch
2208  // with true or false.
2209  __ mov(result, Operand(factory()->the_hole_value()));
2210  __ b(&done);
2211
2212  // The inlined call site cache did not match. Check null and string before
2213  // calling the deferred code.
2214  __ bind(&cache_miss);
2215  // Null is not instance of anything.
2216  __ LoadRoot(ip, Heap::kNullValueRootIndex);
2217  __ cmp(object, Operand(ip));
2218  __ b(eq, &false_result);
2219
2220  // String values is not instance of anything.
2221  Condition is_string = masm_->IsObjectStringType(object, temp);
2222  __ b(is_string, &false_result);
2223
2224  // Go to the deferred code.
2225  __ b(deferred->entry());
2226
2227  __ bind(&false_result);
2228  __ LoadRoot(result, Heap::kFalseValueRootIndex);
2229
2230  // Here result has either true or false. Deferred code also produces true or
2231  // false object.
2232  __ bind(deferred->exit());
2233  __ bind(&done);
2234}
2235
2236
2237void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2238                                               Label* map_check) {
2239  Register result = ToRegister(instr->result());
2240  ASSERT(result.is(r0));
2241
2242  InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2243  flags = static_cast<InstanceofStub::Flags>(
2244      flags | InstanceofStub::kArgsInRegisters);
2245  flags = static_cast<InstanceofStub::Flags>(
2246      flags | InstanceofStub::kCallSiteInlineCheck);
2247  flags = static_cast<InstanceofStub::Flags>(
2248      flags | InstanceofStub::kReturnTrueFalseObject);
2249  InstanceofStub stub(flags);
2250
2251  PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
2252
2253  // Get the temp register reserved by the instruction. This needs to be r4 as
2254  // its slot of the pushing of safepoint registers is used to communicate the
2255  // offset to the location of the map check.
2256  Register temp = ToRegister(instr->TempAt(0));
2257  ASSERT(temp.is(r4));
2258  __ LoadHeapObject(InstanceofStub::right(), instr->function());
2259  static const int kAdditionalDelta = 4;
2260  int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
2261  Label before_push_delta;
2262  __ bind(&before_push_delta);
2263  __ BlockConstPoolFor(kAdditionalDelta);
2264  __ mov(temp, Operand(delta * kPointerSize));
2265  __ StoreToSafepointRegisterSlot(temp, temp);
2266  CallCodeGeneric(stub.GetCode(),
2267                  RelocInfo::CODE_TARGET,
2268                  instr,
2269                  RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2270  ASSERT(instr->HasDeoptimizationEnvironment());
2271  LEnvironment* env = instr->deoptimization_environment();
2272  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2273  // Put the result value into the result register slot and
2274  // restore all registers.
2275  __ StoreToSafepointRegisterSlot(result, result);
2276}
2277
2278
2279void LCodeGen::DoCmpT(LCmpT* instr) {
2280  Token::Value op = instr->op();
2281
2282  Handle<Code> ic = CompareIC::GetUninitialized(op);
2283  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2284  __ cmp(r0, Operand(0));  // This instruction also signals no smi code inlined.
2285
2286  Condition condition = ComputeCompareCondition(op);
2287  __ LoadRoot(ToRegister(instr->result()),
2288              Heap::kTrueValueRootIndex,
2289              condition);
2290  __ LoadRoot(ToRegister(instr->result()),
2291              Heap::kFalseValueRootIndex,
2292              NegateCondition(condition));
2293}
2294
2295
2296void LCodeGen::DoReturn(LReturn* instr) {
2297  if (FLAG_trace) {
2298    // Push the return value on the stack as the parameter.
2299    // Runtime::TraceExit returns its parameter in r0.
2300    __ push(r0);
2301    __ CallRuntime(Runtime::kTraceExit, 1);
2302  }
2303  int32_t sp_delta = (GetParameterCount() + 1) * kPointerSize;
2304  __ mov(sp, fp);
2305  __ ldm(ia_w, sp, fp.bit() | lr.bit());
2306  __ add(sp, sp, Operand(sp_delta));
2307  __ Jump(lr);
2308}
2309
2310
2311void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2312  Register result = ToRegister(instr->result());
2313  __ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell())));
2314  __ ldr(result, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
2315  if (instr->hydrogen()->RequiresHoleCheck()) {
2316    __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2317    __ cmp(result, ip);
2318    DeoptimizeIf(eq, instr->environment());
2319  }
2320}
2321
2322
2323void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2324  ASSERT(ToRegister(instr->global_object()).is(r0));
2325  ASSERT(ToRegister(instr->result()).is(r0));
2326
2327  __ mov(r2, Operand(instr->name()));
2328  RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET
2329                                             : RelocInfo::CODE_TARGET_CONTEXT;
2330  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2331  CallCode(ic, mode, instr);
2332}
2333
2334
2335void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2336  Register value = ToRegister(instr->value());
2337  Register cell = scratch0();
2338
2339  // Load the cell.
2340  __ mov(cell, Operand(instr->hydrogen()->cell()));
2341
2342  // If the cell we are storing to contains the hole it could have
2343  // been deleted from the property dictionary. In that case, we need
2344  // to update the property details in the property dictionary to mark
2345  // it as no longer deleted.
2346  if (instr->hydrogen()->RequiresHoleCheck()) {
2347    // We use a temp to check the payload (CompareRoot might clobber ip).
2348    Register payload = ToRegister(instr->TempAt(0));
2349    __ ldr(payload, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
2350    __ CompareRoot(payload, Heap::kTheHoleValueRootIndex);
2351    DeoptimizeIf(eq, instr->environment());
2352  }
2353
2354  // Store the value.
2355  __ str(value, FieldMemOperand(cell, JSGlobalPropertyCell::kValueOffset));
2356  // Cells are always rescanned, so no write barrier here.
2357}
2358
2359
2360void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
2361  ASSERT(ToRegister(instr->global_object()).is(r1));
2362  ASSERT(ToRegister(instr->value()).is(r0));
2363
2364  __ mov(r2, Operand(instr->name()));
2365  Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
2366      ? isolate()->builtins()->StoreIC_Initialize_Strict()
2367      : isolate()->builtins()->StoreIC_Initialize();
2368  CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
2369}
2370
2371
2372void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2373  Register context = ToRegister(instr->context());
2374  Register result = ToRegister(instr->result());
2375  __ ldr(result, ContextOperand(context, instr->slot_index()));
2376  if (instr->hydrogen()->RequiresHoleCheck()) {
2377    __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2378    __ cmp(result, ip);
2379    if (instr->hydrogen()->DeoptimizesOnHole()) {
2380      DeoptimizeIf(eq, instr->environment());
2381    } else {
2382      __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq);
2383    }
2384  }
2385}
2386
2387
2388void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2389  Register context = ToRegister(instr->context());
2390  Register value = ToRegister(instr->value());
2391  Register scratch = scratch0();
2392  MemOperand target = ContextOperand(context, instr->slot_index());
2393
2394  Label skip_assignment;
2395
2396  if (instr->hydrogen()->RequiresHoleCheck()) {
2397    __ ldr(scratch, target);
2398    __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2399    __ cmp(scratch, ip);
2400    if (instr->hydrogen()->DeoptimizesOnHole()) {
2401      DeoptimizeIf(eq, instr->environment());
2402    } else {
2403      __ b(ne, &skip_assignment);
2404    }
2405  }
2406
2407  __ str(value, target);
2408  if (instr->hydrogen()->NeedsWriteBarrier()) {
2409    HType type = instr->hydrogen()->value()->type();
2410    SmiCheck check_needed =
2411        type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2412    __ RecordWriteContextSlot(context,
2413                              target.offset(),
2414                              value,
2415                              scratch,
2416                              kLRHasBeenSaved,
2417                              kSaveFPRegs,
2418                              EMIT_REMEMBERED_SET,
2419                              check_needed);
2420  }
2421
2422  __ bind(&skip_assignment);
2423}
2424
2425
2426void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2427  Register object = ToRegister(instr->InputAt(0));
2428  Register result = ToRegister(instr->result());
2429  if (instr->hydrogen()->is_in_object()) {
2430    __ ldr(result, FieldMemOperand(object, instr->hydrogen()->offset()));
2431  } else {
2432    __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2433    __ ldr(result, FieldMemOperand(result, instr->hydrogen()->offset()));
2434  }
2435}
2436
2437
2438void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
2439                                               Register object,
2440                                               Handle<Map> type,
2441                                               Handle<String> name) {
2442  LookupResult lookup(isolate());
2443  type->LookupInDescriptors(NULL, *name, &lookup);
2444  ASSERT(lookup.IsFound() &&
2445         (lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
2446  if (lookup.type() == FIELD) {
2447    int index = lookup.GetLocalFieldIndexFromMap(*type);
2448    int offset = index * kPointerSize;
2449    if (index < 0) {
2450      // Negative property indices are in-object properties, indexed
2451      // from the end of the fixed part of the object.
2452      __ ldr(result, FieldMemOperand(object, offset + type->instance_size()));
2453    } else {
2454      // Non-negative property indices are in the properties array.
2455      __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2456      __ ldr(result, FieldMemOperand(result, offset + FixedArray::kHeaderSize));
2457    }
2458  } else {
2459    Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
2460    __ LoadHeapObject(result, function);
2461  }
2462}
2463
2464
2465void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
2466  Register object = ToRegister(instr->object());
2467  Register result = ToRegister(instr->result());
2468  Register scratch = scratch0();
2469  int map_count = instr->hydrogen()->types()->length();
2470  Handle<String> name = instr->hydrogen()->name();
2471  if (map_count == 0) {
2472    ASSERT(instr->hydrogen()->need_generic());
2473    __ mov(r2, Operand(name));
2474    Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2475    CallCode(ic, RelocInfo::CODE_TARGET, instr);
2476  } else {
2477    Label done;
2478    __ ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2479    for (int i = 0; i < map_count - 1; ++i) {
2480      Handle<Map> map = instr->hydrogen()->types()->at(i);
2481      Label next;
2482      __ cmp(scratch, Operand(map));
2483      __ b(ne, &next);
2484      EmitLoadFieldOrConstantFunction(result, object, map, name);
2485      __ b(&done);
2486      __ bind(&next);
2487    }
2488    Handle<Map> map = instr->hydrogen()->types()->last();
2489    __ cmp(scratch, Operand(map));
2490    if (instr->hydrogen()->need_generic()) {
2491      Label generic;
2492      __ b(ne, &generic);
2493      EmitLoadFieldOrConstantFunction(result, object, map, name);
2494      __ b(&done);
2495      __ bind(&generic);
2496      __ mov(r2, Operand(name));
2497      Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2498      CallCode(ic, RelocInfo::CODE_TARGET, instr);
2499    } else {
2500      DeoptimizeIf(ne, instr->environment());
2501      EmitLoadFieldOrConstantFunction(result, object, map, name);
2502    }
2503    __ bind(&done);
2504  }
2505}
2506
2507
2508void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2509  ASSERT(ToRegister(instr->object()).is(r0));
2510  ASSERT(ToRegister(instr->result()).is(r0));
2511
2512  // Name is always in r2.
2513  __ mov(r2, Operand(instr->name()));
2514  Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
2515  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2516}
2517
2518
2519void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2520  Register scratch = scratch0();
2521  Register function = ToRegister(instr->function());
2522  Register result = ToRegister(instr->result());
2523
2524  // Check that the function really is a function. Load map into the
2525  // result register.
2526  __ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
2527  DeoptimizeIf(ne, instr->environment());
2528
2529  // Make sure that the function has an instance prototype.
2530  Label non_instance;
2531  __ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
2532  __ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
2533  __ b(ne, &non_instance);
2534
2535  // Get the prototype or initial map from the function.
2536  __ ldr(result,
2537         FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2538
2539  // Check that the function has a prototype or an initial map.
2540  __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2541  __ cmp(result, ip);
2542  DeoptimizeIf(eq, instr->environment());
2543
2544  // If the function does not have an initial map, we're done.
2545  Label done;
2546  __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
2547  __ b(ne, &done);
2548
2549  // Get the prototype from the initial map.
2550  __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
2551  __ jmp(&done);
2552
2553  // Non-instance prototype: Fetch prototype from constructor field
2554  // in initial map.
2555  __ bind(&non_instance);
2556  __ ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
2557
2558  // All done.
2559  __ bind(&done);
2560}
2561
2562
2563void LCodeGen::DoLoadElements(LLoadElements* instr) {
2564  Register result = ToRegister(instr->result());
2565  Register input = ToRegister(instr->InputAt(0));
2566  Register scratch = scratch0();
2567
2568  __ ldr(result, FieldMemOperand(input, JSObject::kElementsOffset));
2569  if (FLAG_debug_code) {
2570    Label done, fail;
2571    __ ldr(scratch, FieldMemOperand(result, HeapObject::kMapOffset));
2572    __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
2573    __ cmp(scratch, ip);
2574    __ b(eq, &done);
2575    __ LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex);
2576    __ cmp(scratch, ip);
2577    __ b(eq, &done);
2578    // |scratch| still contains |input|'s map.
2579    __ ldr(scratch, FieldMemOperand(scratch, Map::kBitField2Offset));
2580    __ ubfx(scratch, scratch, Map::kElementsKindShift,
2581            Map::kElementsKindBitCount);
2582    __ cmp(scratch, Operand(FAST_ELEMENTS));
2583    __ b(eq, &done);
2584    __ cmp(scratch, Operand(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2585    __ b(lt, &fail);
2586    __ cmp(scratch, Operand(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
2587    __ b(le, &done);
2588    __ bind(&fail);
2589    __ Abort("Check for fast or external elements failed.");
2590    __ bind(&done);
2591  }
2592}
2593
2594
2595void LCodeGen::DoLoadExternalArrayPointer(
2596    LLoadExternalArrayPointer* instr) {
2597  Register to_reg = ToRegister(instr->result());
2598  Register from_reg  = ToRegister(instr->InputAt(0));
2599  __ ldr(to_reg, FieldMemOperand(from_reg,
2600                                 ExternalArray::kExternalPointerOffset));
2601}
2602
2603
2604void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2605  Register arguments = ToRegister(instr->arguments());
2606  Register length = ToRegister(instr->length());
2607  Register index = ToRegister(instr->index());
2608  Register result = ToRegister(instr->result());
2609
2610  // Bailout index is not a valid argument index. Use unsigned check to get
2611  // negative check for free.
2612  __ sub(length, length, index, SetCC);
2613  DeoptimizeIf(ls, instr->environment());
2614
2615  // There are two words between the frame pointer and the last argument.
2616  // Subtracting from length accounts for one of them add one more.
2617  __ add(length, length, Operand(1));
2618  __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
2619}
2620
2621
2622void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
2623  Register elements = ToRegister(instr->elements());
2624  Register key = EmitLoadRegister(instr->key(), scratch0());
2625  Register result = ToRegister(instr->result());
2626  Register scratch = scratch0();
2627
2628  // Load the result.
2629  __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
2630  __ ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2631
2632  // Check for the hole value.
2633  if (instr->hydrogen()->RequiresHoleCheck()) {
2634    __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2635    __ cmp(result, scratch);
2636    DeoptimizeIf(eq, instr->environment());
2637  }
2638}
2639
2640
2641void LCodeGen::DoLoadKeyedFastDoubleElement(
2642    LLoadKeyedFastDoubleElement* instr) {
2643  Register elements = ToRegister(instr->elements());
2644  bool key_is_constant = instr->key()->IsConstantOperand();
2645  Register key = no_reg;
2646  DwVfpRegister result = ToDoubleRegister(instr->result());
2647  Register scratch = scratch0();
2648
2649  int shift_size =
2650      ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2651  int constant_key = 0;
2652  if (key_is_constant) {
2653    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2654    if (constant_key & 0xF0000000) {
2655      Abort("array index constant value too big.");
2656    }
2657  } else {
2658    key = ToRegister(instr->key());
2659  }
2660
2661  Operand operand = key_is_constant
2662      ? Operand(constant_key * (1 << shift_size) +
2663                FixedDoubleArray::kHeaderSize - kHeapObjectTag)
2664      : Operand(key, LSL, shift_size);
2665  __ add(elements, elements, operand);
2666  if (!key_is_constant) {
2667    __ add(elements, elements,
2668           Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
2669  }
2670
2671  __ ldr(scratch, MemOperand(elements, sizeof(kHoleNanLower32)));
2672  __ cmp(scratch, Operand(kHoleNanUpper32));
2673  DeoptimizeIf(eq, instr->environment());
2674
2675  __ vldr(result, elements, 0);
2676}
2677
2678
2679void LCodeGen::DoLoadKeyedSpecializedArrayElement(
2680    LLoadKeyedSpecializedArrayElement* instr) {
2681  Register external_pointer = ToRegister(instr->external_pointer());
2682  Register key = no_reg;
2683  ElementsKind elements_kind = instr->elements_kind();
2684  bool key_is_constant = instr->key()->IsConstantOperand();
2685  int constant_key = 0;
2686  if (key_is_constant) {
2687    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2688    if (constant_key & 0xF0000000) {
2689      Abort("array index constant value too big.");
2690    }
2691  } else {
2692    key = ToRegister(instr->key());
2693  }
2694  int shift_size = ElementsKindToShiftSize(elements_kind);
2695
2696  if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
2697      elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
2698    CpuFeatures::Scope scope(VFP3);
2699    DwVfpRegister result = ToDoubleRegister(instr->result());
2700    Operand operand = key_is_constant
2701        ? Operand(constant_key * (1 << shift_size))
2702        : Operand(key, LSL, shift_size);
2703    __ add(scratch0(), external_pointer, operand);
2704    if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
2705      __ vldr(result.low(), scratch0(), 0);
2706      __ vcvt_f64_f32(result, result.low());
2707    } else  {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2708      __ vldr(result, scratch0(), 0);
2709    }
2710  } else {
2711    Register result = ToRegister(instr->result());
2712    MemOperand mem_operand(key_is_constant
2713        ? MemOperand(external_pointer, constant_key * (1 << shift_size))
2714        : MemOperand(external_pointer, key, LSL, shift_size));
2715    switch (elements_kind) {
2716      case EXTERNAL_BYTE_ELEMENTS:
2717        __ ldrsb(result, mem_operand);
2718        break;
2719      case EXTERNAL_PIXEL_ELEMENTS:
2720      case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
2721        __ ldrb(result, mem_operand);
2722        break;
2723      case EXTERNAL_SHORT_ELEMENTS:
2724        __ ldrsh(result, mem_operand);
2725        break;
2726      case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
2727        __ ldrh(result, mem_operand);
2728        break;
2729      case EXTERNAL_INT_ELEMENTS:
2730        __ ldr(result, mem_operand);
2731        break;
2732      case EXTERNAL_UNSIGNED_INT_ELEMENTS:
2733        __ ldr(result, mem_operand);
2734        __ cmp(result, Operand(0x80000000));
2735        // TODO(danno): we could be more clever here, perhaps having a special
2736        // version of the stub that detects if the overflow case actually
2737        // happens, and generate code that returns a double rather than int.
2738        DeoptimizeIf(cs, instr->environment());
2739        break;
2740      case EXTERNAL_FLOAT_ELEMENTS:
2741      case EXTERNAL_DOUBLE_ELEMENTS:
2742      case FAST_DOUBLE_ELEMENTS:
2743      case FAST_ELEMENTS:
2744      case FAST_SMI_ONLY_ELEMENTS:
2745      case DICTIONARY_ELEMENTS:
2746      case NON_STRICT_ARGUMENTS_ELEMENTS:
2747        UNREACHABLE();
2748        break;
2749    }
2750  }
2751}
2752
2753
2754void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2755  ASSERT(ToRegister(instr->object()).is(r1));
2756  ASSERT(ToRegister(instr->key()).is(r0));
2757
2758  Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2759  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2760}
2761
2762
2763void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
2764  Register scratch = scratch0();
2765  Register result = ToRegister(instr->result());
2766
2767  // Check if the calling frame is an arguments adaptor frame.
2768  Label done, adapted;
2769  __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2770  __ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
2771  __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2772
2773  // Result is the frame pointer for the frame if not adapted and for the real
2774  // frame below the adaptor frame if adapted.
2775  __ mov(result, fp, LeaveCC, ne);
2776  __ mov(result, scratch, LeaveCC, eq);
2777}
2778
2779
2780void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
2781  Register elem = ToRegister(instr->InputAt(0));
2782  Register result = ToRegister(instr->result());
2783
2784  Label done;
2785
2786  // If no arguments adaptor frame the number of arguments is fixed.
2787  __ cmp(fp, elem);
2788  __ mov(result, Operand(scope()->num_parameters()));
2789  __ b(eq, &done);
2790
2791  // Arguments adaptor frame present. Get argument length from there.
2792  __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2793  __ ldr(result,
2794         MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
2795  __ SmiUntag(result);
2796
2797  // Argument length is in result register.
2798  __ bind(&done);
2799}
2800
2801
2802void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
2803  Register receiver = ToRegister(instr->receiver());
2804  Register function = ToRegister(instr->function());
2805  Register scratch = scratch0();
2806
2807  // If the receiver is null or undefined, we have to pass the global
2808  // object as a receiver to normal functions. Values have to be
2809  // passed unchanged to builtins and strict-mode functions.
2810  Label global_object, receiver_ok;
2811
2812  // Do not transform the receiver to object for strict mode
2813  // functions.
2814  __ ldr(scratch,
2815         FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2816  __ ldr(scratch,
2817         FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2818  __ tst(scratch,
2819         Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize)));
2820  __ b(ne, &receiver_ok);
2821
2822  // Do not transform the receiver to object for builtins.
2823  __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
2824  __ b(ne, &receiver_ok);
2825
2826  // Normal function. Replace undefined or null with global receiver.
2827  __ LoadRoot(scratch, Heap::kNullValueRootIndex);
2828  __ cmp(receiver, scratch);
2829  __ b(eq, &global_object);
2830  __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
2831  __ cmp(receiver, scratch);
2832  __ b(eq, &global_object);
2833
2834  // Deoptimize if the receiver is not a JS object.
2835  __ tst(receiver, Operand(kSmiTagMask));
2836  DeoptimizeIf(eq, instr->environment());
2837  __ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE);
2838  DeoptimizeIf(lt, instr->environment());
2839  __ jmp(&receiver_ok);
2840
2841  __ bind(&global_object);
2842  __ ldr(receiver, GlobalObjectOperand());
2843  __ ldr(receiver,
2844         FieldMemOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
2845  __ bind(&receiver_ok);
2846}
2847
2848
2849void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
2850  Register receiver = ToRegister(instr->receiver());
2851  Register function = ToRegister(instr->function());
2852  Register length = ToRegister(instr->length());
2853  Register elements = ToRegister(instr->elements());
2854  Register scratch = scratch0();
2855  ASSERT(receiver.is(r0));  // Used for parameter count.
2856  ASSERT(function.is(r1));  // Required by InvokeFunction.
2857  ASSERT(ToRegister(instr->result()).is(r0));
2858
2859  // Copy the arguments to this function possibly from the
2860  // adaptor frame below it.
2861  const uint32_t kArgumentsLimit = 1 * KB;
2862  __ cmp(length, Operand(kArgumentsLimit));
2863  DeoptimizeIf(hi, instr->environment());
2864
2865  // Push the receiver and use the register to keep the original
2866  // number of arguments.
2867  __ push(receiver);
2868  __ mov(receiver, length);
2869  // The arguments are at a one pointer size offset from elements.
2870  __ add(elements, elements, Operand(1 * kPointerSize));
2871
2872  // Loop through the arguments pushing them onto the execution
2873  // stack.
2874  Label invoke, loop;
2875  // length is a small non-negative integer, due to the test above.
2876  __ cmp(length, Operand(0));
2877  __ b(eq, &invoke);
2878  __ bind(&loop);
2879  __ ldr(scratch, MemOperand(elements, length, LSL, 2));
2880  __ push(scratch);
2881  __ sub(length, length, Operand(1), SetCC);
2882  __ b(ne, &loop);
2883
2884  __ bind(&invoke);
2885  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
2886  LPointerMap* pointers = instr->pointer_map();
2887  RecordPosition(pointers->position());
2888  SafepointGenerator safepoint_generator(
2889      this, pointers, Safepoint::kLazyDeopt);
2890  // The number of arguments is stored in receiver which is r0, as expected
2891  // by InvokeFunction.
2892  ParameterCount actual(receiver);
2893  __ InvokeFunction(function, actual, CALL_FUNCTION,
2894                    safepoint_generator, CALL_AS_METHOD);
2895  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2896}
2897
2898
2899void LCodeGen::DoPushArgument(LPushArgument* instr) {
2900  LOperand* argument = instr->InputAt(0);
2901  if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
2902    Abort("DoPushArgument not implemented for double type.");
2903  } else {
2904    Register argument_reg = EmitLoadRegister(argument, ip);
2905    __ push(argument_reg);
2906  }
2907}
2908
2909
2910void LCodeGen::DoThisFunction(LThisFunction* instr) {
2911  Register result = ToRegister(instr->result());
2912  __ LoadHeapObject(result, instr->hydrogen()->closure());
2913}
2914
2915
2916void LCodeGen::DoContext(LContext* instr) {
2917  Register result = ToRegister(instr->result());
2918  __ mov(result, cp);
2919}
2920
2921
2922void LCodeGen::DoOuterContext(LOuterContext* instr) {
2923  Register context = ToRegister(instr->context());
2924  Register result = ToRegister(instr->result());
2925  __ ldr(result,
2926         MemOperand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2927}
2928
2929
2930void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
2931  __ push(cp);  // The context is the first argument.
2932  __ LoadHeapObject(scratch0(), instr->hydrogen()->pairs());
2933  __ push(scratch0());
2934  __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
2935  __ push(scratch0());
2936  CallRuntime(Runtime::kDeclareGlobals, 3, instr);
2937}
2938
2939
2940void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
2941  Register result = ToRegister(instr->result());
2942  __ ldr(result, ContextOperand(cp, Context::GLOBAL_INDEX));
2943}
2944
2945
2946void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
2947  Register global = ToRegister(instr->global());
2948  Register result = ToRegister(instr->result());
2949  __ ldr(result, FieldMemOperand(global, GlobalObject::kGlobalReceiverOffset));
2950}
2951
2952
2953void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2954                                 int arity,
2955                                 LInstruction* instr,
2956                                 CallKind call_kind) {
2957  bool can_invoke_directly = !function->NeedsArgumentsAdaption() ||
2958      function->shared()->formal_parameter_count() == arity;
2959
2960  LPointerMap* pointers = instr->pointer_map();
2961  RecordPosition(pointers->position());
2962
2963  if (can_invoke_directly) {
2964    __ LoadHeapObject(r1, function);
2965    // Change context if needed.
2966    bool change_context =
2967        (info()->closure()->context() != function->context()) ||
2968        scope()->contains_with() ||
2969        (scope()->num_heap_slots() > 0);
2970    if (change_context) {
2971      __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
2972    }
2973
2974    // Set r0 to arguments count if adaption is not needed. Assumes that r0
2975    // is available to write to at this point.
2976    if (!function->NeedsArgumentsAdaption()) {
2977      __ mov(r0, Operand(arity));
2978    }
2979
2980    // Invoke function.
2981    __ SetCallKind(r5, call_kind);
2982    __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
2983    __ Call(ip);
2984
2985    // Set up deoptimization.
2986    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2987  } else {
2988    SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2989    ParameterCount count(arity);
2990    __ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind);
2991  }
2992
2993  // Restore context.
2994  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2995}
2996
2997
2998void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
2999  ASSERT(ToRegister(instr->result()).is(r0));
3000  CallKnownFunction(instr->function(),
3001                    instr->arity(),
3002                    instr,
3003                    CALL_AS_METHOD);
3004}
3005
3006
3007void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
3008  Register input = ToRegister(instr->InputAt(0));
3009  Register result = ToRegister(instr->result());
3010  Register scratch = scratch0();
3011
3012  // Deoptimize if not a heap number.
3013  __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3014  __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3015  __ cmp(scratch, Operand(ip));
3016  DeoptimizeIf(ne, instr->environment());
3017
3018  Label done;
3019  Register exponent = scratch0();
3020  scratch = no_reg;
3021  __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3022  // Check the sign of the argument. If the argument is positive, just
3023  // return it.
3024  __ tst(exponent, Operand(HeapNumber::kSignMask));
3025  // Move the input to the result if necessary.
3026  __ Move(result, input);
3027  __ b(eq, &done);
3028
3029  // Input is negative. Reverse its sign.
3030  // Preserve the value of all registers.
3031  {
3032    PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3033
3034    // Registers were saved at the safepoint, so we can use
3035    // many scratch registers.
3036    Register tmp1 = input.is(r1) ? r0 : r1;
3037    Register tmp2 = input.is(r2) ? r0 : r2;
3038    Register tmp3 = input.is(r3) ? r0 : r3;
3039    Register tmp4 = input.is(r4) ? r0 : r4;
3040
3041    // exponent: floating point exponent value.
3042
3043    Label allocated, slow;
3044    __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3045    __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3046    __ b(&allocated);
3047
3048    // Slow case: Call the runtime system to do the number allocation.
3049    __ bind(&slow);
3050
3051    CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3052    // Set the pointer to the new heap number in tmp.
3053    if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0));
3054    // Restore input_reg after call to runtime.
3055    __ LoadFromSafepointRegisterSlot(input, input);
3056    __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3057
3058    __ bind(&allocated);
3059    // exponent: floating point exponent value.
3060    // tmp1: allocated heap number.
3061    __ bic(exponent, exponent, Operand(HeapNumber::kSignMask));
3062    __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3063    __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3064    __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3065
3066    __ StoreToSafepointRegisterSlot(tmp1, result);
3067  }
3068
3069  __ bind(&done);
3070}
3071
3072
3073void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
3074  Register input = ToRegister(instr->InputAt(0));
3075  Register result = ToRegister(instr->result());
3076  __ cmp(input, Operand(0));
3077  __ Move(result, input, pl);
3078  // We can make rsb conditional because the previous cmp instruction
3079  // will clear the V (overflow) flag and rsb won't set this flag
3080  // if input is positive.
3081  __ rsb(result, input, Operand(0), SetCC, mi);
3082  // Deoptimize on overflow.
3083  DeoptimizeIf(vs, instr->environment());
3084}
3085
3086
3087void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
3088  // Class for deferred case.
3089  class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
3090   public:
3091    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
3092                                    LUnaryMathOperation* instr)
3093        : LDeferredCode(codegen), instr_(instr) { }
3094    virtual void Generate() {
3095      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3096    }
3097    virtual LInstruction* instr() { return instr_; }
3098   private:
3099    LUnaryMathOperation* instr_;
3100  };
3101
3102  Representation r = instr->hydrogen()->value()->representation();
3103  if (r.IsDouble()) {
3104    DwVfpRegister input = ToDoubleRegister(instr->InputAt(0));
3105    DwVfpRegister result = ToDoubleRegister(instr->result());
3106    __ vabs(result, input);
3107  } else if (r.IsInteger32()) {
3108    EmitIntegerMathAbs(instr);
3109  } else {
3110    // Representation is tagged.
3111    DeferredMathAbsTaggedHeapNumber* deferred =
3112        new DeferredMathAbsTaggedHeapNumber(this, instr);
3113    Register input = ToRegister(instr->InputAt(0));
3114    // Smi check.
3115    __ JumpIfNotSmi(input, deferred->entry());
3116    // If smi, handle it directly.
3117    EmitIntegerMathAbs(instr);
3118    __ bind(deferred->exit());
3119  }
3120}
3121
3122
3123void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
3124  DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3125  Register result = ToRegister(instr->result());
3126  SwVfpRegister single_scratch = double_scratch0().low();
3127  Register scratch1 = scratch0();
3128  Register scratch2 = ToRegister(instr->TempAt(0));
3129
3130  __ EmitVFPTruncate(kRoundToMinusInf,
3131                     single_scratch,
3132                     input,
3133                     scratch1,
3134                     scratch2);
3135  DeoptimizeIf(ne, instr->environment());
3136
3137  // Move the result back to general purpose register r0.
3138  __ vmov(result, single_scratch);
3139
3140  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3141    // Test for -0.
3142    Label done;
3143    __ cmp(result, Operand(0));
3144    __ b(ne, &done);
3145    __ vmov(scratch1, input.high());
3146    __ tst(scratch1, Operand(HeapNumber::kSignMask));
3147    DeoptimizeIf(ne, instr->environment());
3148    __ bind(&done);
3149  }
3150}
3151
3152
3153void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
3154  DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3155  Register result = ToRegister(instr->result());
3156  Register scratch = scratch0();
3157  Label done, check_sign_on_zero;
3158
3159  // Extract exponent bits.
3160  __ vmov(result, input.high());
3161  __ ubfx(scratch,
3162          result,
3163          HeapNumber::kExponentShift,
3164          HeapNumber::kExponentBits);
3165
3166  // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3167  __ cmp(scratch, Operand(HeapNumber::kExponentBias - 2));
3168  __ mov(result, Operand(0), LeaveCC, le);
3169  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3170    __ b(le, &check_sign_on_zero);
3171  } else {
3172    __ b(le, &done);
3173  }
3174
3175  // The following conversion will not work with numbers
3176  // outside of ]-2^32, 2^32[.
3177  __ cmp(scratch, Operand(HeapNumber::kExponentBias + 32));
3178  DeoptimizeIf(ge, instr->environment());
3179
3180  // Save the original sign for later comparison.
3181  __ and_(scratch, result, Operand(HeapNumber::kSignMask));
3182
3183  __ Vmov(double_scratch0(), 0.5);
3184  __ vadd(double_scratch0(), input, double_scratch0());
3185
3186  // Check sign of the result: if the sign changed, the input
3187  // value was in ]0.5, 0[ and the result should be -0.
3188  __ vmov(result, double_scratch0().high());
3189  __ eor(result, result, Operand(scratch), SetCC);
3190  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3191    DeoptimizeIf(mi, instr->environment());
3192  } else {
3193    __ mov(result, Operand(0), LeaveCC, mi);
3194    __ b(mi, &done);
3195  }
3196
3197  __ EmitVFPTruncate(kRoundToMinusInf,
3198                     double_scratch0().low(),
3199                     double_scratch0(),
3200                     result,
3201                     scratch);
3202  DeoptimizeIf(ne, instr->environment());
3203  __ vmov(result, double_scratch0().low());
3204
3205  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3206    // Test for -0.
3207    __ cmp(result, Operand(0));
3208    __ b(ne, &done);
3209    __ bind(&check_sign_on_zero);
3210    __ vmov(scratch, input.high());
3211    __ tst(scratch, Operand(HeapNumber::kSignMask));
3212    DeoptimizeIf(ne, instr->environment());
3213  }
3214  __ bind(&done);
3215}
3216
3217
3218void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
3219  DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3220  DoubleRegister result = ToDoubleRegister(instr->result());
3221  __ vsqrt(result, input);
3222}
3223
3224
3225void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
3226  DoubleRegister input = ToDoubleRegister(instr->InputAt(0));
3227  DoubleRegister result = ToDoubleRegister(instr->result());
3228  DoubleRegister temp = ToDoubleRegister(instr->TempAt(0));
3229
3230  // Note that according to ECMA-262 15.8.2.13:
3231  // Math.pow(-Infinity, 0.5) == Infinity
3232  // Math.sqrt(-Infinity) == NaN
3233  Label done;
3234  __ vmov(temp, -V8_INFINITY);
3235  __ VFPCompareAndSetFlags(input, temp);
3236  __ vneg(result, temp, eq);
3237  __ b(&done, eq);
3238
3239  // Add +0 to convert -0 to +0.
3240  __ vadd(result, input, kDoubleRegZero);
3241  __ vsqrt(result, result);
3242  __ bind(&done);
3243}
3244
3245
3246void LCodeGen::DoPower(LPower* instr) {
3247  Representation exponent_type = instr->hydrogen()->right()->representation();
3248  // Having marked this as a call, we can use any registers.
3249  // Just make sure that the input/output registers are the expected ones.
3250  ASSERT(!instr->InputAt(1)->IsDoubleRegister() ||
3251         ToDoubleRegister(instr->InputAt(1)).is(d2));
3252  ASSERT(!instr->InputAt(1)->IsRegister() ||
3253         ToRegister(instr->InputAt(1)).is(r2));
3254  ASSERT(ToDoubleRegister(instr->InputAt(0)).is(d1));
3255  ASSERT(ToDoubleRegister(instr->result()).is(d3));
3256
3257  if (exponent_type.IsTagged()) {
3258    Label no_deopt;
3259    __ JumpIfSmi(r2, &no_deopt);
3260    __ ldr(r7, FieldMemOperand(r2, HeapObject::kMapOffset));
3261    __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3262    __ cmp(r7, Operand(ip));
3263    DeoptimizeIf(ne, instr->environment());
3264    __ bind(&no_deopt);
3265    MathPowStub stub(MathPowStub::TAGGED);
3266    __ CallStub(&stub);
3267  } else if (exponent_type.IsInteger32()) {
3268    MathPowStub stub(MathPowStub::INTEGER);
3269    __ CallStub(&stub);
3270  } else {
3271    ASSERT(exponent_type.IsDouble());
3272    MathPowStub stub(MathPowStub::DOUBLE);
3273    __ CallStub(&stub);
3274  }
3275}
3276
3277
3278void LCodeGen::DoRandom(LRandom* instr) {
3279  class DeferredDoRandom: public LDeferredCode {
3280   public:
3281    DeferredDoRandom(LCodeGen* codegen, LRandom* instr)
3282        : LDeferredCode(codegen), instr_(instr) { }
3283    virtual void Generate() { codegen()->DoDeferredRandom(instr_); }
3284    virtual LInstruction* instr() { return instr_; }
3285   private:
3286    LRandom* instr_;
3287  };
3288
3289  DeferredDoRandom* deferred = new DeferredDoRandom(this, instr);
3290
3291  // Having marked this instruction as a call we can use any
3292  // registers.
3293  ASSERT(ToDoubleRegister(instr->result()).is(d7));
3294  ASSERT(ToRegister(instr->InputAt(0)).is(r0));
3295
3296  static const int kSeedSize = sizeof(uint32_t);
3297  STATIC_ASSERT(kPointerSize == kSeedSize);
3298
3299  __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
3300  static const int kRandomSeedOffset =
3301      FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize;
3302  __ ldr(r2, FieldMemOperand(r0, kRandomSeedOffset));
3303  // r2: FixedArray of the global context's random seeds
3304
3305  // Load state[0].
3306  __ ldr(r1, FieldMemOperand(r2, ByteArray::kHeaderSize));
3307  __ cmp(r1, Operand(0));
3308  __ b(eq, deferred->entry());
3309  // Load state[1].
3310  __ ldr(r0, FieldMemOperand(r2, ByteArray::kHeaderSize + kSeedSize));
3311  // r1: state[0].
3312  // r0: state[1].
3313
3314  // state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16)
3315  __ and_(r3, r1, Operand(0xFFFF));
3316  __ mov(r4, Operand(18273));
3317  __ mul(r3, r3, r4);
3318  __ add(r1, r3, Operand(r1, LSR, 16));
3319  // Save state[0].
3320  __ str(r1, FieldMemOperand(r2, ByteArray::kHeaderSize));
3321
3322  // state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16)
3323  __ and_(r3, r0, Operand(0xFFFF));
3324  __ mov(r4, Operand(36969));
3325  __ mul(r3, r3, r4);
3326  __ add(r0, r3, Operand(r0, LSR, 16));
3327  // Save state[1].
3328  __ str(r0, FieldMemOperand(r2, ByteArray::kHeaderSize + kSeedSize));
3329
3330  // Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF)
3331  __ and_(r0, r0, Operand(0x3FFFF));
3332  __ add(r0, r0, Operand(r1, LSL, 14));
3333
3334  __ bind(deferred->exit());
3335  // 0x41300000 is the top half of 1.0 x 2^20 as a double.
3336  // Create this constant using mov/orr to avoid PC relative load.
3337  __ mov(r1, Operand(0x41000000));
3338  __ orr(r1, r1, Operand(0x300000));
3339  // Move 0x41300000xxxxxxxx (x = random bits) to VFP.
3340  __ vmov(d7, r0, r1);
3341  // Move 0x4130000000000000 to VFP.
3342  __ mov(r0, Operand(0, RelocInfo::NONE));
3343  __ vmov(d8, r0, r1);
3344  // Subtract and store the result in the heap number.
3345  __ vsub(d7, d7, d8);
3346}
3347
3348
3349void LCodeGen::DoDeferredRandom(LRandom* instr) {
3350  __ PrepareCallCFunction(1, scratch0());
3351  __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
3352  // Return value is in r0.
3353}
3354
3355
3356void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
3357  ASSERT(ToDoubleRegister(instr->result()).is(d2));
3358  TranscendentalCacheStub stub(TranscendentalCache::LOG,
3359                               TranscendentalCacheStub::UNTAGGED);
3360  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3361}
3362
3363
3364void LCodeGen::DoMathTan(LUnaryMathOperation* instr) {
3365  ASSERT(ToDoubleRegister(instr->result()).is(d2));
3366  TranscendentalCacheStub stub(TranscendentalCache::TAN,
3367                               TranscendentalCacheStub::UNTAGGED);
3368  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3369}
3370
3371
3372void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
3373  ASSERT(ToDoubleRegister(instr->result()).is(d2));
3374  TranscendentalCacheStub stub(TranscendentalCache::COS,
3375                               TranscendentalCacheStub::UNTAGGED);
3376  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3377}
3378
3379
3380void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
3381  ASSERT(ToDoubleRegister(instr->result()).is(d2));
3382  TranscendentalCacheStub stub(TranscendentalCache::SIN,
3383                               TranscendentalCacheStub::UNTAGGED);
3384  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3385}
3386
3387
3388void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
3389  switch (instr->op()) {
3390    case kMathAbs:
3391      DoMathAbs(instr);
3392      break;
3393    case kMathFloor:
3394      DoMathFloor(instr);
3395      break;
3396    case kMathRound:
3397      DoMathRound(instr);
3398      break;
3399    case kMathSqrt:
3400      DoMathSqrt(instr);
3401      break;
3402    case kMathPowHalf:
3403      DoMathPowHalf(instr);
3404      break;
3405    case kMathCos:
3406      DoMathCos(instr);
3407      break;
3408    case kMathSin:
3409      DoMathSin(instr);
3410      break;
3411    case kMathTan:
3412      DoMathTan(instr);
3413      break;
3414    case kMathLog:
3415      DoMathLog(instr);
3416      break;
3417    default:
3418      Abort("Unimplemented type of LUnaryMathOperation.");
3419      UNREACHABLE();
3420  }
3421}
3422
3423
3424void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3425  ASSERT(ToRegister(instr->function()).is(r1));
3426  ASSERT(instr->HasPointerMap());
3427  ASSERT(instr->HasDeoptimizationEnvironment());
3428  LPointerMap* pointers = instr->pointer_map();
3429  RecordPosition(pointers->position());
3430  SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3431  ParameterCount count(instr->arity());
3432  __ InvokeFunction(r1, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
3433  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3434}
3435
3436
3437void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
3438  ASSERT(ToRegister(instr->result()).is(r0));
3439
3440  int arity = instr->arity();
3441  Handle<Code> ic =
3442      isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
3443  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3444  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3445}
3446
3447
3448void LCodeGen::DoCallNamed(LCallNamed* instr) {
3449  ASSERT(ToRegister(instr->result()).is(r0));
3450
3451  int arity = instr->arity();
3452  RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
3453  Handle<Code> ic =
3454      isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
3455  __ mov(r2, Operand(instr->name()));
3456  CallCode(ic, mode, instr);
3457  // Restore context register.
3458  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3459}
3460
3461
3462void LCodeGen::DoCallFunction(LCallFunction* instr) {
3463  ASSERT(ToRegister(instr->function()).is(r1));
3464  ASSERT(ToRegister(instr->result()).is(r0));
3465
3466  int arity = instr->arity();
3467  CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
3468  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3469  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3470}
3471
3472
3473void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
3474  ASSERT(ToRegister(instr->result()).is(r0));
3475
3476  int arity = instr->arity();
3477  RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
3478  Handle<Code> ic =
3479      isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
3480  __ mov(r2, Operand(instr->name()));
3481  CallCode(ic, mode, instr);
3482  __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3483}
3484
3485
3486void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
3487  ASSERT(ToRegister(instr->result()).is(r0));
3488  CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
3489}
3490
3491
3492void LCodeGen::DoCallNew(LCallNew* instr) {
3493  ASSERT(ToRegister(instr->InputAt(0)).is(r1));
3494  ASSERT(ToRegister(instr->result()).is(r0));
3495
3496  CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
3497  __ mov(r0, Operand(instr->arity()));
3498  CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3499}
3500
3501
3502void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3503  CallRuntime(instr->function(), instr->arity(), instr);
3504}
3505
3506
3507void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3508  Register object = ToRegister(instr->object());
3509  Register value = ToRegister(instr->value());
3510  Register scratch = scratch0();
3511  int offset = instr->offset();
3512
3513  ASSERT(!object.is(value));
3514
3515  if (!instr->transition().is_null()) {
3516    __ mov(scratch, Operand(instr->transition()));
3517    __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3518  }
3519
3520  // Do the store.
3521  HType type = instr->hydrogen()->value()->type();
3522  SmiCheck check_needed =
3523      type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3524  if (instr->is_in_object()) {
3525    __ str(value, FieldMemOperand(object, offset));
3526    if (instr->hydrogen()->NeedsWriteBarrier()) {
3527      // Update the write barrier for the object for in-object properties.
3528      __ RecordWriteField(object,
3529                          offset,
3530                          value,
3531                          scratch,
3532                          kLRHasBeenSaved,
3533                          kSaveFPRegs,
3534                          EMIT_REMEMBERED_SET,
3535                          check_needed);
3536    }
3537  } else {
3538    __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3539    __ str(value, FieldMemOperand(scratch, offset));
3540    if (instr->hydrogen()->NeedsWriteBarrier()) {
3541      // Update the write barrier for the properties array.
3542      // object is used as a scratch register.
3543      __ RecordWriteField(scratch,
3544                          offset,
3545                          value,
3546                          object,
3547                          kLRHasBeenSaved,
3548                          kSaveFPRegs,
3549                          EMIT_REMEMBERED_SET,
3550                          check_needed);
3551    }
3552  }
3553}
3554
3555
3556void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3557  ASSERT(ToRegister(instr->object()).is(r1));
3558  ASSERT(ToRegister(instr->value()).is(r0));
3559
3560  // Name is always in r2.
3561  __ mov(r2, Operand(instr->name()));
3562  Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3563      ? isolate()->builtins()->StoreIC_Initialize_Strict()
3564      : isolate()->builtins()->StoreIC_Initialize();
3565  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3566}
3567
3568
3569void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3570  __ cmp(ToRegister(instr->index()), ToRegister(instr->length()));
3571  DeoptimizeIf(hs, instr->environment());
3572}
3573
3574
3575void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
3576  Register value = ToRegister(instr->value());
3577  Register elements = ToRegister(instr->object());
3578  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
3579  Register scratch = scratch0();
3580
3581  // Do the store.
3582  if (instr->key()->IsConstantOperand()) {
3583    ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3584    LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3585    int offset =
3586        ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
3587    __ str(value, FieldMemOperand(elements, offset));
3588  } else {
3589    __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2));
3590    __ str(value, FieldMemOperand(scratch, FixedArray::kHeaderSize));
3591  }
3592
3593  if (instr->hydrogen()->NeedsWriteBarrier()) {
3594    HType type = instr->hydrogen()->value()->type();
3595    SmiCheck check_needed =
3596        type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3597    // Compute address of modified element and store it into key register.
3598    __ add(key, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3599    __ RecordWrite(elements,
3600                   key,
3601                   value,
3602                   kLRHasBeenSaved,
3603                   kSaveFPRegs,
3604                   EMIT_REMEMBERED_SET,
3605                   check_needed);
3606  }
3607}
3608
3609
3610void LCodeGen::DoStoreKeyedFastDoubleElement(
3611    LStoreKeyedFastDoubleElement* instr) {
3612  DwVfpRegister value = ToDoubleRegister(instr->value());
3613  Register elements = ToRegister(instr->elements());
3614  Register key = no_reg;
3615  Register scratch = scratch0();
3616  bool key_is_constant = instr->key()->IsConstantOperand();
3617  int constant_key = 0;
3618  Label not_nan;
3619
3620  // Calculate the effective address of the slot in the array to store the
3621  // double value.
3622  if (key_is_constant) {
3623    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3624    if (constant_key & 0xF0000000) {
3625      Abort("array index constant value too big.");
3626    }
3627  } else {
3628    key = ToRegister(instr->key());
3629  }
3630  int shift_size = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3631  Operand operand = key_is_constant
3632      ? Operand(constant_key * (1 << shift_size) +
3633                FixedDoubleArray::kHeaderSize - kHeapObjectTag)
3634      : Operand(key, LSL, shift_size);
3635  __ add(scratch, elements, operand);
3636  if (!key_is_constant) {
3637    __ add(scratch, scratch,
3638           Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
3639  }
3640
3641  // Check for NaN. All NaNs must be canonicalized.
3642  __ VFPCompareAndSetFlags(value, value);
3643
3644  // Only load canonical NaN if the comparison above set the overflow.
3645  __ Vmov(value, FixedDoubleArray::canonical_not_the_hole_nan_as_double(), vs);
3646
3647  __ bind(&not_nan);
3648  __ vstr(value, scratch, 0);
3649}
3650
3651
3652void LCodeGen::DoStoreKeyedSpecializedArrayElement(
3653    LStoreKeyedSpecializedArrayElement* instr) {
3654
3655  Register external_pointer = ToRegister(instr->external_pointer());
3656  Register key = no_reg;
3657  ElementsKind elements_kind = instr->elements_kind();
3658  bool key_is_constant = instr->key()->IsConstantOperand();
3659  int constant_key = 0;
3660  if (key_is_constant) {
3661    constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3662    if (constant_key & 0xF0000000) {
3663      Abort("array index constant value too big.");
3664    }
3665  } else {
3666    key = ToRegister(instr->key());
3667  }
3668  int shift_size = ElementsKindToShiftSize(elements_kind);
3669
3670  if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
3671      elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
3672    CpuFeatures::Scope scope(VFP3);
3673    DwVfpRegister value(ToDoubleRegister(instr->value()));
3674    Operand operand(key_is_constant ? Operand(constant_key * (1 << shift_size))
3675                                    : Operand(key, LSL, shift_size));
3676    __ add(scratch0(), external_pointer, operand);
3677    if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
3678      __ vcvt_f32_f64(double_scratch0().low(), value);
3679      __ vstr(double_scratch0().low(), scratch0(), 0);
3680    } else {  // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
3681      __ vstr(value, scratch0(), 0);
3682    }
3683  } else {
3684    Register value(ToRegister(instr->value()));
3685    MemOperand mem_operand(key_is_constant
3686        ? MemOperand(external_pointer, constant_key * (1 << shift_size))
3687        : MemOperand(external_pointer, key, LSL, shift_size));
3688    switch (elements_kind) {
3689      case EXTERNAL_PIXEL_ELEMENTS:
3690      case EXTERNAL_BYTE_ELEMENTS:
3691      case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
3692        __ strb(value, mem_operand);
3693        break;
3694      case EXTERNAL_SHORT_ELEMENTS:
3695      case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
3696        __ strh(value, mem_operand);
3697        break;
3698      case EXTERNAL_INT_ELEMENTS:
3699      case EXTERNAL_UNSIGNED_INT_ELEMENTS:
3700        __ str(value, mem_operand);
3701        break;
3702      case EXTERNAL_FLOAT_ELEMENTS:
3703      case EXTERNAL_DOUBLE_ELEMENTS:
3704      case FAST_DOUBLE_ELEMENTS:
3705      case FAST_ELEMENTS:
3706      case FAST_SMI_ONLY_ELEMENTS:
3707      case DICTIONARY_ELEMENTS:
3708      case NON_STRICT_ARGUMENTS_ELEMENTS:
3709        UNREACHABLE();
3710        break;
3711    }
3712  }
3713}
3714
3715
3716void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
3717  ASSERT(ToRegister(instr->object()).is(r2));
3718  ASSERT(ToRegister(instr->key()).is(r1));
3719  ASSERT(ToRegister(instr->value()).is(r0));
3720
3721  Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
3722      ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
3723      : isolate()->builtins()->KeyedStoreIC_Initialize();
3724  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3725}
3726
3727
3728void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
3729  Register object_reg = ToRegister(instr->object());
3730  Register new_map_reg = ToRegister(instr->new_map_reg());
3731  Register scratch = scratch0();
3732
3733  Handle<Map> from_map = instr->original_map();
3734  Handle<Map> to_map = instr->transitioned_map();
3735  ElementsKind from_kind = from_map->elements_kind();
3736  ElementsKind to_kind = to_map->elements_kind();
3737
3738  Label not_applicable;
3739  __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
3740  __ cmp(scratch, Operand(from_map));
3741  __ b(ne, &not_applicable);
3742  __ mov(new_map_reg, Operand(to_map));
3743  if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) {
3744    __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
3745    // Write barrier.
3746    __ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
3747                        scratch, kLRHasBeenSaved, kDontSaveFPRegs);
3748  } else if (from_kind == FAST_SMI_ONLY_ELEMENTS &&
3749      to_kind == FAST_DOUBLE_ELEMENTS) {
3750    Register fixed_object_reg = ToRegister(instr->temp_reg());
3751    ASSERT(fixed_object_reg.is(r2));
3752    ASSERT(new_map_reg.is(r3));
3753    __ mov(fixed_object_reg, object_reg);
3754    CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(),
3755             RelocInfo::CODE_TARGET, instr);
3756  } else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) {
3757    Register fixed_object_reg = ToRegister(instr->temp_reg());
3758    ASSERT(fixed_object_reg.is(r2));
3759    ASSERT(new_map_reg.is(r3));
3760    __ mov(fixed_object_reg, object_reg);
3761    CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(),
3762             RelocInfo::CODE_TARGET, instr);
3763  } else {
3764    UNREACHABLE();
3765  }
3766  __ bind(&not_applicable);
3767}
3768
3769
3770void LCodeGen::DoStringAdd(LStringAdd* instr) {
3771  __ push(ToRegister(instr->left()));
3772  __ push(ToRegister(instr->right()));
3773  StringAddStub stub(NO_STRING_CHECK_IN_STUB);
3774  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3775}
3776
3777
3778void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
3779  class DeferredStringCharCodeAt: public LDeferredCode {
3780   public:
3781    DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
3782        : LDeferredCode(codegen), instr_(instr) { }
3783    virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
3784    virtual LInstruction* instr() { return instr_; }
3785   private:
3786    LStringCharCodeAt* instr_;
3787  };
3788
3789  DeferredStringCharCodeAt* deferred =
3790      new DeferredStringCharCodeAt(this, instr);
3791
3792  StringCharLoadGenerator::Generate(masm(),
3793                                    ToRegister(instr->string()),
3794                                    ToRegister(instr->index()),
3795                                    ToRegister(instr->result()),
3796                                    deferred->entry());
3797  __ bind(deferred->exit());
3798}
3799
3800
3801void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
3802  Register string = ToRegister(instr->string());
3803  Register result = ToRegister(instr->result());
3804  Register scratch = scratch0();
3805
3806  // TODO(3095996): Get rid of this. For now, we need to make the
3807  // result register contain a valid pointer because it is already
3808  // contained in the register pointer map.
3809  __ mov(result, Operand(0));
3810
3811  PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3812  __ push(string);
3813  // Push the index as a smi. This is safe because of the checks in
3814  // DoStringCharCodeAt above.
3815  if (instr->index()->IsConstantOperand()) {
3816    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3817    __ mov(scratch, Operand(Smi::FromInt(const_index)));
3818    __ push(scratch);
3819  } else {
3820    Register index = ToRegister(instr->index());
3821    __ SmiTag(index);
3822    __ push(index);
3823  }
3824  CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
3825  if (FLAG_debug_code) {
3826    __ AbortIfNotSmi(r0);
3827  }
3828  __ SmiUntag(r0);
3829  __ StoreToSafepointRegisterSlot(r0, result);
3830}
3831
3832
3833void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
3834  class DeferredStringCharFromCode: public LDeferredCode {
3835   public:
3836    DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
3837        : LDeferredCode(codegen), instr_(instr) { }
3838    virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
3839    virtual LInstruction* instr() { return instr_; }
3840   private:
3841    LStringCharFromCode* instr_;
3842  };
3843
3844  DeferredStringCharFromCode* deferred =
3845      new DeferredStringCharFromCode(this, instr);
3846
3847  ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
3848  Register char_code = ToRegister(instr->char_code());
3849  Register result = ToRegister(instr->result());
3850  ASSERT(!char_code.is(result));
3851
3852  __ cmp(char_code, Operand(String::kMaxAsciiCharCode));
3853  __ b(hi, deferred->entry());
3854  __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
3855  __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2));
3856  __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize));
3857  __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
3858  __ cmp(result, ip);
3859  __ b(eq, deferred->entry());
3860  __ bind(deferred->exit());
3861}
3862
3863
3864void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
3865  Register char_code = ToRegister(instr->char_code());
3866  Register result = ToRegister(instr->result());
3867
3868  // TODO(3095996): Get rid of this. For now, we need to make the
3869  // result register contain a valid pointer because it is already
3870  // contained in the register pointer map.
3871  __ mov(result, Operand(0));
3872
3873  PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3874  __ SmiTag(char_code);
3875  __ push(char_code);
3876  CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
3877  __ StoreToSafepointRegisterSlot(r0, result);
3878}
3879
3880
3881void LCodeGen::DoStringLength(LStringLength* instr) {
3882  Register string = ToRegister(instr->InputAt(0));
3883  Register result = ToRegister(instr->result());
3884  __ ldr(result, FieldMemOperand(string, String::kLengthOffset));
3885}
3886
3887
3888void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3889  LOperand* input = instr->InputAt(0);
3890  ASSERT(input->IsRegister() || input->IsStackSlot());
3891  LOperand* output = instr->result();
3892  ASSERT(output->IsDoubleRegister());
3893  SwVfpRegister single_scratch = double_scratch0().low();
3894  if (input->IsStackSlot()) {
3895    Register scratch = scratch0();
3896    __ ldr(scratch, ToMemOperand(input));
3897    __ vmov(single_scratch, scratch);
3898  } else {
3899    __ vmov(single_scratch, ToRegister(input));
3900  }
3901  __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
3902}
3903
3904
3905void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
3906  class DeferredNumberTagI: public LDeferredCode {
3907   public:
3908    DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
3909        : LDeferredCode(codegen), instr_(instr) { }
3910    virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
3911    virtual LInstruction* instr() { return instr_; }
3912   private:
3913    LNumberTagI* instr_;
3914  };
3915
3916  Register src = ToRegister(instr->InputAt(0));
3917  Register dst = ToRegister(instr->result());
3918
3919  DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
3920  __ SmiTag(dst, src, SetCC);
3921  __ b(vs, deferred->entry());
3922  __ bind(deferred->exit());
3923}
3924
3925
3926void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
3927  Label slow;
3928  Register src = ToRegister(instr->InputAt(0));
3929  Register dst = ToRegister(instr->result());
3930  DoubleRegister dbl_scratch = double_scratch0();
3931  SwVfpRegister flt_scratch = dbl_scratch.low();
3932
3933  // Preserve the value of all registers.
3934  PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3935
3936  // There was overflow, so bits 30 and 31 of the original integer
3937  // disagree. Try to allocate a heap number in new space and store
3938  // the value in there. If that fails, call the runtime system.
3939  Label done;
3940  if (dst.is(src)) {
3941    __ SmiUntag(src, dst);
3942    __ eor(src, src, Operand(0x80000000));
3943  }
3944  __ vmov(flt_scratch, src);
3945  __ vcvt_f64_s32(dbl_scratch, flt_scratch);
3946  if (FLAG_inline_new) {
3947    __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
3948    __ AllocateHeapNumber(r5, r3, r4, r6, &slow);
3949    __ Move(dst, r5);
3950    __ b(&done);
3951  }
3952
3953  // Slow case: Call the runtime system to do the number allocation.
3954  __ bind(&slow);
3955
3956  // TODO(3095996): Put a valid pointer value in the stack slot where the result
3957  // register is stored, as this register is in the pointer map, but contains an
3958  // integer value.
3959  __ mov(ip, Operand(0));
3960  __ StoreToSafepointRegisterSlot(ip, dst);
3961  CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
3962  __ Move(dst, r0);
3963
3964  // Done. Put the value in dbl_scratch into the value of the allocated heap
3965  // number.
3966  __ bind(&done);
3967  __ sub(ip, dst, Operand(kHeapObjectTag));
3968  __ vstr(dbl_scratch, ip, HeapNumber::kValueOffset);
3969  __ StoreToSafepointRegisterSlot(dst, dst);
3970}
3971
3972
3973void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
3974  class DeferredNumberTagD: public LDeferredCode {
3975   public:
3976    DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
3977        : LDeferredCode(codegen), instr_(instr) { }
3978    virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
3979    virtual LInstruction* instr() { return instr_; }
3980   private:
3981    LNumberTagD* instr_;
3982  };
3983
3984  DoubleRegister input_reg = ToDoubleRegister(instr->InputAt(0));
3985  Register scratch = scratch0();
3986  Register reg = ToRegister(instr->result());
3987  Register temp1 = ToRegister(instr->TempAt(0));
3988  Register temp2 = ToRegister(instr->TempAt(1));
3989
3990  DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
3991  if (FLAG_inline_new) {
3992    __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
3993    __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
3994  } else {
3995    __ jmp(deferred->entry());
3996  }
3997  __ bind(deferred->exit());
3998  __ sub(ip, reg, Operand(kHeapObjectTag));
3999  __ vstr(input_reg, ip, HeapNumber::kValueOffset);
4000}
4001
4002
4003void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4004  // TODO(3095996): Get rid of this. For now, we need to make the
4005  // result register contain a valid pointer because it is already
4006  // contained in the register pointer map.
4007  Register reg = ToRegister(instr->result());
4008  __ mov(reg, Operand(0));
4009
4010  PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4011  CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
4012  __ StoreToSafepointRegisterSlot(r0, reg);
4013}
4014
4015
4016void LCodeGen::DoSmiTag(LSmiTag* instr) {
4017  ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
4018  __ SmiTag(ToRegister(instr->result()), ToRegister(instr->InputAt(0)));
4019}
4020
4021
4022void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4023  Register input = ToRegister(instr->InputAt(0));
4024  Register result = ToRegister(instr->result());
4025  if (instr->needs_check()) {
4026    STATIC_ASSERT(kHeapObjectTag == 1);
4027    // If the input is a HeapObject, SmiUntag will set the carry flag.
4028    __ SmiUntag(result, input, SetCC);
4029    DeoptimizeIf(cs, instr->environment());
4030  } else {
4031    __ SmiUntag(result, input);
4032  }
4033}
4034
4035
4036void LCodeGen::EmitNumberUntagD(Register input_reg,
4037                                DoubleRegister result_reg,
4038                                bool deoptimize_on_undefined,
4039                                bool deoptimize_on_minus_zero,
4040                                LEnvironment* env) {
4041  Register scratch = scratch0();
4042  SwVfpRegister flt_scratch = double_scratch0().low();
4043  ASSERT(!result_reg.is(double_scratch0()));
4044
4045  Label load_smi, heap_number, done;
4046
4047  // Smi check.
4048  __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4049
4050  // Heap number map check.
4051  __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4052  __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4053  __ cmp(scratch, Operand(ip));
4054  if (deoptimize_on_undefined) {
4055    DeoptimizeIf(ne, env);
4056  } else {
4057    Label heap_number;
4058    __ b(eq, &heap_number);
4059
4060    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4061    __ cmp(input_reg, Operand(ip));
4062    DeoptimizeIf(ne, env);
4063
4064    // Convert undefined to NaN.
4065    __ LoadRoot(ip, Heap::kNanValueRootIndex);
4066    __ sub(ip, ip, Operand(kHeapObjectTag));
4067    __ vldr(result_reg, ip, HeapNumber::kValueOffset);
4068    __ jmp(&done);
4069
4070    __ bind(&heap_number);
4071  }
4072  // Heap number to double register conversion.
4073  __ sub(ip, input_reg, Operand(kHeapObjectTag));
4074  __ vldr(result_reg, ip, HeapNumber::kValueOffset);
4075  if (deoptimize_on_minus_zero) {
4076    __ vmov(ip, result_reg.low());
4077    __ cmp(ip, Operand(0));
4078    __ b(ne, &done);
4079    __ vmov(ip, result_reg.high());
4080    __ cmp(ip, Operand(HeapNumber::kSignMask));
4081    DeoptimizeIf(eq, env);
4082  }
4083  __ jmp(&done);
4084
4085  // Smi to double register conversion
4086  __ bind(&load_smi);
4087  // scratch: untagged value of input_reg
4088  __ vmov(flt_scratch, scratch);
4089  __ vcvt_f64_s32(result_reg, flt_scratch);
4090  __ bind(&done);
4091}
4092
4093
4094void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4095  Register input_reg = ToRegister(instr->InputAt(0));
4096  Register scratch1 = scratch0();
4097  Register scratch2 = ToRegister(instr->TempAt(0));
4098  DwVfpRegister double_scratch = double_scratch0();
4099  SwVfpRegister single_scratch = double_scratch.low();
4100
4101  ASSERT(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4102  ASSERT(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4103
4104  Label done;
4105
4106  // The input was optimistically untagged; revert it.
4107  // The carry flag is set when we reach this deferred code as we just executed
4108  // SmiUntag(heap_object, SetCC)
4109  STATIC_ASSERT(kHeapObjectTag == 1);
4110  __ adc(input_reg, input_reg, Operand(input_reg));
4111
4112  // Heap number map check.
4113  __ ldr(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4114  __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4115  __ cmp(scratch1, Operand(ip));
4116
4117  if (instr->truncating()) {
4118    Register scratch3 = ToRegister(instr->TempAt(1));
4119    DwVfpRegister double_scratch2 = ToDoubleRegister(instr->TempAt(2));
4120    ASSERT(!scratch3.is(input_reg) &&
4121           !scratch3.is(scratch1) &&
4122           !scratch3.is(scratch2));
4123    // Performs a truncating conversion of a floating point number as used by
4124    // the JS bitwise operations.
4125    Label heap_number;
4126    __ b(eq, &heap_number);
4127    // Check for undefined. Undefined is converted to zero for truncating
4128    // conversions.
4129    __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4130    __ cmp(input_reg, Operand(ip));
4131    DeoptimizeIf(ne, instr->environment());
4132    __ mov(input_reg, Operand(0));
4133    __ b(&done);
4134
4135    __ bind(&heap_number);
4136    __ sub(scratch1, input_reg, Operand(kHeapObjectTag));
4137    __ vldr(double_scratch2, scratch1, HeapNumber::kValueOffset);
4138
4139    __ EmitECMATruncate(input_reg,
4140                        double_scratch2,
4141                        single_scratch,
4142                        scratch1,
4143                        scratch2,
4144                        scratch3);
4145
4146  } else {
4147    CpuFeatures::Scope scope(VFP3);
4148    // Deoptimize if we don't have a heap number.
4149    DeoptimizeIf(ne, instr->environment());
4150
4151    __ sub(ip, input_reg, Operand(kHeapObjectTag));
4152    __ vldr(double_scratch, ip, HeapNumber::kValueOffset);
4153    __ EmitVFPTruncate(kRoundToZero,
4154                       single_scratch,
4155                       double_scratch,
4156                       scratch1,
4157                       scratch2,
4158                       kCheckForInexactConversion);
4159    DeoptimizeIf(ne, instr->environment());
4160    // Load the result.
4161    __ vmov(input_reg, single_scratch);
4162
4163    if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4164      __ cmp(input_reg, Operand(0));
4165      __ b(ne, &done);
4166      __ vmov(scratch1, double_scratch.high());
4167      __ tst(scratch1, Operand(HeapNumber::kSignMask));
4168      DeoptimizeIf(ne, instr->environment());
4169    }
4170  }
4171  __ bind(&done);
4172}
4173
4174
4175void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4176  class DeferredTaggedToI: public LDeferredCode {
4177   public:
4178    DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4179        : LDeferredCode(codegen), instr_(instr) { }
4180    virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
4181    virtual LInstruction* instr() { return instr_; }
4182   private:
4183    LTaggedToI* instr_;
4184  };
4185
4186  LOperand* input = instr->InputAt(0);
4187  ASSERT(input->IsRegister());
4188  ASSERT(input->Equals(instr->result()));
4189
4190  Register input_reg = ToRegister(input);
4191
4192  DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
4193
4194  // Optimistically untag the input.
4195  // If the input is a HeapObject, SmiUntag will set the carry flag.
4196  __ SmiUntag(input_reg, SetCC);
4197  // Branch to deferred code if the input was tagged.
4198  // The deferred code will take care of restoring the tag.
4199  __ b(cs, deferred->entry());
4200  __ bind(deferred->exit());
4201}
4202
4203
4204void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4205  LOperand* input = instr->InputAt(0);
4206  ASSERT(input->IsRegister());
4207  LOperand* result = instr->result();
4208  ASSERT(result->IsDoubleRegister());
4209
4210  Register input_reg = ToRegister(input);
4211  DoubleRegister result_reg = ToDoubleRegister(result);
4212
4213  EmitNumberUntagD(input_reg, result_reg,
4214                   instr->hydrogen()->deoptimize_on_undefined(),
4215                   instr->hydrogen()->deoptimize_on_minus_zero(),
4216                   instr->environment());
4217}
4218
4219
4220void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4221  Register result_reg = ToRegister(instr->result());
4222  Register scratch1 = scratch0();
4223  Register scratch2 = ToRegister(instr->TempAt(0));
4224  DwVfpRegister double_input = ToDoubleRegister(instr->InputAt(0));
4225  SwVfpRegister single_scratch = double_scratch0().low();
4226
4227  Label done;
4228
4229  if (instr->truncating()) {
4230    Register scratch3 = ToRegister(instr->TempAt(1));
4231    __ EmitECMATruncate(result_reg,
4232                        double_input,
4233                        single_scratch,
4234                        scratch1,
4235                        scratch2,
4236                        scratch3);
4237  } else {
4238    VFPRoundingMode rounding_mode = kRoundToMinusInf;
4239    __ EmitVFPTruncate(rounding_mode,
4240                       single_scratch,
4241                       double_input,
4242                       scratch1,
4243                       scratch2,
4244                       kCheckForInexactConversion);
4245    // Deoptimize if we had a vfp invalid exception,
4246    // including inexact operation.
4247    DeoptimizeIf(ne, instr->environment());
4248    // Retrieve the result.
4249    __ vmov(result_reg, single_scratch);
4250  }
4251    __ bind(&done);
4252}
4253
4254
4255void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4256  LOperand* input = instr->InputAt(0);
4257  __ tst(ToRegister(input), Operand(kSmiTagMask));
4258  DeoptimizeIf(ne, instr->environment());
4259}
4260
4261
4262void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4263  LOperand* input = instr->InputAt(0);
4264  __ tst(ToRegister(input), Operand(kSmiTagMask));
4265  DeoptimizeIf(eq, instr->environment());
4266}
4267
4268
4269void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4270  Register input = ToRegister(instr->InputAt(0));
4271  Register scratch = scratch0();
4272
4273  __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
4274  __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4275
4276  if (instr->hydrogen()->is_interval_check()) {
4277    InstanceType first;
4278    InstanceType last;
4279    instr->hydrogen()->GetCheckInterval(&first, &last);
4280
4281    __ cmp(scratch, Operand(first));
4282
4283    // If there is only one type in the interval check for equality.
4284    if (first == last) {
4285      DeoptimizeIf(ne, instr->environment());
4286    } else {
4287      DeoptimizeIf(lo, instr->environment());
4288      // Omit check for the last type.
4289      if (last != LAST_TYPE) {
4290        __ cmp(scratch, Operand(last));
4291        DeoptimizeIf(hi, instr->environment());
4292      }
4293    }
4294  } else {
4295    uint8_t mask;
4296    uint8_t tag;
4297    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4298
4299    if (IsPowerOf2(mask)) {
4300      ASSERT(tag == 0 || IsPowerOf2(tag));
4301      __ tst(scratch, Operand(mask));
4302      DeoptimizeIf(tag == 0 ? ne : eq, instr->environment());
4303    } else {
4304      __ and_(scratch, scratch, Operand(mask));
4305      __ cmp(scratch, Operand(tag));
4306      DeoptimizeIf(ne, instr->environment());
4307    }
4308  }
4309}
4310
4311
4312void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
4313  Register reg = ToRegister(instr->value());
4314  Handle<JSFunction> target = instr->hydrogen()->target();
4315  if (isolate()->heap()->InNewSpace(*target)) {
4316    Register reg = ToRegister(instr->value());
4317    Handle<JSGlobalPropertyCell> cell =
4318        isolate()->factory()->NewJSGlobalPropertyCell(target);
4319    __ mov(ip, Operand(Handle<Object>(cell)));
4320    __ ldr(ip, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
4321    __ cmp(reg, ip);
4322  } else {
4323    __ cmp(reg, Operand(target));
4324  }
4325  DeoptimizeIf(ne, instr->environment());
4326}
4327
4328
4329void LCodeGen::DoCheckMapCommon(Register reg,
4330                                Register scratch,
4331                                Handle<Map> map,
4332                                CompareMapMode mode,
4333                                LEnvironment* env) {
4334  Label success;
4335  __ CompareMap(reg, scratch, map, &success, mode);
4336  DeoptimizeIf(ne, env);
4337  __ bind(&success);
4338}
4339
4340
4341void LCodeGen::DoCheckMap(LCheckMap* instr) {
4342  Register scratch = scratch0();
4343  LOperand* input = instr->InputAt(0);
4344  ASSERT(input->IsRegister());
4345  Register reg = ToRegister(input);
4346  Handle<Map> map = instr->hydrogen()->map();
4347  DoCheckMapCommon(reg, scratch, map, instr->hydrogen()->mode(),
4348                   instr->environment());
4349}
4350
4351
4352void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4353  DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
4354  Register result_reg = ToRegister(instr->result());
4355  DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
4356  __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
4357}
4358
4359
4360void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4361  Register unclamped_reg = ToRegister(instr->unclamped());
4362  Register result_reg = ToRegister(instr->result());
4363  __ ClampUint8(result_reg, unclamped_reg);
4364}
4365
4366
4367void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
4368  Register scratch = scratch0();
4369  Register input_reg = ToRegister(instr->unclamped());
4370  Register result_reg = ToRegister(instr->result());
4371  DoubleRegister temp_reg = ToDoubleRegister(instr->TempAt(0));
4372  Label is_smi, done, heap_number;
4373
4374  // Both smi and heap number cases are handled.
4375  __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
4376
4377  // Check for heap number
4378  __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4379  __ cmp(scratch, Operand(factory()->heap_number_map()));
4380  __ b(eq, &heap_number);
4381
4382  // Check for undefined. Undefined is converted to zero for clamping
4383  // conversions.
4384  __ cmp(input_reg, Operand(factory()->undefined_value()));
4385  DeoptimizeIf(ne, instr->environment());
4386  __ mov(result_reg, Operand(0));
4387  __ jmp(&done);
4388
4389  // Heap number
4390  __ bind(&heap_number);
4391  __ vldr(double_scratch0(), FieldMemOperand(input_reg,
4392                                             HeapNumber::kValueOffset));
4393  __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
4394  __ jmp(&done);
4395
4396  // smi
4397  __ bind(&is_smi);
4398  __ ClampUint8(result_reg, result_reg);
4399
4400  __ bind(&done);
4401}
4402
4403
4404void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
4405  Register temp1 = ToRegister(instr->TempAt(0));
4406  Register temp2 = ToRegister(instr->TempAt(1));
4407
4408  Handle<JSObject> holder = instr->holder();
4409  Handle<JSObject> current_prototype = instr->prototype();
4410
4411  // Load prototype object.
4412  __ LoadHeapObject(temp1, current_prototype);
4413
4414  // Check prototype maps up to the holder.
4415  while (!current_prototype.is_identical_to(holder)) {
4416    DoCheckMapCommon(temp1, temp2,
4417                     Handle<Map>(current_prototype->map()),
4418                     ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
4419    current_prototype =
4420        Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
4421    // Load next prototype object.
4422    __ LoadHeapObject(temp1, current_prototype);
4423  }
4424
4425  // Check the holder map.
4426  DoCheckMapCommon(temp1, temp2,
4427                   Handle<Map>(current_prototype->map()),
4428                   ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
4429  DeoptimizeIf(ne, instr->environment());
4430}
4431
4432
4433void LCodeGen::DoAllocateObject(LAllocateObject* instr) {
4434  class DeferredAllocateObject: public LDeferredCode {
4435   public:
4436    DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr)
4437        : LDeferredCode(codegen), instr_(instr) { }
4438    virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); }
4439    virtual LInstruction* instr() { return instr_; }
4440   private:
4441    LAllocateObject* instr_;
4442  };
4443
4444  DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr);
4445
4446  Register result = ToRegister(instr->result());
4447  Register scratch = ToRegister(instr->TempAt(0));
4448  Register scratch2 = ToRegister(instr->TempAt(1));
4449  Handle<JSFunction> constructor = instr->hydrogen()->constructor();
4450  Handle<Map> initial_map(constructor->initial_map());
4451  int instance_size = initial_map->instance_size();
4452  ASSERT(initial_map->pre_allocated_property_fields() +
4453         initial_map->unused_property_fields() -
4454         initial_map->inobject_properties() == 0);
4455
4456  // Allocate memory for the object.  The initial map might change when
4457  // the constructor's prototype changes, but instance size and property
4458  // counts remain unchanged (if slack tracking finished).
4459  ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress());
4460  __ AllocateInNewSpace(instance_size,
4461                        result,
4462                        scratch,
4463                        scratch2,
4464                        deferred->entry(),
4465                        TAG_OBJECT);
4466
4467  // Load the initial map.
4468  Register map = scratch;
4469  __ LoadHeapObject(map, constructor);
4470  __ ldr(map, FieldMemOperand(map, JSFunction::kPrototypeOrInitialMapOffset));
4471
4472  // Initialize map and fields of the newly allocated object.
4473  ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
4474  __ str(map, FieldMemOperand(result, JSObject::kMapOffset));
4475  __ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
4476  __ str(scratch, FieldMemOperand(result, JSObject::kElementsOffset));
4477  __ str(scratch, FieldMemOperand(result, JSObject::kPropertiesOffset));
4478  if (initial_map->inobject_properties() != 0) {
4479    __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4480    for (int i = 0; i < initial_map->inobject_properties(); i++) {
4481      int property_offset = JSObject::kHeaderSize + i * kPointerSize;
4482      __ str(scratch, FieldMemOperand(result, property_offset));
4483    }
4484  }
4485
4486  __ bind(deferred->exit());
4487}
4488
4489
4490void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) {
4491  Register result = ToRegister(instr->result());
4492  Handle<JSFunction> constructor = instr->hydrogen()->constructor();
4493
4494  // TODO(3095996): Get rid of this. For now, we need to make the
4495  // result register contain a valid pointer because it is already
4496  // contained in the register pointer map.
4497  __ mov(result, Operand(0));
4498
4499  PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4500  __ LoadHeapObject(r0, constructor);
4501  __ push(r0);
4502  CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr);
4503  __ StoreToSafepointRegisterSlot(r0, result);
4504}
4505
4506
4507void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
4508  Heap* heap = isolate()->heap();
4509  ElementsKind boilerplate_elements_kind =
4510      instr->hydrogen()->boilerplate_elements_kind();
4511
4512  // Deopt if the array literal boilerplate ElementsKind is of a type different
4513  // than the expected one. The check isn't necessary if the boilerplate has
4514  // already been converted to FAST_ELEMENTS.
4515  if (boilerplate_elements_kind != FAST_ELEMENTS) {
4516    __ LoadHeapObject(r1, instr->hydrogen()->boilerplate_object());
4517    // Load map into r2.
4518    __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
4519    // Load the map's "bit field 2".
4520    __ ldrb(r2, FieldMemOperand(r2, Map::kBitField2Offset));
4521    // Retrieve elements_kind from bit field 2.
4522    __ ubfx(r2, r2, Map::kElementsKindShift, Map::kElementsKindBitCount);
4523    __ cmp(r2, Operand(boilerplate_elements_kind));
4524    DeoptimizeIf(ne, instr->environment());
4525  }
4526
4527  __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4528  __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
4529  __ mov(r2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4530  // Boilerplate already exists, constant elements are never accessed.
4531  // Pass an empty fixed array.
4532  __ mov(r1, Operand(Handle<FixedArray>(heap->empty_fixed_array())));
4533  __ Push(r3, r2, r1);
4534
4535  // Pick the right runtime function or stub to call.
4536  int length = instr->hydrogen()->length();
4537  if (instr->hydrogen()->IsCopyOnWrite()) {
4538    ASSERT(instr->hydrogen()->depth() == 1);
4539    FastCloneShallowArrayStub::Mode mode =
4540        FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
4541    FastCloneShallowArrayStub stub(mode, length);
4542    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4543  } else if (instr->hydrogen()->depth() > 1) {
4544    CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
4545  } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
4546    CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
4547  } else {
4548    FastCloneShallowArrayStub::Mode mode =
4549        boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS
4550            ? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
4551            : FastCloneShallowArrayStub::CLONE_ELEMENTS;
4552    FastCloneShallowArrayStub stub(mode, length);
4553    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4554  }
4555}
4556
4557
4558void LCodeGen::EmitDeepCopy(Handle<JSObject> object,
4559                            Register result,
4560                            Register source,
4561                            int* offset) {
4562  ASSERT(!source.is(r2));
4563  ASSERT(!result.is(r2));
4564
4565  // Only elements backing stores for non-COW arrays need to be copied.
4566  Handle<FixedArrayBase> elements(object->elements());
4567  bool has_elements = elements->length() > 0 &&
4568      elements->map() != isolate()->heap()->fixed_cow_array_map();
4569
4570  // Increase the offset so that subsequent objects end up right after
4571  // this object and its backing store.
4572  int object_offset = *offset;
4573  int object_size = object->map()->instance_size();
4574  int elements_offset = *offset + object_size;
4575  int elements_size = has_elements ? elements->Size() : 0;
4576  *offset += object_size + elements_size;
4577
4578  // Copy object header.
4579  ASSERT(object->properties()->length() == 0);
4580  int inobject_properties = object->map()->inobject_properties();
4581  int header_size = object_size - inobject_properties * kPointerSize;
4582  for (int i = 0; i < header_size; i += kPointerSize) {
4583    if (has_elements && i == JSObject::kElementsOffset) {
4584      __ add(r2, result, Operand(elements_offset));
4585    } else {
4586      __ ldr(r2, FieldMemOperand(source, i));
4587    }
4588    __ str(r2, FieldMemOperand(result, object_offset + i));
4589  }
4590
4591  // Copy in-object properties.
4592  for (int i = 0; i < inobject_properties; i++) {
4593    int total_offset = object_offset + object->GetInObjectPropertyOffset(i);
4594    Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i));
4595    if (value->IsJSObject()) {
4596      Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4597      __ add(r2, result, Operand(*offset));
4598      __ str(r2, FieldMemOperand(result, total_offset));
4599      __ LoadHeapObject(source, value_object);
4600      EmitDeepCopy(value_object, result, source, offset);
4601    } else if (value->IsHeapObject()) {
4602      __ LoadHeapObject(r2, Handle<HeapObject>::cast(value));
4603      __ str(r2, FieldMemOperand(result, total_offset));
4604    } else {
4605      __ mov(r2, Operand(value));
4606      __ str(r2, FieldMemOperand(result, total_offset));
4607    }
4608  }
4609
4610  if (has_elements) {
4611    // Copy elements backing store header.
4612    __ LoadHeapObject(source, elements);
4613    for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) {
4614      __ ldr(r2, FieldMemOperand(source, i));
4615      __ str(r2, FieldMemOperand(result, elements_offset + i));
4616    }
4617
4618    // Copy elements backing store content.
4619    int elements_length = has_elements ? elements->length() : 0;
4620    if (elements->IsFixedDoubleArray()) {
4621      Handle<FixedDoubleArray> double_array =
4622          Handle<FixedDoubleArray>::cast(elements);
4623      for (int i = 0; i < elements_length; i++) {
4624        int64_t value = double_array->get_representation(i);
4625        // We only support little endian mode...
4626        int32_t value_low = value & 0xFFFFFFFF;
4627        int32_t value_high = value >> 32;
4628        int total_offset =
4629            elements_offset + FixedDoubleArray::OffsetOfElementAt(i);
4630        __ mov(r2, Operand(value_low));
4631        __ str(r2, FieldMemOperand(result, total_offset));
4632        __ mov(r2, Operand(value_high));
4633        __ str(r2, FieldMemOperand(result, total_offset + 4));
4634      }
4635    } else if (elements->IsFixedArray()) {
4636      for (int i = 0; i < elements_length; i++) {
4637        int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i);
4638        Handle<Object> value = JSObject::GetElement(object, i);
4639        if (value->IsJSObject()) {
4640          Handle<JSObject> value_object = Handle<JSObject>::cast(value);
4641          __ add(r2, result, Operand(*offset));
4642          __ str(r2, FieldMemOperand(result, total_offset));
4643          __ LoadHeapObject(source, value_object);
4644          EmitDeepCopy(value_object, result, source, offset);
4645        } else if (value->IsHeapObject()) {
4646          __ LoadHeapObject(r2, Handle<HeapObject>::cast(value));
4647          __ str(r2, FieldMemOperand(result, total_offset));
4648        } else {
4649          __ mov(r2, Operand(value));
4650          __ str(r2, FieldMemOperand(result, total_offset));
4651        }
4652      }
4653    } else {
4654      UNREACHABLE();
4655    }
4656  }
4657}
4658
4659
4660void LCodeGen::DoFastLiteral(LFastLiteral* instr) {
4661  int size = instr->hydrogen()->total_size();
4662
4663  // Allocate all objects that are part of the literal in one big
4664  // allocation. This avoids multiple limit checks.
4665  Label allocated, runtime_allocate;
4666  __ AllocateInNewSpace(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
4667  __ jmp(&allocated);
4668
4669  __ bind(&runtime_allocate);
4670  __ mov(r0, Operand(Smi::FromInt(size)));
4671  __ push(r0);
4672  CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
4673
4674  __ bind(&allocated);
4675  int offset = 0;
4676  __ LoadHeapObject(r1, instr->hydrogen()->boilerplate());
4677  EmitDeepCopy(instr->hydrogen()->boilerplate(), r0, r1, &offset);
4678  ASSERT_EQ(size, offset);
4679}
4680
4681
4682void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
4683  Handle<FixedArray> literals(instr->environment()->closure()->literals());
4684  Handle<FixedArray> constant_properties =
4685      instr->hydrogen()->constant_properties();
4686
4687  // Set up the parameters to the stub/runtime call.
4688  __ LoadHeapObject(r4, literals);
4689  __ mov(r3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4690  __ mov(r2, Operand(constant_properties));
4691  int flags = instr->hydrogen()->fast_elements()
4692      ? ObjectLiteral::kFastElements
4693      : ObjectLiteral::kNoFlags;
4694  __ mov(r1, Operand(Smi::FromInt(flags)));
4695  __ Push(r4, r3, r2, r1);
4696
4697  // Pick the right runtime function or stub to call.
4698  int properties_count = constant_properties->length() / 2;
4699  if (instr->hydrogen()->depth() > 1) {
4700    CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
4701  } else if (flags != ObjectLiteral::kFastElements ||
4702      properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
4703    CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
4704  } else {
4705    FastCloneShallowObjectStub stub(properties_count);
4706    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4707  }
4708}
4709
4710
4711void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
4712  ASSERT(ToRegister(instr->InputAt(0)).is(r0));
4713  __ push(r0);
4714  CallRuntime(Runtime::kToFastProperties, 1, instr);
4715}
4716
4717
4718void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
4719  Label materialized;
4720  // Registers will be used as follows:
4721  // r3 = JS function.
4722  // r7 = literals array.
4723  // r1 = regexp literal.
4724  // r0 = regexp literal clone.
4725  // r2 and r4-r6 are used as temporaries.
4726  __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4727  __ ldr(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
4728  int literal_offset = FixedArray::kHeaderSize +
4729      instr->hydrogen()->literal_index() * kPointerSize;
4730  __ ldr(r1, FieldMemOperand(r7, literal_offset));
4731  __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4732  __ cmp(r1, ip);
4733  __ b(ne, &materialized);
4734
4735  // Create regexp literal using runtime function
4736  // Result will be in r0.
4737  __ mov(r6, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
4738  __ mov(r5, Operand(instr->hydrogen()->pattern()));
4739  __ mov(r4, Operand(instr->hydrogen()->flags()));
4740  __ Push(r7, r6, r5, r4);
4741  CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
4742  __ mov(r1, r0);
4743
4744  __ bind(&materialized);
4745  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
4746  Label allocated, runtime_allocate;
4747
4748  __ AllocateInNewSpace(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
4749  __ jmp(&allocated);
4750
4751  __ bind(&runtime_allocate);
4752  __ mov(r0, Operand(Smi::FromInt(size)));
4753  __ Push(r1, r0);
4754  CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
4755  __ pop(r1);
4756
4757  __ bind(&allocated);
4758  // Copy the content into the newly allocated memory.
4759  // (Unroll copy loop once for better throughput).
4760  for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
4761    __ ldr(r3, FieldMemOperand(r1, i));
4762    __ ldr(r2, FieldMemOperand(r1, i + kPointerSize));
4763    __ str(r3, FieldMemOperand(r0, i));
4764    __ str(r2, FieldMemOperand(r0, i + kPointerSize));
4765  }
4766  if ((size % (2 * kPointerSize)) != 0) {
4767    __ ldr(r3, FieldMemOperand(r1, size - kPointerSize));
4768    __ str(r3, FieldMemOperand(r0, size - kPointerSize));
4769  }
4770}
4771
4772
4773void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
4774  // Use the fast case closure allocation code that allocates in new
4775  // space for nested functions that don't need literals cloning.
4776  Handle<SharedFunctionInfo> shared_info = instr->shared_info();
4777  bool pretenure = instr->hydrogen()->pretenure();
4778  if (!pretenure && shared_info->num_literals() == 0) {
4779    FastNewClosureStub stub(shared_info->language_mode());
4780    __ mov(r1, Operand(shared_info));
4781    __ push(r1);
4782    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4783  } else {
4784    __ mov(r2, Operand(shared_info));
4785    __ mov(r1, Operand(pretenure
4786                       ? factory()->true_value()
4787                       : factory()->false_value()));
4788    __ Push(cp, r2, r1);
4789    CallRuntime(Runtime::kNewClosure, 3, instr);
4790  }
4791}
4792
4793
4794void LCodeGen::DoTypeof(LTypeof* instr) {
4795  Register input = ToRegister(instr->InputAt(0));
4796  __ push(input);
4797  CallRuntime(Runtime::kTypeof, 1, instr);
4798}
4799
4800
4801void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
4802  Register input = ToRegister(instr->InputAt(0));
4803  int true_block = chunk_->LookupDestination(instr->true_block_id());
4804  int false_block = chunk_->LookupDestination(instr->false_block_id());
4805  Label* true_label = chunk_->GetAssemblyLabel(true_block);
4806  Label* false_label = chunk_->GetAssemblyLabel(false_block);
4807
4808  Condition final_branch_condition = EmitTypeofIs(true_label,
4809                                                  false_label,
4810                                                  input,
4811                                                  instr->type_literal());
4812  if (final_branch_condition != kNoCondition) {
4813    EmitBranch(true_block, false_block, final_branch_condition);
4814  }
4815}
4816
4817
4818Condition LCodeGen::EmitTypeofIs(Label* true_label,
4819                                 Label* false_label,
4820                                 Register input,
4821                                 Handle<String> type_name) {
4822  Condition final_branch_condition = kNoCondition;
4823  Register scratch = scratch0();
4824  if (type_name->Equals(heap()->number_symbol())) {
4825    __ JumpIfSmi(input, true_label);
4826    __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
4827    __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4828    __ cmp(input, Operand(ip));
4829    final_branch_condition = eq;
4830
4831  } else if (type_name->Equals(heap()->string_symbol())) {
4832    __ JumpIfSmi(input, false_label);
4833    __ CompareObjectType(input, input, scratch, FIRST_NONSTRING_TYPE);
4834    __ b(ge, false_label);
4835    __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
4836    __ tst(ip, Operand(1 << Map::kIsUndetectable));
4837    final_branch_condition = eq;
4838
4839  } else if (type_name->Equals(heap()->boolean_symbol())) {
4840    __ CompareRoot(input, Heap::kTrueValueRootIndex);
4841    __ b(eq, true_label);
4842    __ CompareRoot(input, Heap::kFalseValueRootIndex);
4843    final_branch_condition = eq;
4844
4845  } else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
4846    __ CompareRoot(input, Heap::kNullValueRootIndex);
4847    final_branch_condition = eq;
4848
4849  } else if (type_name->Equals(heap()->undefined_symbol())) {
4850    __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
4851    __ b(eq, true_label);
4852    __ JumpIfSmi(input, false_label);
4853    // Check for undetectable objects => true.
4854    __ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
4855    __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
4856    __ tst(ip, Operand(1 << Map::kIsUndetectable));
4857    final_branch_condition = ne;
4858
4859  } else if (type_name->Equals(heap()->function_symbol())) {
4860    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4861    __ JumpIfSmi(input, false_label);
4862    __ CompareObjectType(input, scratch, input, JS_FUNCTION_TYPE);
4863    __ b(eq, true_label);
4864    __ cmp(input, Operand(JS_FUNCTION_PROXY_TYPE));
4865    final_branch_condition = eq;
4866
4867  } else if (type_name->Equals(heap()->object_symbol())) {
4868    __ JumpIfSmi(input, false_label);
4869    if (!FLAG_harmony_typeof) {
4870      __ CompareRoot(input, Heap::kNullValueRootIndex);
4871      __ b(eq, true_label);
4872    }
4873    __ CompareObjectType(input, input, scratch,
4874                         FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
4875    __ b(lt, false_label);
4876    __ CompareInstanceType(input, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4877    __ b(gt, false_label);
4878    // Check for undetectable objects => false.
4879    __ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
4880    __ tst(ip, Operand(1 << Map::kIsUndetectable));
4881    final_branch_condition = eq;
4882
4883  } else {
4884    __ b(false_label);
4885  }
4886
4887  return final_branch_condition;
4888}
4889
4890
4891void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
4892  Register temp1 = ToRegister(instr->TempAt(0));
4893  int true_block = chunk_->LookupDestination(instr->true_block_id());
4894  int false_block = chunk_->LookupDestination(instr->false_block_id());
4895
4896  EmitIsConstructCall(temp1, scratch0());
4897  EmitBranch(true_block, false_block, eq);
4898}
4899
4900
4901void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
4902  ASSERT(!temp1.is(temp2));
4903  // Get the frame pointer for the calling frame.
4904  __ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4905
4906  // Skip the arguments adaptor frame if it exists.
4907  Label check_frame_marker;
4908  __ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
4909  __ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4910  __ b(ne, &check_frame_marker);
4911  __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
4912
4913  // Check the marker in the calling frame.
4914  __ bind(&check_frame_marker);
4915  __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
4916  __ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
4917}
4918
4919
4920void LCodeGen::EnsureSpaceForLazyDeopt() {
4921  // Ensure that we have enough space after the previous lazy-bailout
4922  // instruction for patching the code here.
4923  int current_pc = masm()->pc_offset();
4924  int patch_size = Deoptimizer::patch_size();
4925  if (current_pc < last_lazy_deopt_pc_ + patch_size) {
4926    int padding_size = last_lazy_deopt_pc_ + patch_size - current_pc;
4927    ASSERT_EQ(0, padding_size % Assembler::kInstrSize);
4928    while (padding_size > 0) {
4929      __ nop();
4930      padding_size -= Assembler::kInstrSize;
4931    }
4932  }
4933  last_lazy_deopt_pc_ = masm()->pc_offset();
4934}
4935
4936
4937void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
4938  EnsureSpaceForLazyDeopt();
4939  ASSERT(instr->HasEnvironment());
4940  LEnvironment* env = instr->environment();
4941  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
4942  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4943}
4944
4945
4946void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
4947  DeoptimizeIf(al, instr->environment());
4948}
4949
4950
4951void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
4952  Register object = ToRegister(instr->object());
4953  Register key = ToRegister(instr->key());
4954  Register strict = scratch0();
4955  __ mov(strict, Operand(Smi::FromInt(strict_mode_flag())));
4956  __ Push(object, key, strict);
4957  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4958  LPointerMap* pointers = instr->pointer_map();
4959  RecordPosition(pointers->position());
4960  SafepointGenerator safepoint_generator(
4961      this, pointers, Safepoint::kLazyDeopt);
4962  __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
4963}
4964
4965
4966void LCodeGen::DoIn(LIn* instr) {
4967  Register obj = ToRegister(instr->object());
4968  Register key = ToRegister(instr->key());
4969  __ Push(key, obj);
4970  ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
4971  LPointerMap* pointers = instr->pointer_map();
4972  RecordPosition(pointers->position());
4973  SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
4974  __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
4975}
4976
4977
4978void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
4979  PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4980  __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
4981  RecordSafepointWithLazyDeopt(
4982      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4983  ASSERT(instr->HasEnvironment());
4984  LEnvironment* env = instr->environment();
4985  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
4986}
4987
4988
4989void LCodeGen::DoStackCheck(LStackCheck* instr) {
4990  class DeferredStackCheck: public LDeferredCode {
4991   public:
4992    DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
4993        : LDeferredCode(codegen), instr_(instr) { }
4994    virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
4995    virtual LInstruction* instr() { return instr_; }
4996   private:
4997    LStackCheck* instr_;
4998  };
4999
5000  ASSERT(instr->HasEnvironment());
5001  LEnvironment* env = instr->environment();
5002  // There is no LLazyBailout instruction for stack-checks. We have to
5003  // prepare for lazy deoptimization explicitly here.
5004  if (instr->hydrogen()->is_function_entry()) {
5005    // Perform stack overflow check.
5006    Label done;
5007    __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5008    __ cmp(sp, Operand(ip));
5009    __ b(hs, &done);
5010    StackCheckStub stub;
5011    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5012    EnsureSpaceForLazyDeopt();
5013    __ bind(&done);
5014    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5015    safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5016  } else {
5017    ASSERT(instr->hydrogen()->is_backwards_branch());
5018    // Perform stack overflow check if this goto needs it before jumping.
5019    DeferredStackCheck* deferred_stack_check =
5020        new DeferredStackCheck(this, instr);
5021    __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5022    __ cmp(sp, Operand(ip));
5023    __ b(lo, deferred_stack_check->entry());
5024    EnsureSpaceForLazyDeopt();
5025    __ bind(instr->done_label());
5026    deferred_stack_check->SetExit(instr->done_label());
5027    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5028    // Don't record a deoptimization index for the safepoint here.
5029    // This will be done explicitly when emitting call and the safepoint in
5030    // the deferred code.
5031  }
5032}
5033
5034
5035void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5036  // This is a pseudo-instruction that ensures that the environment here is
5037  // properly registered for deoptimization and records the assembler's PC
5038  // offset.
5039  LEnvironment* environment = instr->environment();
5040  environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
5041                                   instr->SpilledDoubleRegisterArray());
5042
5043  // If the environment were already registered, we would have no way of
5044  // backpatching it with the spill slot operands.
5045  ASSERT(!environment->HasBeenRegistered());
5046  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5047  ASSERT(osr_pc_offset_ == -1);
5048  osr_pc_offset_ = masm()->pc_offset();
5049}
5050
5051
5052void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5053  __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
5054  __ cmp(r0, ip);
5055  DeoptimizeIf(eq, instr->environment());
5056
5057  Register null_value = r5;
5058  __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5059  __ cmp(r0, null_value);
5060  DeoptimizeIf(eq, instr->environment());
5061
5062  __ tst(r0, Operand(kSmiTagMask));
5063  DeoptimizeIf(eq, instr->environment());
5064
5065  STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5066  __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE);
5067  DeoptimizeIf(le, instr->environment());
5068
5069  Label use_cache, call_runtime;
5070  __ CheckEnumCache(null_value, &call_runtime);
5071
5072  __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
5073  __ b(&use_cache);
5074
5075  // Get the set of properties to enumerate.
5076  __ bind(&call_runtime);
5077  __ push(r0);
5078  CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5079
5080  __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
5081  __ LoadRoot(ip, Heap::kMetaMapRootIndex);
5082  __ cmp(r1, ip);
5083  DeoptimizeIf(ne, instr->environment());
5084  __ bind(&use_cache);
5085}
5086
5087
5088void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5089  Register map = ToRegister(instr->map());
5090  Register result = ToRegister(instr->result());
5091  __ LoadInstanceDescriptors(map, result);
5092  __ ldr(result,
5093         FieldMemOperand(result, DescriptorArray::kEnumerationIndexOffset));
5094  __ ldr(result,
5095         FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5096  __ cmp(result, Operand(0));
5097  DeoptimizeIf(eq, instr->environment());
5098}
5099
5100
5101void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5102  Register object = ToRegister(instr->value());
5103  Register map = ToRegister(instr->map());
5104  __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5105  __ cmp(map, scratch0());
5106  DeoptimizeIf(ne, instr->environment());
5107}
5108
5109
5110void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5111  Register object = ToRegister(instr->object());
5112  Register index = ToRegister(instr->index());
5113  Register result = ToRegister(instr->result());
5114  Register scratch = scratch0();
5115
5116  Label out_of_object, done;
5117  __ cmp(index, Operand(0));
5118  __ b(lt, &out_of_object);
5119
5120  STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5121  __ add(scratch, object, Operand(index, LSL, kPointerSizeLog2 - kSmiTagSize));
5122  __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5123
5124  __ b(&done);
5125
5126  __ bind(&out_of_object);
5127  __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5128  // Index is equal to negated out of object property index plus 1.
5129  __ sub(scratch, result, Operand(index, LSL, kPointerSizeLog2 - kSmiTagSize));
5130  __ ldr(result, FieldMemOperand(scratch,
5131                                 FixedArray::kHeaderSize - kPointerSize));
5132  __ bind(&done);
5133}
5134
5135
5136#undef __
5137
5138} }  // namespace v8::internal
5139