1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "arguments.h"
33#include "codegen.h"
34#include "execution.h"
35#include "ic-inl.h"
36#include "runtime.h"
37#include "stub-cache.h"
38
39namespace v8 {
40namespace internal {
41
42#ifdef DEBUG
43char IC::TransitionMarkFromState(IC::State state) {
44  switch (state) {
45    case UNINITIALIZED: return '0';
46    case PREMONOMORPHIC: return 'P';
47    case MONOMORPHIC: return '1';
48    case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
49    case MEGAMORPHIC: return IsGeneric() ? 'G' : 'N';
50
51    // We never see the debugger states here, because the state is
52    // computed from the original code - not the patched code. Let
53    // these cases fall through to the unreachable code below.
54    case DEBUG_BREAK: break;
55    case DEBUG_PREPARE_STEP_IN: break;
56  }
57  UNREACHABLE();
58  return 0;
59}
60
61void IC::TraceIC(const char* type,
62                 Handle<Object> name,
63                 State old_state,
64                 Code* new_target) {
65  if (FLAG_trace_ic) {
66    State new_state = StateFrom(new_target,
67                                HEAP->undefined_value(),
68                                HEAP->undefined_value());
69    PrintF("[%s in ", type);
70    StackFrameIterator it;
71    while (it.frame()->fp() != this->fp()) it.Advance();
72    StackFrame* raw_frame = it.frame();
73    if (raw_frame->is_internal()) {
74      Isolate* isolate = new_target->GetIsolate();
75      Code* apply_builtin = isolate->builtins()->builtin(
76          Builtins::kFunctionApply);
77      if (raw_frame->unchecked_code() == apply_builtin) {
78        PrintF("apply from ");
79        it.Advance();
80        raw_frame = it.frame();
81      }
82    }
83    JavaScriptFrame::PrintTop(stdout, false, true);
84    bool new_can_grow =
85        Code::GetKeyedAccessGrowMode(new_target->extra_ic_state()) ==
86        ALLOW_JSARRAY_GROWTH;
87    PrintF(" (%c->%c%s)",
88           TransitionMarkFromState(old_state),
89           TransitionMarkFromState(new_state),
90           new_can_grow ? ".GROW" : "");
91    name->Print();
92    PrintF("]\n");
93  }
94}
95
96#define TRACE_GENERIC_IC(type, reason)                          \
97  do {                                                          \
98    if (FLAG_trace_ic) {                                        \
99      PrintF("[%s patching generic stub in ", type);            \
100      JavaScriptFrame::PrintTop(stdout, false, true);           \
101      PrintF(" (%s)]\n", reason);                               \
102    }                                                           \
103  } while (false)
104
105#else
106#define TRACE_GENERIC_IC(type, reason)
107#endif  // DEBUG
108
109#define TRACE_IC(type, name, old_state, new_target)             \
110  ASSERT((TraceIC(type, name, old_state, new_target), true))
111
112IC::IC(FrameDepth depth, Isolate* isolate) : isolate_(isolate) {
113  ASSERT(isolate == Isolate::Current());
114  // To improve the performance of the (much used) IC code, we unfold
115  // a few levels of the stack frame iteration code. This yields a
116  // ~35% speedup when running DeltaBlue with the '--nouse-ic' flag.
117  const Address entry =
118      Isolate::c_entry_fp(isolate->thread_local_top());
119  Address* pc_address =
120      reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
121  Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
122  // If there's another JavaScript frame on the stack, we need to look
123  // one frame further down the stack to find the frame pointer and
124  // the return address stack slot.
125  if (depth == EXTRA_CALL_FRAME) {
126    const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
127    pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
128    fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
129  }
130#ifdef DEBUG
131  StackFrameIterator it;
132  for (int i = 0; i < depth + 1; i++) it.Advance();
133  StackFrame* frame = it.frame();
134  ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
135#endif
136  fp_ = fp;
137  pc_address_ = pc_address;
138}
139
140
141#ifdef ENABLE_DEBUGGER_SUPPORT
142Address IC::OriginalCodeAddress() const {
143  HandleScope scope;
144  // Compute the JavaScript frame for the frame pointer of this IC
145  // structure. We need this to be able to find the function
146  // corresponding to the frame.
147  StackFrameIterator it;
148  while (it.frame()->fp() != this->fp()) it.Advance();
149  JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
150  // Find the function on the stack and both the active code for the
151  // function and the original code.
152  JSFunction* function = JSFunction::cast(frame->function());
153  Handle<SharedFunctionInfo> shared(function->shared());
154  Code* code = shared->code();
155  ASSERT(Debug::HasDebugInfo(shared));
156  Code* original_code = Debug::GetDebugInfo(shared)->original_code();
157  ASSERT(original_code->IsCode());
158  // Get the address of the call site in the active code. This is the
159  // place where the call to DebugBreakXXX is and where the IC
160  // normally would be.
161  Address addr = pc() - Assembler::kCallTargetAddressOffset;
162  // Return the address in the original code. This is the place where
163  // the call which has been overwritten by the DebugBreakXXX resides
164  // and the place where the inline cache system should look.
165  intptr_t delta =
166      original_code->instruction_start() - code->instruction_start();
167  return addr + delta;
168}
169#endif
170
171
172static bool HasNormalObjectsInPrototypeChain(Isolate* isolate,
173                                             LookupResult* lookup,
174                                             Object* receiver) {
175  Object* end = lookup->IsProperty()
176      ? lookup->holder() : Object::cast(isolate->heap()->null_value());
177  for (Object* current = receiver;
178       current != end;
179       current = current->GetPrototype()) {
180    if (current->IsJSObject() &&
181        !JSObject::cast(current)->HasFastProperties() &&
182        !current->IsJSGlobalProxy() &&
183        !current->IsJSGlobalObject()) {
184      return true;
185    }
186  }
187
188  return false;
189}
190
191
192static bool TryRemoveInvalidPrototypeDependentStub(Code* target,
193                                                   Object* receiver,
194                                                   Object* name) {
195  InlineCacheHolderFlag cache_holder =
196      Code::ExtractCacheHolderFromFlags(target->flags());
197
198  if (cache_holder == OWN_MAP && !receiver->IsJSObject()) {
199    // The stub was generated for JSObject but called for non-JSObject.
200    // IC::GetCodeCacheHolder is not applicable.
201    return false;
202  } else if (cache_holder == PROTOTYPE_MAP &&
203             receiver->GetPrototype()->IsNull()) {
204    // IC::GetCodeCacheHolder is not applicable.
205    return false;
206  }
207  Map* map = IC::GetCodeCacheHolder(receiver, cache_holder)->map();
208
209  // Decide whether the inline cache failed because of changes to the
210  // receiver itself or changes to one of its prototypes.
211  //
212  // If there are changes to the receiver itself, the map of the
213  // receiver will have changed and the current target will not be in
214  // the receiver map's code cache.  Therefore, if the current target
215  // is in the receiver map's code cache, the inline cache failed due
216  // to prototype check failure.
217  int index = map->IndexInCodeCache(name, target);
218  if (index >= 0) {
219    map->RemoveFromCodeCache(String::cast(name), target, index);
220    return true;
221  }
222
223  return false;
224}
225
226
227IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) {
228  IC::State state = target->ic_state();
229
230  if (state != MONOMORPHIC || !name->IsString()) return state;
231  if (receiver->IsUndefined() || receiver->IsNull()) return state;
232
233  // For keyed load/store/call, the most likely cause of cache failure is
234  // that the key has changed.  We do not distinguish between
235  // prototype and non-prototype failures for keyed access.
236  Code::Kind kind = target->kind();
237  if (kind == Code::KEYED_LOAD_IC ||
238      kind == Code::KEYED_STORE_IC ||
239      kind == Code::KEYED_CALL_IC) {
240    return MONOMORPHIC;
241  }
242
243  // Remove the target from the code cache if it became invalid
244  // because of changes in the prototype chain to avoid hitting it
245  // again.
246  // Call stubs handle this later to allow extra IC state
247  // transitions.
248  if (kind != Code::CALL_IC &&
249      TryRemoveInvalidPrototypeDependentStub(target, receiver, name)) {
250    return MONOMORPHIC_PROTOTYPE_FAILURE;
251  }
252
253  // The builtins object is special.  It only changes when JavaScript
254  // builtins are loaded lazily.  It is important to keep inline
255  // caches for the builtins object monomorphic.  Therefore, if we get
256  // an inline cache miss for the builtins object after lazily loading
257  // JavaScript builtins, we return uninitialized as the state to
258  // force the inline cache back to monomorphic state.
259  if (receiver->IsJSBuiltinsObject()) {
260    return UNINITIALIZED;
261  }
262
263  return MONOMORPHIC;
264}
265
266
267RelocInfo::Mode IC::ComputeMode() {
268  Address addr = address();
269  Code* code = Code::cast(isolate()->heap()->FindCodeObject(addr));
270  for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
271       !it.done(); it.next()) {
272    RelocInfo* info = it.rinfo();
273    if (info->pc() == addr) return info->rmode();
274  }
275  UNREACHABLE();
276  return RelocInfo::NONE;
277}
278
279
280Failure* IC::TypeError(const char* type,
281                       Handle<Object> object,
282                       Handle<Object> key) {
283  HandleScope scope(isolate());
284  Handle<Object> args[2] = { key, object };
285  Handle<Object> error = isolate()->factory()->NewTypeError(
286      type, HandleVector(args, 2));
287  return isolate()->Throw(*error);
288}
289
290
291Failure* IC::ReferenceError(const char* type, Handle<String> name) {
292  HandleScope scope(isolate());
293  Handle<Object> error = isolate()->factory()->NewReferenceError(
294      type, HandleVector(&name, 1));
295  return isolate()->Throw(*error);
296}
297
298
299static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
300  bool was_uninitialized =
301      old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
302  bool is_uninitialized =
303      new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
304  return (was_uninitialized && !is_uninitialized) ?  1 :
305         (!was_uninitialized && is_uninitialized) ? -1 : 0;
306}
307
308
309void IC::PostPatching(Address address, Code* target, Code* old_target) {
310  if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
311    return;
312  }
313  Code* host = target->GetHeap()->isolate()->
314      inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
315  if (host->kind() != Code::FUNCTION) return;
316
317  if (FLAG_type_info_threshold > 0 &&
318      old_target->is_inline_cache_stub() &&
319      target->is_inline_cache_stub()) {
320    int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
321                                          target->ic_state());
322    // Not all Code objects have TypeFeedbackInfo.
323    if (delta != 0 && host->type_feedback_info()->IsTypeFeedbackInfo()) {
324      TypeFeedbackInfo* info =
325          TypeFeedbackInfo::cast(host->type_feedback_info());
326      info->set_ic_with_type_info_count(
327          info->ic_with_type_info_count() + delta);
328    }
329  }
330  if (FLAG_watch_ic_patching) {
331    host->set_profiler_ticks(0);
332    Isolate::Current()->runtime_profiler()->NotifyICChanged();
333  }
334  // TODO(2029): When an optimized function is patched, it would
335  // be nice to propagate the corresponding type information to its
336  // unoptimized version for the benefit of later inlining.
337}
338
339
340void IC::Clear(Address address) {
341  Code* target = GetTargetAtAddress(address);
342
343  // Don't clear debug break inline cache as it will remove the break point.
344  if (target->ic_state() == DEBUG_BREAK) return;
345
346  switch (target->kind()) {
347    case Code::LOAD_IC: return LoadIC::Clear(address, target);
348    case Code::KEYED_LOAD_IC:
349      return KeyedLoadIC::Clear(address, target);
350    case Code::STORE_IC: return StoreIC::Clear(address, target);
351    case Code::KEYED_STORE_IC:
352      return KeyedStoreIC::Clear(address, target);
353    case Code::CALL_IC: return CallIC::Clear(address, target);
354    case Code::KEYED_CALL_IC:  return KeyedCallIC::Clear(address, target);
355    case Code::UNARY_OP_IC:
356    case Code::BINARY_OP_IC:
357    case Code::COMPARE_IC:
358    case Code::TO_BOOLEAN_IC:
359      // Clearing these is tricky and does not
360      // make any performance difference.
361      return;
362    default: UNREACHABLE();
363  }
364}
365
366
367void CallICBase::Clear(Address address, Code* target) {
368  bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
369  State state = target->ic_state();
370  if (state == UNINITIALIZED) return;
371  Code* code =
372      Isolate::Current()->stub_cache()->FindCallInitialize(
373          target->arguments_count(),
374          contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
375          target->kind());
376  SetTargetAtAddress(address, code);
377}
378
379
380void KeyedLoadIC::Clear(Address address, Code* target) {
381  if (target->ic_state() == UNINITIALIZED) return;
382  // Make sure to also clear the map used in inline fast cases.  If we
383  // do not clear these maps, cached code can keep objects alive
384  // through the embedded maps.
385  SetTargetAtAddress(address, initialize_stub());
386}
387
388
389void LoadIC::Clear(Address address, Code* target) {
390  if (target->ic_state() == UNINITIALIZED) return;
391  SetTargetAtAddress(address, initialize_stub());
392}
393
394
395void StoreIC::Clear(Address address, Code* target) {
396  if (target->ic_state() == UNINITIALIZED) return;
397  SetTargetAtAddress(address,
398      (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
399        ? initialize_stub_strict()
400        : initialize_stub());
401}
402
403
404void KeyedStoreIC::Clear(Address address, Code* target) {
405  if (target->ic_state() == UNINITIALIZED) return;
406  SetTargetAtAddress(address,
407      (Code::GetStrictMode(target->extra_ic_state()) == kStrictMode)
408        ? initialize_stub_strict()
409        : initialize_stub());
410}
411
412
413static bool HasInterceptorGetter(JSObject* object) {
414  return !object->GetNamedInterceptor()->getter()->IsUndefined();
415}
416
417
418static void LookupForRead(Handle<Object> object,
419                          Handle<String> name,
420                          LookupResult* lookup) {
421  // Skip all the objects with named interceptors, but
422  // without actual getter.
423  while (true) {
424    object->Lookup(*name, lookup);
425    // Besides normal conditions (property not found or it's not
426    // an interceptor), bail out if lookup is not cacheable: we won't
427    // be able to IC it anyway and regular lookup should work fine.
428    if (!lookup->IsFound()
429        || (lookup->type() != INTERCEPTOR)
430        || !lookup->IsCacheable()) {
431      return;
432    }
433
434    Handle<JSObject> holder(lookup->holder());
435    if (HasInterceptorGetter(*holder)) {
436      return;
437    }
438
439    holder->LocalLookupRealNamedProperty(*name, lookup);
440    if (lookup->IsProperty()) {
441      ASSERT(lookup->type() != INTERCEPTOR);
442      return;
443    }
444
445    Handle<Object> proto(holder->GetPrototype());
446    if (proto->IsNull()) {
447      lookup->NotFound();
448      return;
449    }
450
451    object = proto;
452  }
453}
454
455
456Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
457  Handle<Object> delegate = Execution::GetFunctionDelegate(object);
458
459  if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
460    // Patch the receiver and use the delegate as the function to
461    // invoke. This is used for invoking objects as if they were functions.
462    const int argc = target()->arguments_count();
463    StackFrameLocator locator;
464    JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
465    int index = frame->ComputeExpressionsCount() - (argc + 1);
466    frame->SetExpression(index, *object);
467  }
468
469  return delegate;
470}
471
472
473void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
474                                            Handle<Object> object) {
475  while (callee->IsJSFunctionProxy()) {
476    callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap());
477  }
478
479  if (callee->IsJSFunction()) {
480    Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
481    if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
482      // Do not wrap receiver for strict mode functions or for builtins.
483      return;
484    }
485  }
486
487  // And only wrap string, number or boolean.
488  if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
489    // Change the receiver to the result of calling ToObject on it.
490    const int argc = this->target()->arguments_count();
491    StackFrameLocator locator;
492    JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
493    int index = frame->ComputeExpressionsCount() - (argc + 1);
494    frame->SetExpression(index, *isolate()->factory()->ToObject(object));
495  }
496}
497
498
499MaybeObject* CallICBase::LoadFunction(State state,
500                                      Code::ExtraICState extra_ic_state,
501                                      Handle<Object> object,
502                                      Handle<String> name) {
503  // If the object is undefined or null it's illegal to try to get any
504  // of its properties; throw a TypeError in that case.
505  if (object->IsUndefined() || object->IsNull()) {
506    return TypeError("non_object_property_call", object, name);
507  }
508
509  // Check if the name is trivially convertible to an index and get
510  // the element if so.
511  uint32_t index;
512  if (name->AsArrayIndex(&index)) {
513    Handle<Object> result = Object::GetElement(object, index);
514    RETURN_IF_EMPTY_HANDLE(isolate(), result);
515    if (result->IsJSFunction()) return *result;
516
517    // Try to find a suitable function delegate for the object at hand.
518    result = TryCallAsFunction(result);
519    if (result->IsJSFunction()) return *result;
520
521    // Otherwise, it will fail in the lookup step.
522  }
523
524  // Lookup the property in the object.
525  LookupResult lookup(isolate());
526  LookupForRead(object, name, &lookup);
527
528  if (!lookup.IsProperty()) {
529    // If the object does not have the requested property, check which
530    // exception we need to throw.
531    return IsContextual(object)
532        ? ReferenceError("not_defined", name)
533        : TypeError("undefined_method", object, name);
534  }
535
536  // Lookup is valid: Update inline cache and stub cache.
537  if (FLAG_use_ic) {
538    UpdateCaches(&lookup, state, extra_ic_state, object, name);
539  }
540
541  // Get the property.
542  PropertyAttributes attr;
543  Handle<Object> result =
544      Object::GetProperty(object, object, &lookup, name, &attr);
545  RETURN_IF_EMPTY_HANDLE(isolate(), result);
546
547  if (lookup.type() == INTERCEPTOR && attr == ABSENT) {
548    // If the object does not have the requested property, check which
549    // exception we need to throw.
550    return IsContextual(object)
551        ? ReferenceError("not_defined", name)
552        : TypeError("undefined_method", object, name);
553  }
554
555  ASSERT(!result->IsTheHole());
556
557  // Make receiver an object if the callee requires it. Strict mode or builtin
558  // functions do not wrap the receiver, non-strict functions and objects
559  // called as functions do.
560  ReceiverToObjectIfRequired(result, object);
561
562  if (result->IsJSFunction()) {
563    Handle<JSFunction> function = Handle<JSFunction>::cast(result);
564#ifdef ENABLE_DEBUGGER_SUPPORT
565    // Handle stepping into a function if step into is active.
566    Debug* debug = isolate()->debug();
567    if (debug->StepInActive()) {
568      // Protect the result in a handle as the debugger can allocate and might
569      // cause GC.
570      debug->HandleStepIn(function, object, fp(), false);
571    }
572#endif
573    return *function;
574  }
575
576  // Try to find a suitable function delegate for the object at hand.
577  result = TryCallAsFunction(result);
578  if (result->IsJSFunction()) return *result;
579
580  return TypeError("property_not_function", object, name);
581}
582
583
584bool CallICBase::TryUpdateExtraICState(LookupResult* lookup,
585                                       Handle<Object> object,
586                                       Code::ExtraICState* extra_ic_state) {
587  ASSERT(kind_ == Code::CALL_IC);
588  if (lookup->type() != CONSTANT_FUNCTION) return false;
589  JSFunction* function = lookup->GetConstantFunction();
590  if (!function->shared()->HasBuiltinFunctionId()) return false;
591
592  // Fetch the arguments passed to the called function.
593  const int argc = target()->arguments_count();
594  Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
595  Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
596  Arguments args(argc + 1,
597                 &Memory::Object_at(fp +
598                                    StandardFrameConstants::kCallerSPOffset +
599                                    argc * kPointerSize));
600  switch (function->shared()->builtin_function_id()) {
601    case kStringCharCodeAt:
602    case kStringCharAt:
603      if (object->IsString()) {
604        String* string = String::cast(*object);
605        // Check there's the right string value or wrapper in the receiver slot.
606        ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
607        // If we're in the default (fastest) state and the index is
608        // out of bounds, update the state to record this fact.
609        if (StringStubState::decode(*extra_ic_state) == DEFAULT_STRING_STUB &&
610            argc >= 1 && args[1]->IsNumber()) {
611          double index = DoubleToInteger(args.number_at(1));
612          if (index < 0 || index >= string->length()) {
613            *extra_ic_state =
614                StringStubState::update(*extra_ic_state,
615                                        STRING_INDEX_OUT_OF_BOUNDS);
616            return true;
617          }
618        }
619      }
620      break;
621    default:
622      return false;
623  }
624  return false;
625}
626
627
628Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
629                                                State state,
630                                                Code::ExtraICState extra_state,
631                                                Handle<Object> object,
632                                                Handle<String> name) {
633  int argc = target()->arguments_count();
634  Handle<JSObject> holder(lookup->holder());
635  switch (lookup->type()) {
636    case FIELD: {
637      int index = lookup->GetFieldIndex();
638      return isolate()->stub_cache()->ComputeCallField(
639          argc, kind_, extra_state, name, object, holder, index);
640    }
641    case CONSTANT_FUNCTION: {
642      // Get the constant function and compute the code stub for this
643      // call; used for rewriting to monomorphic state and making sure
644      // that the code stub is in the stub cache.
645      Handle<JSFunction> function(lookup->GetConstantFunction());
646      return isolate()->stub_cache()->ComputeCallConstant(
647          argc, kind_, extra_state, name, object, holder, function);
648    }
649    case NORMAL: {
650      // If we return a null handle, the IC will not be patched.
651      if (!object->IsJSObject()) return Handle<Code>::null();
652      Handle<JSObject> receiver = Handle<JSObject>::cast(object);
653
654      if (holder->IsGlobalObject()) {
655        Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
656        Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
657        if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
658        Handle<JSFunction> function(JSFunction::cast(cell->value()));
659        return isolate()->stub_cache()->ComputeCallGlobal(
660            argc, kind_, extra_state, name, receiver, global, cell, function);
661      } else {
662        // There is only one shared stub for calling normalized
663        // properties. It does not traverse the prototype chain, so the
664        // property must be found in the receiver for the stub to be
665        // applicable.
666        if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
667        return isolate()->stub_cache()->ComputeCallNormal(
668            argc, kind_, extra_state);
669      }
670      break;
671    }
672    case INTERCEPTOR:
673      ASSERT(HasInterceptorGetter(*holder));
674      return isolate()->stub_cache()->ComputeCallInterceptor(
675          argc, kind_, extra_state, name, object, holder);
676    default:
677      return Handle<Code>::null();
678  }
679}
680
681
682void CallICBase::UpdateCaches(LookupResult* lookup,
683                              State state,
684                              Code::ExtraICState extra_ic_state,
685                              Handle<Object> object,
686                              Handle<String> name) {
687  // Bail out if we didn't find a result.
688  if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
689
690  if (lookup->holder() != *object &&
691      HasNormalObjectsInPrototypeChain(
692          isolate(), lookup, object->GetPrototype())) {
693    // Suppress optimization for prototype chains with slow properties objects
694    // in the middle.
695    return;
696  }
697
698  // Compute the number of arguments.
699  int argc = target()->arguments_count();
700  bool had_proto_failure = false;
701  Handle<Code> code;
702  if (state == UNINITIALIZED) {
703    // This is the first time we execute this inline cache.
704    // Set the target to the pre monomorphic stub to delay
705    // setting the monomorphic state.
706    code = isolate()->stub_cache()->ComputeCallPreMonomorphic(
707        argc, kind_, extra_ic_state);
708  } else if (state == MONOMORPHIC) {
709    if (kind_ == Code::CALL_IC &&
710        TryUpdateExtraICState(lookup, object, &extra_ic_state)) {
711      code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
712                                    object, name);
713    } else if (kind_ == Code::CALL_IC &&
714               TryRemoveInvalidPrototypeDependentStub(target(),
715                                                      *object,
716                                                      *name)) {
717      had_proto_failure = true;
718      code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
719                                    object, name);
720    } else {
721      code = isolate()->stub_cache()->ComputeCallMegamorphic(
722          argc, kind_, extra_ic_state);
723    }
724  } else {
725    code = ComputeMonomorphicStub(lookup, state, extra_ic_state,
726                                  object, name);
727  }
728
729  // If there's no appropriate stub we simply avoid updating the caches.
730  if (code.is_null()) return;
731
732  // Patch the call site depending on the state of the cache.
733  if (state == UNINITIALIZED ||
734      state == PREMONOMORPHIC ||
735      state == MONOMORPHIC ||
736      state == MONOMORPHIC_PROTOTYPE_FAILURE) {
737    set_target(*code);
738  } else if (state == MEGAMORPHIC) {
739    // Cache code holding map should be consistent with
740    // GenerateMonomorphicCacheProbe. It is not the map which holds the stub.
741    Handle<JSObject> cache_object = object->IsJSObject()
742        ? Handle<JSObject>::cast(object)
743        : Handle<JSObject>(JSObject::cast(object->GetPrototype()));
744    // Update the stub cache.
745    isolate()->stub_cache()->Set(*name, cache_object->map(), *code);
746  }
747
748  if (had_proto_failure) state = MONOMORPHIC_PROTOTYPE_FAILURE;
749  TRACE_IC(kind_ == Code::CALL_IC ? "CallIC" : "KeyedCallIC",
750           name, state, target());
751}
752
753
754MaybeObject* KeyedCallIC::LoadFunction(State state,
755                                       Handle<Object> object,
756                                       Handle<Object> key) {
757  if (key->IsSymbol()) {
758    return CallICBase::LoadFunction(state,
759                                    Code::kNoExtraICState,
760                                    object,
761                                    Handle<String>::cast(key));
762  }
763
764  if (object->IsUndefined() || object->IsNull()) {
765    return TypeError("non_object_property_call", object, key);
766  }
767
768  if (FLAG_use_ic && state != MEGAMORPHIC && object->IsHeapObject()) {
769    int argc = target()->arguments_count();
770    Handle<Map> map =
771        isolate()->factory()->non_strict_arguments_elements_map();
772    if (object->IsJSObject() &&
773        Handle<JSObject>::cast(object)->elements()->map() == *map) {
774      Handle<Code> code = isolate()->stub_cache()->ComputeCallArguments(
775          argc, Code::KEYED_CALL_IC);
776      set_target(*code);
777      TRACE_IC("KeyedCallIC", key, state, target());
778    } else if (!object->IsAccessCheckNeeded()) {
779      Handle<Code> code = isolate()->stub_cache()->ComputeCallMegamorphic(
780          argc, Code::KEYED_CALL_IC, Code::kNoExtraICState);
781      set_target(*code);
782      TRACE_IC("KeyedCallIC", key, state, target());
783    }
784  }
785
786  Handle<Object> result = GetProperty(object, key);
787  RETURN_IF_EMPTY_HANDLE(isolate(), result);
788
789  // Make receiver an object if the callee requires it. Strict mode or builtin
790  // functions do not wrap the receiver, non-strict functions and objects
791  // called as functions do.
792  ReceiverToObjectIfRequired(result, object);
793  if (result->IsJSFunction()) return *result;
794
795  result = TryCallAsFunction(result);
796  if (result->IsJSFunction()) return *result;
797
798  return TypeError("property_not_function", object, key);
799}
800
801
802MaybeObject* LoadIC::Load(State state,
803                          Handle<Object> object,
804                          Handle<String> name) {
805  // If the object is undefined or null it's illegal to try to get any
806  // of its properties; throw a TypeError in that case.
807  if (object->IsUndefined() || object->IsNull()) {
808    return TypeError("non_object_property_load", object, name);
809  }
810
811  if (FLAG_use_ic) {
812    // Use specialized code for getting the length of strings and
813    // string wrapper objects.  The length property of string wrapper
814    // objects is read-only and therefore always returns the length of
815    // the underlying string value.  See ECMA-262 15.5.5.1.
816    if ((object->IsString() || object->IsStringWrapper()) &&
817        name->Equals(isolate()->heap()->length_symbol())) {
818      Handle<Code> stub;
819      if (state == UNINITIALIZED) {
820        stub = pre_monomorphic_stub();
821      } else if (state == PREMONOMORPHIC) {
822        stub = object->IsString()
823            ? isolate()->builtins()->LoadIC_StringLength()
824            : isolate()->builtins()->LoadIC_StringWrapperLength();
825      } else if (state == MONOMORPHIC && object->IsStringWrapper()) {
826        stub = isolate()->builtins()->LoadIC_StringWrapperLength();
827      } else if (state != MEGAMORPHIC) {
828        stub = megamorphic_stub();
829      }
830      if (!stub.is_null()) {
831        set_target(*stub);
832#ifdef DEBUG
833        if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n");
834#endif
835      }
836      // Get the string if we have a string wrapper object.
837      Handle<Object> string = object->IsJSValue()
838          ? Handle<Object>(Handle<JSValue>::cast(object)->value())
839          : object;
840      return Smi::FromInt(String::cast(*string)->length());
841    }
842
843    // Use specialized code for getting the length of arrays.
844    if (object->IsJSArray() &&
845        name->Equals(isolate()->heap()->length_symbol())) {
846      Handle<Code> stub;
847      if (state == UNINITIALIZED) {
848        stub = pre_monomorphic_stub();
849      } else if (state == PREMONOMORPHIC) {
850        stub = isolate()->builtins()->LoadIC_ArrayLength();
851      } else if (state != MEGAMORPHIC) {
852        stub = megamorphic_stub();
853      }
854      if (!stub.is_null()) {
855        set_target(*stub);
856#ifdef DEBUG
857        if (FLAG_trace_ic) PrintF("[LoadIC : +#length /array]\n");
858#endif
859      }
860      return JSArray::cast(*object)->length();
861    }
862
863    // Use specialized code for getting prototype of functions.
864    if (object->IsJSFunction() &&
865        name->Equals(isolate()->heap()->prototype_symbol()) &&
866        Handle<JSFunction>::cast(object)->should_have_prototype()) {
867      Handle<Code> stub;
868      if (state == UNINITIALIZED) {
869        stub = pre_monomorphic_stub();
870      } else if (state == PREMONOMORPHIC) {
871        stub = isolate()->builtins()->LoadIC_FunctionPrototype();
872      } else if (state != MEGAMORPHIC) {
873        stub = megamorphic_stub();
874      }
875      if (!stub.is_null()) {
876        set_target(*stub);
877#ifdef DEBUG
878        if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
879#endif
880      }
881      return Accessors::FunctionGetPrototype(*object, 0);
882    }
883  }
884
885  // Check if the name is trivially convertible to an index and get
886  // the element if so.
887  uint32_t index;
888  if (name->AsArrayIndex(&index)) return object->GetElement(index);
889
890  // Named lookup in the object.
891  LookupResult lookup(isolate());
892  LookupForRead(object, name, &lookup);
893
894  // If we did not find a property, check if we need to throw an exception.
895  if (!lookup.IsProperty()) {
896    if (IsContextual(object)) {
897      return ReferenceError("not_defined", name);
898    }
899    LOG(isolate(), SuspectReadEvent(*name, *object));
900  }
901
902  // Update inline cache and stub cache.
903  if (FLAG_use_ic) {
904    UpdateCaches(&lookup, state, object, name);
905  }
906
907  PropertyAttributes attr;
908  if (lookup.IsFound() &&
909      (lookup.type() == INTERCEPTOR || lookup.type() == HANDLER)) {
910    // Get the property.
911    Handle<Object> result =
912        Object::GetProperty(object, object, &lookup, name, &attr);
913    RETURN_IF_EMPTY_HANDLE(isolate(), result);
914    // If the property is not present, check if we need to throw an
915    // exception.
916    if (attr == ABSENT && IsContextual(object)) {
917      return ReferenceError("not_defined", name);
918    }
919    return *result;
920  }
921
922  // Get the property.
923  return object->GetProperty(*object, &lookup, *name, &attr);
924}
925
926
927void LoadIC::UpdateCaches(LookupResult* lookup,
928                          State state,
929                          Handle<Object> object,
930                          Handle<String> name) {
931  // Bail out if the result is not cacheable.
932  if (!lookup->IsCacheable()) return;
933
934  // Loading properties from values is not common, so don't try to
935  // deal with non-JS objects here.
936  if (!object->IsJSObject()) return;
937  Handle<JSObject> receiver = Handle<JSObject>::cast(object);
938
939  if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return;
940
941  // Compute the code stub for this load.
942  Handle<Code> code;
943  if (state == UNINITIALIZED) {
944    // This is the first time we execute this inline cache.
945    // Set the target to the pre monomorphic stub to delay
946    // setting the monomorphic state.
947    code = pre_monomorphic_stub();
948  } else if (!lookup->IsProperty()) {
949    // Nonexistent property. The result is undefined.
950    code = isolate()->stub_cache()->ComputeLoadNonexistent(name, receiver);
951  } else {
952    // Compute monomorphic stub.
953    Handle<JSObject> holder(lookup->holder());
954    switch (lookup->type()) {
955      case FIELD:
956        code = isolate()->stub_cache()->ComputeLoadField(
957            name, receiver, holder, lookup->GetFieldIndex());
958        break;
959      case CONSTANT_FUNCTION: {
960        Handle<JSFunction> constant(lookup->GetConstantFunction());
961        code = isolate()->stub_cache()->ComputeLoadConstant(
962            name, receiver, holder, constant);
963        break;
964      }
965      case NORMAL:
966        if (holder->IsGlobalObject()) {
967          Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
968          Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
969          code = isolate()->stub_cache()->ComputeLoadGlobal(
970              name, receiver, global, cell, lookup->IsDontDelete());
971        } else {
972          // There is only one shared stub for loading normalized
973          // properties. It does not traverse the prototype chain, so the
974          // property must be found in the receiver for the stub to be
975          // applicable.
976          if (!holder.is_identical_to(receiver)) return;
977          code = isolate()->stub_cache()->ComputeLoadNormal();
978        }
979        break;
980      case CALLBACKS: {
981        Handle<Object> callback_object(lookup->GetCallbackObject());
982        if (!callback_object->IsAccessorInfo()) return;
983        Handle<AccessorInfo> callback =
984            Handle<AccessorInfo>::cast(callback_object);
985        if (v8::ToCData<Address>(callback->getter()) == 0) return;
986        code = isolate()->stub_cache()->ComputeLoadCallback(
987            name, receiver, holder, callback);
988        break;
989      }
990      case INTERCEPTOR:
991        ASSERT(HasInterceptorGetter(*holder));
992        code = isolate()->stub_cache()->ComputeLoadInterceptor(
993            name, receiver, holder);
994        break;
995      default:
996        return;
997    }
998  }
999
1000  // Patch the call site depending on the state of the cache.
1001  if (state == UNINITIALIZED ||
1002      state == PREMONOMORPHIC ||
1003      state == MONOMORPHIC_PROTOTYPE_FAILURE) {
1004    set_target(*code);
1005  } else if (state == MONOMORPHIC) {
1006    // We are transitioning from monomorphic to megamorphic case.
1007    // Place the current monomorphic stub and stub compiled for
1008    // the receiver into stub cache.
1009    Map* map = target()->FindFirstMap();
1010    if (map != NULL) {
1011      isolate()->stub_cache()->Set(*name, map, target());
1012    }
1013    isolate()->stub_cache()->Set(*name, receiver->map(), *code);
1014
1015    set_target(*megamorphic_stub());
1016  } else if (state == MEGAMORPHIC) {
1017    // Cache code holding map should be consistent with
1018    // GenerateMonomorphicCacheProbe.
1019    isolate()->stub_cache()->Set(*name, receiver->map(), *code);
1020  }
1021
1022  TRACE_IC("LoadIC", name, state, target());
1023}
1024
1025
1026Handle<Code> KeyedLoadIC::GetElementStubWithoutMapCheck(
1027    bool is_js_array,
1028    ElementsKind elements_kind,
1029    KeyedAccessGrowMode grow_mode) {
1030  ASSERT(grow_mode == DO_NOT_ALLOW_JSARRAY_GROWTH);
1031  return KeyedLoadElementStub(elements_kind).GetCode();
1032}
1033
1034
1035Handle<Code> KeyedLoadIC::ComputePolymorphicStub(
1036    MapHandleList* receiver_maps,
1037    StrictModeFlag strict_mode,
1038    KeyedAccessGrowMode growth_mode) {
1039  CodeHandleList handler_ics(receiver_maps->length());
1040  for (int i = 0; i < receiver_maps->length(); ++i) {
1041    Handle<Map> receiver_map = receiver_maps->at(i);
1042    Handle<Code> cached_stub = ComputeMonomorphicStubWithoutMapCheck(
1043        receiver_map, strict_mode, growth_mode);
1044    handler_ics.Add(cached_stub);
1045  }
1046  KeyedLoadStubCompiler compiler(isolate());
1047  Handle<Code> code = compiler.CompileLoadPolymorphic(
1048      receiver_maps, &handler_ics);
1049  isolate()->counters()->keyed_load_polymorphic_stubs()->Increment();
1050  PROFILE(isolate(),
1051          CodeCreateEvent(Logger::KEYED_LOAD_MEGAMORPHIC_IC_TAG, *code, 0));
1052  return code;
1053}
1054
1055
1056MaybeObject* KeyedLoadIC::Load(State state,
1057                               Handle<Object> object,
1058                               Handle<Object> key,
1059                               bool force_generic_stub) {
1060  // Check for values that can be converted into a symbol.
1061  // TODO(1295): Remove this code.
1062  if (key->IsHeapNumber() &&
1063      isnan(Handle<HeapNumber>::cast(key)->value())) {
1064    key = isolate()->factory()->nan_symbol();
1065  } else if (key->IsUndefined()) {
1066    key = isolate()->factory()->undefined_symbol();
1067  }
1068
1069  if (key->IsSymbol()) {
1070    Handle<String> name = Handle<String>::cast(key);
1071
1072    // If the object is undefined or null it's illegal to try to get any
1073    // of its properties; throw a TypeError in that case.
1074    if (object->IsUndefined() || object->IsNull()) {
1075      return TypeError("non_object_property_load", object, name);
1076    }
1077
1078    if (FLAG_use_ic) {
1079      // TODO(1073): don't ignore the current stub state.
1080
1081      // Use specialized code for getting the length of strings.
1082      if (object->IsString() &&
1083          name->Equals(isolate()->heap()->length_symbol())) {
1084        Handle<String> string = Handle<String>::cast(object);
1085        Handle<Code> code =
1086            isolate()->stub_cache()->ComputeKeyedLoadStringLength(name, string);
1087        ASSERT(!code.is_null());
1088        set_target(*code);
1089        TRACE_IC("KeyedLoadIC", name, state, target());
1090        return Smi::FromInt(string->length());
1091      }
1092
1093      // Use specialized code for getting the length of arrays.
1094      if (object->IsJSArray() &&
1095          name->Equals(isolate()->heap()->length_symbol())) {
1096        Handle<JSArray> array = Handle<JSArray>::cast(object);
1097        Handle<Code> code =
1098            isolate()->stub_cache()->ComputeKeyedLoadArrayLength(name, array);
1099        ASSERT(!code.is_null());
1100        set_target(*code);
1101        TRACE_IC("KeyedLoadIC", name, state, target());
1102        return array->length();
1103      }
1104
1105      // Use specialized code for getting prototype of functions.
1106      if (object->IsJSFunction() &&
1107          name->Equals(isolate()->heap()->prototype_symbol()) &&
1108          Handle<JSFunction>::cast(object)->should_have_prototype()) {
1109        Handle<JSFunction> function = Handle<JSFunction>::cast(object);
1110        Handle<Code> code =
1111            isolate()->stub_cache()->ComputeKeyedLoadFunctionPrototype(
1112                name, function);
1113        ASSERT(!code.is_null());
1114        set_target(*code);
1115        TRACE_IC("KeyedLoadIC", name, state, target());
1116        return Accessors::FunctionGetPrototype(*object, 0);
1117      }
1118    }
1119
1120    // Check if the name is trivially convertible to an index and get
1121    // the element or char if so.
1122    uint32_t index = 0;
1123    if (name->AsArrayIndex(&index)) {
1124      // Rewrite to the generic keyed load stub.
1125      if (FLAG_use_ic) set_target(*generic_stub());
1126      return Runtime::GetElementOrCharAt(isolate(), object, index);
1127    }
1128
1129    // Named lookup.
1130    LookupResult lookup(isolate());
1131    LookupForRead(object, name, &lookup);
1132
1133    // If we did not find a property, check if we need to throw an exception.
1134    if (!lookup.IsProperty() && IsContextual(object)) {
1135      return ReferenceError("not_defined", name);
1136    }
1137
1138    if (FLAG_use_ic) {
1139      UpdateCaches(&lookup, state, object, name);
1140    }
1141
1142    PropertyAttributes attr;
1143    if (lookup.IsFound() && lookup.type() == INTERCEPTOR) {
1144      // Get the property.
1145      Handle<Object> result =
1146          Object::GetProperty(object, object, &lookup, name, &attr);
1147      RETURN_IF_EMPTY_HANDLE(isolate(), result);
1148      // If the property is not present, check if we need to throw an
1149      // exception.
1150      if (attr == ABSENT && IsContextual(object)) {
1151        return ReferenceError("not_defined", name);
1152      }
1153      return *result;
1154    }
1155
1156    return object->GetProperty(*object, &lookup, *name, &attr);
1157  }
1158
1159  // Do not use ICs for objects that require access checks (including
1160  // the global object).
1161  bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
1162
1163  if (use_ic) {
1164    Handle<Code> stub = generic_stub();
1165    if (!force_generic_stub) {
1166      if (object->IsString() && key->IsNumber()) {
1167        if (state == UNINITIALIZED) {
1168          stub = string_stub();
1169        }
1170      } else if (object->IsJSObject()) {
1171        Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1172        if (receiver->elements()->map() ==
1173            isolate()->heap()->non_strict_arguments_elements_map()) {
1174          stub = non_strict_arguments_stub();
1175        } else if (receiver->HasIndexedInterceptor()) {
1176          stub = indexed_interceptor_stub();
1177        } else if (key->IsSmi() && (target() != *non_strict_arguments_stub())) {
1178          stub = ComputeStub(receiver, LOAD, kNonStrictMode, stub);
1179        }
1180      }
1181    } else {
1182      TRACE_GENERIC_IC("KeyedLoadIC", "force generic");
1183    }
1184    if (!stub.is_null()) set_target(*stub);
1185  }
1186
1187  TRACE_IC("KeyedLoadIC", key, state, target());
1188
1189  // Get the property.
1190  return Runtime::GetObjectProperty(isolate(), object, key);
1191}
1192
1193
1194void KeyedLoadIC::UpdateCaches(LookupResult* lookup,
1195                               State state,
1196                               Handle<Object> object,
1197                               Handle<String> name) {
1198  // Bail out if we didn't find a result.
1199  if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
1200
1201  if (!object->IsJSObject()) return;
1202  Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1203
1204  if (HasNormalObjectsInPrototypeChain(isolate(), lookup, *object)) return;
1205
1206  // Compute the code stub for this load.
1207  Handle<Code> code;
1208
1209  if (state == UNINITIALIZED) {
1210    // This is the first time we execute this inline cache.
1211    // Set the target to the pre monomorphic stub to delay
1212    // setting the monomorphic state.
1213    code = pre_monomorphic_stub();
1214  } else {
1215    // Compute a monomorphic stub.
1216    Handle<JSObject> holder(lookup->holder());
1217    switch (lookup->type()) {
1218      case FIELD:
1219        code = isolate()->stub_cache()->ComputeKeyedLoadField(
1220            name, receiver, holder, lookup->GetFieldIndex());
1221        break;
1222      case CONSTANT_FUNCTION: {
1223        Handle<JSFunction> constant(lookup->GetConstantFunction());
1224        code = isolate()->stub_cache()->ComputeKeyedLoadConstant(
1225            name, receiver, holder, constant);
1226        break;
1227      }
1228      case CALLBACKS: {
1229        Handle<Object> callback_object(lookup->GetCallbackObject());
1230        if (!callback_object->IsAccessorInfo()) return;
1231        Handle<AccessorInfo> callback =
1232            Handle<AccessorInfo>::cast(callback_object);
1233        if (v8::ToCData<Address>(callback->getter()) == 0) return;
1234        code = isolate()->stub_cache()->ComputeKeyedLoadCallback(
1235            name, receiver, holder, callback);
1236        break;
1237      }
1238      case INTERCEPTOR:
1239        ASSERT(HasInterceptorGetter(lookup->holder()));
1240        code = isolate()->stub_cache()->ComputeKeyedLoadInterceptor(
1241            name, receiver, holder);
1242        break;
1243      default:
1244        // Always rewrite to the generic case so that we do not
1245        // repeatedly try to rewrite.
1246        code = generic_stub();
1247        break;
1248    }
1249  }
1250
1251  // Patch the call site depending on the state of the cache.  Make
1252  // sure to always rewrite from monomorphic to megamorphic.
1253  ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
1254  if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
1255    set_target(*code);
1256  } else if (state == MONOMORPHIC) {
1257    set_target(*megamorphic_stub());
1258  }
1259
1260  TRACE_IC("KeyedLoadIC", name, state, target());
1261}
1262
1263
1264static bool StoreICableLookup(LookupResult* lookup) {
1265  // Bail out if we didn't find a result.
1266  if (!lookup->IsFound() || lookup->type() == NULL_DESCRIPTOR) return false;
1267
1268  // Bail out if inline caching is not allowed.
1269  if (!lookup->IsCacheable()) return false;
1270
1271  // If the property is read-only, we leave the IC in its current state.
1272  if (lookup->IsReadOnly()) return false;
1273
1274  return true;
1275}
1276
1277
1278static bool LookupForWrite(Handle<JSObject> receiver,
1279                           Handle<String> name,
1280                           LookupResult* lookup) {
1281  receiver->LocalLookup(*name, lookup);
1282  if (!StoreICableLookup(lookup)) {
1283    return false;
1284  }
1285
1286  if (lookup->type() == INTERCEPTOR &&
1287      receiver->GetNamedInterceptor()->setter()->IsUndefined()) {
1288    receiver->LocalLookupRealNamedProperty(*name, lookup);
1289    return StoreICableLookup(lookup);
1290  }
1291
1292  return true;
1293}
1294
1295
1296MaybeObject* StoreIC::Store(State state,
1297                            StrictModeFlag strict_mode,
1298                            Handle<Object> object,
1299                            Handle<String> name,
1300                            Handle<Object> value) {
1301  if (!object->IsJSObject()) {
1302    // Handle proxies.
1303    if (object->IsJSProxy()) {
1304      return JSProxy::cast(*object)->
1305          SetProperty(*name, *value, NONE, strict_mode);
1306    }
1307
1308    // If the object is undefined or null it's illegal to try to set any
1309    // properties on it; throw a TypeError in that case.
1310    if (object->IsUndefined() || object->IsNull()) {
1311      return TypeError("non_object_property_store", object, name);
1312    }
1313
1314    // The length property of string values is read-only. Throw in strict mode.
1315    if (strict_mode == kStrictMode && object->IsString() &&
1316        name->Equals(isolate()->heap()->length_symbol())) {
1317      return TypeError("strict_read_only_property", object, name);
1318    }
1319    // Ignore other stores where the receiver is not a JSObject.
1320    // TODO(1475): Must check prototype chains of object wrappers.
1321    return *value;
1322  }
1323
1324  Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1325
1326  // Check if the given name is an array index.
1327  uint32_t index;
1328  if (name->AsArrayIndex(&index)) {
1329    Handle<Object> result =
1330        JSObject::SetElement(receiver, index, value, NONE, strict_mode);
1331    RETURN_IF_EMPTY_HANDLE(isolate(), result);
1332    return *value;
1333  }
1334
1335  // Use specialized code for setting the length of arrays with fast
1336  // properties.  Slow properties might indicate redefinition of the
1337  // length property.
1338  if (receiver->IsJSArray() &&
1339      name->Equals(isolate()->heap()->length_symbol()) &&
1340      Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
1341      receiver->HasFastProperties()) {
1342#ifdef DEBUG
1343    if (FLAG_trace_ic) PrintF("[StoreIC : +#length /array]\n");
1344#endif
1345    Handle<Code> stub = (strict_mode == kStrictMode)
1346        ? isolate()->builtins()->StoreIC_ArrayLength_Strict()
1347        : isolate()->builtins()->StoreIC_ArrayLength();
1348    set_target(*stub);
1349    return receiver->SetProperty(*name, *value, NONE, strict_mode);
1350  }
1351
1352  // Lookup the property locally in the receiver.
1353  if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) {
1354    LookupResult lookup(isolate());
1355
1356    if (LookupForWrite(receiver, name, &lookup)) {
1357      // Generate a stub for this store.
1358      UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
1359    } else {
1360      // Strict mode doesn't allow setting non-existent global property
1361      // or an assignment to a read only property.
1362      if (strict_mode == kStrictMode) {
1363        if (lookup.IsProperty() && lookup.IsReadOnly()) {
1364          return TypeError("strict_read_only_property", object, name);
1365        } else if (IsContextual(object)) {
1366          return ReferenceError("not_defined", name);
1367        }
1368      }
1369    }
1370  }
1371
1372  if (receiver->IsJSGlobalProxy()) {
1373    // TODO(ulan): find out why we patch this site even with --no-use-ic
1374    // Generate a generic stub that goes to the runtime when we see a global
1375    // proxy as receiver.
1376    Handle<Code> stub = (strict_mode == kStrictMode)
1377        ? global_proxy_stub_strict()
1378        : global_proxy_stub();
1379    if (target() != *stub) {
1380      set_target(*stub);
1381      TRACE_IC("StoreIC", name, state, target());
1382    }
1383  }
1384
1385  // Set the property.
1386  return receiver->SetProperty(*name, *value, NONE, strict_mode);
1387}
1388
1389
1390void StoreIC::UpdateCaches(LookupResult* lookup,
1391                           State state,
1392                           StrictModeFlag strict_mode,
1393                           Handle<JSObject> receiver,
1394                           Handle<String> name,
1395                           Handle<Object> value) {
1396  ASSERT(!receiver->IsJSGlobalProxy());
1397  ASSERT(StoreICableLookup(lookup));
1398  // These are not cacheable, so we never see such LookupResults here.
1399  ASSERT(lookup->type() != HANDLER);
1400  // We get only called for properties or transitions, see StoreICableLookup.
1401  ASSERT(lookup->type() != NULL_DESCRIPTOR);
1402
1403  // If the property has a non-field type allowing map transitions
1404  // where there is extra room in the object, we leave the IC in its
1405  // current state.
1406  PropertyType type = lookup->type();
1407
1408  // Compute the code stub for this store; used for rewriting to
1409  // monomorphic state and making sure that the code stub is in the
1410  // stub cache.
1411  Handle<Code> code;
1412  switch (type) {
1413    case FIELD:
1414      code = isolate()->stub_cache()->ComputeStoreField(name,
1415                                                        receiver,
1416                                                        lookup->GetFieldIndex(),
1417                                                        Handle<Map>::null(),
1418                                                        strict_mode);
1419      break;
1420    case MAP_TRANSITION: {
1421      if (lookup->GetAttributes() != NONE) return;
1422      Handle<Map> transition(lookup->GetTransitionMap());
1423      int index = transition->PropertyIndexFor(*name);
1424      code = isolate()->stub_cache()->ComputeStoreField(
1425          name, receiver, index, transition, strict_mode);
1426      break;
1427    }
1428    case NORMAL:
1429      if (receiver->IsGlobalObject()) {
1430        // The stub generated for the global object picks the value directly
1431        // from the property cell. So the property must be directly on the
1432        // global object.
1433        Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
1434        Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(lookup));
1435        code = isolate()->stub_cache()->ComputeStoreGlobal(
1436            name, global, cell, strict_mode);
1437      } else {
1438        if (lookup->holder() != *receiver) return;
1439        code = isolate()->stub_cache()->ComputeStoreNormal(strict_mode);
1440      }
1441      break;
1442    case CALLBACKS: {
1443      Handle<Object> callback_object(lookup->GetCallbackObject());
1444      if (!callback_object->IsAccessorInfo()) return;
1445      Handle<AccessorInfo> callback =
1446          Handle<AccessorInfo>::cast(callback_object);
1447      if (v8::ToCData<Address>(callback->setter()) == 0) return;
1448      code = isolate()->stub_cache()->ComputeStoreCallback(
1449          name, receiver, callback, strict_mode);
1450      break;
1451    }
1452    case INTERCEPTOR:
1453      ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined());
1454      code = isolate()->stub_cache()->ComputeStoreInterceptor(
1455          name, receiver, strict_mode);
1456      break;
1457    case CONSTANT_FUNCTION:
1458    case CONSTANT_TRANSITION:
1459    case ELEMENTS_TRANSITION:
1460      return;
1461    case HANDLER:
1462    case NULL_DESCRIPTOR:
1463      UNREACHABLE();
1464      return;
1465  }
1466
1467  // Patch the call site depending on the state of the cache.
1468  if (state == UNINITIALIZED || state == MONOMORPHIC_PROTOTYPE_FAILURE) {
1469    set_target(*code);
1470  } else if (state == MONOMORPHIC) {
1471    // Only move to megamorphic if the target changes.
1472    if (target() != *code) {
1473      set_target((strict_mode == kStrictMode)
1474                   ? megamorphic_stub_strict()
1475                   : megamorphic_stub());
1476    }
1477  } else if (state == MEGAMORPHIC) {
1478    // Update the stub cache.
1479    isolate()->stub_cache()->Set(*name, receiver->map(), *code);
1480  }
1481
1482  TRACE_IC("StoreIC", name, state, target());
1483}
1484
1485
1486static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
1487                                       Handle<Map> new_receiver_map) {
1488  ASSERT(!new_receiver_map.is_null());
1489  for (int current = 0; current < receiver_maps->length(); ++current) {
1490    if (!receiver_maps->at(current).is_null() &&
1491        receiver_maps->at(current).is_identical_to(new_receiver_map)) {
1492      return false;
1493    }
1494  }
1495  receiver_maps->Add(new_receiver_map);
1496  return true;
1497}
1498
1499
1500void KeyedIC::GetReceiverMapsForStub(Handle<Code> stub,
1501                                     MapHandleList* result) {
1502  ASSERT(stub->is_inline_cache_stub());
1503  if (!string_stub().is_null() && stub.is_identical_to(string_stub())) {
1504    return result->Add(isolate()->factory()->string_map());
1505  } else if (stub->is_keyed_load_stub() || stub->is_keyed_store_stub()) {
1506    if (stub->ic_state() == MONOMORPHIC) {
1507      result->Add(Handle<Map>(stub->FindFirstMap()));
1508    } else {
1509      ASSERT(stub->ic_state() == MEGAMORPHIC);
1510      AssertNoAllocation no_allocation;
1511      int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
1512      for (RelocIterator it(*stub, mask); !it.done(); it.next()) {
1513        RelocInfo* info = it.rinfo();
1514        Handle<Object> object(info->target_object());
1515        ASSERT(object->IsMap());
1516        AddOneReceiverMapIfMissing(result, Handle<Map>::cast(object));
1517      }
1518    }
1519  }
1520}
1521
1522
1523Handle<Code> KeyedIC::ComputeStub(Handle<JSObject> receiver,
1524                                  StubKind stub_kind,
1525                                  StrictModeFlag strict_mode,
1526                                  Handle<Code> generic_stub) {
1527  State ic_state = target()->ic_state();
1528  KeyedAccessGrowMode grow_mode = IsGrowStubKind(stub_kind)
1529      ? ALLOW_JSARRAY_GROWTH
1530      : DO_NOT_ALLOW_JSARRAY_GROWTH;
1531
1532  // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1533  // via megamorphic stubs, since they don't have a map in their relocation info
1534  // and so the stubs can't be harvested for the object needed for a map check.
1535  if (target()->type() != NORMAL) {
1536    TRACE_GENERIC_IC("KeyedIC", "non-NORMAL target type");
1537    return generic_stub;
1538  }
1539
1540  bool monomorphic = false;
1541  MapHandleList target_receiver_maps;
1542  if (ic_state != UNINITIALIZED && ic_state != PREMONOMORPHIC) {
1543    GetReceiverMapsForStub(Handle<Code>(target()), &target_receiver_maps);
1544  }
1545  if (!IsTransitionStubKind(stub_kind)) {
1546    if (ic_state == UNINITIALIZED || ic_state == PREMONOMORPHIC) {
1547      monomorphic = true;
1548    } else {
1549      if (ic_state == MONOMORPHIC) {
1550        // The first time a receiver is seen that is a transitioned version of
1551        // the previous monomorphic receiver type, assume the new ElementsKind
1552        // is the monomorphic type. This benefits global arrays that only
1553        // transition once, and all call sites accessing them are faster if they
1554        // remain monomorphic. If this optimistic assumption is not true, the IC
1555        // will miss again and it will become polymorphic and support both the
1556        // untransitioned and transitioned maps.
1557        monomorphic = IsMoreGeneralElementsKindTransition(
1558            target_receiver_maps.at(0)->elements_kind(),
1559            receiver->GetElementsKind());
1560      }
1561    }
1562  }
1563
1564  if (monomorphic) {
1565    return ComputeMonomorphicStub(
1566        receiver, stub_kind, strict_mode, generic_stub);
1567  }
1568  ASSERT(target() != *generic_stub);
1569
1570  // Determine the list of receiver maps that this call site has seen,
1571  // adding the map that was just encountered.
1572  Handle<Map> receiver_map(receiver->map());
1573  bool map_added =
1574      AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1575  if (IsTransitionStubKind(stub_kind)) {
1576    Handle<Map> new_map = ComputeTransitionedMap(receiver, stub_kind);
1577    map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, new_map);
1578  }
1579  if (!map_added) {
1580    // If the miss wasn't due to an unseen map, a polymorphic stub
1581    // won't help, use the generic stub.
1582    TRACE_GENERIC_IC("KeyedIC", "same map added twice");
1583    return generic_stub;
1584  }
1585
1586  // If the maximum number of receiver maps has been exceeded, use the generic
1587  // version of the IC.
1588  if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1589    TRACE_GENERIC_IC("KeyedIC", "max polymorph exceeded");
1590    return generic_stub;
1591  }
1592
1593  if ((Code::GetKeyedAccessGrowMode(target()->extra_ic_state()) ==
1594       ALLOW_JSARRAY_GROWTH)) {
1595    grow_mode = ALLOW_JSARRAY_GROWTH;
1596  }
1597
1598  Handle<PolymorphicCodeCache> cache =
1599      isolate()->factory()->polymorphic_code_cache();
1600  Code::ExtraICState extra_state = Code::ComputeExtraICState(grow_mode,
1601                                                             strict_mode);
1602  Code::Flags flags = Code::ComputeFlags(kind(), MEGAMORPHIC, extra_state);
1603  Handle<Object> probe = cache->Lookup(&target_receiver_maps, flags);
1604  if (probe->IsCode()) return Handle<Code>::cast(probe);
1605
1606  Handle<Code> stub =
1607      ComputePolymorphicStub(&target_receiver_maps, strict_mode, grow_mode);
1608  PolymorphicCodeCache::Update(cache, &target_receiver_maps, flags, stub);
1609  return stub;
1610}
1611
1612
1613Handle<Code> KeyedIC::ComputeMonomorphicStubWithoutMapCheck(
1614    Handle<Map> receiver_map,
1615    StrictModeFlag strict_mode,
1616    KeyedAccessGrowMode grow_mode) {
1617  if ((receiver_map->instance_type() & kNotStringTag) == 0) {
1618    ASSERT(!string_stub().is_null());
1619    return string_stub();
1620  } else {
1621    ASSERT(receiver_map->has_dictionary_elements() ||
1622           receiver_map->has_fast_elements() ||
1623           receiver_map->has_fast_smi_only_elements() ||
1624           receiver_map->has_fast_double_elements() ||
1625           receiver_map->has_external_array_elements());
1626    bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE;
1627    return GetElementStubWithoutMapCheck(is_js_array,
1628                                         receiver_map->elements_kind(),
1629                                         grow_mode);
1630  }
1631}
1632
1633
1634Handle<Code> KeyedIC::ComputeMonomorphicStub(Handle<JSObject> receiver,
1635                                             StubKind stub_kind,
1636                                             StrictModeFlag strict_mode,
1637                                             Handle<Code> generic_stub) {
1638  if (receiver->HasFastElements() ||
1639      receiver->HasFastSmiOnlyElements() ||
1640      receiver->HasExternalArrayElements() ||
1641      receiver->HasFastDoubleElements() ||
1642      receiver->HasDictionaryElements()) {
1643    return isolate()->stub_cache()->ComputeKeyedLoadOrStoreElement(
1644        receiver, stub_kind, strict_mode);
1645  } else {
1646    return generic_stub;
1647  }
1648}
1649
1650
1651Handle<Map> KeyedIC::ComputeTransitionedMap(Handle<JSObject> receiver,
1652                                            StubKind stub_kind) {
1653  switch (stub_kind) {
1654    case KeyedIC::STORE_TRANSITION_SMI_TO_OBJECT:
1655    case KeyedIC::STORE_TRANSITION_DOUBLE_TO_OBJECT:
1656    case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1657    case KeyedIC::STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1658      return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
1659      break;
1660    case KeyedIC::STORE_TRANSITION_SMI_TO_DOUBLE:
1661    case KeyedIC::STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1662      return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
1663      break;
1664    default:
1665      UNREACHABLE();
1666      return Handle<Map>::null();
1667  }
1668}
1669
1670
1671Handle<Code> KeyedStoreIC::GetElementStubWithoutMapCheck(
1672    bool is_js_array,
1673    ElementsKind elements_kind,
1674    KeyedAccessGrowMode grow_mode) {
1675  return KeyedStoreElementStub(is_js_array, elements_kind, grow_mode).GetCode();
1676}
1677
1678
1679Handle<Code> KeyedStoreIC::ComputePolymorphicStub(
1680    MapHandleList* receiver_maps,
1681    StrictModeFlag strict_mode,
1682    KeyedAccessGrowMode grow_mode) {
1683  // Collect MONOMORPHIC stubs for all target_receiver_maps.
1684  CodeHandleList handler_ics(receiver_maps->length());
1685  MapHandleList transitioned_maps(receiver_maps->length());
1686  for (int i = 0; i < receiver_maps->length(); ++i) {
1687    Handle<Map> receiver_map(receiver_maps->at(i));
1688    Handle<Code> cached_stub;
1689    Handle<Map> transitioned_map =
1690        receiver_map->FindTransitionedMap(receiver_maps);
1691    if (!transitioned_map.is_null()) {
1692      cached_stub = ElementsTransitionAndStoreStub(
1693          receiver_map->elements_kind(),  // original elements_kind
1694          transitioned_map->elements_kind(),
1695          receiver_map->instance_type() == JS_ARRAY_TYPE,  // is_js_array
1696          strict_mode, grow_mode).GetCode();
1697    } else {
1698      cached_stub = ComputeMonomorphicStubWithoutMapCheck(receiver_map,
1699                                                          strict_mode,
1700                                                          grow_mode);
1701    }
1702    ASSERT(!cached_stub.is_null());
1703    handler_ics.Add(cached_stub);
1704    transitioned_maps.Add(transitioned_map);
1705  }
1706  KeyedStoreStubCompiler compiler(isolate(), strict_mode, grow_mode);
1707  Handle<Code> code = compiler.CompileStorePolymorphic(
1708      receiver_maps, &handler_ics, &transitioned_maps);
1709  isolate()->counters()->keyed_store_polymorphic_stubs()->Increment();
1710  PROFILE(isolate(),
1711          CodeCreateEvent(Logger::KEYED_STORE_MEGAMORPHIC_IC_TAG, *code, 0));
1712  return code;
1713}
1714
1715
1716KeyedIC::StubKind KeyedStoreIC::GetStubKind(Handle<JSObject> receiver,
1717                                            Handle<Object> key,
1718                                            Handle<Object> value) {
1719  ASSERT(key->IsSmi());
1720  int index = Smi::cast(*key)->value();
1721  bool allow_growth = receiver->IsJSArray() &&
1722      JSArray::cast(*receiver)->length()->IsSmi() &&
1723      index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1724
1725  if (allow_growth) {
1726    // Handle growing array in stub if necessary.
1727    if (receiver->HasFastSmiOnlyElements()) {
1728      if (value->IsHeapNumber()) {
1729        return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1730      }
1731      if (value->IsHeapObject()) {
1732        return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1733      }
1734    } else if (receiver->HasFastDoubleElements()) {
1735      if (!value->IsSmi() && !value->IsHeapNumber()) {
1736        return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1737      }
1738    }
1739    return STORE_AND_GROW_NO_TRANSITION;
1740  } else {
1741    // Handle only in-bounds elements accesses.
1742    if (receiver->HasFastSmiOnlyElements()) {
1743      if (value->IsHeapNumber()) {
1744        return STORE_TRANSITION_SMI_TO_DOUBLE;
1745      } else if (value->IsHeapObject()) {
1746        return STORE_TRANSITION_SMI_TO_OBJECT;
1747      }
1748    } else if (receiver->HasFastDoubleElements()) {
1749      if (!value->IsSmi() && !value->IsHeapNumber()) {
1750        return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1751      }
1752    }
1753    return STORE_NO_TRANSITION;
1754  }
1755}
1756
1757
1758MaybeObject* KeyedStoreIC::Store(State state,
1759                                 StrictModeFlag strict_mode,
1760                                 Handle<Object> object,
1761                                 Handle<Object> key,
1762                                 Handle<Object> value,
1763                                 bool force_generic) {
1764  if (key->IsSymbol()) {
1765    Handle<String> name = Handle<String>::cast(key);
1766
1767    // Handle proxies.
1768    if (object->IsJSProxy()) {
1769      return JSProxy::cast(*object)->SetProperty(
1770          *name, *value, NONE, strict_mode);
1771    }
1772
1773    // If the object is undefined or null it's illegal to try to set any
1774    // properties on it; throw a TypeError in that case.
1775    if (object->IsUndefined() || object->IsNull()) {
1776      return TypeError("non_object_property_store", object, name);
1777    }
1778
1779    // Ignore stores where the receiver is not a JSObject.
1780    if (!object->IsJSObject()) return *value;
1781    Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1782
1783    // Check if the given name is an array index.
1784    uint32_t index;
1785    if (name->AsArrayIndex(&index)) {
1786      Handle<Object> result =
1787          JSObject::SetElement(receiver, index, value, NONE, strict_mode);
1788      RETURN_IF_EMPTY_HANDLE(isolate(), result);
1789      return *value;
1790    }
1791
1792    // Update inline cache and stub cache.
1793    if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) {
1794      LookupResult lookup(isolate());
1795      if (LookupForWrite(receiver, name, &lookup)) {
1796        UpdateCaches(&lookup, state, strict_mode, receiver, name, value);
1797      }
1798    }
1799
1800    // Set the property.
1801    return receiver->SetProperty(*name, *value, NONE, strict_mode);
1802  }
1803
1804  // Do not use ICs for objects that require access checks (including
1805  // the global object).
1806  bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded();
1807  ASSERT(!(use_ic && object->IsJSGlobalProxy()));
1808
1809  if (use_ic) {
1810    Handle<Code> stub = (strict_mode == kStrictMode)
1811        ? generic_stub_strict()
1812        : generic_stub();
1813    if (object->IsJSObject()) {
1814      Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1815      if (receiver->elements()->map() ==
1816          isolate()->heap()->non_strict_arguments_elements_map()) {
1817        stub = non_strict_arguments_stub();
1818      } else if (!force_generic) {
1819        if (key->IsSmi() && (target() != *non_strict_arguments_stub())) {
1820          StubKind stub_kind = GetStubKind(receiver, key, value);
1821          stub = ComputeStub(receiver, stub_kind, strict_mode, stub);
1822        }
1823      } else {
1824        TRACE_GENERIC_IC("KeyedStoreIC", "force generic");
1825      }
1826    }
1827    if (!stub.is_null()) set_target(*stub);
1828  }
1829
1830  TRACE_IC("KeyedStoreIC", key, state, target());
1831
1832  // Set the property.
1833  return Runtime::SetObjectProperty(
1834      isolate(), object , key, value, NONE, strict_mode);
1835}
1836
1837
1838void KeyedStoreIC::UpdateCaches(LookupResult* lookup,
1839                                State state,
1840                                StrictModeFlag strict_mode,
1841                                Handle<JSObject> receiver,
1842                                Handle<String> name,
1843                                Handle<Object> value) {
1844  ASSERT(!receiver->IsJSGlobalProxy());
1845  ASSERT(StoreICableLookup(lookup));
1846  // These are not cacheable, so we never see such LookupResults here.
1847  ASSERT(lookup->type() != HANDLER);
1848  // We get only called for properties or transitions, see StoreICableLookup.
1849  ASSERT(lookup->type() != NULL_DESCRIPTOR);
1850
1851  // If the property has a non-field type allowing map transitions
1852  // where there is extra room in the object, we leave the IC in its
1853  // current state.
1854  PropertyType type = lookup->type();
1855
1856  // Compute the code stub for this store; used for rewriting to
1857  // monomorphic state and making sure that the code stub is in the
1858  // stub cache.
1859  Handle<Code> code;
1860
1861  switch (type) {
1862    case FIELD:
1863      code = isolate()->stub_cache()->ComputeKeyedStoreField(
1864          name, receiver, lookup->GetFieldIndex(),
1865          Handle<Map>::null(), strict_mode);
1866      break;
1867    case MAP_TRANSITION:
1868      if (lookup->GetAttributes() == NONE) {
1869        Handle<Map> transition(lookup->GetTransitionMap());
1870        int index = transition->PropertyIndexFor(*name);
1871        code = isolate()->stub_cache()->ComputeKeyedStoreField(
1872            name, receiver, index, transition, strict_mode);
1873        break;
1874      }
1875      // fall through.
1876    case NORMAL:
1877    case CONSTANT_FUNCTION:
1878    case CALLBACKS:
1879    case INTERCEPTOR:
1880    case CONSTANT_TRANSITION:
1881    case ELEMENTS_TRANSITION:
1882      // Always rewrite to the generic case so that we do not
1883      // repeatedly try to rewrite.
1884      code = (strict_mode == kStrictMode)
1885          ? generic_stub_strict()
1886          : generic_stub();
1887      break;
1888    case HANDLER:
1889    case NULL_DESCRIPTOR:
1890      UNREACHABLE();
1891      return;
1892  }
1893
1894  ASSERT(!code.is_null());
1895
1896  // Patch the call site depending on the state of the cache.  Make
1897  // sure to always rewrite from monomorphic to megamorphic.
1898  ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE);
1899  if (state == UNINITIALIZED || state == PREMONOMORPHIC) {
1900    set_target(*code);
1901  } else if (state == MONOMORPHIC) {
1902    set_target((strict_mode == kStrictMode)
1903                 ? *megamorphic_stub_strict()
1904                 : *megamorphic_stub());
1905  }
1906
1907  TRACE_IC("KeyedStoreIC", name, state, target());
1908}
1909
1910
1911#undef TRACE_IC
1912
1913
1914// ----------------------------------------------------------------------------
1915// Static IC stub generators.
1916//
1917
1918// Used from ic-<arch>.cc.
1919RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
1920  HandleScope scope(isolate);
1921  ASSERT(args.length() == 2);
1922  CallIC ic(isolate);
1923  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1924  Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
1925  MaybeObject* maybe_result = ic.LoadFunction(state,
1926                                              extra_ic_state,
1927                                              args.at<Object>(0),
1928                                              args.at<String>(1));
1929  // Result could be a function or a failure.
1930  JSFunction* raw_function = NULL;
1931  if (!maybe_result->To(&raw_function)) return maybe_result;
1932
1933  // The first time the inline cache is updated may be the first time the
1934  // function it references gets called.  If the function is lazily compiled
1935  // then the first call will trigger a compilation.  We check for this case
1936  // and we do the compilation immediately, instead of waiting for the stub
1937  // currently attached to the JSFunction object to trigger compilation.
1938  if (raw_function->is_compiled()) return raw_function;
1939
1940  Handle<JSFunction> function(raw_function);
1941  JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
1942  return *function;
1943}
1944
1945
1946// Used from ic-<arch>.cc.
1947RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
1948  HandleScope scope(isolate);
1949  ASSERT(args.length() == 2);
1950  KeyedCallIC ic(isolate);
1951  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1952  MaybeObject* maybe_result =
1953      ic.LoadFunction(state, args.at<Object>(0), args.at<Object>(1));
1954  // Result could be a function or a failure.
1955  JSFunction* raw_function = NULL;
1956  if (!maybe_result->To(&raw_function)) return maybe_result;
1957
1958  if (raw_function->is_compiled()) return raw_function;
1959
1960  Handle<JSFunction> function(raw_function);
1961  JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
1962  return *function;
1963}
1964
1965
1966// Used from ic-<arch>.cc.
1967RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
1968  HandleScope scope(isolate);
1969  ASSERT(args.length() == 2);
1970  LoadIC ic(isolate);
1971  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1972  return ic.Load(state, args.at<Object>(0), args.at<String>(1));
1973}
1974
1975
1976// Used from ic-<arch>.cc
1977RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
1978  HandleScope scope(isolate);
1979  ASSERT(args.length() == 2);
1980  KeyedLoadIC ic(isolate);
1981  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1982  return ic.Load(state, args.at<Object>(0), args.at<Object>(1), false);
1983}
1984
1985
1986RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissForceGeneric) {
1987  HandleScope scope(isolate);
1988  ASSERT(args.length() == 2);
1989  KeyedLoadIC ic(isolate);
1990  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
1991  return ic.Load(state, args.at<Object>(0), args.at<Object>(1), true);
1992}
1993
1994
1995// Used from ic-<arch>.cc.
1996RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
1997  HandleScope scope;
1998  ASSERT(args.length() == 3);
1999  StoreIC ic(isolate);
2000  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
2001  Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2002  return ic.Store(state,
2003                  Code::GetStrictMode(extra_ic_state),
2004                  args.at<Object>(0),
2005                  args.at<String>(1),
2006                  args.at<Object>(2));
2007}
2008
2009
2010RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
2011  NoHandleAllocation nha;
2012
2013  ASSERT(args.length() == 2);
2014  JSArray* receiver = JSArray::cast(args[0]);
2015  Object* len = args[1];
2016
2017  // The generated code should filter out non-Smis before we get here.
2018  ASSERT(len->IsSmi());
2019
2020#ifdef DEBUG
2021  // The length property has to be a writable callback property.
2022  LookupResult debug_lookup(isolate);
2023  receiver->LocalLookup(isolate->heap()->length_symbol(), &debug_lookup);
2024  ASSERT(debug_lookup.type() == CALLBACKS && !debug_lookup.IsReadOnly());
2025#endif
2026
2027  Object* result;
2028  { MaybeObject* maybe_result = receiver->SetElementsLength(len);
2029    if (!maybe_result->ToObject(&result)) return maybe_result;
2030  }
2031  return len;
2032}
2033
2034
2035// Extend storage is called in a store inline cache when
2036// it is necessary to extend the properties array of a
2037// JSObject.
2038RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
2039  NoHandleAllocation na;
2040  ASSERT(args.length() == 3);
2041
2042  // Convert the parameters
2043  JSObject* object = JSObject::cast(args[0]);
2044  Map* transition = Map::cast(args[1]);
2045  Object* value = args[2];
2046
2047  // Check the object has run out out property space.
2048  ASSERT(object->HasFastProperties());
2049  ASSERT(object->map()->unused_property_fields() == 0);
2050
2051  // Expand the properties array.
2052  FixedArray* old_storage = object->properties();
2053  int new_unused = transition->unused_property_fields();
2054  int new_size = old_storage->length() + new_unused + 1;
2055  Object* result;
2056  { MaybeObject* maybe_result = old_storage->CopySize(new_size);
2057    if (!maybe_result->ToObject(&result)) return maybe_result;
2058  }
2059  FixedArray* new_storage = FixedArray::cast(result);
2060  new_storage->set(old_storage->length(), value);
2061
2062  // Set the new property value and do the map transition.
2063  object->set_properties(new_storage);
2064  object->set_map(transition);
2065
2066  // Return the stored value.
2067  return value;
2068}
2069
2070
2071// Used from ic-<arch>.cc.
2072RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
2073  HandleScope scope(isolate);
2074  ASSERT(args.length() == 3);
2075  KeyedStoreIC ic(isolate);
2076  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
2077  Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2078  return ic.Store(state,
2079                  Code::GetStrictMode(extra_ic_state),
2080                  args.at<Object>(0),
2081                  args.at<Object>(1),
2082                  args.at<Object>(2),
2083                  false);
2084}
2085
2086
2087RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
2088  NoHandleAllocation na;
2089  ASSERT(args.length() == 3);
2090  KeyedStoreIC ic(isolate);
2091  Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2092  Handle<Object> object = args.at<Object>(0);
2093  Handle<Object> key = args.at<Object>(1);
2094  Handle<Object> value = args.at<Object>(2);
2095  StrictModeFlag strict_mode = Code::GetStrictMode(extra_ic_state);
2096  return Runtime::SetObjectProperty(isolate,
2097                                    object,
2098                                    key,
2099                                    value,
2100                                    NONE,
2101                                    strict_mode);
2102}
2103
2104
2105RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissForceGeneric) {
2106  HandleScope scope(isolate);
2107  ASSERT(args.length() == 3);
2108  KeyedStoreIC ic(isolate);
2109  IC::State state = IC::StateFrom(ic.target(), args[0], args[1]);
2110  Code::ExtraICState extra_ic_state = ic.target()->extra_ic_state();
2111  return ic.Store(state,
2112                  Code::GetStrictMode(extra_ic_state),
2113                  args.at<Object>(0),
2114                  args.at<Object>(1),
2115                  args.at<Object>(2),
2116                  true);
2117}
2118
2119
2120void UnaryOpIC::patch(Code* code) {
2121  set_target(code);
2122}
2123
2124
2125const char* UnaryOpIC::GetName(TypeInfo type_info) {
2126  switch (type_info) {
2127    case UNINITIALIZED: return "Uninitialized";
2128    case SMI: return "Smi";
2129    case HEAP_NUMBER: return "HeapNumbers";
2130    case GENERIC: return "Generic";
2131    default: return "Invalid";
2132  }
2133}
2134
2135
2136UnaryOpIC::State UnaryOpIC::ToState(TypeInfo type_info) {
2137  switch (type_info) {
2138    case UNINITIALIZED:
2139      return ::v8::internal::UNINITIALIZED;
2140    case SMI:
2141    case HEAP_NUMBER:
2142      return MONOMORPHIC;
2143    case GENERIC:
2144      return MEGAMORPHIC;
2145  }
2146  UNREACHABLE();
2147  return ::v8::internal::UNINITIALIZED;
2148}
2149
2150UnaryOpIC::TypeInfo UnaryOpIC::GetTypeInfo(Handle<Object> operand) {
2151  ::v8::internal::TypeInfo operand_type =
2152      ::v8::internal::TypeInfo::TypeFromValue(operand);
2153  if (operand_type.IsSmi()) {
2154    return SMI;
2155  } else if (operand_type.IsNumber()) {
2156    return HEAP_NUMBER;
2157  } else {
2158    return GENERIC;
2159  }
2160}
2161
2162
2163UnaryOpIC::TypeInfo UnaryOpIC::ComputeNewType(
2164    UnaryOpIC::TypeInfo current_type,
2165    UnaryOpIC::TypeInfo previous_type) {
2166  switch (previous_type) {
2167    case UnaryOpIC::UNINITIALIZED:
2168      return current_type;
2169    case UnaryOpIC::SMI:
2170      return (current_type == UnaryOpIC::GENERIC)
2171          ? UnaryOpIC::GENERIC
2172          : UnaryOpIC::HEAP_NUMBER;
2173    case UnaryOpIC::HEAP_NUMBER:
2174      return UnaryOpIC::GENERIC;
2175    case UnaryOpIC::GENERIC:
2176      // We should never do patching if we are in GENERIC state.
2177      UNREACHABLE();
2178      return UnaryOpIC::GENERIC;
2179  }
2180  UNREACHABLE();
2181  return UnaryOpIC::GENERIC;
2182}
2183
2184
2185void BinaryOpIC::patch(Code* code) {
2186  set_target(code);
2187}
2188
2189
2190const char* BinaryOpIC::GetName(TypeInfo type_info) {
2191  switch (type_info) {
2192    case UNINITIALIZED: return "Uninitialized";
2193    case SMI: return "SMI";
2194    case INT32: return "Int32s";
2195    case HEAP_NUMBER: return "HeapNumbers";
2196    case ODDBALL: return "Oddball";
2197    case BOTH_STRING: return "BothStrings";
2198    case STRING: return "Strings";
2199    case GENERIC: return "Generic";
2200    default: return "Invalid";
2201  }
2202}
2203
2204
2205BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) {
2206  switch (type_info) {
2207    case UNINITIALIZED:
2208      return ::v8::internal::UNINITIALIZED;
2209    case SMI:
2210    case INT32:
2211    case HEAP_NUMBER:
2212    case ODDBALL:
2213    case BOTH_STRING:
2214    case STRING:
2215      return MONOMORPHIC;
2216    case GENERIC:
2217      return MEGAMORPHIC;
2218  }
2219  UNREACHABLE();
2220  return ::v8::internal::UNINITIALIZED;
2221}
2222
2223
2224BinaryOpIC::TypeInfo BinaryOpIC::JoinTypes(BinaryOpIC::TypeInfo x,
2225                                           BinaryOpIC::TypeInfo y) {
2226  if (x == UNINITIALIZED) return y;
2227  if (y == UNINITIALIZED) return x;
2228  if (x == y) return x;
2229  if (x == BOTH_STRING && y == STRING) return STRING;
2230  if (x == STRING && y == BOTH_STRING) return STRING;
2231  if (x == STRING || x == BOTH_STRING || y == STRING || y == BOTH_STRING) {
2232    return GENERIC;
2233  }
2234  if (x > y) return x;
2235  return y;
2236}
2237
2238
2239BinaryOpIC::TypeInfo BinaryOpIC::GetTypeInfo(Handle<Object> left,
2240                                             Handle<Object> right) {
2241  ::v8::internal::TypeInfo left_type =
2242      ::v8::internal::TypeInfo::TypeFromValue(left);
2243  ::v8::internal::TypeInfo right_type =
2244      ::v8::internal::TypeInfo::TypeFromValue(right);
2245
2246  if (left_type.IsSmi() && right_type.IsSmi()) {
2247    return SMI;
2248  }
2249
2250  if (left_type.IsInteger32() && right_type.IsInteger32()) {
2251    // Platforms with 32-bit Smis have no distinct INT32 type.
2252    if (kSmiValueSize == 32) return SMI;
2253    return INT32;
2254  }
2255
2256  if (left_type.IsNumber() && right_type.IsNumber()) {
2257    return HEAP_NUMBER;
2258  }
2259
2260  // Patching for fast string ADD makes sense even if only one of the
2261  // arguments is a string.
2262  if (left_type.IsString())  {
2263    return right_type.IsString() ? BOTH_STRING : STRING;
2264  } else if (right_type.IsString()) {
2265    return STRING;
2266  }
2267
2268  // Check for oddball objects.
2269  if (left->IsUndefined() && right->IsNumber()) return ODDBALL;
2270  if (left->IsNumber() && right->IsUndefined()) return ODDBALL;
2271
2272  return GENERIC;
2273}
2274
2275
2276RUNTIME_FUNCTION(MaybeObject*, UnaryOp_Patch) {
2277  ASSERT(args.length() == 4);
2278
2279  HandleScope scope(isolate);
2280  Handle<Object> operand = args.at<Object>(0);
2281  Token::Value op = static_cast<Token::Value>(args.smi_at(1));
2282  UnaryOverwriteMode mode = static_cast<UnaryOverwriteMode>(args.smi_at(2));
2283  UnaryOpIC::TypeInfo previous_type =
2284      static_cast<UnaryOpIC::TypeInfo>(args.smi_at(3));
2285
2286  UnaryOpIC::TypeInfo type = UnaryOpIC::GetTypeInfo(operand);
2287  type = UnaryOpIC::ComputeNewType(type, previous_type);
2288
2289  UnaryOpStub stub(op, mode, type);
2290  Handle<Code> code = stub.GetCode();
2291  if (!code.is_null()) {
2292    if (FLAG_trace_ic) {
2293      PrintF("[UnaryOpIC (%s->%s)#%s]\n",
2294             UnaryOpIC::GetName(previous_type),
2295             UnaryOpIC::GetName(type),
2296             Token::Name(op));
2297    }
2298    UnaryOpIC ic(isolate);
2299    ic.patch(*code);
2300  }
2301
2302  Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>(
2303      isolate->thread_local_top()->context_->builtins(), isolate);
2304  Object* builtin = NULL;  // Initialization calms down the compiler.
2305  switch (op) {
2306    case Token::SUB:
2307      builtin = builtins->javascript_builtin(Builtins::UNARY_MINUS);
2308      break;
2309    case Token::BIT_NOT:
2310      builtin = builtins->javascript_builtin(Builtins::BIT_NOT);
2311      break;
2312    default:
2313      UNREACHABLE();
2314  }
2315
2316  Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
2317
2318  bool caught_exception;
2319  Handle<Object> result = Execution::Call(builtin_function, operand, 0, NULL,
2320                                          &caught_exception);
2321  if (caught_exception) {
2322    return Failure::Exception();
2323  }
2324  return *result;
2325}
2326
2327RUNTIME_FUNCTION(MaybeObject*, BinaryOp_Patch) {
2328  ASSERT(args.length() == 5);
2329
2330  HandleScope scope(isolate);
2331  Handle<Object> left = args.at<Object>(0);
2332  Handle<Object> right = args.at<Object>(1);
2333  int key = args.smi_at(2);
2334  Token::Value op = static_cast<Token::Value>(args.smi_at(3));
2335  BinaryOpIC::TypeInfo previous_type =
2336      static_cast<BinaryOpIC::TypeInfo>(args.smi_at(4));
2337
2338  BinaryOpIC::TypeInfo type = BinaryOpIC::GetTypeInfo(left, right);
2339  type = BinaryOpIC::JoinTypes(type, previous_type);
2340  BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED;
2341  if ((type == BinaryOpIC::STRING || type == BinaryOpIC::BOTH_STRING) &&
2342      op != Token::ADD) {
2343    type = BinaryOpIC::GENERIC;
2344  }
2345  if (type == BinaryOpIC::SMI && previous_type == BinaryOpIC::SMI) {
2346    if (op == Token::DIV ||
2347        op == Token::MUL ||
2348        op == Token::SHR ||
2349        kSmiValueSize == 32) {
2350      // Arithmetic on two Smi inputs has yielded a heap number.
2351      // That is the only way to get here from the Smi stub.
2352      // With 32-bit Smis, all overflows give heap numbers, but with
2353      // 31-bit Smis, most operations overflow to int32 results.
2354      result_type = BinaryOpIC::HEAP_NUMBER;
2355    } else {
2356      // Other operations on SMIs that overflow yield int32s.
2357      result_type = BinaryOpIC::INT32;
2358    }
2359  }
2360  if (type == BinaryOpIC::INT32 && previous_type == BinaryOpIC::INT32) {
2361    // We must be here because an operation on two INT32 types overflowed.
2362    result_type = BinaryOpIC::HEAP_NUMBER;
2363  }
2364
2365  BinaryOpStub stub(key, type, result_type);
2366  Handle<Code> code = stub.GetCode();
2367  if (!code.is_null()) {
2368    if (FLAG_trace_ic) {
2369      PrintF("[BinaryOpIC (%s->(%s->%s))#%s]\n",
2370             BinaryOpIC::GetName(previous_type),
2371             BinaryOpIC::GetName(type),
2372             BinaryOpIC::GetName(result_type),
2373             Token::Name(op));
2374    }
2375    BinaryOpIC ic(isolate);
2376    ic.patch(*code);
2377
2378    // Activate inlined smi code.
2379    if (previous_type == BinaryOpIC::UNINITIALIZED) {
2380      PatchInlinedSmiCode(ic.address());
2381    }
2382  }
2383
2384  Handle<JSBuiltinsObject> builtins = Handle<JSBuiltinsObject>(
2385      isolate->thread_local_top()->context_->builtins(), isolate);
2386  Object* builtin = NULL;  // Initialization calms down the compiler.
2387  switch (op) {
2388    case Token::ADD:
2389      builtin = builtins->javascript_builtin(Builtins::ADD);
2390      break;
2391    case Token::SUB:
2392      builtin = builtins->javascript_builtin(Builtins::SUB);
2393      break;
2394    case Token::MUL:
2395      builtin = builtins->javascript_builtin(Builtins::MUL);
2396      break;
2397    case Token::DIV:
2398      builtin = builtins->javascript_builtin(Builtins::DIV);
2399      break;
2400    case Token::MOD:
2401      builtin = builtins->javascript_builtin(Builtins::MOD);
2402      break;
2403    case Token::BIT_AND:
2404      builtin = builtins->javascript_builtin(Builtins::BIT_AND);
2405      break;
2406    case Token::BIT_OR:
2407      builtin = builtins->javascript_builtin(Builtins::BIT_OR);
2408      break;
2409    case Token::BIT_XOR:
2410      builtin = builtins->javascript_builtin(Builtins::BIT_XOR);
2411      break;
2412    case Token::SHR:
2413      builtin = builtins->javascript_builtin(Builtins::SHR);
2414      break;
2415    case Token::SAR:
2416      builtin = builtins->javascript_builtin(Builtins::SAR);
2417      break;
2418    case Token::SHL:
2419      builtin = builtins->javascript_builtin(Builtins::SHL);
2420      break;
2421    default:
2422      UNREACHABLE();
2423  }
2424
2425  Handle<JSFunction> builtin_function(JSFunction::cast(builtin), isolate);
2426
2427  bool caught_exception;
2428  Handle<Object> builtin_args[] = { right };
2429  Handle<Object> result = Execution::Call(builtin_function,
2430                                          left,
2431                                          ARRAY_SIZE(builtin_args),
2432                                          builtin_args,
2433                                          &caught_exception);
2434  if (caught_exception) {
2435    return Failure::Exception();
2436  }
2437  return *result;
2438}
2439
2440
2441Handle<Code> CompareIC::GetUninitialized(Token::Value op) {
2442  ICCompareStub stub(op, UNINITIALIZED);
2443  return stub.GetCode();
2444}
2445
2446
2447CompareIC::State CompareIC::ComputeState(Code* target) {
2448  int key = target->major_key();
2449  if (key == CodeStub::Compare) return GENERIC;
2450  ASSERT(key == CodeStub::CompareIC);
2451  return static_cast<State>(target->compare_state());
2452}
2453
2454
2455const char* CompareIC::GetStateName(State state) {
2456  switch (state) {
2457    case UNINITIALIZED: return "UNINITIALIZED";
2458    case SMIS: return "SMIS";
2459    case HEAP_NUMBERS: return "HEAP_NUMBERS";
2460    case OBJECTS: return "OBJECTS";
2461    case KNOWN_OBJECTS: return "OBJECTS";
2462    case SYMBOLS: return "SYMBOLS";
2463    case STRINGS: return "STRINGS";
2464    case GENERIC: return "GENERIC";
2465    default:
2466      UNREACHABLE();
2467      return NULL;
2468  }
2469}
2470
2471
2472CompareIC::State CompareIC::TargetState(State state,
2473                                        bool has_inlined_smi_code,
2474                                        Handle<Object> x,
2475                                        Handle<Object> y) {
2476  switch (state) {
2477    case UNINITIALIZED:
2478      if (x->IsSmi() && y->IsSmi()) return SMIS;
2479      if (x->IsNumber() && y->IsNumber()) return HEAP_NUMBERS;
2480      if (Token::IsOrderedRelationalCompareOp(op_)) {
2481        // Ordered comparisons treat undefined as NaN, so the
2482        // HEAP_NUMBER stub will do the right thing.
2483        if ((x->IsNumber() && y->IsUndefined()) ||
2484            (y->IsNumber() && x->IsUndefined())) {
2485          return HEAP_NUMBERS;
2486        }
2487      }
2488      if (x->IsSymbol() && y->IsSymbol()) {
2489        // We compare symbols as strings if we need to determine
2490        // the order in a non-equality compare.
2491        return Token::IsEqualityOp(op_) ? SYMBOLS : STRINGS;
2492      }
2493      if (x->IsString() && y->IsString()) return STRINGS;
2494      if (!Token::IsEqualityOp(op_)) return GENERIC;
2495      if (x->IsJSObject() && y->IsJSObject()) {
2496        if (Handle<JSObject>::cast(x)->map() ==
2497            Handle<JSObject>::cast(y)->map() &&
2498            Token::IsEqualityOp(op_)) {
2499          return KNOWN_OBJECTS;
2500        } else {
2501          return OBJECTS;
2502        }
2503      }
2504      return GENERIC;
2505    case SMIS:
2506      return has_inlined_smi_code && x->IsNumber() && y->IsNumber()
2507          ? HEAP_NUMBERS
2508          : GENERIC;
2509    case SYMBOLS:
2510      ASSERT(Token::IsEqualityOp(op_));
2511      return x->IsString() && y->IsString() ? STRINGS : GENERIC;
2512    case HEAP_NUMBERS:
2513    case STRINGS:
2514    case OBJECTS:
2515    case KNOWN_OBJECTS:
2516    case GENERIC:
2517      return GENERIC;
2518  }
2519  UNREACHABLE();
2520  return GENERIC;
2521}
2522
2523
2524// Used from ic_<arch>.cc.
2525RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
2526  NoHandleAllocation na;
2527  ASSERT(args.length() == 3);
2528  CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
2529  ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
2530  return ic.target();
2531}
2532
2533
2534RUNTIME_FUNCTION(MaybeObject*, ToBoolean_Patch) {
2535  ASSERT(args.length() == 3);
2536
2537  HandleScope scope(isolate);
2538  Handle<Object> object = args.at<Object>(0);
2539  Register tos = Register::from_code(args.smi_at(1));
2540  ToBooleanStub::Types old_types(args.smi_at(2));
2541
2542  ToBooleanStub::Types new_types(old_types);
2543  bool to_boolean_value = new_types.Record(object);
2544  old_types.TraceTransition(new_types);
2545
2546  ToBooleanStub stub(tos, new_types);
2547  Handle<Code> code = stub.GetCode();
2548  ToBooleanIC ic(isolate);
2549  ic.patch(*code);
2550  return Smi::FromInt(to_boolean_value ? 1 : 0);
2551}
2552
2553
2554void ToBooleanIC::patch(Code* code) {
2555  set_target(code);
2556}
2557
2558
2559static const Address IC_utilities[] = {
2560#define ADDR(name) FUNCTION_ADDR(name),
2561    IC_UTIL_LIST(ADDR)
2562    NULL
2563#undef ADDR
2564};
2565
2566
2567Address IC::AddressFromUtilityId(IC::UtilityId id) {
2568  return IC_utilities[id];
2569}
2570
2571
2572} }  // namespace v8::internal
2573