1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_MIPS)
31
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "codegen.h"
35#include "regexp-macro-assembler.h"
36
37namespace v8 {
38namespace internal {
39
40
41#define __ ACCESS_MASM(masm)
42
43static void EmitIdenticalObjectComparison(MacroAssembler* masm,
44                                          Label* slow,
45                                          Condition cc,
46                                          bool never_nan_nan);
47static void EmitSmiNonsmiComparison(MacroAssembler* masm,
48                                    Register lhs,
49                                    Register rhs,
50                                    Label* rhs_not_nan,
51                                    Label* slow,
52                                    bool strict);
53static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
54static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
55                                           Register lhs,
56                                           Register rhs);
57
58
59// Check if the operand is a heap number.
60static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
61                                   Register scratch1, Register scratch2,
62                                   Label* not_a_heap_number) {
63  __ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
64  __ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
65  __ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2));
66}
67
68
69void ToNumberStub::Generate(MacroAssembler* masm) {
70  // The ToNumber stub takes one argument in a0.
71  Label check_heap_number, call_builtin;
72  __ JumpIfNotSmi(a0, &check_heap_number);
73  __ Ret(USE_DELAY_SLOT);
74  __ mov(v0, a0);
75
76  __ bind(&check_heap_number);
77  EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin);
78  __ Ret(USE_DELAY_SLOT);
79  __ mov(v0, a0);
80
81  __ bind(&call_builtin);
82  __ push(a0);
83  __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
84}
85
86
87void FastNewClosureStub::Generate(MacroAssembler* masm) {
88  // Create a new closure from the given function info in new
89  // space. Set the context to the current context in cp.
90  Label gc;
91
92  // Pop the function info from the stack.
93  __ pop(a3);
94
95  // Attempt to allocate new JSFunction in new space.
96  __ AllocateInNewSpace(JSFunction::kSize,
97                        v0,
98                        a1,
99                        a2,
100                        &gc,
101                        TAG_OBJECT);
102
103  int map_index = (language_mode_ == CLASSIC_MODE)
104      ? Context::FUNCTION_MAP_INDEX
105      : Context::STRICT_MODE_FUNCTION_MAP_INDEX;
106
107  // Compute the function map in the current global context and set that
108  // as the map of the allocated object.
109  __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
110  __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
111  __ lw(a2, MemOperand(a2, Context::SlotOffset(map_index)));
112  __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
113
114  // Initialize the rest of the function. We don't have to update the
115  // write barrier because the allocated object is in new space.
116  __ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
117  __ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
118  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
119  __ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
120  __ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset));
121  __ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset));
122  __ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
123  __ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset));
124  __ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset));
125  __ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset));
126
127  // Initialize the code pointer in the function to be the one
128  // found in the shared function info object.
129  __ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset));
130  __ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag));
131
132  // Return result. The argument function info has been popped already.
133  __ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset));
134  __ Ret();
135
136  // Create a new closure through the slower runtime call.
137  __ bind(&gc);
138  __ LoadRoot(t0, Heap::kFalseValueRootIndex);
139  __ Push(cp, a3, t0);
140  __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
141}
142
143
144void FastNewContextStub::Generate(MacroAssembler* masm) {
145  // Try to allocate the context in new space.
146  Label gc;
147  int length = slots_ + Context::MIN_CONTEXT_SLOTS;
148
149  // Attempt to allocate the context in new space.
150  __ AllocateInNewSpace(FixedArray::SizeFor(length),
151                        v0,
152                        a1,
153                        a2,
154                        &gc,
155                        TAG_OBJECT);
156
157  // Load the function from the stack.
158  __ lw(a3, MemOperand(sp, 0));
159
160  // Set up the object header.
161  __ LoadRoot(a1, Heap::kFunctionContextMapRootIndex);
162  __ li(a2, Operand(Smi::FromInt(length)));
163  __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
164  __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
165
166  // Set up the fixed slots, copy the global object from the previous context.
167  __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
168  __ li(a1, Operand(Smi::FromInt(0)));
169  __ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX)));
170  __ sw(cp, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
171  __ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX)));
172  __ sw(a2, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX)));
173
174  // Initialize the rest of the slots to undefined.
175  __ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
176  for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
177    __ sw(a1, MemOperand(v0, Context::SlotOffset(i)));
178  }
179
180  // Remove the on-stack argument and return.
181  __ mov(cp, v0);
182  __ DropAndRet(1);
183
184  // Need to collect. Call into runtime system.
185  __ bind(&gc);
186  __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
187}
188
189
190void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
191  // Stack layout on entry:
192  //
193  // [sp]: function.
194  // [sp + kPointerSize]: serialized scope info
195
196  // Try to allocate the context in new space.
197  Label gc;
198  int length = slots_ + Context::MIN_CONTEXT_SLOTS;
199  __ AllocateInNewSpace(FixedArray::SizeFor(length),
200                        v0, a1, a2, &gc, TAG_OBJECT);
201
202  // Load the function from the stack.
203  __ lw(a3, MemOperand(sp, 0));
204
205  // Load the serialized scope info from the stack.
206  __ lw(a1, MemOperand(sp, 1 * kPointerSize));
207
208  // Set up the object header.
209  __ LoadRoot(a2, Heap::kBlockContextMapRootIndex);
210  __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
211  __ li(a2, Operand(Smi::FromInt(length)));
212  __ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
213
214  // If this block context is nested in the global context we get a smi
215  // sentinel instead of a function. The block context should get the
216  // canonical empty function of the global context as its closure which
217  // we still have to look up.
218  Label after_sentinel;
219  __ JumpIfNotSmi(a3, &after_sentinel);
220  if (FLAG_debug_code) {
221    const char* message = "Expected 0 as a Smi sentinel";
222    __ Assert(eq, message, a3, Operand(zero_reg));
223  }
224  __ lw(a3, GlobalObjectOperand());
225  __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
226  __ lw(a3, ContextOperand(a3, Context::CLOSURE_INDEX));
227  __ bind(&after_sentinel);
228
229  // Set up the fixed slots, copy the global object from the previous context.
230  __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
231  __ sw(a3, ContextOperand(v0, Context::CLOSURE_INDEX));
232  __ sw(cp, ContextOperand(v0, Context::PREVIOUS_INDEX));
233  __ sw(a1, ContextOperand(v0, Context::EXTENSION_INDEX));
234  __ sw(a2, ContextOperand(v0, Context::GLOBAL_INDEX));
235
236  // Initialize the rest of the slots to the hole value.
237  __ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
238  for (int i = 0; i < slots_; i++) {
239    __ sw(a1, ContextOperand(v0, i + Context::MIN_CONTEXT_SLOTS));
240  }
241
242  // Remove the on-stack argument and return.
243  __ mov(cp, v0);
244  __ DropAndRet(2);
245
246  // Need to collect. Call into runtime system.
247  __ bind(&gc);
248  __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
249}
250
251
252static void GenerateFastCloneShallowArrayCommon(
253    MacroAssembler* masm,
254    int length,
255    FastCloneShallowArrayStub::Mode mode,
256    Label* fail) {
257  // Registers on entry:
258  // a3: boilerplate literal array.
259  ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
260
261  // All sizes here are multiples of kPointerSize.
262  int elements_size = 0;
263  if (length > 0) {
264    elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
265        ? FixedDoubleArray::SizeFor(length)
266        : FixedArray::SizeFor(length);
267  }
268  int size = JSArray::kSize + elements_size;
269
270  // Allocate both the JS array and the elements array in one big
271  // allocation. This avoids multiple limit checks.
272  __ AllocateInNewSpace(size,
273                        v0,
274                        a1,
275                        a2,
276                        fail,
277                        TAG_OBJECT);
278
279  // Copy the JS array part.
280  for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
281    if ((i != JSArray::kElementsOffset) || (length == 0)) {
282      __ lw(a1, FieldMemOperand(a3, i));
283      __ sw(a1, FieldMemOperand(v0, i));
284    }
285  }
286
287  if (length > 0) {
288    // Get hold of the elements array of the boilerplate and setup the
289    // elements pointer in the resulting object.
290    __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
291    __ Addu(a2, v0, Operand(JSArray::kSize));
292    __ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset));
293
294    // Copy the elements array.
295    ASSERT((elements_size % kPointerSize) == 0);
296    __ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize);
297  }
298}
299
300void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
301  // Stack layout on entry:
302  //
303  // [sp]: constant elements.
304  // [sp + kPointerSize]: literal index.
305  // [sp + (2 * kPointerSize)]: literals array.
306
307  // Load boilerplate object into r3 and check if we need to create a
308  // boilerplate.
309  Label slow_case;
310  __ lw(a3, MemOperand(sp, 2 * kPointerSize));
311  __ lw(a0, MemOperand(sp, 1 * kPointerSize));
312  __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
313  __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
314  __ Addu(t0, a3, t0);
315  __ lw(a3, MemOperand(t0));
316  __ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
317  __ Branch(&slow_case, eq, a3, Operand(t1));
318
319  FastCloneShallowArrayStub::Mode mode = mode_;
320  if (mode == CLONE_ANY_ELEMENTS) {
321    Label double_elements, check_fast_elements;
322    __ lw(v0, FieldMemOperand(a3, JSArray::kElementsOffset));
323    __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
324    __ LoadRoot(t1, Heap::kFixedCOWArrayMapRootIndex);
325    __ Branch(&check_fast_elements, ne, v0, Operand(t1));
326    GenerateFastCloneShallowArrayCommon(masm, 0,
327                                        COPY_ON_WRITE_ELEMENTS, &slow_case);
328    // Return and remove the on-stack parameters.
329    __ DropAndRet(3);
330
331    __ bind(&check_fast_elements);
332    __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
333    __ Branch(&double_elements, ne, v0, Operand(t1));
334    GenerateFastCloneShallowArrayCommon(masm, length_,
335                                        CLONE_ELEMENTS, &slow_case);
336    // Return and remove the on-stack parameters.
337    __ DropAndRet(3);
338
339    __ bind(&double_elements);
340    mode = CLONE_DOUBLE_ELEMENTS;
341    // Fall through to generate the code to handle double elements.
342  }
343
344  if (FLAG_debug_code) {
345    const char* message;
346    Heap::RootListIndex expected_map_index;
347    if (mode == CLONE_ELEMENTS) {
348      message = "Expected (writable) fixed array";
349      expected_map_index = Heap::kFixedArrayMapRootIndex;
350    } else if (mode == CLONE_DOUBLE_ELEMENTS) {
351      message = "Expected (writable) fixed double array";
352      expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
353    } else {
354      ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
355      message = "Expected copy-on-write fixed array";
356      expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
357    }
358    __ push(a3);
359    __ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
360    __ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset));
361    __ LoadRoot(at, expected_map_index);
362    __ Assert(eq, message, a3, Operand(at));
363    __ pop(a3);
364  }
365
366  GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
367
368  // Return and remove the on-stack parameters.
369  __ DropAndRet(3);
370
371  __ bind(&slow_case);
372  __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
373}
374
375
376void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
377  // Stack layout on entry:
378  //
379  // [sp]: object literal flags.
380  // [sp + kPointerSize]: constant properties.
381  // [sp + (2 * kPointerSize)]: literal index.
382  // [sp + (3 * kPointerSize)]: literals array.
383
384  // Load boilerplate object into a3 and check if we need to create a
385  // boilerplate.
386  Label slow_case;
387  __ lw(a3, MemOperand(sp, 3 * kPointerSize));
388  __ lw(a0, MemOperand(sp, 2 * kPointerSize));
389  __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
390  __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
391  __ Addu(a3, t0, a3);
392  __ lw(a3, MemOperand(a3));
393  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
394  __ Branch(&slow_case, eq, a3, Operand(t0));
395
396  // Check that the boilerplate contains only fast properties and we can
397  // statically determine the instance size.
398  int size = JSObject::kHeaderSize + length_ * kPointerSize;
399  __ lw(a0, FieldMemOperand(a3, HeapObject::kMapOffset));
400  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceSizeOffset));
401  __ Branch(&slow_case, ne, a0, Operand(size >> kPointerSizeLog2));
402
403  // Allocate the JS object and copy header together with all in-object
404  // properties from the boilerplate.
405  __ AllocateInNewSpace(size, v0, a1, a2, &slow_case, TAG_OBJECT);
406  for (int i = 0; i < size; i += kPointerSize) {
407    __ lw(a1, FieldMemOperand(a3, i));
408    __ sw(a1, FieldMemOperand(v0, i));
409  }
410
411  // Return and remove the on-stack parameters.
412  __ DropAndRet(4);
413
414  __ bind(&slow_case);
415  __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
416}
417
418
419// Takes a Smi and converts to an IEEE 64 bit floating point value in two
420// registers.  The format is 1 sign bit, 11 exponent bits (biased 1023) and
421// 52 fraction bits (20 in the first word, 32 in the second).  Zeros is a
422// scratch register.  Destroys the source register.  No GC occurs during this
423// stub so you don't have to set up the frame.
424class ConvertToDoubleStub : public CodeStub {
425 public:
426  ConvertToDoubleStub(Register result_reg_1,
427                      Register result_reg_2,
428                      Register source_reg,
429                      Register scratch_reg)
430      : result1_(result_reg_1),
431        result2_(result_reg_2),
432        source_(source_reg),
433        zeros_(scratch_reg) { }
434
435 private:
436  Register result1_;
437  Register result2_;
438  Register source_;
439  Register zeros_;
440
441  // Minor key encoding in 16 bits.
442  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
443  class OpBits: public BitField<Token::Value, 2, 14> {};
444
445  Major MajorKey() { return ConvertToDouble; }
446  int MinorKey() {
447    // Encode the parameters in a unique 16 bit value.
448    return  result1_.code() +
449           (result2_.code() << 4) +
450           (source_.code() << 8) +
451           (zeros_.code() << 12);
452  }
453
454  void Generate(MacroAssembler* masm);
455};
456
457
458void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
459#ifndef BIG_ENDIAN_FLOATING_POINT
460  Register exponent = result1_;
461  Register mantissa = result2_;
462#else
463  Register exponent = result2_;
464  Register mantissa = result1_;
465#endif
466  Label not_special;
467  // Convert from Smi to integer.
468  __ sra(source_, source_, kSmiTagSize);
469  // Move sign bit from source to destination.  This works because the sign bit
470  // in the exponent word of the double has the same position and polarity as
471  // the 2's complement sign bit in a Smi.
472  STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
473  __ And(exponent, source_, Operand(HeapNumber::kSignMask));
474  // Subtract from 0 if source was negative.
475  __ subu(at, zero_reg, source_);
476  __ Movn(source_, at, exponent);
477
478  // We have -1, 0 or 1, which we treat specially. Register source_ contains
479  // absolute value: it is either equal to 1 (special case of -1 and 1),
480  // greater than 1 (not a special case) or less than 1 (special case of 0).
481  __ Branch(&not_special, gt, source_, Operand(1));
482
483  // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
484  const uint32_t exponent_word_for_1 =
485      HeapNumber::kExponentBias << HeapNumber::kExponentShift;
486  // Safe to use 'at' as dest reg here.
487  __ Or(at, exponent, Operand(exponent_word_for_1));
488  __ Movn(exponent, at, source_);  // Write exp when source not 0.
489  // 1, 0 and -1 all have 0 for the second word.
490  __ Ret(USE_DELAY_SLOT);
491  __ mov(mantissa, zero_reg);
492
493  __ bind(&not_special);
494  // Count leading zeros.
495  // Gets the wrong answer for 0, but we already checked for that case above.
496  __ Clz(zeros_, source_);
497  // Compute exponent and or it into the exponent register.
498  // We use mantissa as a scratch register here.
499  __ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
500  __ subu(mantissa, mantissa, zeros_);
501  __ sll(mantissa, mantissa, HeapNumber::kExponentShift);
502  __ Or(exponent, exponent, mantissa);
503
504  // Shift up the source chopping the top bit off.
505  __ Addu(zeros_, zeros_, Operand(1));
506  // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
507  __ sllv(source_, source_, zeros_);
508  // Compute lower part of fraction (last 12 bits).
509  __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
510  // And the top (top 20 bits).
511  __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);
512
513  __ Ret(USE_DELAY_SLOT);
514  __ or_(exponent, exponent, source_);
515}
516
517
518void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
519                                   FloatingPointHelper::Destination destination,
520                                   Register scratch1,
521                                   Register scratch2) {
522  if (CpuFeatures::IsSupported(FPU)) {
523    CpuFeatures::Scope scope(FPU);
524    __ sra(scratch1, a0, kSmiTagSize);
525    __ mtc1(scratch1, f14);
526    __ cvt_d_w(f14, f14);
527    __ sra(scratch1, a1, kSmiTagSize);
528    __ mtc1(scratch1, f12);
529    __ cvt_d_w(f12, f12);
530    if (destination == kCoreRegisters) {
531      __ Move(a2, a3, f14);
532      __ Move(a0, a1, f12);
533    }
534  } else {
535    ASSERT(destination == kCoreRegisters);
536    // Write Smi from a0 to a3 and a2 in double format.
537    __ mov(scratch1, a0);
538    ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2);
539    __ push(ra);
540    __ Call(stub1.GetCode());
541    // Write Smi from a1 to a1 and a0 in double format.
542    __ mov(scratch1, a1);
543    ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2);
544    __ Call(stub2.GetCode());
545    __ pop(ra);
546  }
547}
548
549
550void FloatingPointHelper::LoadOperands(
551    MacroAssembler* masm,
552    FloatingPointHelper::Destination destination,
553    Register heap_number_map,
554    Register scratch1,
555    Register scratch2,
556    Label* slow) {
557
558  // Load right operand (a0) to f12 or a2/a3.
559  LoadNumber(masm, destination,
560             a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow);
561
562  // Load left operand (a1) to f14 or a0/a1.
563  LoadNumber(masm, destination,
564             a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow);
565}
566
567
568void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
569                                     Destination destination,
570                                     Register object,
571                                     FPURegister dst,
572                                     Register dst1,
573                                     Register dst2,
574                                     Register heap_number_map,
575                                     Register scratch1,
576                                     Register scratch2,
577                                     Label* not_number) {
578  if (FLAG_debug_code) {
579    __ AbortIfNotRootValue(heap_number_map,
580                           Heap::kHeapNumberMapRootIndex,
581                           "HeapNumberMap register clobbered.");
582  }
583
584  Label is_smi, done;
585
586  // Smi-check
587  __ UntagAndJumpIfSmi(scratch1, object, &is_smi);
588  // Heap number check
589  __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
590
591  // Handle loading a double from a heap number.
592  if (CpuFeatures::IsSupported(FPU) &&
593      destination == kFPURegisters) {
594    CpuFeatures::Scope scope(FPU);
595    // Load the double from tagged HeapNumber to double register.
596
597    // ARM uses a workaround here because of the unaligned HeapNumber
598    // kValueOffset. On MIPS this workaround is built into ldc1 so there's no
599    // point in generating even more instructions.
600    __ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset));
601  } else {
602    ASSERT(destination == kCoreRegisters);
603    // Load the double from heap number to dst1 and dst2 in double format.
604    __ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset));
605    __ lw(dst2, FieldMemOperand(object,
606        HeapNumber::kValueOffset + kPointerSize));
607  }
608  __ Branch(&done);
609
610  // Handle loading a double from a smi.
611  __ bind(&is_smi);
612  if (CpuFeatures::IsSupported(FPU)) {
613    CpuFeatures::Scope scope(FPU);
614    // Convert smi to double using FPU instructions.
615    __ mtc1(scratch1, dst);
616    __ cvt_d_w(dst, dst);
617    if (destination == kCoreRegisters) {
618      // Load the converted smi to dst1 and dst2 in double format.
619      __ Move(dst1, dst2, dst);
620    }
621  } else {
622    ASSERT(destination == kCoreRegisters);
623    // Write smi to dst1 and dst2 double format.
624    __ mov(scratch1, object);
625    ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
626    __ push(ra);
627    __ Call(stub.GetCode());
628    __ pop(ra);
629  }
630
631  __ bind(&done);
632}
633
634
635void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
636                                               Register object,
637                                               Register dst,
638                                               Register heap_number_map,
639                                               Register scratch1,
640                                               Register scratch2,
641                                               Register scratch3,
642                                               FPURegister double_scratch,
643                                               Label* not_number) {
644  if (FLAG_debug_code) {
645    __ AbortIfNotRootValue(heap_number_map,
646                           Heap::kHeapNumberMapRootIndex,
647                           "HeapNumberMap register clobbered.");
648  }
649  Label done;
650  Label not_in_int32_range;
651
652  __ UntagAndJumpIfSmi(dst, object, &done);
653  __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
654  __ Branch(not_number, ne, scratch1, Operand(heap_number_map));
655  __ ConvertToInt32(object,
656                    dst,
657                    scratch1,
658                    scratch2,
659                    double_scratch,
660                    &not_in_int32_range);
661  __ jmp(&done);
662
663  __ bind(&not_in_int32_range);
664  __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
665  __ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
666
667  __ EmitOutOfInt32RangeTruncate(dst,
668                                 scratch1,
669                                 scratch2,
670                                 scratch3);
671
672  __ bind(&done);
673}
674
675
676void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
677                                             Register int_scratch,
678                                             Destination destination,
679                                             FPURegister double_dst,
680                                             Register dst1,
681                                             Register dst2,
682                                             Register scratch2,
683                                             FPURegister single_scratch) {
684  ASSERT(!int_scratch.is(scratch2));
685  ASSERT(!int_scratch.is(dst1));
686  ASSERT(!int_scratch.is(dst2));
687
688  Label done;
689
690  if (CpuFeatures::IsSupported(FPU)) {
691    CpuFeatures::Scope scope(FPU);
692    __ mtc1(int_scratch, single_scratch);
693    __ cvt_d_w(double_dst, single_scratch);
694    if (destination == kCoreRegisters) {
695      __ Move(dst1, dst2, double_dst);
696    }
697  } else {
698    Label fewer_than_20_useful_bits;
699    // Expected output:
700    // |         dst2            |         dst1            |
701    // | s |   exp   |              mantissa               |
702
703    // Check for zero.
704    __ mov(dst2, int_scratch);
705    __ mov(dst1, int_scratch);
706    __ Branch(&done, eq, int_scratch, Operand(zero_reg));
707
708    // Preload the sign of the value.
709    __ And(dst2, int_scratch, Operand(HeapNumber::kSignMask));
710    // Get the absolute value of the object (as an unsigned integer).
711    Label skip_sub;
712    __ Branch(&skip_sub, ge, dst2, Operand(zero_reg));
713    __ Subu(int_scratch, zero_reg, int_scratch);
714    __ bind(&skip_sub);
715
716    // Get mantissa[51:20].
717
718    // Get the position of the first set bit.
719    __ Clz(dst1, int_scratch);
720    __ li(scratch2, 31);
721    __ Subu(dst1, scratch2, dst1);
722
723    // Set the exponent.
724    __ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias));
725    __ Ins(dst2, scratch2,
726        HeapNumber::kExponentShift, HeapNumber::kExponentBits);
727
728    // Clear the first non null bit.
729    __ li(scratch2, Operand(1));
730    __ sllv(scratch2, scratch2, dst1);
731    __ li(at, -1);
732    __ Xor(scratch2, scratch2, at);
733    __ And(int_scratch, int_scratch, scratch2);
734
735    // Get the number of bits to set in the lower part of the mantissa.
736    __ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
737    __ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg));
738    // Set the higher 20 bits of the mantissa.
739    __ srlv(at, int_scratch, scratch2);
740    __ or_(dst2, dst2, at);
741    __ li(at, 32);
742    __ subu(scratch2, at, scratch2);
743    __ sllv(dst1, int_scratch, scratch2);
744    __ Branch(&done);
745
746    __ bind(&fewer_than_20_useful_bits);
747    __ li(at, HeapNumber::kMantissaBitsInTopWord);
748    __ subu(scratch2, at, dst1);
749    __ sllv(scratch2, int_scratch, scratch2);
750    __ Or(dst2, dst2, scratch2);
751    // Set dst1 to 0.
752    __ mov(dst1, zero_reg);
753  }
754  __ bind(&done);
755}
756
757
758void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
759                                                  Register object,
760                                                  Destination destination,
761                                                  DoubleRegister double_dst,
762                                                  Register dst1,
763                                                  Register dst2,
764                                                  Register heap_number_map,
765                                                  Register scratch1,
766                                                  Register scratch2,
767                                                  FPURegister single_scratch,
768                                                  Label* not_int32) {
769  ASSERT(!scratch1.is(object) && !scratch2.is(object));
770  ASSERT(!scratch1.is(scratch2));
771  ASSERT(!heap_number_map.is(object) &&
772         !heap_number_map.is(scratch1) &&
773         !heap_number_map.is(scratch2));
774
775  Label done, obj_is_not_smi;
776
777  __ JumpIfNotSmi(object, &obj_is_not_smi);
778  __ SmiUntag(scratch1, object);
779  ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
780                     scratch2, single_scratch);
781  __ Branch(&done);
782
783  __ bind(&obj_is_not_smi);
784  if (FLAG_debug_code) {
785    __ AbortIfNotRootValue(heap_number_map,
786                           Heap::kHeapNumberMapRootIndex,
787                           "HeapNumberMap register clobbered.");
788  }
789  __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
790
791  // Load the number.
792  if (CpuFeatures::IsSupported(FPU)) {
793    CpuFeatures::Scope scope(FPU);
794    // Load the double value.
795    __ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));
796
797    Register except_flag = scratch2;
798    __ EmitFPUTruncate(kRoundToZero,
799                       single_scratch,
800                       double_dst,
801                       scratch1,
802                       except_flag,
803                       kCheckForInexactConversion);
804
805    // Jump to not_int32 if the operation did not succeed.
806    __ Branch(not_int32, ne, except_flag, Operand(zero_reg));
807
808    if (destination == kCoreRegisters) {
809      __ Move(dst1, dst2, double_dst);
810    }
811
812  } else {
813    ASSERT(!scratch1.is(object) && !scratch2.is(object));
814    // Load the double value in the destination registers.
815    __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
816    __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
817
818    // Check for 0 and -0.
819    __ And(scratch1, dst1, Operand(~HeapNumber::kSignMask));
820    __ Or(scratch1, scratch1, Operand(dst2));
821    __ Branch(&done, eq, scratch1, Operand(zero_reg));
822
823    // Check that the value can be exactly represented by a 32-bit integer.
824    // Jump to not_int32 if that's not the case.
825    DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
826
827    // dst1 and dst2 were trashed. Reload the double value.
828    __ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
829    __ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
830  }
831
832  __ bind(&done);
833}
834
835
836void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
837                                            Register object,
838                                            Register dst,
839                                            Register heap_number_map,
840                                            Register scratch1,
841                                            Register scratch2,
842                                            Register scratch3,
843                                            DoubleRegister double_scratch,
844                                            Label* not_int32) {
845  ASSERT(!dst.is(object));
846  ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
847  ASSERT(!scratch1.is(scratch2) &&
848         !scratch1.is(scratch3) &&
849         !scratch2.is(scratch3));
850
851  Label done;
852
853  __ UntagAndJumpIfSmi(dst, object, &done);
854
855  if (FLAG_debug_code) {
856    __ AbortIfNotRootValue(heap_number_map,
857                           Heap::kHeapNumberMapRootIndex,
858                           "HeapNumberMap register clobbered.");
859  }
860  __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
861
862  // Object is a heap number.
863  // Convert the floating point value to a 32-bit integer.
864  if (CpuFeatures::IsSupported(FPU)) {
865    CpuFeatures::Scope scope(FPU);
866    // Load the double value.
867    __ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
868
869    FPURegister single_scratch = double_scratch.low();
870    Register except_flag = scratch2;
871    __ EmitFPUTruncate(kRoundToZero,
872                       single_scratch,
873                       double_scratch,
874                       scratch1,
875                       except_flag,
876                       kCheckForInexactConversion);
877
878    // Jump to not_int32 if the operation did not succeed.
879    __ Branch(not_int32, ne, except_flag, Operand(zero_reg));
880    // Get the result in the destination register.
881    __ mfc1(dst, single_scratch);
882
883  } else {
884    // Load the double value in the destination registers.
885    __ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset));
886    __ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
887
888    // Check for 0 and -0.
889    __ And(dst, scratch1, Operand(~HeapNumber::kSignMask));
890    __ Or(dst, scratch2, Operand(dst));
891    __ Branch(&done, eq, dst, Operand(zero_reg));
892
893    DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
894
895    // Registers state after DoubleIs32BitInteger.
896    // dst: mantissa[51:20].
897    // scratch2: 1
898
899    // Shift back the higher bits of the mantissa.
900    __ srlv(dst, dst, scratch3);
901    // Set the implicit first bit.
902    __ li(at, 32);
903    __ subu(scratch3, at, scratch3);
904    __ sllv(scratch2, scratch2, scratch3);
905    __ Or(dst, dst, scratch2);
906    // Set the sign.
907    __ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
908    __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
909    Label skip_sub;
910    __ Branch(&skip_sub, ge, scratch1, Operand(zero_reg));
911    __ Subu(dst, zero_reg, dst);
912    __ bind(&skip_sub);
913  }
914
915  __ bind(&done);
916}
917
918
919void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
920                                               Register src1,
921                                               Register src2,
922                                               Register dst,
923                                               Register scratch,
924                                               Label* not_int32) {
925  // Get exponent alone in scratch.
926  __ Ext(scratch,
927         src1,
928         HeapNumber::kExponentShift,
929         HeapNumber::kExponentBits);
930
931  // Substract the bias from the exponent.
932  __ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias));
933
934  // src1: higher (exponent) part of the double value.
935  // src2: lower (mantissa) part of the double value.
936  // scratch: unbiased exponent.
937
938  // Fast cases. Check for obvious non 32-bit integer values.
939  // Negative exponent cannot yield 32-bit integers.
940  __ Branch(not_int32, lt, scratch, Operand(zero_reg));
941  // Exponent greater than 31 cannot yield 32-bit integers.
942  // Also, a positive value with an exponent equal to 31 is outside of the
943  // signed 32-bit integer range.
944  // Another way to put it is that if (exponent - signbit) > 30 then the
945  // number cannot be represented as an int32.
946  Register tmp = dst;
947  __ srl(at, src1, 31);
948  __ subu(tmp, scratch, at);
949  __ Branch(not_int32, gt, tmp, Operand(30));
950  // - Bits [21:0] in the mantissa are not null.
951  __ And(tmp, src2, 0x3fffff);
952  __ Branch(not_int32, ne, tmp, Operand(zero_reg));
953
954  // Otherwise the exponent needs to be big enough to shift left all the
955  // non zero bits left. So we need the (30 - exponent) last bits of the
956  // 31 higher bits of the mantissa to be null.
957  // Because bits [21:0] are null, we can check instead that the
958  // (32 - exponent) last bits of the 32 higher bits of the mantissa are null.
959
960  // Get the 32 higher bits of the mantissa in dst.
961  __ Ext(dst,
962         src2,
963         HeapNumber::kMantissaBitsInTopWord,
964         32 - HeapNumber::kMantissaBitsInTopWord);
965  __ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord);
966  __ or_(dst, dst, at);
967
968  // Create the mask and test the lower bits (of the higher bits).
969  __ li(at, 32);
970  __ subu(scratch, at, scratch);
971  __ li(src2, 1);
972  __ sllv(src1, src2, scratch);
973  __ Subu(src1, src1, Operand(1));
974  __ And(src1, dst, src1);
975  __ Branch(not_int32, ne, src1, Operand(zero_reg));
976}
977
978
979void FloatingPointHelper::CallCCodeForDoubleOperation(
980    MacroAssembler* masm,
981    Token::Value op,
982    Register heap_number_result,
983    Register scratch) {
984  // Using core registers:
985  // a0: Left value (least significant part of mantissa).
986  // a1: Left value (sign, exponent, top of mantissa).
987  // a2: Right value (least significant part of mantissa).
988  // a3: Right value (sign, exponent, top of mantissa).
989
990  // Assert that heap_number_result is saved.
991  // We currently always use s0 to pass it.
992  ASSERT(heap_number_result.is(s0));
993
994  // Push the current return address before the C call.
995  __ push(ra);
996  __ PrepareCallCFunction(4, scratch);  // Two doubles are 4 arguments.
997  if (!IsMipsSoftFloatABI) {
998    CpuFeatures::Scope scope(FPU);
999    // We are not using MIPS FPU instructions, and parameters for the runtime
1000    // function call are prepaired in a0-a3 registers, but function we are
1001    // calling is compiled with hard-float flag and expecting hard float ABI
1002    // (parameters in f12/f14 registers). We need to copy parameters from
1003    // a0-a3 registers to f12/f14 register pairs.
1004    __ Move(f12, a0, a1);
1005    __ Move(f14, a2, a3);
1006  }
1007  {
1008    AllowExternalCallThatCantCauseGC scope(masm);
1009    __ CallCFunction(
1010        ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
1011  }
1012  // Store answer in the overwritable heap number.
1013  if (!IsMipsSoftFloatABI) {
1014    CpuFeatures::Scope scope(FPU);
1015    // Double returned in register f0.
1016    __ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
1017  } else {
1018    // Double returned in registers v0 and v1.
1019    __ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset));
1020    __ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset));
1021  }
1022  // Place heap_number_result in v0 and return to the pushed return address.
1023  __ pop(ra);
1024  __ Ret(USE_DELAY_SLOT);
1025  __ mov(v0, heap_number_result);
1026}
1027
1028
1029bool WriteInt32ToHeapNumberStub::IsPregenerated() {
1030  // These variants are compiled ahead of time.  See next method.
1031  if (the_int_.is(a1) &&
1032      the_heap_number_.is(v0) &&
1033      scratch_.is(a2) &&
1034      sign_.is(a3)) {
1035    return true;
1036  }
1037  if (the_int_.is(a2) &&
1038      the_heap_number_.is(v0) &&
1039      scratch_.is(a3) &&
1040      sign_.is(a0)) {
1041    return true;
1042  }
1043  // Other register combinations are generated as and when they are needed,
1044  // so it is unsafe to call them from stubs (we can't generate a stub while
1045  // we are generating a stub).
1046  return false;
1047}
1048
1049
1050void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
1051  WriteInt32ToHeapNumberStub stub1(a1, v0, a2, a3);
1052  WriteInt32ToHeapNumberStub stub2(a2, v0, a3, a0);
1053  stub1.GetCode()->set_is_pregenerated(true);
1054  stub2.GetCode()->set_is_pregenerated(true);
1055}
1056
1057
1058// See comment for class, this does NOT work for int32's that are in Smi range.
1059void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
1060  Label max_negative_int;
1061  // the_int_ has the answer which is a signed int32 but not a Smi.
1062  // We test for the special value that has a different exponent.
1063  STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
1064  // Test sign, and save for later conditionals.
1065  __ And(sign_, the_int_, Operand(0x80000000u));
1066  __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));
1067
1068  // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
1069  // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
1070  uint32_t non_smi_exponent =
1071      (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1072  __ li(scratch_, Operand(non_smi_exponent));
1073  // Set the sign bit in scratch_ if the value was negative.
1074  __ or_(scratch_, scratch_, sign_);
1075  // Subtract from 0 if the value was negative.
1076  __ subu(at, zero_reg, the_int_);
1077  __ Movn(the_int_, at, sign_);
1078  // We should be masking the implict first digit of the mantissa away here,
1079  // but it just ends up combining harmlessly with the last digit of the
1080  // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
1081  // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
1082  ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
1083  const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
1084  __ srl(at, the_int_, shift_distance);
1085  __ or_(scratch_, scratch_, at);
1086  __ sw(scratch_, FieldMemOperand(the_heap_number_,
1087                                   HeapNumber::kExponentOffset));
1088  __ sll(scratch_, the_int_, 32 - shift_distance);
1089  __ sw(scratch_, FieldMemOperand(the_heap_number_,
1090                                   HeapNumber::kMantissaOffset));
1091  __ Ret();
1092
1093  __ bind(&max_negative_int);
1094  // The max negative int32 is stored as a positive number in the mantissa of
1095  // a double because it uses a sign bit instead of using two's complement.
1096  // The actual mantissa bits stored are all 0 because the implicit most
1097  // significant 1 bit is not stored.
1098  non_smi_exponent += 1 << HeapNumber::kExponentShift;
1099  __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
1100  __ sw(scratch_,
1101        FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
1102  __ mov(scratch_, zero_reg);
1103  __ sw(scratch_,
1104        FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
1105  __ Ret();
1106}
1107
1108
1109// Handle the case where the lhs and rhs are the same object.
1110// Equality is almost reflexive (everything but NaN), so this is a test
1111// for "identity and not NaN".
1112static void EmitIdenticalObjectComparison(MacroAssembler* masm,
1113                                          Label* slow,
1114                                          Condition cc,
1115                                          bool never_nan_nan) {
1116  Label not_identical;
1117  Label heap_number, return_equal;
1118  Register exp_mask_reg = t5;
1119
1120  __ Branch(&not_identical, ne, a0, Operand(a1));
1121
1122  // The two objects are identical. If we know that one of them isn't NaN then
1123  // we now know they test equal.
1124  if (cc != eq || !never_nan_nan) {
1125    __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
1126
1127    // Test for NaN. Sadly, we can't just compare to factory->nan_value(),
1128    // so we do the second best thing - test it ourselves.
1129    // They are both equal and they are not both Smis so both of them are not
1130    // Smis. If it's not a heap number, then return equal.
1131    if (cc == less || cc == greater) {
1132      __ GetObjectType(a0, t4, t4);
1133      __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
1134    } else {
1135      __ GetObjectType(a0, t4, t4);
1136      __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
1137      // Comparing JS objects with <=, >= is complicated.
1138      if (cc != eq) {
1139      __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
1140        // Normally here we fall through to return_equal, but undefined is
1141        // special: (undefined == undefined) == true, but
1142        // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
1143        if (cc == less_equal || cc == greater_equal) {
1144          __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
1145          __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
1146          __ Branch(&return_equal, ne, a0, Operand(t2));
1147          if (cc == le) {
1148            // undefined <= undefined should fail.
1149            __ li(v0, Operand(GREATER));
1150          } else  {
1151            // undefined >= undefined should fail.
1152            __ li(v0, Operand(LESS));
1153          }
1154          __ Ret();
1155        }
1156      }
1157    }
1158  }
1159
1160  __ bind(&return_equal);
1161
1162  if (cc == less) {
1163    __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
1164  } else if (cc == greater) {
1165    __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
1166  } else {
1167    __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
1168  }
1169  __ Ret();
1170
1171  if (cc != eq || !never_nan_nan) {
1172    // For less and greater we don't have to check for NaN since the result of
1173    // x < x is false regardless.  For the others here is some code to check
1174    // for NaN.
1175    if (cc != lt && cc != gt) {
1176      __ bind(&heap_number);
1177      // It is a heap number, so return non-equal if it's NaN and equal if it's
1178      // not NaN.
1179
1180      // The representation of NaN values has all exponent bits (52..62) set,
1181      // and not all mantissa bits (0..51) clear.
1182      // Read top bits of double representation (second word of value).
1183      __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
1184      // Test that exponent bits are all set.
1185      __ And(t3, t2, Operand(exp_mask_reg));
1186      // If all bits not set (ne cond), then not a NaN, objects are equal.
1187      __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
1188
1189      // Shift out flag and all exponent bits, retaining only mantissa.
1190      __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
1191      // Or with all low-bits of mantissa.
1192      __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
1193      __ Or(v0, t3, Operand(t2));
1194      // For equal we already have the right value in v0:  Return zero (equal)
1195      // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1196      // not (it's a NaN).  For <= and >= we need to load v0 with the failing
1197      // value if it's a NaN.
1198      if (cc != eq) {
1199        // All-zero means Infinity means equal.
1200        __ Ret(eq, v0, Operand(zero_reg));
1201        if (cc == le) {
1202          __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
1203        } else {
1204          __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
1205        }
1206      }
1207      __ Ret();
1208    }
1209    // No fall through here.
1210  }
1211
1212  __ bind(&not_identical);
1213}
1214
1215
1216static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1217                                    Register lhs,
1218                                    Register rhs,
1219                                    Label* both_loaded_as_doubles,
1220                                    Label* slow,
1221                                    bool strict) {
1222  ASSERT((lhs.is(a0) && rhs.is(a1)) ||
1223         (lhs.is(a1) && rhs.is(a0)));
1224
1225  Label lhs_is_smi;
1226  __ JumpIfSmi(lhs, &lhs_is_smi);
1227  // Rhs is a Smi.
1228  // Check whether the non-smi is a heap number.
1229  __ GetObjectType(lhs, t4, t4);
1230  if (strict) {
1231    // If lhs was not a number and rhs was a Smi then strict equality cannot
1232    // succeed. Return non-equal (lhs is already not zero).
1233    __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
1234    __ mov(v0, lhs);
1235  } else {
1236    // Smi compared non-strictly with a non-Smi non-heap-number. Call
1237    // the runtime.
1238    __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
1239  }
1240
1241  // Rhs is a smi, lhs is a number.
1242  // Convert smi rhs to double.
1243  if (CpuFeatures::IsSupported(FPU)) {
1244    CpuFeatures::Scope scope(FPU);
1245    __ sra(at, rhs, kSmiTagSize);
1246    __ mtc1(at, f14);
1247    __ cvt_d_w(f14, f14);
1248    __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1249  } else {
1250    // Load lhs to a double in a2, a3.
1251    __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
1252    __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1253
1254    // Write Smi from rhs to a1 and a0 in double format. t5 is scratch.
1255    __ mov(t6, rhs);
1256    ConvertToDoubleStub stub1(a1, a0, t6, t5);
1257    __ push(ra);
1258    __ Call(stub1.GetCode());
1259
1260    __ pop(ra);
1261  }
1262
1263  // We now have both loaded as doubles.
1264  __ jmp(both_loaded_as_doubles);
1265
1266  __ bind(&lhs_is_smi);
1267  // Lhs is a Smi.  Check whether the non-smi is a heap number.
1268  __ GetObjectType(rhs, t4, t4);
1269  if (strict) {
1270    // If lhs was not a number and rhs was a Smi then strict equality cannot
1271    // succeed. Return non-equal.
1272    __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
1273    __ li(v0, Operand(1));
1274  } else {
1275    // Smi compared non-strictly with a non-Smi non-heap-number. Call
1276    // the runtime.
1277    __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
1278  }
1279
1280  // Lhs is a smi, rhs is a number.
1281  // Convert smi lhs to double.
1282  if (CpuFeatures::IsSupported(FPU)) {
1283    CpuFeatures::Scope scope(FPU);
1284    __ sra(at, lhs, kSmiTagSize);
1285    __ mtc1(at, f12);
1286    __ cvt_d_w(f12, f12);
1287    __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1288  } else {
1289    // Convert lhs to a double format. t5 is scratch.
1290    __ mov(t6, lhs);
1291    ConvertToDoubleStub stub2(a3, a2, t6, t5);
1292    __ push(ra);
1293    __ Call(stub2.GetCode());
1294    __ pop(ra);
1295    // Load rhs to a double in a1, a0.
1296    if (rhs.is(a0)) {
1297      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1298      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1299    } else {
1300      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1301      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1302    }
1303  }
1304  // Fall through to both_loaded_as_doubles.
1305}
1306
1307
1308void EmitNanCheck(MacroAssembler* masm, Condition cc) {
1309  bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1310  if (CpuFeatures::IsSupported(FPU)) {
1311    CpuFeatures::Scope scope(FPU);
1312    // Lhs and rhs are already loaded to f12 and f14 register pairs.
1313    __ Move(t0, t1, f14);
1314    __ Move(t2, t3, f12);
1315  } else {
1316    // Lhs and rhs are already loaded to GP registers.
1317    __ mov(t0, a0);  // a0 has LS 32 bits of rhs.
1318    __ mov(t1, a1);  // a1 has MS 32 bits of rhs.
1319    __ mov(t2, a2);  // a2 has LS 32 bits of lhs.
1320    __ mov(t3, a3);  // a3 has MS 32 bits of lhs.
1321  }
1322  Register rhs_exponent = exp_first ? t0 : t1;
1323  Register lhs_exponent = exp_first ? t2 : t3;
1324  Register rhs_mantissa = exp_first ? t1 : t0;
1325  Register lhs_mantissa = exp_first ? t3 : t2;
1326  Label one_is_nan, neither_is_nan;
1327  Label lhs_not_nan_exp_mask_is_loaded;
1328
1329  Register exp_mask_reg = t4;
1330  __ li(exp_mask_reg, HeapNumber::kExponentMask);
1331  __ and_(t5, lhs_exponent, exp_mask_reg);
1332  __ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg));
1333
1334  __ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
1335  __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
1336
1337  __ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg));
1338
1339  __ li(exp_mask_reg, HeapNumber::kExponentMask);
1340  __ bind(&lhs_not_nan_exp_mask_is_loaded);
1341  __ and_(t5, rhs_exponent, exp_mask_reg);
1342
1343  __ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg));
1344
1345  __ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
1346  __ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
1347
1348  __ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg));
1349
1350  __ bind(&one_is_nan);
1351  // NaN comparisons always fail.
1352  // Load whatever we need in v0 to make the comparison fail.
1353
1354  if (cc == lt || cc == le) {
1355    __ li(v0, Operand(GREATER));
1356  } else {
1357    __ li(v0, Operand(LESS));
1358  }
1359  __ Ret();
1360
1361  __ bind(&neither_is_nan);
1362}
1363
1364
1365static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
1366  // f12 and f14 have the two doubles.  Neither is a NaN.
1367  // Call a native function to do a comparison between two non-NaNs.
1368  // Call C routine that may not cause GC or other trouble.
1369  // We use a call_was and return manually because we need arguments slots to
1370  // be freed.
1371
1372  Label return_result_not_equal, return_result_equal;
1373  if (cc == eq) {
1374    // Doubles are not equal unless they have the same bit pattern.
1375    // Exception: 0 and -0.
1376    bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1377    if (CpuFeatures::IsSupported(FPU)) {
1378      CpuFeatures::Scope scope(FPU);
1379      // Lhs and rhs are already loaded to f12 and f14 register pairs.
1380      __ Move(t0, t1, f14);
1381      __ Move(t2, t3, f12);
1382    } else {
1383      // Lhs and rhs are already loaded to GP registers.
1384      __ mov(t0, a0);  // a0 has LS 32 bits of rhs.
1385      __ mov(t1, a1);  // a1 has MS 32 bits of rhs.
1386      __ mov(t2, a2);  // a2 has LS 32 bits of lhs.
1387      __ mov(t3, a3);  // a3 has MS 32 bits of lhs.
1388    }
1389    Register rhs_exponent = exp_first ? t0 : t1;
1390    Register lhs_exponent = exp_first ? t2 : t3;
1391    Register rhs_mantissa = exp_first ? t1 : t0;
1392    Register lhs_mantissa = exp_first ? t3 : t2;
1393
1394    __ xor_(v0, rhs_mantissa, lhs_mantissa);
1395    __ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg));
1396
1397    __ subu(v0, rhs_exponent, lhs_exponent);
1398    __ Branch(&return_result_equal, eq, v0, Operand(zero_reg));
1399    // 0, -0 case.
1400    __ sll(rhs_exponent, rhs_exponent, kSmiTagSize);
1401    __ sll(lhs_exponent, lhs_exponent, kSmiTagSize);
1402    __ or_(t4, rhs_exponent, lhs_exponent);
1403    __ or_(t4, t4, rhs_mantissa);
1404
1405    __ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg));
1406
1407    __ bind(&return_result_equal);
1408
1409    __ li(v0, Operand(EQUAL));
1410    __ Ret();
1411  }
1412
1413  __ bind(&return_result_not_equal);
1414
1415  if (!CpuFeatures::IsSupported(FPU)) {
1416    __ push(ra);
1417    __ PrepareCallCFunction(0, 2, t4);
1418    if (!IsMipsSoftFloatABI) {
1419      // We are not using MIPS FPU instructions, and parameters for the runtime
1420      // function call are prepaired in a0-a3 registers, but function we are
1421      // calling is compiled with hard-float flag and expecting hard float ABI
1422      // (parameters in f12/f14 registers). We need to copy parameters from
1423      // a0-a3 registers to f12/f14 register pairs.
1424      __ Move(f12, a0, a1);
1425      __ Move(f14, a2, a3);
1426    }
1427
1428    AllowExternalCallThatCantCauseGC scope(masm);
1429    __ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
1430       0, 2);
1431    __ pop(ra);  // Because this function returns int, result is in v0.
1432    __ Ret();
1433  } else {
1434    CpuFeatures::Scope scope(FPU);
1435    Label equal, less_than;
1436    __ BranchF(&equal, NULL, eq, f12, f14);
1437    __ BranchF(&less_than, NULL, lt, f12, f14);
1438
1439    // Not equal, not less, not NaN, must be greater.
1440
1441    __ li(v0, Operand(GREATER));
1442    __ Ret();
1443
1444    __ bind(&equal);
1445    __ li(v0, Operand(EQUAL));
1446    __ Ret();
1447
1448    __ bind(&less_than);
1449    __ li(v0, Operand(LESS));
1450    __ Ret();
1451  }
1452}
1453
1454
1455static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1456                                           Register lhs,
1457                                           Register rhs) {
1458    // If either operand is a JS object or an oddball value, then they are
1459    // not equal since their pointers are different.
1460    // There is no test for undetectability in strict equality.
1461    STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1462    Label first_non_object;
1463    // Get the type of the first operand into a2 and compare it with
1464    // FIRST_SPEC_OBJECT_TYPE.
1465    __ GetObjectType(lhs, a2, a2);
1466    __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
1467
1468    // Return non-zero.
1469    Label return_not_equal;
1470    __ bind(&return_not_equal);
1471    __ Ret(USE_DELAY_SLOT);
1472    __ li(v0, Operand(1));
1473
1474    __ bind(&first_non_object);
1475    // Check for oddballs: true, false, null, undefined.
1476    __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
1477
1478    __ GetObjectType(rhs, a3, a3);
1479    __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1480
1481    // Check for oddballs: true, false, null, undefined.
1482    __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
1483
1484    // Now that we have the types we might as well check for symbol-symbol.
1485    // Ensure that no non-strings have the symbol bit set.
1486    STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1487    STATIC_ASSERT(kSymbolTag != 0);
1488    __ And(t2, a2, Operand(a3));
1489    __ And(t0, t2, Operand(kIsSymbolMask));
1490    __ Branch(&return_not_equal, ne, t0, Operand(zero_reg));
1491}
1492
1493
1494static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1495                                       Register lhs,
1496                                       Register rhs,
1497                                       Label* both_loaded_as_doubles,
1498                                       Label* not_heap_numbers,
1499                                       Label* slow) {
1500  __ GetObjectType(lhs, a3, a2);
1501  __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
1502  __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
1503  // If first was a heap number & second wasn't, go to slow case.
1504  __ Branch(slow, ne, a3, Operand(a2));
1505
1506  // Both are heap numbers. Load them up then jump to the code we have
1507  // for that.
1508  if (CpuFeatures::IsSupported(FPU)) {
1509    CpuFeatures::Scope scope(FPU);
1510    __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1511    __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1512  } else {
1513    __ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1514    __ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
1515    if (rhs.is(a0)) {
1516      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1517      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1518    } else {
1519      __ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1520      __ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
1521    }
1522  }
1523  __ jmp(both_loaded_as_doubles);
1524}
1525
1526
1527// Fast negative check for symbol-to-symbol equality.
1528static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1529                                         Register lhs,
1530                                         Register rhs,
1531                                         Label* possible_strings,
1532                                         Label* not_both_strings) {
1533  ASSERT((lhs.is(a0) && rhs.is(a1)) ||
1534         (lhs.is(a1) && rhs.is(a0)));
1535
1536  // a2 is object type of lhs.
1537  // Ensure that no non-strings have the symbol bit set.
1538  Label object_test;
1539  STATIC_ASSERT(kSymbolTag != 0);
1540  __ And(at, a2, Operand(kIsNotStringMask));
1541  __ Branch(&object_test, ne, at, Operand(zero_reg));
1542  __ And(at, a2, Operand(kIsSymbolMask));
1543  __ Branch(possible_strings, eq, at, Operand(zero_reg));
1544  __ GetObjectType(rhs, a3, a3);
1545  __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
1546  __ And(at, a3, Operand(kIsSymbolMask));
1547  __ Branch(possible_strings, eq, at, Operand(zero_reg));
1548
1549  // Both are symbols. We already checked they weren't the same pointer
1550  // so they are not equal.
1551  __ Ret(USE_DELAY_SLOT);
1552  __ li(v0, Operand(1));   // Non-zero indicates not equal.
1553
1554  __ bind(&object_test);
1555  __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
1556  __ GetObjectType(rhs, a2, a3);
1557  __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1558
1559  // If both objects are undetectable, they are equal.  Otherwise, they
1560  // are not equal, since they are different objects and an object is not
1561  // equal to undefined.
1562  __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
1563  __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
1564  __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
1565  __ and_(a0, a2, a3);
1566  __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
1567  __ Ret(USE_DELAY_SLOT);
1568  __ xori(v0, a0, 1 << Map::kIsUndetectable);
1569}
1570
1571
1572void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1573                                                         Register object,
1574                                                         Register result,
1575                                                         Register scratch1,
1576                                                         Register scratch2,
1577                                                         Register scratch3,
1578                                                         bool object_is_smi,
1579                                                         Label* not_found) {
1580  // Use of registers. Register result is used as a temporary.
1581  Register number_string_cache = result;
1582  Register mask = scratch3;
1583
1584  // Load the number string cache.
1585  __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1586
1587  // Make the hash mask from the length of the number string cache. It
1588  // contains two elements (number and string) for each cache entry.
1589  __ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1590  // Divide length by two (length is a smi).
1591  __ sra(mask, mask, kSmiTagSize + 1);
1592  __ Addu(mask, mask, -1);  // Make mask.
1593
1594  // Calculate the entry in the number string cache. The hash value in the
1595  // number string cache for smis is just the smi value, and the hash for
1596  // doubles is the xor of the upper and lower words. See
1597  // Heap::GetNumberStringCache.
1598  Isolate* isolate = masm->isolate();
1599  Label is_smi;
1600  Label load_result_from_cache;
1601  if (!object_is_smi) {
1602    __ JumpIfSmi(object, &is_smi);
1603    if (CpuFeatures::IsSupported(FPU)) {
1604      CpuFeatures::Scope scope(FPU);
1605      __ CheckMap(object,
1606                  scratch1,
1607                  Heap::kHeapNumberMapRootIndex,
1608                  not_found,
1609                  DONT_DO_SMI_CHECK);
1610
1611      STATIC_ASSERT(8 == kDoubleSize);
1612      __ Addu(scratch1,
1613              object,
1614              Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1615      __ lw(scratch2, MemOperand(scratch1, kPointerSize));
1616      __ lw(scratch1, MemOperand(scratch1, 0));
1617      __ Xor(scratch1, scratch1, Operand(scratch2));
1618      __ And(scratch1, scratch1, Operand(mask));
1619
1620      // Calculate address of entry in string cache: each entry consists
1621      // of two pointer sized fields.
1622      __ sll(scratch1, scratch1, kPointerSizeLog2 + 1);
1623      __ Addu(scratch1, number_string_cache, scratch1);
1624
1625      Register probe = mask;
1626      __ lw(probe,
1627             FieldMemOperand(scratch1, FixedArray::kHeaderSize));
1628      __ JumpIfSmi(probe, not_found);
1629      __ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
1630      __ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
1631      __ BranchF(&load_result_from_cache, NULL, eq, f12, f14);
1632      __ Branch(not_found);
1633    } else {
1634      // Note that there is no cache check for non-FPU case, even though
1635      // it seems there could be. May be a tiny opimization for non-FPU
1636      // cores.
1637      __ Branch(not_found);
1638    }
1639  }
1640
1641  __ bind(&is_smi);
1642  Register scratch = scratch1;
1643  __ sra(scratch, object, 1);   // Shift away the tag.
1644  __ And(scratch, mask, Operand(scratch));
1645
1646  // Calculate address of entry in string cache: each entry consists
1647  // of two pointer sized fields.
1648  __ sll(scratch, scratch, kPointerSizeLog2 + 1);
1649  __ Addu(scratch, number_string_cache, scratch);
1650
1651  // Check if the entry is the smi we are looking for.
1652  Register probe = mask;
1653  __ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1654  __ Branch(not_found, ne, object, Operand(probe));
1655
1656  // Get the result from the cache.
1657  __ bind(&load_result_from_cache);
1658  __ lw(result,
1659         FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
1660
1661  __ IncrementCounter(isolate->counters()->number_to_string_native(),
1662                      1,
1663                      scratch1,
1664                      scratch2);
1665}
1666
1667
1668void NumberToStringStub::Generate(MacroAssembler* masm) {
1669  Label runtime;
1670
1671  __ lw(a1, MemOperand(sp, 0));
1672
1673  // Generate code to lookup number in the number string cache.
1674  GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime);
1675  __ DropAndRet(1);
1676
1677  __ bind(&runtime);
1678  // Handle number to string in the runtime system if not found in the cache.
1679  __ TailCallRuntime(Runtime::kNumberToString, 1, 1);
1680}
1681
1682
1683// On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared.
1684// On exit, v0 is 0, positive, or negative (smi) to indicate the result
1685// of the comparison.
1686void CompareStub::Generate(MacroAssembler* masm) {
1687  Label slow;  // Call builtin.
1688  Label not_smis, both_loaded_as_doubles;
1689
1690
1691  if (include_smi_compare_) {
1692    Label not_two_smis, smi_done;
1693    __ Or(a2, a1, a0);
1694    __ JumpIfNotSmi(a2, &not_two_smis);
1695    __ sra(a1, a1, 1);
1696    __ sra(a0, a0, 1);
1697    __ Ret(USE_DELAY_SLOT);
1698    __ subu(v0, a1, a0);
1699    __ bind(&not_two_smis);
1700  } else if (FLAG_debug_code) {
1701    __ Or(a2, a1, a0);
1702    __ And(a2, a2, kSmiTagMask);
1703    __ Assert(ne, "CompareStub: unexpected smi operands.",
1704        a2, Operand(zero_reg));
1705  }
1706
1707
1708  // NOTICE! This code is only reached after a smi-fast-case check, so
1709  // it is certain that at least one operand isn't a smi.
1710
1711  // Handle the case where the objects are identical.  Either returns the answer
1712  // or goes to slow.  Only falls through if the objects were not identical.
1713  EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1714
1715  // If either is a Smi (we know that not both are), then they can only
1716  // be strictly equal if the other is a HeapNumber.
1717  STATIC_ASSERT(kSmiTag == 0);
1718  ASSERT_EQ(0, Smi::FromInt(0));
1719  __ And(t2, lhs_, Operand(rhs_));
1720  __ JumpIfNotSmi(t2, &not_smis, t0);
1721  // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1722  // 1) Return the answer.
1723  // 2) Go to slow.
1724  // 3) Fall through to both_loaded_as_doubles.
1725  // 4) Jump to rhs_not_nan.
1726  // In cases 3 and 4 we have found out we were dealing with a number-number
1727  // comparison and the numbers have been loaded into f12 and f14 as doubles,
1728  // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
1729  EmitSmiNonsmiComparison(masm, lhs_, rhs_,
1730                          &both_loaded_as_doubles, &slow, strict_);
1731
1732  __ bind(&both_loaded_as_doubles);
1733  // f12, f14 are the double representations of the left hand side
1734  // and the right hand side if we have FPU. Otherwise a2, a3 represent
1735  // left hand side and a0, a1 represent right hand side.
1736
1737  Isolate* isolate = masm->isolate();
1738  if (CpuFeatures::IsSupported(FPU)) {
1739    CpuFeatures::Scope scope(FPU);
1740    Label nan;
1741    __ li(t0, Operand(LESS));
1742    __ li(t1, Operand(GREATER));
1743    __ li(t2, Operand(EQUAL));
1744
1745    // Check if either rhs or lhs is NaN.
1746    __ BranchF(NULL, &nan, eq, f12, f14);
1747
1748    // Check if LESS condition is satisfied. If true, move conditionally
1749    // result to v0.
1750    __ c(OLT, D, f12, f14);
1751    __ Movt(v0, t0);
1752    // Use previous check to store conditionally to v0 oposite condition
1753    // (GREATER). If rhs is equal to lhs, this will be corrected in next
1754    // check.
1755    __ Movf(v0, t1);
1756    // Check if EQUAL condition is satisfied. If true, move conditionally
1757    // result to v0.
1758    __ c(EQ, D, f12, f14);
1759    __ Movt(v0, t2);
1760
1761    __ Ret();
1762
1763    __ bind(&nan);
1764    // NaN comparisons always fail.
1765    // Load whatever we need in v0 to make the comparison fail.
1766    if (cc_ == lt || cc_ == le) {
1767      __ li(v0, Operand(GREATER));
1768    } else {
1769      __ li(v0, Operand(LESS));
1770    }
1771    __ Ret();
1772  } else {
1773    // Checks for NaN in the doubles we have loaded.  Can return the answer or
1774    // fall through if neither is a NaN.  Also binds rhs_not_nan.
1775    EmitNanCheck(masm, cc_);
1776
1777    // Compares two doubles that are not NaNs. Returns the answer.
1778    // Never falls through.
1779    EmitTwoNonNanDoubleComparison(masm, cc_);
1780  }
1781
1782  __ bind(&not_smis);
1783  // At this point we know we are dealing with two different objects,
1784  // and neither of them is a Smi. The objects are in lhs_ and rhs_.
1785  if (strict_) {
1786    // This returns non-equal for some object types, or falls through if it
1787    // was not lucky.
1788    EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1789  }
1790
1791  Label check_for_symbols;
1792  Label flat_string_check;
1793  // Check for heap-number-heap-number comparison. Can jump to slow case,
1794  // or load both doubles and jump to the code that handles
1795  // that case. If the inputs are not doubles then jumps to check_for_symbols.
1796  // In this case a2 will contain the type of lhs_.
1797  EmitCheckForTwoHeapNumbers(masm,
1798                             lhs_,
1799                             rhs_,
1800                             &both_loaded_as_doubles,
1801                             &check_for_symbols,
1802                             &flat_string_check);
1803
1804  __ bind(&check_for_symbols);
1805  if (cc_ == eq && !strict_) {
1806    // Returns an answer for two symbols or two detectable objects.
1807    // Otherwise jumps to string case or not both strings case.
1808    // Assumes that a2 is the type of lhs_ on entry.
1809    EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1810  }
1811
1812  // Check for both being sequential ASCII strings, and inline if that is the
1813  // case.
1814  __ bind(&flat_string_check);
1815
1816  __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow);
1817
1818  __ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3);
1819  if (cc_ == eq) {
1820    StringCompareStub::GenerateFlatAsciiStringEquals(masm,
1821                                                     lhs_,
1822                                                     rhs_,
1823                                                     a2,
1824                                                     a3,
1825                                                     t0);
1826  } else {
1827    StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1828                                                       lhs_,
1829                                                       rhs_,
1830                                                       a2,
1831                                                       a3,
1832                                                       t0,
1833                                                       t1);
1834  }
1835  // Never falls through to here.
1836
1837  __ bind(&slow);
1838  // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
1839  // a1 (rhs) second.
1840  __ Push(lhs_, rhs_);
1841  // Figure out which native to call and setup the arguments.
1842  Builtins::JavaScript native;
1843  if (cc_ == eq) {
1844    native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1845  } else {
1846    native = Builtins::COMPARE;
1847    int ncr;  // NaN compare result.
1848    if (cc_ == lt || cc_ == le) {
1849      ncr = GREATER;
1850    } else {
1851      ASSERT(cc_ == gt || cc_ == ge);  // Remaining cases.
1852      ncr = LESS;
1853    }
1854    __ li(a0, Operand(Smi::FromInt(ncr)));
1855    __ push(a0);
1856  }
1857
1858  // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1859  // tagged as a small integer.
1860  __ InvokeBuiltin(native, JUMP_FUNCTION);
1861}
1862
1863
1864// The stub expects its argument in the tos_ register and returns its result in
1865// it, too: zero for false, and a non-zero value for true.
1866void ToBooleanStub::Generate(MacroAssembler* masm) {
1867  // This stub uses FPU instructions.
1868  CpuFeatures::Scope scope(FPU);
1869
1870  Label patch;
1871  const Register map = t5.is(tos_) ? t3 : t5;
1872
1873  // undefined -> false.
1874  CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
1875
1876  // Boolean -> its value.
1877  CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
1878  CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
1879
1880  // 'null' -> false.
1881  CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
1882
1883  if (types_.Contains(SMI)) {
1884    // Smis: 0 -> false, all other -> true
1885    __ And(at, tos_, kSmiTagMask);
1886    // tos_ contains the correct return value already
1887    __ Ret(eq, at, Operand(zero_reg));
1888  } else if (types_.NeedsMap()) {
1889    // If we need a map later and have a Smi -> patch.
1890    __ JumpIfSmi(tos_, &patch);
1891  }
1892
1893  if (types_.NeedsMap()) {
1894    __ lw(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
1895
1896    if (types_.CanBeUndetectable()) {
1897      __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
1898      __ And(at, at, Operand(1 << Map::kIsUndetectable));
1899      // Undetectable -> false.
1900      __ Movn(tos_, zero_reg, at);
1901      __ Ret(ne, at, Operand(zero_reg));
1902    }
1903  }
1904
1905  if (types_.Contains(SPEC_OBJECT)) {
1906    // Spec object -> true.
1907    __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1908    // tos_ contains the correct non-zero return value already.
1909    __ Ret(ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
1910  }
1911
1912  if (types_.Contains(STRING)) {
1913    // String value -> false iff empty.
1914    __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
1915    Label skip;
1916    __ Branch(&skip, ge, at, Operand(FIRST_NONSTRING_TYPE));
1917    __ Ret(USE_DELAY_SLOT);  // the string length is OK as the return value
1918    __ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
1919    __ bind(&skip);
1920  }
1921
1922  if (types_.Contains(HEAP_NUMBER)) {
1923    // Heap number -> false iff +0, -0, or NaN.
1924    Label not_heap_number;
1925    __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
1926    __ Branch(&not_heap_number, ne, map, Operand(at));
1927    Label zero_or_nan, number;
1928    __ ldc1(f2, FieldMemOperand(tos_, HeapNumber::kValueOffset));
1929    __ BranchF(&number, &zero_or_nan, ne, f2, kDoubleRegZero);
1930    // "tos_" is a register, and contains a non zero value by default.
1931    // Hence we only need to overwrite "tos_" with zero to return false for
1932    // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
1933    __ bind(&zero_or_nan);
1934    __ mov(tos_, zero_reg);
1935    __ bind(&number);
1936    __ Ret();
1937    __ bind(&not_heap_number);
1938  }
1939
1940  __ bind(&patch);
1941  GenerateTypeTransition(masm);
1942}
1943
1944
1945void ToBooleanStub::CheckOddball(MacroAssembler* masm,
1946                                 Type type,
1947                                 Heap::RootListIndex value,
1948                                 bool result) {
1949  if (types_.Contains(type)) {
1950    // If we see an expected oddball, return its ToBoolean value tos_.
1951    __ LoadRoot(at, value);
1952    __ Subu(at, at, tos_);  // This is a check for equality for the movz below.
1953    // The value of a root is never NULL, so we can avoid loading a non-null
1954    // value into tos_ when we want to return 'true'.
1955    if (!result) {
1956      __ Movz(tos_, zero_reg, at);
1957    }
1958    __ Ret(eq, at, Operand(zero_reg));
1959  }
1960}
1961
1962
1963void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
1964  __ Move(a3, tos_);
1965  __ li(a2, Operand(Smi::FromInt(tos_.code())));
1966  __ li(a1, Operand(Smi::FromInt(types_.ToByte())));
1967  __ Push(a3, a2, a1);
1968  // Patch the caller to an appropriate specialized stub and return the
1969  // operation result to the caller of the stub.
1970  __ TailCallExternalReference(
1971      ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
1972      3,
1973      1);
1974}
1975
1976
1977void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
1978  // We don't allow a GC during a store buffer overflow so there is no need to
1979  // store the registers in any particular way, but we do have to store and
1980  // restore them.
1981  __ MultiPush(kJSCallerSaved | ra.bit());
1982  if (save_doubles_ == kSaveFPRegs) {
1983    CpuFeatures::Scope scope(FPU);
1984    __ MultiPushFPU(kCallerSavedFPU);
1985  }
1986  const int argument_count = 1;
1987  const int fp_argument_count = 0;
1988  const Register scratch = a1;
1989
1990  AllowExternalCallThatCantCauseGC scope(masm);
1991  __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
1992  __ li(a0, Operand(ExternalReference::isolate_address()));
1993  __ CallCFunction(
1994      ExternalReference::store_buffer_overflow_function(masm->isolate()),
1995      argument_count);
1996  if (save_doubles_ == kSaveFPRegs) {
1997    CpuFeatures::Scope scope(FPU);
1998    __ MultiPopFPU(kCallerSavedFPU);
1999  }
2000
2001  __ MultiPop(kJSCallerSaved | ra.bit());
2002  __ Ret();
2003}
2004
2005
2006void UnaryOpStub::PrintName(StringStream* stream) {
2007  const char* op_name = Token::Name(op_);
2008  const char* overwrite_name = NULL;  // Make g++ happy.
2009  switch (mode_) {
2010    case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
2011    case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
2012  }
2013  stream->Add("UnaryOpStub_%s_%s_%s",
2014              op_name,
2015              overwrite_name,
2016              UnaryOpIC::GetName(operand_type_));
2017}
2018
2019
2020// TODO(svenpanne): Use virtual functions instead of switch.
2021void UnaryOpStub::Generate(MacroAssembler* masm) {
2022  switch (operand_type_) {
2023    case UnaryOpIC::UNINITIALIZED:
2024      GenerateTypeTransition(masm);
2025      break;
2026    case UnaryOpIC::SMI:
2027      GenerateSmiStub(masm);
2028      break;
2029    case UnaryOpIC::HEAP_NUMBER:
2030      GenerateHeapNumberStub(masm);
2031      break;
2032    case UnaryOpIC::GENERIC:
2033      GenerateGenericStub(masm);
2034      break;
2035  }
2036}
2037
2038
2039void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
2040  // Argument is in a0 and v0 at this point, so we can overwrite a0.
2041  __ li(a2, Operand(Smi::FromInt(op_)));
2042  __ li(a1, Operand(Smi::FromInt(mode_)));
2043  __ li(a0, Operand(Smi::FromInt(operand_type_)));
2044  __ Push(v0, a2, a1, a0);
2045
2046  __ TailCallExternalReference(
2047      ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
2048}
2049
2050
2051// TODO(svenpanne): Use virtual functions instead of switch.
2052void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
2053  switch (op_) {
2054    case Token::SUB:
2055      GenerateSmiStubSub(masm);
2056      break;
2057    case Token::BIT_NOT:
2058      GenerateSmiStubBitNot(masm);
2059      break;
2060    default:
2061      UNREACHABLE();
2062  }
2063}
2064
2065
2066void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
2067  Label non_smi, slow;
2068  GenerateSmiCodeSub(masm, &non_smi, &slow);
2069  __ bind(&non_smi);
2070  __ bind(&slow);
2071  GenerateTypeTransition(masm);
2072}
2073
2074
2075void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
2076  Label non_smi;
2077  GenerateSmiCodeBitNot(masm, &non_smi);
2078  __ bind(&non_smi);
2079  GenerateTypeTransition(masm);
2080}
2081
2082
2083void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
2084                                     Label* non_smi,
2085                                     Label* slow) {
2086  __ JumpIfNotSmi(a0, non_smi);
2087
2088  // The result of negating zero or the smallest negative smi is not a smi.
2089  __ And(t0, a0, ~0x80000000);
2090  __ Branch(slow, eq, t0, Operand(zero_reg));
2091
2092  // Return '0 - value'.
2093  __ Ret(USE_DELAY_SLOT);
2094  __ subu(v0, zero_reg, a0);
2095}
2096
2097
2098void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
2099                                        Label* non_smi) {
2100  __ JumpIfNotSmi(a0, non_smi);
2101
2102  // Flip bits and revert inverted smi-tag.
2103  __ Neg(v0, a0);
2104  __ And(v0, v0, ~kSmiTagMask);
2105  __ Ret();
2106}
2107
2108
2109// TODO(svenpanne): Use virtual functions instead of switch.
2110void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
2111  switch (op_) {
2112    case Token::SUB:
2113      GenerateHeapNumberStubSub(masm);
2114      break;
2115    case Token::BIT_NOT:
2116      GenerateHeapNumberStubBitNot(masm);
2117      break;
2118    default:
2119      UNREACHABLE();
2120  }
2121}
2122
2123
2124void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
2125  Label non_smi, slow, call_builtin;
2126  GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
2127  __ bind(&non_smi);
2128  GenerateHeapNumberCodeSub(masm, &slow);
2129  __ bind(&slow);
2130  GenerateTypeTransition(masm);
2131  __ bind(&call_builtin);
2132  GenerateGenericCodeFallback(masm);
2133}
2134
2135
2136void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
2137  Label non_smi, slow;
2138  GenerateSmiCodeBitNot(masm, &non_smi);
2139  __ bind(&non_smi);
2140  GenerateHeapNumberCodeBitNot(masm, &slow);
2141  __ bind(&slow);
2142  GenerateTypeTransition(masm);
2143}
2144
2145
2146void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
2147                                            Label* slow) {
2148  EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
2149  // a0 is a heap number.  Get a new heap number in a1.
2150  if (mode_ == UNARY_OVERWRITE) {
2151    __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
2152    __ Xor(a2, a2, Operand(HeapNumber::kSignMask));  // Flip sign.
2153    __ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
2154  } else {
2155    Label slow_allocate_heapnumber, heapnumber_allocated;
2156    __ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber);
2157    __ jmp(&heapnumber_allocated);
2158
2159    __ bind(&slow_allocate_heapnumber);
2160    {
2161      FrameScope scope(masm, StackFrame::INTERNAL);
2162      __ push(a0);
2163      __ CallRuntime(Runtime::kNumberAlloc, 0);
2164      __ mov(a1, v0);
2165      __ pop(a0);
2166    }
2167
2168    __ bind(&heapnumber_allocated);
2169    __ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
2170    __ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
2171    __ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset));
2172    __ Xor(a2, a2, Operand(HeapNumber::kSignMask));  // Flip sign.
2173    __ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset));
2174    __ mov(v0, a1);
2175  }
2176  __ Ret();
2177}
2178
2179
2180void UnaryOpStub::GenerateHeapNumberCodeBitNot(
2181    MacroAssembler* masm,
2182    Label* slow) {
2183  Label impossible;
2184
2185  EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
2186  // Convert the heap number in a0 to an untagged integer in a1.
2187  __ ConvertToInt32(a0, a1, a2, a3, f0, slow);
2188
2189  // Do the bitwise operation and check if the result fits in a smi.
2190  Label try_float;
2191  __ Neg(a1, a1);
2192  __ Addu(a2, a1, Operand(0x40000000));
2193  __ Branch(&try_float, lt, a2, Operand(zero_reg));
2194
2195  // Tag the result as a smi and we're done.
2196  __ SmiTag(v0, a1);
2197  __ Ret();
2198
2199  // Try to store the result in a heap number.
2200  __ bind(&try_float);
2201  if (mode_ == UNARY_NO_OVERWRITE) {
2202    Label slow_allocate_heapnumber, heapnumber_allocated;
2203    // Allocate a new heap number without zapping v0, which we need if it fails.
2204    __ AllocateHeapNumber(a2, a3, t0, t2, &slow_allocate_heapnumber);
2205    __ jmp(&heapnumber_allocated);
2206
2207    __ bind(&slow_allocate_heapnumber);
2208    {
2209      FrameScope scope(masm, StackFrame::INTERNAL);
2210      __ push(v0);  // Push the heap number, not the untagged int32.
2211      __ CallRuntime(Runtime::kNumberAlloc, 0);
2212      __ mov(a2, v0);  // Move the new heap number into a2.
2213      // Get the heap number into v0, now that the new heap number is in a2.
2214      __ pop(v0);
2215    }
2216
2217    // Convert the heap number in v0 to an untagged integer in a1.
2218    // This can't go slow-case because it's the same number we already
2219    // converted once again.
2220    __ ConvertToInt32(v0, a1, a3, t0, f0, &impossible);
2221    // Negate the result.
2222    __ Xor(a1, a1, -1);
2223
2224    __ bind(&heapnumber_allocated);
2225    __ mov(v0, a2);  // Move newly allocated heap number to v0.
2226  }
2227
2228  if (CpuFeatures::IsSupported(FPU)) {
2229    // Convert the int32 in a1 to the heap number in v0. a2 is corrupted.
2230    CpuFeatures::Scope scope(FPU);
2231    __ mtc1(a1, f0);
2232    __ cvt_d_w(f0, f0);
2233    __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
2234    __ Ret();
2235  } else {
2236    // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
2237    // have to set up a frame.
2238    WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3);
2239    __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2240  }
2241
2242  __ bind(&impossible);
2243  if (FLAG_debug_code) {
2244    __ stop("Incorrect assumption in bit-not stub");
2245  }
2246}
2247
2248
2249// TODO(svenpanne): Use virtual functions instead of switch.
2250void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
2251  switch (op_) {
2252    case Token::SUB:
2253      GenerateGenericStubSub(masm);
2254      break;
2255    case Token::BIT_NOT:
2256      GenerateGenericStubBitNot(masm);
2257      break;
2258    default:
2259      UNREACHABLE();
2260  }
2261}
2262
2263
2264void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
2265  Label non_smi, slow;
2266  GenerateSmiCodeSub(masm, &non_smi, &slow);
2267  __ bind(&non_smi);
2268  GenerateHeapNumberCodeSub(masm, &slow);
2269  __ bind(&slow);
2270  GenerateGenericCodeFallback(masm);
2271}
2272
2273
2274void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
2275  Label non_smi, slow;
2276  GenerateSmiCodeBitNot(masm, &non_smi);
2277  __ bind(&non_smi);
2278  GenerateHeapNumberCodeBitNot(masm, &slow);
2279  __ bind(&slow);
2280  GenerateGenericCodeFallback(masm);
2281}
2282
2283
2284void UnaryOpStub::GenerateGenericCodeFallback(
2285    MacroAssembler* masm) {
2286  // Handle the slow case by jumping to the JavaScript builtin.
2287  __ push(a0);
2288  switch (op_) {
2289    case Token::SUB:
2290      __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
2291      break;
2292    case Token::BIT_NOT:
2293      __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
2294      break;
2295    default:
2296      UNREACHABLE();
2297  }
2298}
2299
2300
2301void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
2302  Label get_result;
2303
2304  __ Push(a1, a0);
2305
2306  __ li(a2, Operand(Smi::FromInt(MinorKey())));
2307  __ li(a1, Operand(Smi::FromInt(op_)));
2308  __ li(a0, Operand(Smi::FromInt(operands_type_)));
2309  __ Push(a2, a1, a0);
2310
2311  __ TailCallExternalReference(
2312      ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
2313                        masm->isolate()),
2314      5,
2315      1);
2316}
2317
2318
2319void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
2320    MacroAssembler* masm) {
2321  UNIMPLEMENTED();
2322}
2323
2324
2325void BinaryOpStub::Generate(MacroAssembler* masm) {
2326  // Explicitly allow generation of nested stubs. It is safe here because
2327  // generation code does not use any raw pointers.
2328  AllowStubCallsScope allow_stub_calls(masm, true);
2329  switch (operands_type_) {
2330    case BinaryOpIC::UNINITIALIZED:
2331      GenerateTypeTransition(masm);
2332      break;
2333    case BinaryOpIC::SMI:
2334      GenerateSmiStub(masm);
2335      break;
2336    case BinaryOpIC::INT32:
2337      GenerateInt32Stub(masm);
2338      break;
2339    case BinaryOpIC::HEAP_NUMBER:
2340      GenerateHeapNumberStub(masm);
2341      break;
2342    case BinaryOpIC::ODDBALL:
2343      GenerateOddballStub(masm);
2344      break;
2345    case BinaryOpIC::BOTH_STRING:
2346      GenerateBothStringStub(masm);
2347      break;
2348    case BinaryOpIC::STRING:
2349      GenerateStringStub(masm);
2350      break;
2351    case BinaryOpIC::GENERIC:
2352      GenerateGeneric(masm);
2353      break;
2354    default:
2355      UNREACHABLE();
2356  }
2357}
2358
2359
2360void BinaryOpStub::PrintName(StringStream* stream) {
2361  const char* op_name = Token::Name(op_);
2362  const char* overwrite_name;
2363  switch (mode_) {
2364    case NO_OVERWRITE: overwrite_name = "Alloc"; break;
2365    case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
2366    case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
2367    default: overwrite_name = "UnknownOverwrite"; break;
2368  }
2369  stream->Add("BinaryOpStub_%s_%s_%s",
2370              op_name,
2371              overwrite_name,
2372              BinaryOpIC::GetName(operands_type_));
2373}
2374
2375
2376
2377void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
2378  Register left = a1;
2379  Register right = a0;
2380
2381  Register scratch1 = t0;
2382  Register scratch2 = t1;
2383
2384  ASSERT(right.is(a0));
2385  STATIC_ASSERT(kSmiTag == 0);
2386
2387  Label not_smi_result;
2388  switch (op_) {
2389    case Token::ADD:
2390      __ AdduAndCheckForOverflow(v0, left, right, scratch1);
2391      __ RetOnNoOverflow(scratch1);
2392      // No need to revert anything - right and left are intact.
2393      break;
2394    case Token::SUB:
2395      __ SubuAndCheckForOverflow(v0, left, right, scratch1);
2396      __ RetOnNoOverflow(scratch1);
2397      // No need to revert anything - right and left are intact.
2398      break;
2399    case Token::MUL: {
2400      // Remove tag from one of the operands. This way the multiplication result
2401      // will be a smi if it fits the smi range.
2402      __ SmiUntag(scratch1, right);
2403      // Do multiplication.
2404      // lo = lower 32 bits of scratch1 * left.
2405      // hi = higher 32 bits of scratch1 * left.
2406      __ Mult(left, scratch1);
2407      // Check for overflowing the smi range - no overflow if higher 33 bits of
2408      // the result are identical.
2409      __ mflo(scratch1);
2410      __ mfhi(scratch2);
2411      __ sra(scratch1, scratch1, 31);
2412      __ Branch(&not_smi_result, ne, scratch1, Operand(scratch2));
2413      // Go slow on zero result to handle -0.
2414      __ mflo(v0);
2415      __ Ret(ne, v0, Operand(zero_reg));
2416      // We need -0 if we were multiplying a negative number with 0 to get 0.
2417      // We know one of them was zero.
2418      __ Addu(scratch2, right, left);
2419      Label skip;
2420      // ARM uses the 'pl' condition, which is 'ge'.
2421      // Negating it results in 'lt'.
2422      __ Branch(&skip, lt, scratch2, Operand(zero_reg));
2423      ASSERT(Smi::FromInt(0) == 0);
2424      __ Ret(USE_DELAY_SLOT);
2425      __ mov(v0, zero_reg);  // Return smi 0 if the non-zero one was positive.
2426      __ bind(&skip);
2427      // We fall through here if we multiplied a negative number with 0, because
2428      // that would mean we should produce -0.
2429      }
2430      break;
2431    case Token::DIV: {
2432      Label done;
2433      __ SmiUntag(scratch2, right);
2434      __ SmiUntag(scratch1, left);
2435      __ Div(scratch1, scratch2);
2436      // A minor optimization: div may be calculated asynchronously, so we check
2437      // for division by zero before getting the result.
2438      __ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
2439      // If the result is 0, we need to make sure the dividsor (right) is
2440      // positive, otherwise it is a -0 case.
2441      // Quotient is in 'lo', remainder is in 'hi'.
2442      // Check for no remainder first.
2443      __ mfhi(scratch1);
2444      __ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
2445      __ mflo(scratch1);
2446      __ Branch(&done, ne, scratch1, Operand(zero_reg));
2447      __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
2448      __ bind(&done);
2449      // Check that the signed result fits in a Smi.
2450      __ Addu(scratch2, scratch1, Operand(0x40000000));
2451      __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
2452      __ SmiTag(v0, scratch1);
2453      __ Ret();
2454      }
2455      break;
2456    case Token::MOD: {
2457      Label done;
2458      __ SmiUntag(scratch2, right);
2459      __ SmiUntag(scratch1, left);
2460      __ Div(scratch1, scratch2);
2461      // A minor optimization: div may be calculated asynchronously, so we check
2462      // for division by 0 before calling mfhi.
2463      // Check for zero on the right hand side.
2464      __ Branch(&not_smi_result, eq, scratch2, Operand(zero_reg));
2465      // If the result is 0, we need to make sure the dividend (left) is
2466      // positive (or 0), otherwise it is a -0 case.
2467      // Remainder is in 'hi'.
2468      __ mfhi(scratch2);
2469      __ Branch(&done, ne, scratch2, Operand(zero_reg));
2470      __ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
2471      __ bind(&done);
2472      // Check that the signed result fits in a Smi.
2473      __ Addu(scratch1, scratch2, Operand(0x40000000));
2474      __ Branch(&not_smi_result, lt, scratch1, Operand(zero_reg));
2475      __ SmiTag(v0, scratch2);
2476      __ Ret();
2477      }
2478      break;
2479    case Token::BIT_OR:
2480      __ Ret(USE_DELAY_SLOT);
2481      __ or_(v0, left, right);
2482      break;
2483    case Token::BIT_AND:
2484      __ Ret(USE_DELAY_SLOT);
2485      __ and_(v0, left, right);
2486      break;
2487    case Token::BIT_XOR:
2488      __ Ret(USE_DELAY_SLOT);
2489      __ xor_(v0, left, right);
2490      break;
2491    case Token::SAR:
2492      // Remove tags from right operand.
2493      __ GetLeastBitsFromSmi(scratch1, right, 5);
2494      __ srav(scratch1, left, scratch1);
2495      // Smi tag result.
2496      __ And(v0, scratch1, ~kSmiTagMask);
2497      __ Ret();
2498      break;
2499    case Token::SHR:
2500      // Remove tags from operands. We can't do this on a 31 bit number
2501      // because then the 0s get shifted into bit 30 instead of bit 31.
2502      __ SmiUntag(scratch1, left);
2503      __ GetLeastBitsFromSmi(scratch2, right, 5);
2504      __ srlv(v0, scratch1, scratch2);
2505      // Unsigned shift is not allowed to produce a negative number, so
2506      // check the sign bit and the sign bit after Smi tagging.
2507      __ And(scratch1, v0, Operand(0xc0000000));
2508      __ Branch(&not_smi_result, ne, scratch1, Operand(zero_reg));
2509      // Smi tag result.
2510      __ SmiTag(v0);
2511      __ Ret();
2512      break;
2513    case Token::SHL:
2514      // Remove tags from operands.
2515      __ SmiUntag(scratch1, left);
2516      __ GetLeastBitsFromSmi(scratch2, right, 5);
2517      __ sllv(scratch1, scratch1, scratch2);
2518      // Check that the signed result fits in a Smi.
2519      __ Addu(scratch2, scratch1, Operand(0x40000000));
2520      __ Branch(&not_smi_result, lt, scratch2, Operand(zero_reg));
2521      __ SmiTag(v0, scratch1);
2522      __ Ret();
2523      break;
2524    default:
2525      UNREACHABLE();
2526  }
2527  __ bind(&not_smi_result);
2528}
2529
2530
2531void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
2532                                       bool smi_operands,
2533                                       Label* not_numbers,
2534                                       Label* gc_required) {
2535  Register left = a1;
2536  Register right = a0;
2537  Register scratch1 = t3;
2538  Register scratch2 = t5;
2539  Register scratch3 = t0;
2540
2541  ASSERT(smi_operands || (not_numbers != NULL));
2542  if (smi_operands && FLAG_debug_code) {
2543    __ AbortIfNotSmi(left);
2544    __ AbortIfNotSmi(right);
2545  }
2546
2547  Register heap_number_map = t2;
2548  __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2549
2550  switch (op_) {
2551    case Token::ADD:
2552    case Token::SUB:
2553    case Token::MUL:
2554    case Token::DIV:
2555    case Token::MOD: {
2556      // Load left and right operands into f12 and f14 or a0/a1 and a2/a3
2557      // depending on whether FPU is available or not.
2558      FloatingPointHelper::Destination destination =
2559          CpuFeatures::IsSupported(FPU) &&
2560          op_ != Token::MOD ?
2561              FloatingPointHelper::kFPURegisters :
2562              FloatingPointHelper::kCoreRegisters;
2563
2564      // Allocate new heap number for result.
2565      Register result = s0;
2566      GenerateHeapResultAllocation(
2567          masm, result, heap_number_map, scratch1, scratch2, gc_required);
2568
2569      // Load the operands.
2570      if (smi_operands) {
2571        FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
2572      } else {
2573        FloatingPointHelper::LoadOperands(masm,
2574                                          destination,
2575                                          heap_number_map,
2576                                          scratch1,
2577                                          scratch2,
2578                                          not_numbers);
2579      }
2580
2581      // Calculate the result.
2582      if (destination == FloatingPointHelper::kFPURegisters) {
2583        // Using FPU registers:
2584        // f12: Left value.
2585        // f14: Right value.
2586        CpuFeatures::Scope scope(FPU);
2587        switch (op_) {
2588        case Token::ADD:
2589          __ add_d(f10, f12, f14);
2590          break;
2591        case Token::SUB:
2592          __ sub_d(f10, f12, f14);
2593          break;
2594        case Token::MUL:
2595          __ mul_d(f10, f12, f14);
2596          break;
2597        case Token::DIV:
2598          __ div_d(f10, f12, f14);
2599          break;
2600        default:
2601          UNREACHABLE();
2602        }
2603
2604        // ARM uses a workaround here because of the unaligned HeapNumber
2605        // kValueOffset. On MIPS this workaround is built into sdc1 so
2606        // there's no point in generating even more instructions.
2607        __ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset));
2608        __ Ret(USE_DELAY_SLOT);
2609        __ mov(v0, result);
2610      } else {
2611        // Call the C function to handle the double operation.
2612        FloatingPointHelper::CallCCodeForDoubleOperation(masm,
2613                                                         op_,
2614                                                         result,
2615                                                         scratch1);
2616        if (FLAG_debug_code) {
2617          __ stop("Unreachable code.");
2618        }
2619      }
2620      break;
2621    }
2622    case Token::BIT_OR:
2623    case Token::BIT_XOR:
2624    case Token::BIT_AND:
2625    case Token::SAR:
2626    case Token::SHR:
2627    case Token::SHL: {
2628      if (smi_operands) {
2629        __ SmiUntag(a3, left);
2630        __ SmiUntag(a2, right);
2631      } else {
2632        // Convert operands to 32-bit integers. Right in a2 and left in a3.
2633        FloatingPointHelper::ConvertNumberToInt32(masm,
2634                                                  left,
2635                                                  a3,
2636                                                  heap_number_map,
2637                                                  scratch1,
2638                                                  scratch2,
2639                                                  scratch3,
2640                                                  f0,
2641                                                  not_numbers);
2642        FloatingPointHelper::ConvertNumberToInt32(masm,
2643                                                  right,
2644                                                  a2,
2645                                                  heap_number_map,
2646                                                  scratch1,
2647                                                  scratch2,
2648                                                  scratch3,
2649                                                  f0,
2650                                                  not_numbers);
2651      }
2652      Label result_not_a_smi;
2653      switch (op_) {
2654        case Token::BIT_OR:
2655          __ Or(a2, a3, Operand(a2));
2656          break;
2657        case Token::BIT_XOR:
2658          __ Xor(a2, a3, Operand(a2));
2659          break;
2660        case Token::BIT_AND:
2661          __ And(a2, a3, Operand(a2));
2662          break;
2663        case Token::SAR:
2664          // Use only the 5 least significant bits of the shift count.
2665          __ GetLeastBitsFromInt32(a2, a2, 5);
2666          __ srav(a2, a3, a2);
2667          break;
2668        case Token::SHR:
2669          // Use only the 5 least significant bits of the shift count.
2670          __ GetLeastBitsFromInt32(a2, a2, 5);
2671          __ srlv(a2, a3, a2);
2672          // SHR is special because it is required to produce a positive answer.
2673          // The code below for writing into heap numbers isn't capable of
2674          // writing the register as an unsigned int so we go to slow case if we
2675          // hit this case.
2676          if (CpuFeatures::IsSupported(FPU)) {
2677            __ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg));
2678          } else {
2679            __ Branch(not_numbers, lt, a2, Operand(zero_reg));
2680          }
2681          break;
2682        case Token::SHL:
2683          // Use only the 5 least significant bits of the shift count.
2684          __ GetLeastBitsFromInt32(a2, a2, 5);
2685          __ sllv(a2, a3, a2);
2686          break;
2687        default:
2688          UNREACHABLE();
2689      }
2690      // Check that the *signed* result fits in a smi.
2691      __ Addu(a3, a2, Operand(0x40000000));
2692      __ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg));
2693      __ SmiTag(v0, a2);
2694      __ Ret();
2695
2696      // Allocate new heap number for result.
2697      __ bind(&result_not_a_smi);
2698      Register result = t1;
2699      if (smi_operands) {
2700        __ AllocateHeapNumber(
2701            result, scratch1, scratch2, heap_number_map, gc_required);
2702      } else {
2703        GenerateHeapResultAllocation(
2704            masm, result, heap_number_map, scratch1, scratch2, gc_required);
2705      }
2706
2707      // a2: Answer as signed int32.
2708      // t1: Heap number to write answer into.
2709
2710      // Nothing can go wrong now, so move the heap number to v0, which is the
2711      // result.
2712      __ mov(v0, t1);
2713
2714      if (CpuFeatures::IsSupported(FPU)) {
2715        // Convert the int32 in a2 to the heap number in a0. As
2716        // mentioned above SHR needs to always produce a positive result.
2717        CpuFeatures::Scope scope(FPU);
2718        __ mtc1(a2, f0);
2719        if (op_ == Token::SHR) {
2720          __ Cvt_d_uw(f0, f0, f22);
2721        } else {
2722          __ cvt_d_w(f0, f0);
2723        }
2724        // ARM uses a workaround here because of the unaligned HeapNumber
2725        // kValueOffset. On MIPS this workaround is built into sdc1 so
2726        // there's no point in generating even more instructions.
2727        __ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
2728        __ Ret();
2729      } else {
2730        // Tail call that writes the int32 in a2 to the heap number in v0, using
2731        // a3 and a0 as scratch. v0 is preserved and returned.
2732        WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
2733        __ TailCallStub(&stub);
2734      }
2735      break;
2736    }
2737    default:
2738      UNREACHABLE();
2739  }
2740}
2741
2742
2743// Generate the smi code. If the operation on smis are successful this return is
2744// generated. If the result is not a smi and heap number allocation is not
2745// requested the code falls through. If number allocation is requested but a
2746// heap number cannot be allocated the code jumps to the lable gc_required.
2747void BinaryOpStub::GenerateSmiCode(
2748    MacroAssembler* masm,
2749    Label* use_runtime,
2750    Label* gc_required,
2751    SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
2752  Label not_smis;
2753
2754  Register left = a1;
2755  Register right = a0;
2756  Register scratch1 = t3;
2757
2758  // Perform combined smi check on both operands.
2759  __ Or(scratch1, left, Operand(right));
2760  STATIC_ASSERT(kSmiTag == 0);
2761  __ JumpIfNotSmi(scratch1, &not_smis);
2762
2763  // If the smi-smi operation results in a smi return is generated.
2764  GenerateSmiSmiOperation(masm);
2765
2766  // If heap number results are possible generate the result in an allocated
2767  // heap number.
2768  if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
2769    GenerateFPOperation(masm, true, use_runtime, gc_required);
2770  }
2771  __ bind(&not_smis);
2772}
2773
2774
2775void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
2776  Label not_smis, call_runtime;
2777
2778  if (result_type_ == BinaryOpIC::UNINITIALIZED ||
2779      result_type_ == BinaryOpIC::SMI) {
2780    // Only allow smi results.
2781    GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
2782  } else {
2783    // Allow heap number result and don't make a transition if a heap number
2784    // cannot be allocated.
2785    GenerateSmiCode(masm,
2786                    &call_runtime,
2787                    &call_runtime,
2788                    ALLOW_HEAPNUMBER_RESULTS);
2789  }
2790
2791  // Code falls through if the result is not returned as either a smi or heap
2792  // number.
2793  GenerateTypeTransition(masm);
2794
2795  __ bind(&call_runtime);
2796  GenerateCallRuntime(masm);
2797}
2798
2799
2800void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
2801  ASSERT(operands_type_ == BinaryOpIC::STRING);
2802  // Try to add arguments as strings, otherwise, transition to the generic
2803  // BinaryOpIC type.
2804  GenerateAddStrings(masm);
2805  GenerateTypeTransition(masm);
2806}
2807
2808
2809void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
2810  Label call_runtime;
2811  ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
2812  ASSERT(op_ == Token::ADD);
2813  // If both arguments are strings, call the string add stub.
2814  // Otherwise, do a transition.
2815
2816  // Registers containing left and right operands respectively.
2817  Register left = a1;
2818  Register right = a0;
2819
2820  // Test if left operand is a string.
2821  __ JumpIfSmi(left, &call_runtime);
2822  __ GetObjectType(left, a2, a2);
2823  __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
2824
2825  // Test if right operand is a string.
2826  __ JumpIfSmi(right, &call_runtime);
2827  __ GetObjectType(right, a2, a2);
2828  __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
2829
2830  StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2831  GenerateRegisterArgsPush(masm);
2832  __ TailCallStub(&string_add_stub);
2833
2834  __ bind(&call_runtime);
2835  GenerateTypeTransition(masm);
2836}
2837
2838
2839void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
2840  ASSERT(operands_type_ == BinaryOpIC::INT32);
2841
2842  Register left = a1;
2843  Register right = a0;
2844  Register scratch1 = t3;
2845  Register scratch2 = t5;
2846  FPURegister double_scratch = f0;
2847  FPURegister single_scratch = f6;
2848
2849  Register heap_number_result = no_reg;
2850  Register heap_number_map = t2;
2851  __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2852
2853  Label call_runtime;
2854  // Labels for type transition, used for wrong input or output types.
2855  // Both label are currently actually bound to the same position. We use two
2856  // different label to differentiate the cause leading to type transition.
2857  Label transition;
2858
2859  // Smi-smi fast case.
2860  Label skip;
2861  __ Or(scratch1, left, right);
2862  __ JumpIfNotSmi(scratch1, &skip);
2863  GenerateSmiSmiOperation(masm);
2864  // Fall through if the result is not a smi.
2865  __ bind(&skip);
2866
2867  switch (op_) {
2868    case Token::ADD:
2869    case Token::SUB:
2870    case Token::MUL:
2871    case Token::DIV:
2872    case Token::MOD: {
2873      // Load both operands and check that they are 32-bit integer.
2874      // Jump to type transition if they are not. The registers a0 and a1 (right
2875      // and left) are preserved for the runtime call.
2876      FloatingPointHelper::Destination destination =
2877          (CpuFeatures::IsSupported(FPU) && op_ != Token::MOD)
2878              ? FloatingPointHelper::kFPURegisters
2879              : FloatingPointHelper::kCoreRegisters;
2880
2881      FloatingPointHelper::LoadNumberAsInt32Double(masm,
2882                                                   right,
2883                                                   destination,
2884                                                   f14,
2885                                                   a2,
2886                                                   a3,
2887                                                   heap_number_map,
2888                                                   scratch1,
2889                                                   scratch2,
2890                                                   f2,
2891                                                   &transition);
2892      FloatingPointHelper::LoadNumberAsInt32Double(masm,
2893                                                   left,
2894                                                   destination,
2895                                                   f12,
2896                                                   t0,
2897                                                   t1,
2898                                                   heap_number_map,
2899                                                   scratch1,
2900                                                   scratch2,
2901                                                   f2,
2902                                                   &transition);
2903
2904      if (destination == FloatingPointHelper::kFPURegisters) {
2905        CpuFeatures::Scope scope(FPU);
2906        Label return_heap_number;
2907        switch (op_) {
2908          case Token::ADD:
2909            __ add_d(f10, f12, f14);
2910            break;
2911          case Token::SUB:
2912            __ sub_d(f10, f12, f14);
2913            break;
2914          case Token::MUL:
2915            __ mul_d(f10, f12, f14);
2916            break;
2917          case Token::DIV:
2918            __ div_d(f10, f12, f14);
2919            break;
2920          default:
2921            UNREACHABLE();
2922        }
2923
2924        if (op_ != Token::DIV) {
2925          // These operations produce an integer result.
2926          // Try to return a smi if we can.
2927          // Otherwise return a heap number if allowed, or jump to type
2928          // transition.
2929
2930          Register except_flag = scratch2;
2931          __ EmitFPUTruncate(kRoundToZero,
2932                             single_scratch,
2933                             f10,
2934                             scratch1,
2935                             except_flag);
2936
2937          if (result_type_ <= BinaryOpIC::INT32) {
2938            // If except_flag != 0, result does not fit in a 32-bit integer.
2939            __ Branch(&transition, ne, except_flag, Operand(zero_reg));
2940          }
2941
2942          // Check if the result fits in a smi.
2943          __ mfc1(scratch1, single_scratch);
2944          __ Addu(scratch2, scratch1, Operand(0x40000000));
2945          // If not try to return a heap number.
2946          __ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg));
2947          // Check for minus zero. Return heap number for minus zero.
2948          Label not_zero;
2949          __ Branch(&not_zero, ne, scratch1, Operand(zero_reg));
2950          __ mfc1(scratch2, f11);
2951          __ And(scratch2, scratch2, HeapNumber::kSignMask);
2952          __ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg));
2953          __ bind(&not_zero);
2954
2955          // Tag the result and return.
2956          __ SmiTag(v0, scratch1);
2957          __ Ret();
2958        } else {
2959          // DIV just falls through to allocating a heap number.
2960        }
2961
2962        __ bind(&return_heap_number);
2963        // Return a heap number, or fall through to type transition or runtime
2964        // call if we can't.
2965        if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
2966                                                 : BinaryOpIC::INT32)) {
2967          // We are using FPU registers so s0 is available.
2968          heap_number_result = s0;
2969          GenerateHeapResultAllocation(masm,
2970                                       heap_number_result,
2971                                       heap_number_map,
2972                                       scratch1,
2973                                       scratch2,
2974                                       &call_runtime);
2975          __ mov(v0, heap_number_result);
2976          __ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset));
2977          __ Ret();
2978        }
2979
2980        // A DIV operation expecting an integer result falls through
2981        // to type transition.
2982
2983      } else {
2984        // We preserved a0 and a1 to be able to call runtime.
2985        // Save the left value on the stack.
2986        __ Push(t1, t0);
2987
2988        Label pop_and_call_runtime;
2989
2990        // Allocate a heap number to store the result.
2991        heap_number_result = s0;
2992        GenerateHeapResultAllocation(masm,
2993                                     heap_number_result,
2994                                     heap_number_map,
2995                                     scratch1,
2996                                     scratch2,
2997                                     &pop_and_call_runtime);
2998
2999        // Load the left value from the value saved on the stack.
3000        __ Pop(a1, a0);
3001
3002        // Call the C function to handle the double operation.
3003        FloatingPointHelper::CallCCodeForDoubleOperation(
3004            masm, op_, heap_number_result, scratch1);
3005        if (FLAG_debug_code) {
3006          __ stop("Unreachable code.");
3007        }
3008
3009        __ bind(&pop_and_call_runtime);
3010        __ Drop(2);
3011        __ Branch(&call_runtime);
3012      }
3013
3014      break;
3015    }
3016
3017    case Token::BIT_OR:
3018    case Token::BIT_XOR:
3019    case Token::BIT_AND:
3020    case Token::SAR:
3021    case Token::SHR:
3022    case Token::SHL: {
3023      Label return_heap_number;
3024      Register scratch3 = t1;
3025      // Convert operands to 32-bit integers. Right in a2 and left in a3. The
3026      // registers a0 and a1 (right and left) are preserved for the runtime
3027      // call.
3028      FloatingPointHelper::LoadNumberAsInt32(masm,
3029                                             left,
3030                                             a3,
3031                                             heap_number_map,
3032                                             scratch1,
3033                                             scratch2,
3034                                             scratch3,
3035                                             f0,
3036                                             &transition);
3037      FloatingPointHelper::LoadNumberAsInt32(masm,
3038                                             right,
3039                                             a2,
3040                                             heap_number_map,
3041                                             scratch1,
3042                                             scratch2,
3043                                             scratch3,
3044                                             f0,
3045                                             &transition);
3046
3047      // The ECMA-262 standard specifies that, for shift operations, only the
3048      // 5 least significant bits of the shift value should be used.
3049      switch (op_) {
3050        case Token::BIT_OR:
3051          __ Or(a2, a3, Operand(a2));
3052          break;
3053        case Token::BIT_XOR:
3054          __ Xor(a2, a3, Operand(a2));
3055          break;
3056        case Token::BIT_AND:
3057          __ And(a2, a3, Operand(a2));
3058          break;
3059        case Token::SAR:
3060          __ And(a2, a2, Operand(0x1f));
3061          __ srav(a2, a3, a2);
3062          break;
3063        case Token::SHR:
3064          __ And(a2, a2, Operand(0x1f));
3065          __ srlv(a2, a3, a2);
3066          // SHR is special because it is required to produce a positive answer.
3067          // We only get a negative result if the shift value (a2) is 0.
3068          // This result cannot be respresented as a signed 32-bit integer, try
3069          // to return a heap number if we can.
3070          // The non FPU code does not support this special case, so jump to
3071          // runtime if we don't support it.
3072          if (CpuFeatures::IsSupported(FPU)) {
3073            __ Branch((result_type_ <= BinaryOpIC::INT32)
3074                        ? &transition
3075                        : &return_heap_number,
3076                       lt,
3077                       a2,
3078                       Operand(zero_reg));
3079          } else {
3080            __ Branch((result_type_ <= BinaryOpIC::INT32)
3081                        ? &transition
3082                        : &call_runtime,
3083                       lt,
3084                       a2,
3085                       Operand(zero_reg));
3086          }
3087          break;
3088        case Token::SHL:
3089          __ And(a2, a2, Operand(0x1f));
3090          __ sllv(a2, a3, a2);
3091          break;
3092        default:
3093          UNREACHABLE();
3094      }
3095
3096      // Check if the result fits in a smi.
3097      __ Addu(scratch1, a2, Operand(0x40000000));
3098      // If not try to return a heap number. (We know the result is an int32.)
3099      __ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg));
3100      // Tag the result and return.
3101      __ SmiTag(v0, a2);
3102      __ Ret();
3103
3104      __ bind(&return_heap_number);
3105      heap_number_result = t1;
3106      GenerateHeapResultAllocation(masm,
3107                                   heap_number_result,
3108                                   heap_number_map,
3109                                   scratch1,
3110                                   scratch2,
3111                                   &call_runtime);
3112
3113      if (CpuFeatures::IsSupported(FPU)) {
3114        CpuFeatures::Scope scope(FPU);
3115
3116        if (op_ != Token::SHR) {
3117          // Convert the result to a floating point value.
3118          __ mtc1(a2, double_scratch);
3119          __ cvt_d_w(double_scratch, double_scratch);
3120        } else {
3121          // The result must be interpreted as an unsigned 32-bit integer.
3122          __ mtc1(a2, double_scratch);
3123          __ Cvt_d_uw(double_scratch, double_scratch, single_scratch);
3124        }
3125
3126        // Store the result.
3127        __ mov(v0, heap_number_result);
3128        __ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset));
3129        __ Ret();
3130      } else {
3131        // Tail call that writes the int32 in a2 to the heap number in v0, using
3132        // a3 and a0 as scratch. v0 is preserved and returned.
3133        __ mov(a0, t1);
3134        WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
3135        __ TailCallStub(&stub);
3136      }
3137
3138      break;
3139    }
3140
3141    default:
3142      UNREACHABLE();
3143  }
3144
3145  // We never expect DIV to yield an integer result, so we always generate
3146  // type transition code for DIV operations expecting an integer result: the
3147  // code will fall through to this type transition.
3148  if (transition.is_linked() ||
3149      ((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
3150    __ bind(&transition);
3151    GenerateTypeTransition(masm);
3152  }
3153
3154  __ bind(&call_runtime);
3155  GenerateCallRuntime(masm);
3156}
3157
3158
3159void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
3160  Label call_runtime;
3161
3162  if (op_ == Token::ADD) {
3163    // Handle string addition here, because it is the only operation
3164    // that does not do a ToNumber conversion on the operands.
3165    GenerateAddStrings(masm);
3166  }
3167
3168  // Convert oddball arguments to numbers.
3169  Label check, done;
3170  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
3171  __ Branch(&check, ne, a1, Operand(t0));
3172  if (Token::IsBitOp(op_)) {
3173    __ li(a1, Operand(Smi::FromInt(0)));
3174  } else {
3175    __ LoadRoot(a1, Heap::kNanValueRootIndex);
3176  }
3177  __ jmp(&done);
3178  __ bind(&check);
3179  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
3180  __ Branch(&done, ne, a0, Operand(t0));
3181  if (Token::IsBitOp(op_)) {
3182    __ li(a0, Operand(Smi::FromInt(0)));
3183  } else {
3184    __ LoadRoot(a0, Heap::kNanValueRootIndex);
3185  }
3186  __ bind(&done);
3187
3188  GenerateHeapNumberStub(masm);
3189}
3190
3191
3192void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
3193  Label call_runtime;
3194  GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
3195
3196  __ bind(&call_runtime);
3197  GenerateCallRuntime(masm);
3198}
3199
3200
3201void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
3202  Label call_runtime, call_string_add_or_runtime;
3203
3204  GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
3205
3206  GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
3207
3208  __ bind(&call_string_add_or_runtime);
3209  if (op_ == Token::ADD) {
3210    GenerateAddStrings(masm);
3211  }
3212
3213  __ bind(&call_runtime);
3214  GenerateCallRuntime(masm);
3215}
3216
3217
3218void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
3219  ASSERT(op_ == Token::ADD);
3220  Label left_not_string, call_runtime;
3221
3222  Register left = a1;
3223  Register right = a0;
3224
3225  // Check if left argument is a string.
3226  __ JumpIfSmi(left, &left_not_string);
3227  __ GetObjectType(left, a2, a2);
3228  __ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE));
3229
3230  StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
3231  GenerateRegisterArgsPush(masm);
3232  __ TailCallStub(&string_add_left_stub);
3233
3234  // Left operand is not a string, test right.
3235  __ bind(&left_not_string);
3236  __ JumpIfSmi(right, &call_runtime);
3237  __ GetObjectType(right, a2, a2);
3238  __ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
3239
3240  StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
3241  GenerateRegisterArgsPush(masm);
3242  __ TailCallStub(&string_add_right_stub);
3243
3244  // At least one argument is not a string.
3245  __ bind(&call_runtime);
3246}
3247
3248
3249void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
3250  GenerateRegisterArgsPush(masm);
3251  switch (op_) {
3252    case Token::ADD:
3253      __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
3254      break;
3255    case Token::SUB:
3256      __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
3257      break;
3258    case Token::MUL:
3259      __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
3260      break;
3261    case Token::DIV:
3262      __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
3263      break;
3264    case Token::MOD:
3265      __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
3266      break;
3267    case Token::BIT_OR:
3268      __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
3269      break;
3270    case Token::BIT_AND:
3271      __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
3272      break;
3273    case Token::BIT_XOR:
3274      __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
3275      break;
3276    case Token::SAR:
3277      __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
3278      break;
3279    case Token::SHR:
3280      __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
3281      break;
3282    case Token::SHL:
3283      __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
3284      break;
3285    default:
3286      UNREACHABLE();
3287  }
3288}
3289
3290
3291void BinaryOpStub::GenerateHeapResultAllocation(
3292    MacroAssembler* masm,
3293    Register result,
3294    Register heap_number_map,
3295    Register scratch1,
3296    Register scratch2,
3297    Label* gc_required) {
3298
3299  // Code below will scratch result if allocation fails. To keep both arguments
3300  // intact for the runtime call result cannot be one of these.
3301  ASSERT(!result.is(a0) && !result.is(a1));
3302
3303  if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
3304    Label skip_allocation, allocated;
3305    Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0;
3306    // If the overwritable operand is already an object, we skip the
3307    // allocation of a heap number.
3308    __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
3309    // Allocate a heap number for the result.
3310    __ AllocateHeapNumber(
3311        result, scratch1, scratch2, heap_number_map, gc_required);
3312    __ Branch(&allocated);
3313    __ bind(&skip_allocation);
3314    // Use object holding the overwritable operand for result.
3315    __ mov(result, overwritable_operand);
3316    __ bind(&allocated);
3317  } else {
3318    ASSERT(mode_ == NO_OVERWRITE);
3319    __ AllocateHeapNumber(
3320        result, scratch1, scratch2, heap_number_map, gc_required);
3321  }
3322}
3323
3324
3325void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
3326  __ Push(a1, a0);
3327}
3328
3329
3330
3331void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
3332  // Untagged case: double input in f4, double result goes
3333  //   into f4.
3334  // Tagged case: tagged input on top of stack and in a0,
3335  //   tagged result (heap number) goes into v0.
3336
3337  Label input_not_smi;
3338  Label loaded;
3339  Label calculate;
3340  Label invalid_cache;
3341  const Register scratch0 = t5;
3342  const Register scratch1 = t3;
3343  const Register cache_entry = a0;
3344  const bool tagged = (argument_type_ == TAGGED);
3345
3346  if (CpuFeatures::IsSupported(FPU)) {
3347    CpuFeatures::Scope scope(FPU);
3348
3349    if (tagged) {
3350      // Argument is a number and is on stack and in a0.
3351      // Load argument and check if it is a smi.
3352      __ JumpIfNotSmi(a0, &input_not_smi);
3353
3354      // Input is a smi. Convert to double and load the low and high words
3355      // of the double into a2, a3.
3356      __ sra(t0, a0, kSmiTagSize);
3357      __ mtc1(t0, f4);
3358      __ cvt_d_w(f4, f4);
3359      __ Move(a2, a3, f4);
3360      __ Branch(&loaded);
3361
3362      __ bind(&input_not_smi);
3363      // Check if input is a HeapNumber.
3364      __ CheckMap(a0,
3365                  a1,
3366                  Heap::kHeapNumberMapRootIndex,
3367                  &calculate,
3368                  DONT_DO_SMI_CHECK);
3369      // Input is a HeapNumber. Store the
3370      // low and high words into a2, a3.
3371      __ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset));
3372      __ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4));
3373    } else {
3374      // Input is untagged double in f4. Output goes to f4.
3375      __ Move(a2, a3, f4);
3376    }
3377    __ bind(&loaded);
3378    // a2 = low 32 bits of double value.
3379    // a3 = high 32 bits of double value.
3380    // Compute hash (the shifts are arithmetic):
3381    //   h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3382    __ Xor(a1, a2, a3);
3383    __ sra(t0, a1, 16);
3384    __ Xor(a1, a1, t0);
3385    __ sra(t0, a1, 8);
3386    __ Xor(a1, a1, t0);
3387    ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
3388    __ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
3389
3390    // a2 = low 32 bits of double value.
3391    // a3 = high 32 bits of double value.
3392    // a1 = TranscendentalCache::hash(double value).
3393    __ li(cache_entry, Operand(
3394        ExternalReference::transcendental_cache_array_address(
3395            masm->isolate())));
3396    // a0 points to cache array.
3397    __ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof(
3398        Isolate::Current()->transcendental_cache()->caches_[0])));
3399    // a0 points to the cache for the type type_.
3400    // If NULL, the cache hasn't been initialized yet, so go through runtime.
3401    __ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg));
3402
3403#ifdef DEBUG
3404    // Check that the layout of cache elements match expectations.
3405    { TranscendentalCache::SubCache::Element test_elem[2];
3406      char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3407      char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3408      char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3409      char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3410      char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3411      CHECK_EQ(12, elem2_start - elem_start);  // Two uint_32's and a pointer.
3412      CHECK_EQ(0, elem_in0 - elem_start);
3413      CHECK_EQ(kIntSize, elem_in1 - elem_start);
3414      CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3415    }
3416#endif
3417
3418    // Find the address of the a1'st entry in the cache, i.e., &a0[a1*12].
3419    __ sll(t0, a1, 1);
3420    __ Addu(a1, a1, t0);
3421    __ sll(t0, a1, 2);
3422    __ Addu(cache_entry, cache_entry, t0);
3423
3424    // Check if cache matches: Double value is stored in uint32_t[2] array.
3425    __ lw(t0, MemOperand(cache_entry, 0));
3426    __ lw(t1, MemOperand(cache_entry, 4));
3427    __ lw(t2, MemOperand(cache_entry, 8));
3428    __ Branch(&calculate, ne, a2, Operand(t0));
3429    __ Branch(&calculate, ne, a3, Operand(t1));
3430    // Cache hit. Load result, cleanup and return.
3431    Counters* counters = masm->isolate()->counters();
3432    __ IncrementCounter(
3433        counters->transcendental_cache_hit(), 1, scratch0, scratch1);
3434    if (tagged) {
3435      // Pop input value from stack and load result into v0.
3436      __ Drop(1);
3437      __ mov(v0, t2);
3438    } else {
3439      // Load result into f4.
3440      __ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
3441    }
3442    __ Ret();
3443  }  // if (CpuFeatures::IsSupported(FPU))
3444
3445  __ bind(&calculate);
3446  Counters* counters = masm->isolate()->counters();
3447  __ IncrementCounter(
3448      counters->transcendental_cache_miss(), 1, scratch0, scratch1);
3449  if (tagged) {
3450    __ bind(&invalid_cache);
3451    __ TailCallExternalReference(ExternalReference(RuntimeFunction(),
3452                                                   masm->isolate()),
3453                                 1,
3454                                 1);
3455  } else {
3456    if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE();
3457    CpuFeatures::Scope scope(FPU);
3458
3459    Label no_update;
3460    Label skip_cache;
3461
3462    // Call C function to calculate the result and update the cache.
3463    // Register a0 holds precalculated cache entry address; preserve
3464    // it on the stack and pop it into register cache_entry after the
3465    // call.
3466    __ Push(cache_entry, a2, a3);
3467    GenerateCallCFunction(masm, scratch0);
3468    __ GetCFunctionDoubleResult(f4);
3469
3470    // Try to update the cache. If we cannot allocate a
3471    // heap number, we return the result without updating.
3472    __ Pop(cache_entry, a2, a3);
3473    __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
3474    __ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update);
3475    __ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
3476
3477    __ sw(a2, MemOperand(cache_entry, 0 * kPointerSize));
3478    __ sw(a3, MemOperand(cache_entry, 1 * kPointerSize));
3479    __ sw(t2, MemOperand(cache_entry, 2 * kPointerSize));
3480
3481    __ Ret(USE_DELAY_SLOT);
3482    __ mov(v0, cache_entry);
3483
3484    __ bind(&invalid_cache);
3485    // The cache is invalid. Call runtime which will recreate the
3486    // cache.
3487    __ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
3488    __ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache);
3489    __ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset));
3490    {
3491      FrameScope scope(masm, StackFrame::INTERNAL);
3492      __ push(a0);
3493      __ CallRuntime(RuntimeFunction(), 1);
3494    }
3495    __ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset));
3496    __ Ret();
3497
3498    __ bind(&skip_cache);
3499    // Call C function to calculate the result and answer directly
3500    // without updating the cache.
3501    GenerateCallCFunction(masm, scratch0);
3502    __ GetCFunctionDoubleResult(f4);
3503    __ bind(&no_update);
3504
3505    // We return the value in f4 without adding it to the cache, but
3506    // we cause a scavenging GC so that future allocations will succeed.
3507    {
3508      FrameScope scope(masm, StackFrame::INTERNAL);
3509
3510      // Allocate an aligned object larger than a HeapNumber.
3511      ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3512      __ li(scratch0, Operand(4 * kPointerSize));
3513      __ push(scratch0);
3514      __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3515    }
3516    __ Ret();
3517  }
3518}
3519
3520
3521void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3522                                                    Register scratch) {
3523  __ push(ra);
3524  __ PrepareCallCFunction(2, scratch);
3525  if (IsMipsSoftFloatABI) {
3526    __ Move(a0, a1, f4);
3527  } else {
3528    __ mov_d(f12, f4);
3529  }
3530  AllowExternalCallThatCantCauseGC scope(masm);
3531  Isolate* isolate = masm->isolate();
3532  switch (type_) {
3533    case TranscendentalCache::SIN:
3534      __ CallCFunction(
3535          ExternalReference::math_sin_double_function(isolate),
3536          0, 1);
3537      break;
3538    case TranscendentalCache::COS:
3539      __ CallCFunction(
3540          ExternalReference::math_cos_double_function(isolate),
3541          0, 1);
3542      break;
3543    case TranscendentalCache::TAN:
3544      __ CallCFunction(ExternalReference::math_tan_double_function(isolate),
3545          0, 1);
3546      break;
3547    case TranscendentalCache::LOG:
3548      __ CallCFunction(
3549          ExternalReference::math_log_double_function(isolate),
3550          0, 1);
3551      break;
3552    default:
3553      UNIMPLEMENTED();
3554      break;
3555  }
3556  __ pop(ra);
3557}
3558
3559
3560Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3561  switch (type_) {
3562    // Add more cases when necessary.
3563    case TranscendentalCache::SIN: return Runtime::kMath_sin;
3564    case TranscendentalCache::COS: return Runtime::kMath_cos;
3565    case TranscendentalCache::TAN: return Runtime::kMath_tan;
3566    case TranscendentalCache::LOG: return Runtime::kMath_log;
3567    default:
3568      UNIMPLEMENTED();
3569      return Runtime::kAbort;
3570  }
3571}
3572
3573
3574void StackCheckStub::Generate(MacroAssembler* masm) {
3575  __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
3576}
3577
3578
3579void InterruptStub::Generate(MacroAssembler* masm) {
3580  __ TailCallRuntime(Runtime::kInterrupt, 0, 1);
3581}
3582
3583
3584void MathPowStub::Generate(MacroAssembler* masm) {
3585  CpuFeatures::Scope fpu_scope(FPU);
3586  const Register base = a1;
3587  const Register exponent = a2;
3588  const Register heapnumbermap = t1;
3589  const Register heapnumber = v0;
3590  const DoubleRegister double_base = f2;
3591  const DoubleRegister double_exponent = f4;
3592  const DoubleRegister double_result = f0;
3593  const DoubleRegister double_scratch = f6;
3594  const FPURegister single_scratch = f8;
3595  const Register scratch = t5;
3596  const Register scratch2 = t3;
3597
3598  Label call_runtime, done, int_exponent;
3599  if (exponent_type_ == ON_STACK) {
3600    Label base_is_smi, unpack_exponent;
3601    // The exponent and base are supplied as arguments on the stack.
3602    // This can only happen if the stub is called from non-optimized code.
3603    // Load input parameters from stack to double registers.
3604    __ lw(base, MemOperand(sp, 1 * kPointerSize));
3605    __ lw(exponent, MemOperand(sp, 0 * kPointerSize));
3606
3607    __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
3608
3609    __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
3610    __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
3611    __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
3612
3613    __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
3614    __ jmp(&unpack_exponent);
3615
3616    __ bind(&base_is_smi);
3617    __ mtc1(scratch, single_scratch);
3618    __ cvt_d_w(double_base, single_scratch);
3619    __ bind(&unpack_exponent);
3620
3621    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
3622
3623    __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
3624    __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
3625    __ ldc1(double_exponent,
3626            FieldMemOperand(exponent, HeapNumber::kValueOffset));
3627  } else if (exponent_type_ == TAGGED) {
3628    // Base is already in double_base.
3629    __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
3630
3631    __ ldc1(double_exponent,
3632            FieldMemOperand(exponent, HeapNumber::kValueOffset));
3633  }
3634
3635  if (exponent_type_ != INTEGER) {
3636    Label int_exponent_convert;
3637    // Detect integer exponents stored as double.
3638    __ EmitFPUTruncate(kRoundToMinusInf,
3639                       single_scratch,
3640                       double_exponent,
3641                       scratch,
3642                       scratch2,
3643                       kCheckForInexactConversion);
3644    // scratch2 == 0 means there was no conversion error.
3645    __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
3646
3647    if (exponent_type_ == ON_STACK) {
3648      // Detect square root case.  Crankshaft detects constant +/-0.5 at
3649      // compile time and uses DoMathPowHalf instead.  We then skip this check
3650      // for non-constant cases of +/-0.5 as these hardly occur.
3651      Label not_plus_half;
3652
3653      // Test for 0.5.
3654      __ Move(double_scratch, 0.5);
3655      __ BranchF(USE_DELAY_SLOT,
3656                 &not_plus_half,
3657                 NULL,
3658                 ne,
3659                 double_exponent,
3660                 double_scratch);
3661      // double_scratch can be overwritten in the delay slot.
3662      // Calculates square root of base.  Check for the special case of
3663      // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
3664      __ Move(double_scratch, -V8_INFINITY);
3665      __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
3666      __ neg_d(double_result, double_scratch);
3667
3668      // Add +0 to convert -0 to +0.
3669      __ add_d(double_scratch, double_base, kDoubleRegZero);
3670      __ sqrt_d(double_result, double_scratch);
3671      __ jmp(&done);
3672
3673      __ bind(&not_plus_half);
3674      __ Move(double_scratch, -0.5);
3675      __ BranchF(USE_DELAY_SLOT,
3676                 &call_runtime,
3677                 NULL,
3678                 ne,
3679                 double_exponent,
3680                 double_scratch);
3681      // double_scratch can be overwritten in the delay slot.
3682      // Calculates square root of base.  Check for the special case of
3683      // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
3684      __ Move(double_scratch, -V8_INFINITY);
3685      __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
3686      __ Move(double_result, kDoubleRegZero);
3687
3688      // Add +0 to convert -0 to +0.
3689      __ add_d(double_scratch, double_base, kDoubleRegZero);
3690      __ Move(double_result, 1);
3691      __ sqrt_d(double_scratch, double_scratch);
3692      __ div_d(double_result, double_result, double_scratch);
3693      __ jmp(&done);
3694    }
3695
3696    __ push(ra);
3697    {
3698      AllowExternalCallThatCantCauseGC scope(masm);
3699      __ PrepareCallCFunction(0, 2, scratch);
3700      __ SetCallCDoubleArguments(double_base, double_exponent);
3701      __ CallCFunction(
3702          ExternalReference::power_double_double_function(masm->isolate()),
3703          0, 2);
3704    }
3705    __ pop(ra);
3706    __ GetCFunctionDoubleResult(double_result);
3707    __ jmp(&done);
3708
3709    __ bind(&int_exponent_convert);
3710    __ mfc1(scratch, single_scratch);
3711  }
3712
3713  // Calculate power with integer exponent.
3714  __ bind(&int_exponent);
3715
3716  // Get two copies of exponent in the registers scratch and exponent.
3717  if (exponent_type_ == INTEGER) {
3718    __ mov(scratch, exponent);
3719  } else {
3720    // Exponent has previously been stored into scratch as untagged integer.
3721    __ mov(exponent, scratch);
3722  }
3723
3724  __ mov_d(double_scratch, double_base);  // Back up base.
3725  __ Move(double_result, 1.0);
3726
3727  // Get absolute value of exponent.
3728  Label positive_exponent;
3729  __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
3730  __ Subu(scratch, zero_reg, scratch);
3731  __ bind(&positive_exponent);
3732
3733  Label while_true, no_carry, loop_end;
3734  __ bind(&while_true);
3735
3736  __ And(scratch2, scratch, 1);
3737
3738  __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
3739  __ mul_d(double_result, double_result, double_scratch);
3740  __ bind(&no_carry);
3741
3742  __ sra(scratch, scratch, 1);
3743
3744  __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
3745  __ mul_d(double_scratch, double_scratch, double_scratch);
3746
3747  __ Branch(&while_true);
3748
3749  __ bind(&loop_end);
3750
3751  __ Branch(&done, ge, exponent, Operand(zero_reg));
3752  __ Move(double_scratch, 1.0);
3753  __ div_d(double_result, double_scratch, double_result);
3754  // Test whether result is zero.  Bail out to check for subnormal result.
3755  // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
3756  __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
3757
3758  // double_exponent may not contain the exponent value if the input was a
3759  // smi.  We set it with exponent value before bailing out.
3760  __ mtc1(exponent, single_scratch);
3761  __ cvt_d_w(double_exponent, single_scratch);
3762
3763  // Returning or bailing out.
3764  Counters* counters = masm->isolate()->counters();
3765  if (exponent_type_ == ON_STACK) {
3766    // The arguments are still on the stack.
3767    __ bind(&call_runtime);
3768    __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
3769
3770    // The stub is called from non-optimized code, which expects the result
3771    // as heap number in exponent.
3772    __ bind(&done);
3773    __ AllocateHeapNumber(
3774        heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
3775    __ sdc1(double_result,
3776            FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
3777    ASSERT(heapnumber.is(v0));
3778    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3779    __ DropAndRet(2);
3780  } else {
3781    __ push(ra);
3782    {
3783      AllowExternalCallThatCantCauseGC scope(masm);
3784      __ PrepareCallCFunction(0, 2, scratch);
3785      __ SetCallCDoubleArguments(double_base, double_exponent);
3786      __ CallCFunction(
3787          ExternalReference::power_double_double_function(masm->isolate()),
3788          0, 2);
3789    }
3790    __ pop(ra);
3791    __ GetCFunctionDoubleResult(double_result);
3792
3793    __ bind(&done);
3794    __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
3795    __ Ret();
3796  }
3797}
3798
3799
3800bool CEntryStub::NeedsImmovableCode() {
3801  return true;
3802}
3803
3804
3805bool CEntryStub::IsPregenerated() {
3806  return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
3807          result_size_ == 1;
3808}
3809
3810
3811void CodeStub::GenerateStubsAheadOfTime() {
3812  CEntryStub::GenerateAheadOfTime();
3813  WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
3814  StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
3815  RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
3816}
3817
3818
3819void CodeStub::GenerateFPStubs() {
3820  CEntryStub save_doubles(1, kSaveFPRegs);
3821  Handle<Code> code = save_doubles.GetCode();
3822  code->set_is_pregenerated(true);
3823  StoreBufferOverflowStub stub(kSaveFPRegs);
3824  stub.GetCode()->set_is_pregenerated(true);
3825  code->GetIsolate()->set_fp_stubs_generated(true);
3826}
3827
3828
3829void CEntryStub::GenerateAheadOfTime() {
3830  CEntryStub stub(1, kDontSaveFPRegs);
3831  Handle<Code> code = stub.GetCode();
3832  code->set_is_pregenerated(true);
3833}
3834
3835
3836void CEntryStub::GenerateCore(MacroAssembler* masm,
3837                              Label* throw_normal_exception,
3838                              Label* throw_termination_exception,
3839                              Label* throw_out_of_memory_exception,
3840                              bool do_gc,
3841                              bool always_allocate) {
3842  // v0: result parameter for PerformGC, if any
3843  // s0: number of arguments including receiver (C callee-saved)
3844  // s1: pointer to the first argument          (C callee-saved)
3845  // s2: pointer to builtin function            (C callee-saved)
3846
3847  Isolate* isolate = masm->isolate();
3848
3849  if (do_gc) {
3850    // Move result passed in v0 into a0 to call PerformGC.
3851    __ mov(a0, v0);
3852    __ PrepareCallCFunction(1, 0, a1);
3853    __ CallCFunction(ExternalReference::perform_gc_function(isolate), 1, 0);
3854  }
3855
3856  ExternalReference scope_depth =
3857      ExternalReference::heap_always_allocate_scope_depth(isolate);
3858  if (always_allocate) {
3859    __ li(a0, Operand(scope_depth));
3860    __ lw(a1, MemOperand(a0));
3861    __ Addu(a1, a1, Operand(1));
3862    __ sw(a1, MemOperand(a0));
3863  }
3864
3865  // Prepare arguments for C routine.
3866  // a0 = argc
3867  __ mov(a0, s0);
3868  // a1 = argv (set in the delay slot after find_ra below).
3869
3870  // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
3871  // also need to reserve the 4 argument slots on the stack.
3872
3873  __ AssertStackIsAligned();
3874
3875  __ li(a2, Operand(ExternalReference::isolate_address()));
3876
3877  // To let the GC traverse the return address of the exit frames, we need to
3878  // know where the return address is. The CEntryStub is unmovable, so
3879  // we can store the address on the stack to be able to find it again and
3880  // we never have to restore it, because it will not change.
3881  { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
3882    // This branch-and-link sequence is needed to find the current PC on mips,
3883    // saved to the ra register.
3884    // Use masm-> here instead of the double-underscore macro since extra
3885    // coverage code can interfere with the proper calculation of ra.
3886    Label find_ra;
3887    masm->bal(&find_ra);  // bal exposes branch delay slot.
3888    masm->mov(a1, s1);
3889    masm->bind(&find_ra);
3890
3891    // Adjust the value in ra to point to the correct return location, 2nd
3892    // instruction past the real call into C code (the jalr(t9)), and push it.
3893    // This is the return address of the exit frame.
3894    const int kNumInstructionsToJump = 5;
3895    masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
3896    masm->sw(ra, MemOperand(sp));  // This spot was reserved in EnterExitFrame.
3897    // Stack space reservation moved to the branch delay slot below.
3898    // Stack is still aligned.
3899
3900    // Call the C routine.
3901    masm->mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
3902    masm->jalr(t9);
3903    // Set up sp in the delay slot.
3904    masm->addiu(sp, sp, -kCArgsSlotsSize);
3905    // Make sure the stored 'ra' points to this position.
3906    ASSERT_EQ(kNumInstructionsToJump,
3907              masm->InstructionsGeneratedSince(&find_ra));
3908  }
3909
3910  if (always_allocate) {
3911    // It's okay to clobber a2 and a3 here. v0 & v1 contain result.
3912    __ li(a2, Operand(scope_depth));
3913    __ lw(a3, MemOperand(a2));
3914    __ Subu(a3, a3, Operand(1));
3915    __ sw(a3, MemOperand(a2));
3916  }
3917
3918  // Check for failure result.
3919  Label failure_returned;
3920  STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3921  __ addiu(a2, v0, 1);
3922  __ andi(t0, a2, kFailureTagMask);
3923  __ Branch(USE_DELAY_SLOT, &failure_returned, eq, t0, Operand(zero_reg));
3924  // Restore stack (remove arg slots) in branch delay slot.
3925  __ addiu(sp, sp, kCArgsSlotsSize);
3926
3927
3928  // Exit C frame and return.
3929  // v0:v1: result
3930  // sp: stack pointer
3931  // fp: frame pointer
3932  __ LeaveExitFrame(save_doubles_, s0, true);
3933
3934  // Check if we should retry or throw exception.
3935  Label retry;
3936  __ bind(&failure_returned);
3937  STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3938  __ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize);
3939  __ Branch(&retry, eq, t0, Operand(zero_reg));
3940
3941  // Special handling of out of memory exceptions.
3942  Failure* out_of_memory = Failure::OutOfMemoryException();
3943  __ Branch(USE_DELAY_SLOT,
3944            throw_out_of_memory_exception,
3945            eq,
3946            v0,
3947            Operand(reinterpret_cast<int32_t>(out_of_memory)));
3948  // If we throw the OOM exception, the value of a3 doesn't matter.
3949  // Any instruction can be in the delay slot that's not a jump.
3950
3951  // Retrieve the pending exception and clear the variable.
3952  __ LoadRoot(a3, Heap::kTheHoleValueRootIndex);
3953  __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
3954                                      isolate)));
3955  __ lw(v0, MemOperand(t0));
3956  __ sw(a3, MemOperand(t0));
3957
3958  // Special handling of termination exceptions which are uncatchable
3959  // by javascript code.
3960  __ LoadRoot(t0, Heap::kTerminationExceptionRootIndex);
3961  __ Branch(throw_termination_exception, eq, v0, Operand(t0));
3962
3963  // Handle normal exception.
3964  __ jmp(throw_normal_exception);
3965
3966  __ bind(&retry);
3967  // Last failure (v0) will be moved to (a0) for parameter when retrying.
3968}
3969
3970
3971void CEntryStub::Generate(MacroAssembler* masm) {
3972  // Called from JavaScript; parameters are on stack as if calling JS function
3973  // s0: number of arguments including receiver
3974  // s1: size of arguments excluding receiver
3975  // s2: pointer to builtin function
3976  // fp: frame pointer    (restored after C call)
3977  // sp: stack pointer    (restored as callee's sp after C call)
3978  // cp: current context  (C callee-saved)
3979
3980  // NOTE: Invocations of builtins may return failure objects
3981  // instead of a proper result. The builtin entry handles
3982  // this by performing a garbage collection and retrying the
3983  // builtin once.
3984
3985  // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
3986  // The reason for this is that these arguments would need to be saved anyway
3987  // so it's faster to set them up directly.
3988  // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.
3989
3990  // Compute the argv pointer in a callee-saved register.
3991  __ Addu(s1, sp, s1);
3992
3993  // Enter the exit frame that transitions from JavaScript to C++.
3994  FrameScope scope(masm, StackFrame::MANUAL);
3995  __ EnterExitFrame(save_doubles_);
3996
3997  // s0: number of arguments (C callee-saved)
3998  // s1: pointer to first argument (C callee-saved)
3999  // s2: pointer to builtin function (C callee-saved)
4000
4001  Label throw_normal_exception;
4002  Label throw_termination_exception;
4003  Label throw_out_of_memory_exception;
4004
4005  // Call into the runtime system.
4006  GenerateCore(masm,
4007               &throw_normal_exception,
4008               &throw_termination_exception,
4009               &throw_out_of_memory_exception,
4010               false,
4011               false);
4012
4013  // Do space-specific GC and retry runtime call.
4014  GenerateCore(masm,
4015               &throw_normal_exception,
4016               &throw_termination_exception,
4017               &throw_out_of_memory_exception,
4018               true,
4019               false);
4020
4021  // Do full GC and retry runtime call one final time.
4022  Failure* failure = Failure::InternalError();
4023  __ li(v0, Operand(reinterpret_cast<int32_t>(failure)));
4024  GenerateCore(masm,
4025               &throw_normal_exception,
4026               &throw_termination_exception,
4027               &throw_out_of_memory_exception,
4028               true,
4029               true);
4030
4031  __ bind(&throw_out_of_memory_exception);
4032  // Set external caught exception to false.
4033  Isolate* isolate = masm->isolate();
4034  ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress,
4035                                    isolate);
4036  __ li(a0, Operand(false, RelocInfo::NONE));
4037  __ li(a2, Operand(external_caught));
4038  __ sw(a0, MemOperand(a2));
4039
4040  // Set pending exception and v0 to out of memory exception.
4041  Failure* out_of_memory = Failure::OutOfMemoryException();
4042  __ li(v0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
4043  __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4044                                      isolate)));
4045  __ sw(v0, MemOperand(a2));
4046  // Fall through to the next label.
4047
4048  __ bind(&throw_termination_exception);
4049  __ ThrowUncatchable(v0);
4050
4051  __ bind(&throw_normal_exception);
4052  __ Throw(v0);
4053}
4054
4055
4056void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
4057  Label invoke, handler_entry, exit;
4058  Isolate* isolate = masm->isolate();
4059
4060  // Registers:
4061  // a0: entry address
4062  // a1: function
4063  // a2: receiver
4064  // a3: argc
4065  //
4066  // Stack:
4067  // 4 args slots
4068  // args
4069
4070  // Save callee saved registers on the stack.
4071  __ MultiPush(kCalleeSaved | ra.bit());
4072
4073  if (CpuFeatures::IsSupported(FPU)) {
4074    CpuFeatures::Scope scope(FPU);
4075    // Save callee-saved FPU registers.
4076    __ MultiPushFPU(kCalleeSavedFPU);
4077    // Set up the reserved register for 0.0.
4078    __ Move(kDoubleRegZero, 0.0);
4079  }
4080
4081
4082  // Load argv in s0 register.
4083  int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
4084  if (CpuFeatures::IsSupported(FPU)) {
4085    offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
4086  }
4087
4088  __ InitializeRootRegister();
4089  __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
4090
4091  // We build an EntryFrame.
4092  __ li(t3, Operand(-1));  // Push a bad frame pointer to fail if it is used.
4093  int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
4094  __ li(t2, Operand(Smi::FromInt(marker)));
4095  __ li(t1, Operand(Smi::FromInt(marker)));
4096  __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
4097                                      isolate)));
4098  __ lw(t0, MemOperand(t0));
4099  __ Push(t3, t2, t1, t0);
4100  // Set up frame pointer for the frame to be pushed.
4101  __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
4102
4103  // Registers:
4104  // a0: entry_address
4105  // a1: function
4106  // a2: receiver_pointer
4107  // a3: argc
4108  // s0: argv
4109  //
4110  // Stack:
4111  // caller fp          |
4112  // function slot      | entry frame
4113  // context slot       |
4114  // bad fp (0xff...f)  |
4115  // callee saved registers + ra
4116  // 4 args slots
4117  // args
4118
4119  // If this is the outermost JS call, set js_entry_sp value.
4120  Label non_outermost_js;
4121  ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
4122  __ li(t1, Operand(ExternalReference(js_entry_sp)));
4123  __ lw(t2, MemOperand(t1));
4124  __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
4125  __ sw(fp, MemOperand(t1));
4126  __ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4127  Label cont;
4128  __ b(&cont);
4129  __ nop();   // Branch delay slot nop.
4130  __ bind(&non_outermost_js);
4131  __ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
4132  __ bind(&cont);
4133  __ push(t0);
4134
4135  // Jump to a faked try block that does the invoke, with a faked catch
4136  // block that sets the pending exception.
4137  __ jmp(&invoke);
4138  __ bind(&handler_entry);
4139  handler_offset_ = handler_entry.pos();
4140  // Caught exception: Store result (exception) in the pending exception
4141  // field in the JSEnv and return a failure sentinel.  Coming in here the
4142  // fp will be invalid because the PushTryHandler below sets it to 0 to
4143  // signal the existence of the JSEntry frame.
4144  __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4145                                      isolate)));
4146  __ sw(v0, MemOperand(t0));  // We come back from 'invoke'. result is in v0.
4147  __ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
4148  __ b(&exit);  // b exposes branch delay slot.
4149  __ nop();   // Branch delay slot nop.
4150
4151  // Invoke: Link this frame into the handler chain.  There's only one
4152  // handler block in this code object, so its index is 0.
4153  __ bind(&invoke);
4154  __ PushTryHandler(StackHandler::JS_ENTRY, 0);
4155  // If an exception not caught by another handler occurs, this handler
4156  // returns control to the code after the bal(&invoke) above, which
4157  // restores all kCalleeSaved registers (including cp and fp) to their
4158  // saved values before returning a failure to C.
4159
4160  // Clear any pending exceptions.
4161  __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
4162  __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
4163                                      isolate)));
4164  __ sw(t1, MemOperand(t0));
4165
4166  // Invoke the function by calling through JS entry trampoline builtin.
4167  // Notice that we cannot store a reference to the trampoline code directly in
4168  // this stub, because runtime stubs are not traversed when doing GC.
4169
4170  // Registers:
4171  // a0: entry_address
4172  // a1: function
4173  // a2: receiver_pointer
4174  // a3: argc
4175  // s0: argv
4176  //
4177  // Stack:
4178  // handler frame
4179  // entry frame
4180  // callee saved registers + ra
4181  // 4 args slots
4182  // args
4183
4184  if (is_construct) {
4185    ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
4186                                      isolate);
4187    __ li(t0, Operand(construct_entry));
4188  } else {
4189    ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
4190    __ li(t0, Operand(entry));
4191  }
4192  __ lw(t9, MemOperand(t0));  // Deref address.
4193
4194  // Call JSEntryTrampoline.
4195  __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
4196  __ Call(t9);
4197
4198  // Unlink this frame from the handler chain.
4199  __ PopTryHandler();
4200
4201  __ bind(&exit);  // v0 holds result
4202  // Check if the current stack frame is marked as the outermost JS frame.
4203  Label non_outermost_js_2;
4204  __ pop(t1);
4205  __ Branch(&non_outermost_js_2,
4206            ne,
4207            t1,
4208            Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4209  __ li(t1, Operand(ExternalReference(js_entry_sp)));
4210  __ sw(zero_reg, MemOperand(t1));
4211  __ bind(&non_outermost_js_2);
4212
4213  // Restore the top frame descriptors from the stack.
4214  __ pop(t1);
4215  __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
4216                                      isolate)));
4217  __ sw(t1, MemOperand(t0));
4218
4219  // Reset the stack to the callee saved registers.
4220  __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
4221
4222  if (CpuFeatures::IsSupported(FPU)) {
4223    CpuFeatures::Scope scope(FPU);
4224    // Restore callee-saved fpu registers.
4225    __ MultiPopFPU(kCalleeSavedFPU);
4226  }
4227
4228  // Restore callee saved registers from the stack.
4229  __ MultiPop(kCalleeSaved | ra.bit());
4230  // Return.
4231  __ Jump(ra);
4232}
4233
4234
4235// Uses registers a0 to t0.
4236// Expected input (depending on whether args are in registers or on the stack):
4237// * object: a0 or at sp + 1 * kPointerSize.
4238// * function: a1 or at sp.
4239//
4240// An inlined call site may have been generated before calling this stub.
4241// In this case the offset to the inline site to patch is passed on the stack,
4242// in the safepoint slot for register t0.
4243void InstanceofStub::Generate(MacroAssembler* masm) {
4244  // Call site inlining and patching implies arguments in registers.
4245  ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4246  // ReturnTrueFalse is only implemented for inlined call sites.
4247  ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
4248
4249  // Fixed register usage throughout the stub:
4250  const Register object = a0;  // Object (lhs).
4251  Register map = a3;  // Map of the object.
4252  const Register function = a1;  // Function (rhs).
4253  const Register prototype = t0;  // Prototype of the function.
4254  const Register inline_site = t5;
4255  const Register scratch = a2;
4256
4257  const int32_t kDeltaToLoadBoolResult = 5 * kPointerSize;
4258
4259  Label slow, loop, is_instance, is_not_instance, not_js_object;
4260
4261  if (!HasArgsInRegisters()) {
4262    __ lw(object, MemOperand(sp, 1 * kPointerSize));
4263    __ lw(function, MemOperand(sp, 0));
4264  }
4265
4266  // Check that the left hand is a JS object and load map.
4267  __ JumpIfSmi(object, &not_js_object);
4268  __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
4269
4270  // If there is a call site cache don't look in the global cache, but do the
4271  // real lookup and update the call site cache.
4272  if (!HasCallSiteInlineCheck()) {
4273    Label miss;
4274    __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
4275    __ Branch(&miss, ne, function, Operand(at));
4276    __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
4277    __ Branch(&miss, ne, map, Operand(at));
4278    __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
4279    __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4280
4281    __ bind(&miss);
4282  }
4283
4284  // Get the prototype of the function.
4285  __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
4286
4287  // Check that the function prototype is a JS object.
4288  __ JumpIfSmi(prototype, &slow);
4289  __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
4290
4291  // Update the global instanceof or call site inlined cache with the current
4292  // map and function. The cached answer will be set when it is known below.
4293  if (!HasCallSiteInlineCheck()) {
4294    __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4295    __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
4296  } else {
4297    ASSERT(HasArgsInRegisters());
4298    // Patch the (relocated) inlined map check.
4299
4300    // The offset was stored in t0 safepoint slot.
4301    // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
4302    __ LoadFromSafepointRegisterSlot(scratch, t0);
4303    __ Subu(inline_site, ra, scratch);
4304    // Get the map location in scratch and patch it.
4305    __ GetRelocatedValue(inline_site, scratch, v1);  // v1 used as scratch.
4306    __ sw(map, FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
4307  }
4308
4309  // Register mapping: a3 is object map and t0 is function prototype.
4310  // Get prototype of object into a2.
4311  __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
4312
4313  // We don't need map any more. Use it as a scratch register.
4314  Register scratch2 = map;
4315  map = no_reg;
4316
4317  // Loop through the prototype chain looking for the function prototype.
4318  __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
4319  __ bind(&loop);
4320  __ Branch(&is_instance, eq, scratch, Operand(prototype));
4321  __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
4322  __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
4323  __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
4324  __ Branch(&loop);
4325
4326  __ bind(&is_instance);
4327  ASSERT(Smi::FromInt(0) == 0);
4328  if (!HasCallSiteInlineCheck()) {
4329    __ mov(v0, zero_reg);
4330    __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
4331  } else {
4332    // Patch the call site to return true.
4333    __ LoadRoot(v0, Heap::kTrueValueRootIndex);
4334    __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4335    // Get the boolean result location in scratch and patch it.
4336    __ PatchRelocatedValue(inline_site, scratch, v0);
4337
4338    if (!ReturnTrueFalseObject()) {
4339      ASSERT_EQ(Smi::FromInt(0), 0);
4340      __ mov(v0, zero_reg);
4341    }
4342  }
4343  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4344
4345  __ bind(&is_not_instance);
4346  if (!HasCallSiteInlineCheck()) {
4347    __ li(v0, Operand(Smi::FromInt(1)));
4348    __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
4349  } else {
4350    // Patch the call site to return false.
4351    __ LoadRoot(v0, Heap::kFalseValueRootIndex);
4352    __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4353    // Get the boolean result location in scratch and patch it.
4354    __ PatchRelocatedValue(inline_site, scratch, v0);
4355
4356    if (!ReturnTrueFalseObject()) {
4357      __ li(v0, Operand(Smi::FromInt(1)));
4358    }
4359  }
4360
4361  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4362
4363  Label object_not_null, object_not_null_or_smi;
4364  __ bind(&not_js_object);
4365  // Before null, smi and string value checks, check that the rhs is a function
4366  // as for a non-function rhs an exception needs to be thrown.
4367  __ JumpIfSmi(function, &slow);
4368  __ GetObjectType(function, scratch2, scratch);
4369  __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
4370
4371  // Null is not instance of anything.
4372  __ Branch(&object_not_null,
4373            ne,
4374            scratch,
4375            Operand(masm->isolate()->factory()->null_value()));
4376  __ li(v0, Operand(Smi::FromInt(1)));
4377  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4378
4379  __ bind(&object_not_null);
4380  // Smi values are not instances of anything.
4381  __ JumpIfNotSmi(object, &object_not_null_or_smi);
4382  __ li(v0, Operand(Smi::FromInt(1)));
4383  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4384
4385  __ bind(&object_not_null_or_smi);
4386  // String values are not instances of anything.
4387  __ IsObjectJSStringType(object, scratch, &slow);
4388  __ li(v0, Operand(Smi::FromInt(1)));
4389  __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4390
4391  // Slow-case.  Tail call builtin.
4392  __ bind(&slow);
4393  if (!ReturnTrueFalseObject()) {
4394    if (HasArgsInRegisters()) {
4395      __ Push(a0, a1);
4396    }
4397  __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
4398  } else {
4399    {
4400      FrameScope scope(masm, StackFrame::INTERNAL);
4401      __ Push(a0, a1);
4402      __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4403    }
4404    __ mov(a0, v0);
4405    __ LoadRoot(v0, Heap::kTrueValueRootIndex);
4406    __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
4407    __ LoadRoot(v0, Heap::kFalseValueRootIndex);
4408    __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
4409  }
4410}
4411
4412
4413Register InstanceofStub::left() { return a0; }
4414
4415
4416Register InstanceofStub::right() { return a1; }
4417
4418
4419void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
4420  // The displacement is the offset of the last parameter (if any)
4421  // relative to the frame pointer.
4422  const int kDisplacement =
4423      StandardFrameConstants::kCallerSPOffset - kPointerSize;
4424
4425  // Check that the key is a smiGenerateReadElement.
4426  Label slow;
4427  __ JumpIfNotSmi(a1, &slow);
4428
4429  // Check if the calling frame is an arguments adaptor frame.
4430  Label adaptor;
4431  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4432  __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
4433  __ Branch(&adaptor,
4434            eq,
4435            a3,
4436            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4437
4438  // Check index (a1) against formal parameters count limit passed in
4439  // through register a0. Use unsigned comparison to get negative
4440  // check for free.
4441  __ Branch(&slow, hs, a1, Operand(a0));
4442
4443  // Read the argument from the stack and return it.
4444  __ subu(a3, a0, a1);
4445  __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
4446  __ Addu(a3, fp, Operand(t3));
4447  __ lw(v0, MemOperand(a3, kDisplacement));
4448  __ Ret();
4449
4450  // Arguments adaptor case: Check index (a1) against actual arguments
4451  // limit found in the arguments adaptor frame. Use unsigned
4452  // comparison to get negative check for free.
4453  __ bind(&adaptor);
4454  __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4455  __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
4456
4457  // Read the argument from the adaptor frame and return it.
4458  __ subu(a3, a0, a1);
4459  __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
4460  __ Addu(a3, a2, Operand(t3));
4461  __ lw(v0, MemOperand(a3, kDisplacement));
4462  __ Ret();
4463
4464  // Slow-case: Handle non-smi or out-of-bounds access to arguments
4465  // by calling the runtime system.
4466  __ bind(&slow);
4467  __ push(a1);
4468  __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
4469}
4470
4471
4472void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
4473  // sp[0] : number of parameters
4474  // sp[4] : receiver displacement
4475  // sp[8] : function
4476  // Check if the calling frame is an arguments adaptor frame.
4477  Label runtime;
4478  __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4479  __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
4480  __ Branch(&runtime,
4481            ne,
4482            a2,
4483            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4484
4485  // Patch the arguments.length and the parameters pointer in the current frame.
4486  __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4487  __ sw(a2, MemOperand(sp, 0 * kPointerSize));
4488  __ sll(t3, a2, 1);
4489  __ Addu(a3, a3, Operand(t3));
4490  __ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
4491  __ sw(a3, MemOperand(sp, 1 * kPointerSize));
4492
4493  __ bind(&runtime);
4494  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4495}
4496
4497
4498void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
4499  // Stack layout:
4500  //  sp[0] : number of parameters (tagged)
4501  //  sp[4] : address of receiver argument
4502  //  sp[8] : function
4503  // Registers used over whole function:
4504  //  t2 : allocated object (tagged)
4505  //  t5 : mapped parameter count (tagged)
4506
4507  __ lw(a1, MemOperand(sp, 0 * kPointerSize));
4508  // a1 = parameter count (tagged)
4509
4510  // Check if the calling frame is an arguments adaptor frame.
4511  Label runtime;
4512  Label adaptor_frame, try_allocate;
4513  __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4514  __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
4515  __ Branch(&adaptor_frame,
4516            eq,
4517            a2,
4518            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4519
4520  // No adaptor, parameter count = argument count.
4521  __ mov(a2, a1);
4522  __ b(&try_allocate);
4523  __ nop();   // Branch delay slot nop.
4524
4525  // We have an adaptor frame. Patch the parameters pointer.
4526  __ bind(&adaptor_frame);
4527  __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
4528  __ sll(t6, a2, 1);
4529  __ Addu(a3, a3, Operand(t6));
4530  __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
4531  __ sw(a3, MemOperand(sp, 1 * kPointerSize));
4532
4533  // a1 = parameter count (tagged)
4534  // a2 = argument count (tagged)
4535  // Compute the mapped parameter count = min(a1, a2) in a1.
4536  Label skip_min;
4537  __ Branch(&skip_min, lt, a1, Operand(a2));
4538  __ mov(a1, a2);
4539  __ bind(&skip_min);
4540
4541  __ bind(&try_allocate);
4542
4543  // Compute the sizes of backing store, parameter map, and arguments object.
4544  // 1. Parameter map, has 2 extra words containing context and backing store.
4545  const int kParameterMapHeaderSize =
4546      FixedArray::kHeaderSize + 2 * kPointerSize;
4547  // If there are no mapped parameters, we do not need the parameter_map.
4548  Label param_map_size;
4549  ASSERT_EQ(0, Smi::FromInt(0));
4550  __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
4551  __ mov(t5, zero_reg);  // In delay slot: param map size = 0 when a1 == 0.
4552  __ sll(t5, a1, 1);
4553  __ addiu(t5, t5, kParameterMapHeaderSize);
4554  __ bind(&param_map_size);
4555
4556  // 2. Backing store.
4557  __ sll(t6, a2, 1);
4558  __ Addu(t5, t5, Operand(t6));
4559  __ Addu(t5, t5, Operand(FixedArray::kHeaderSize));
4560
4561  // 3. Arguments object.
4562  __ Addu(t5, t5, Operand(Heap::kArgumentsObjectSize));
4563
4564  // Do the allocation of all three objects in one go.
4565  __ AllocateInNewSpace(t5, v0, a3, t0, &runtime, TAG_OBJECT);
4566
4567  // v0 = address of new object(s) (tagged)
4568  // a2 = argument count (tagged)
4569  // Get the arguments boilerplate from the current (global) context into t0.
4570  const int kNormalOffset =
4571      Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4572  const int kAliasedOffset =
4573      Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
4574
4575  __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4576  __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
4577  Label skip2_ne, skip2_eq;
4578  __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
4579  __ lw(t0, MemOperand(t0, kNormalOffset));
4580  __ bind(&skip2_ne);
4581
4582  __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
4583  __ lw(t0, MemOperand(t0, kAliasedOffset));
4584  __ bind(&skip2_eq);
4585
4586  // v0 = address of new object (tagged)
4587  // a1 = mapped parameter count (tagged)
4588  // a2 = argument count (tagged)
4589  // t0 = address of boilerplate object (tagged)
4590  // Copy the JS object part.
4591  for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
4592    __ lw(a3, FieldMemOperand(t0, i));
4593    __ sw(a3, FieldMemOperand(v0, i));
4594  }
4595
4596  // Set up the callee in-object property.
4597  STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
4598  __ lw(a3, MemOperand(sp, 2 * kPointerSize));
4599  const int kCalleeOffset = JSObject::kHeaderSize +
4600      Heap::kArgumentsCalleeIndex * kPointerSize;
4601  __ sw(a3, FieldMemOperand(v0, kCalleeOffset));
4602
4603  // Use the length (smi tagged) and set that as an in-object property too.
4604  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4605  const int kLengthOffset = JSObject::kHeaderSize +
4606      Heap::kArgumentsLengthIndex * kPointerSize;
4607  __ sw(a2, FieldMemOperand(v0, kLengthOffset));
4608
4609  // Set up the elements pointer in the allocated arguments object.
4610  // If we allocated a parameter map, t0 will point there, otherwise
4611  // it will point to the backing store.
4612  __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSize));
4613  __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
4614
4615  // v0 = address of new object (tagged)
4616  // a1 = mapped parameter count (tagged)
4617  // a2 = argument count (tagged)
4618  // t0 = address of parameter map or backing store (tagged)
4619  // Initialize parameter map. If there are no mapped arguments, we're done.
4620  Label skip_parameter_map;
4621  Label skip3;
4622  __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
4623  // Move backing store address to a3, because it is
4624  // expected there when filling in the unmapped arguments.
4625  __ mov(a3, t0);
4626  __ bind(&skip3);
4627
4628  __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
4629
4630  __ LoadRoot(t2, Heap::kNonStrictArgumentsElementsMapRootIndex);
4631  __ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset));
4632  __ Addu(t2, a1, Operand(Smi::FromInt(2)));
4633  __ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset));
4634  __ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize));
4635  __ sll(t6, a1, 1);
4636  __ Addu(t2, t0, Operand(t6));
4637  __ Addu(t2, t2, Operand(kParameterMapHeaderSize));
4638  __ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize));
4639
4640  // Copy the parameter slots and the holes in the arguments.
4641  // We need to fill in mapped_parameter_count slots. They index the context,
4642  // where parameters are stored in reverse order, at
4643  //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
4644  // The mapped parameter thus need to get indices
4645  //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
4646  //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
4647  // We loop from right to left.
4648  Label parameters_loop, parameters_test;
4649  __ mov(t2, a1);
4650  __ lw(t5, MemOperand(sp, 0 * kPointerSize));
4651  __ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
4652  __ Subu(t5, t5, Operand(a1));
4653  __ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
4654  __ sll(t6, t2, 1);
4655  __ Addu(a3, t0, Operand(t6));
4656  __ Addu(a3, a3, Operand(kParameterMapHeaderSize));
4657
4658  // t2 = loop variable (tagged)
4659  // a1 = mapping index (tagged)
4660  // a3 = address of backing store (tagged)
4661  // t0 = address of parameter map (tagged)
4662  // t1 = temporary scratch (a.o., for address calculation)
4663  // t3 = the hole value
4664  __ jmp(&parameters_test);
4665
4666  __ bind(&parameters_loop);
4667  __ Subu(t2, t2, Operand(Smi::FromInt(1)));
4668  __ sll(t1, t2, 1);
4669  __ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag));
4670  __ Addu(t6, t0, t1);
4671  __ sw(t5, MemOperand(t6));
4672  __ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
4673  __ Addu(t6, a3, t1);
4674  __ sw(t3, MemOperand(t6));
4675  __ Addu(t5, t5, Operand(Smi::FromInt(1)));
4676  __ bind(&parameters_test);
4677  __ Branch(&parameters_loop, ne, t2, Operand(Smi::FromInt(0)));
4678
4679  __ bind(&skip_parameter_map);
4680  // a2 = argument count (tagged)
4681  // a3 = address of backing store (tagged)
4682  // t1 = scratch
4683  // Copy arguments header and remaining slots (if there are any).
4684  __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
4685  __ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset));
4686  __ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
4687
4688  Label arguments_loop, arguments_test;
4689  __ mov(t5, a1);
4690  __ lw(t0, MemOperand(sp, 1 * kPointerSize));
4691  __ sll(t6, t5, 1);
4692  __ Subu(t0, t0, Operand(t6));
4693  __ jmp(&arguments_test);
4694
4695  __ bind(&arguments_loop);
4696  __ Subu(t0, t0, Operand(kPointerSize));
4697  __ lw(t2, MemOperand(t0, 0));
4698  __ sll(t6, t5, 1);
4699  __ Addu(t1, a3, Operand(t6));
4700  __ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize));
4701  __ Addu(t5, t5, Operand(Smi::FromInt(1)));
4702
4703  __ bind(&arguments_test);
4704  __ Branch(&arguments_loop, lt, t5, Operand(a2));
4705
4706  // Return and remove the on-stack parameters.
4707  __ DropAndRet(3);
4708
4709  // Do the runtime call to allocate the arguments object.
4710  // a2 = argument count (tagged)
4711  __ bind(&runtime);
4712  __ sw(a2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
4713  __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4714}
4715
4716
4717void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
4718  // sp[0] : number of parameters
4719  // sp[4] : receiver displacement
4720  // sp[8] : function
4721  // Check if the calling frame is an arguments adaptor frame.
4722  Label adaptor_frame, try_allocate, runtime;
4723  __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4724  __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
4725  __ Branch(&adaptor_frame,
4726            eq,
4727            a3,
4728            Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4729
4730  // Get the length from the frame.
4731  __ lw(a1, MemOperand(sp, 0));
4732  __ Branch(&try_allocate);
4733
4734  // Patch the arguments.length and the parameters pointer.
4735  __ bind(&adaptor_frame);
4736  __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4737  __ sw(a1, MemOperand(sp, 0));
4738  __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize);
4739  __ Addu(a3, a2, Operand(at));
4740
4741  __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
4742  __ sw(a3, MemOperand(sp, 1 * kPointerSize));
4743
4744  // Try the new space allocation. Start out with computing the size
4745  // of the arguments object and the elements array in words.
4746  Label add_arguments_object;
4747  __ bind(&try_allocate);
4748  __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
4749  __ srl(a1, a1, kSmiTagSize);
4750
4751  __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
4752  __ bind(&add_arguments_object);
4753  __ Addu(a1, a1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
4754
4755  // Do the allocation of both objects in one go.
4756  __ AllocateInNewSpace(a1,
4757                        v0,
4758                        a2,
4759                        a3,
4760                        &runtime,
4761                        static_cast<AllocationFlags>(TAG_OBJECT |
4762                                                     SIZE_IN_WORDS));
4763
4764  // Get the arguments boilerplate from the current (global) context.
4765  __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4766  __ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
4767  __ lw(t0, MemOperand(t0, Context::SlotOffset(
4768      Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
4769
4770  // Copy the JS object part.
4771  __ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize);
4772
4773  // Get the length (smi tagged) and set that as an in-object property too.
4774  STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
4775  __ lw(a1, MemOperand(sp, 0 * kPointerSize));
4776  __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
4777      Heap::kArgumentsLengthIndex * kPointerSize));
4778
4779  Label done;
4780  __ Branch(&done, eq, a1, Operand(zero_reg));
4781
4782  // Get the parameters pointer from the stack.
4783  __ lw(a2, MemOperand(sp, 1 * kPointerSize));
4784
4785  // Set up the elements pointer in the allocated arguments object and
4786  // initialize the header in the elements fixed array.
4787  __ Addu(t0, v0, Operand(Heap::kArgumentsObjectSizeStrict));
4788  __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
4789  __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
4790  __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset));
4791  __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset));
4792  // Untag the length for the loop.
4793  __ srl(a1, a1, kSmiTagSize);
4794
4795  // Copy the fixed array slots.
4796  Label loop;
4797  // Set up t0 to point to the first array slot.
4798  __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4799  __ bind(&loop);
4800  // Pre-decrement a2 with kPointerSize on each iteration.
4801  // Pre-decrement in order to skip receiver.
4802  __ Addu(a2, a2, Operand(-kPointerSize));
4803  __ lw(a3, MemOperand(a2));
4804  // Post-increment t0 with kPointerSize on each iteration.
4805  __ sw(a3, MemOperand(t0));
4806  __ Addu(t0, t0, Operand(kPointerSize));
4807  __ Subu(a1, a1, Operand(1));
4808  __ Branch(&loop, ne, a1, Operand(zero_reg));
4809
4810  // Return and remove the on-stack parameters.
4811  __ bind(&done);
4812  __ DropAndRet(3);
4813
4814  // Do the runtime call to allocate the arguments object.
4815  __ bind(&runtime);
4816  __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
4817}
4818
4819
4820void RegExpExecStub::Generate(MacroAssembler* masm) {
4821  // Just jump directly to runtime if native RegExp is not selected at compile
4822  // time or if regexp entry in generated code is turned off runtime switch or
4823  // at compilation.
4824#ifdef V8_INTERPRETED_REGEXP
4825  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4826#else  // V8_INTERPRETED_REGEXP
4827
4828  // Stack frame on entry.
4829  //  sp[0]: last_match_info (expected JSArray)
4830  //  sp[4]: previous index
4831  //  sp[8]: subject string
4832  //  sp[12]: JSRegExp object
4833
4834  const int kLastMatchInfoOffset = 0 * kPointerSize;
4835  const int kPreviousIndexOffset = 1 * kPointerSize;
4836  const int kSubjectOffset = 2 * kPointerSize;
4837  const int kJSRegExpOffset = 3 * kPointerSize;
4838
4839  Isolate* isolate = masm->isolate();
4840
4841  Label runtime, invoke_regexp;
4842
4843  // Allocation of registers for this function. These are in callee save
4844  // registers and will be preserved by the call to the native RegExp code, as
4845  // this code is called using the normal C calling convention. When calling
4846  // directly from generated code the native RegExp code will not do a GC and
4847  // therefore the content of these registers are safe to use after the call.
4848  // MIPS - using s0..s2, since we are not using CEntry Stub.
4849  Register subject = s0;
4850  Register regexp_data = s1;
4851  Register last_match_info_elements = s2;
4852
4853  // Ensure that a RegExp stack is allocated.
4854  ExternalReference address_of_regexp_stack_memory_address =
4855      ExternalReference::address_of_regexp_stack_memory_address(
4856          isolate);
4857  ExternalReference address_of_regexp_stack_memory_size =
4858      ExternalReference::address_of_regexp_stack_memory_size(isolate);
4859  __ li(a0, Operand(address_of_regexp_stack_memory_size));
4860  __ lw(a0, MemOperand(a0, 0));
4861  __ Branch(&runtime, eq, a0, Operand(zero_reg));
4862
4863  // Check that the first argument is a JSRegExp object.
4864  __ lw(a0, MemOperand(sp, kJSRegExpOffset));
4865  STATIC_ASSERT(kSmiTag == 0);
4866  __ JumpIfSmi(a0, &runtime);
4867  __ GetObjectType(a0, a1, a1);
4868  __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
4869
4870  // Check that the RegExp has been compiled (data contains a fixed array).
4871  __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
4872  if (FLAG_debug_code) {
4873    __ And(t0, regexp_data, Operand(kSmiTagMask));
4874    __ Check(nz,
4875             "Unexpected type for RegExp data, FixedArray expected",
4876             t0,
4877             Operand(zero_reg));
4878    __ GetObjectType(regexp_data, a0, a0);
4879    __ Check(eq,
4880             "Unexpected type for RegExp data, FixedArray expected",
4881             a0,
4882             Operand(FIXED_ARRAY_TYPE));
4883  }
4884
4885  // regexp_data: RegExp data (FixedArray)
4886  // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
4887  __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
4888  __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
4889
4890  // regexp_data: RegExp data (FixedArray)
4891  // Check that the number of captures fit in the static offsets vector buffer.
4892  __ lw(a2,
4893         FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4894  // Calculate number of capture registers (number_of_captures + 1) * 2. This
4895  // uses the asumption that smis are 2 * their untagged value.
4896  STATIC_ASSERT(kSmiTag == 0);
4897  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4898  __ Addu(a2, a2, Operand(2));  // a2 was a smi.
4899  // Check that the static offsets vector buffer is large enough.
4900  __ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
4901
4902  // a2: Number of capture registers
4903  // regexp_data: RegExp data (FixedArray)
4904  // Check that the second argument is a string.
4905  __ lw(subject, MemOperand(sp, kSubjectOffset));
4906  __ JumpIfSmi(subject, &runtime);
4907  __ GetObjectType(subject, a0, a0);
4908  __ And(a0, a0, Operand(kIsNotStringMask));
4909  STATIC_ASSERT(kStringTag == 0);
4910  __ Branch(&runtime, ne, a0, Operand(zero_reg));
4911
4912  // Get the length of the string to r3.
4913  __ lw(a3, FieldMemOperand(subject, String::kLengthOffset));
4914
4915  // a2: Number of capture registers
4916  // a3: Length of subject string as a smi
4917  // subject: Subject string
4918  // regexp_data: RegExp data (FixedArray)
4919  // Check that the third argument is a positive smi less than the subject
4920  // string length. A negative value will be greater (unsigned comparison).
4921  __ lw(a0, MemOperand(sp, kPreviousIndexOffset));
4922  __ JumpIfNotSmi(a0, &runtime);
4923  __ Branch(&runtime, ls, a3, Operand(a0));
4924
4925  // a2: Number of capture registers
4926  // subject: Subject string
4927  // regexp_data: RegExp data (FixedArray)
4928  // Check that the fourth object is a JSArray object.
4929  __ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
4930  __ JumpIfSmi(a0, &runtime);
4931  __ GetObjectType(a0, a1, a1);
4932  __ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE));
4933  // Check that the JSArray is in fast case.
4934  __ lw(last_match_info_elements,
4935         FieldMemOperand(a0, JSArray::kElementsOffset));
4936  __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
4937  __ Branch(&runtime, ne, a0, Operand(
4938      isolate->factory()->fixed_array_map()));
4939  // Check that the last match info has space for the capture registers and the
4940  // additional information.
4941  __ lw(a0,
4942         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4943  __ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead));
4944  __ sra(at, a0, kSmiTagSize);  // Untag length for comparison.
4945  __ Branch(&runtime, gt, a2, Operand(at));
4946
4947  // Reset offset for possibly sliced string.
4948  __ mov(t0, zero_reg);
4949  // subject: Subject string
4950  // regexp_data: RegExp data (FixedArray)
4951  // Check the representation and encoding of the subject string.
4952  Label seq_string;
4953  __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
4954  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
4955  // First check for flat string.  None of the following string type tests will
4956  // succeed if subject is not a string or a short external string.
4957  __ And(a1,
4958         a0,
4959         Operand(kIsNotStringMask |
4960                 kStringRepresentationMask |
4961                 kShortExternalStringMask));
4962  STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4963  __ Branch(&seq_string, eq, a1, Operand(zero_reg));
4964
4965  // subject: Subject string
4966  // a0: instance type if Subject string
4967  // regexp_data: RegExp data (FixedArray)
4968  // a1: whether subject is a string and if yes, its string representation
4969  // Check for flat cons string or sliced string.
4970  // A flat cons string is a cons string where the second part is the empty
4971  // string. In that case the subject string is just the first part of the cons
4972  // string. Also in this case the first part of the cons string is known to be
4973  // a sequential string or an external string.
4974  // In the case of a sliced string its offset has to be taken into account.
4975  Label cons_string, external_string, check_encoding;
4976  STATIC_ASSERT(kConsStringTag < kExternalStringTag);
4977  STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
4978  STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
4979  STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
4980  __ Branch(&cons_string, lt, a1, Operand(kExternalStringTag));
4981  __ Branch(&external_string, eq, a1, Operand(kExternalStringTag));
4982
4983  // Catch non-string subject or short external string.
4984  STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
4985  __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
4986  __ Branch(&runtime, ne, at, Operand(zero_reg));
4987
4988  // String is sliced.
4989  __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
4990  __ sra(t0, t0, kSmiTagSize);
4991  __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
4992  // t5: offset of sliced string, smi-tagged.
4993  __ jmp(&check_encoding);
4994  // String is a cons string, check whether it is flat.
4995  __ bind(&cons_string);
4996  __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
4997  __ LoadRoot(a1, Heap::kEmptyStringRootIndex);
4998  __ Branch(&runtime, ne, a0, Operand(a1));
4999  __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
5000  // Is first part of cons or parent of slice a flat string?
5001  __ bind(&check_encoding);
5002  __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
5003  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
5004  STATIC_ASSERT(kSeqStringTag == 0);
5005  __ And(at, a0, Operand(kStringRepresentationMask));
5006  __ Branch(&external_string, ne, at, Operand(zero_reg));
5007
5008  __ bind(&seq_string);
5009  // subject: Subject string
5010  // regexp_data: RegExp data (FixedArray)
5011  // a0: Instance type of subject string
5012  STATIC_ASSERT(kStringEncodingMask == 4);
5013  STATIC_ASSERT(kAsciiStringTag == 4);
5014  STATIC_ASSERT(kTwoByteStringTag == 0);
5015  // Find the code object based on the assumptions above.
5016  __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for ASCII.
5017  __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
5018  __ sra(a3, a0, 2);  // a3 is 1 for ASCII, 0 for UC16 (used below).
5019  __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
5020  __ Movz(t9, t1, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
5021
5022  // Check that the irregexp code has been generated for the actual string
5023  // encoding. If it has, the field contains a code object otherwise it contains
5024  // a smi (code flushing support).
5025  __ JumpIfSmi(t9, &runtime);
5026
5027  // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
5028  // t9: code
5029  // subject: Subject string
5030  // regexp_data: RegExp data (FixedArray)
5031  // Load used arguments before starting to push arguments for call to native
5032  // RegExp code to avoid handling changing stack height.
5033  __ lw(a1, MemOperand(sp, kPreviousIndexOffset));
5034  __ sra(a1, a1, kSmiTagSize);  // Untag the Smi.
5035
5036  // a1: previous index
5037  // a3: encoding of subject string (1 if ASCII, 0 if two_byte);
5038  // t9: code
5039  // subject: Subject string
5040  // regexp_data: RegExp data (FixedArray)
5041  // All checks done. Now push arguments for native regexp code.
5042  __ IncrementCounter(isolate->counters()->regexp_entry_native(),
5043                      1, a0, a2);
5044
5045  // Isolates: note we add an additional parameter here (isolate pointer).
5046  const int kRegExpExecuteArguments = 8;
5047  const int kParameterRegisters = 4;
5048  __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
5049
5050  // Stack pointer now points to cell where return address is to be written.
5051  // Arguments are before that on the stack or in registers, meaning we
5052  // treat the return address as argument 5. Thus every argument after that
5053  // needs to be shifted back by 1. Since DirectCEntryStub will handle
5054  // allocating space for the c argument slots, we don't need to calculate
5055  // that into the argument positions on the stack. This is how the stack will
5056  // look (sp meaning the value of sp at this moment):
5057  // [sp + 4] - Argument 8
5058  // [sp + 3] - Argument 7
5059  // [sp + 2] - Argument 6
5060  // [sp + 1] - Argument 5
5061  // [sp + 0] - saved ra
5062
5063  // Argument 8: Pass current isolate address.
5064  // CFunctionArgumentOperand handles MIPS stack argument slots.
5065  __ li(a0, Operand(ExternalReference::isolate_address()));
5066  __ sw(a0, MemOperand(sp, 4 * kPointerSize));
5067
5068  // Argument 7: Indicate that this is a direct call from JavaScript.
5069  __ li(a0, Operand(1));
5070  __ sw(a0, MemOperand(sp, 3 * kPointerSize));
5071
5072  // Argument 6: Start (high end) of backtracking stack memory area.
5073  __ li(a0, Operand(address_of_regexp_stack_memory_address));
5074  __ lw(a0, MemOperand(a0, 0));
5075  __ li(a2, Operand(address_of_regexp_stack_memory_size));
5076  __ lw(a2, MemOperand(a2, 0));
5077  __ addu(a0, a0, a2);
5078  __ sw(a0, MemOperand(sp, 2 * kPointerSize));
5079
5080  // Argument 5: static offsets vector buffer.
5081  __ li(a0, Operand(
5082        ExternalReference::address_of_static_offsets_vector(isolate)));
5083  __ sw(a0, MemOperand(sp, 1 * kPointerSize));
5084
5085  // For arguments 4 and 3 get string length, calculate start of string data
5086  // and calculate the shift of the index (0 for ASCII and 1 for two byte).
5087  __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
5088  __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
5089  // Load the length from the original subject string from the previous stack
5090  // frame. Therefore we have to use fp, which points exactly to two pointer
5091  // sizes below the previous sp. (Because creating a new stack frame pushes
5092  // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
5093  __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
5094  // If slice offset is not 0, load the length from the original sliced string.
5095  // Argument 4, a3: End of string data
5096  // Argument 3, a2: Start of string data
5097  // Prepare start and end index of the input.
5098  __ sllv(t1, t0, a3);
5099  __ addu(t0, t2, t1);
5100  __ sllv(t1, a1, a3);
5101  __ addu(a2, t0, t1);
5102
5103  __ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
5104  __ sra(t2, t2, kSmiTagSize);
5105  __ sllv(t1, t2, a3);
5106  __ addu(a3, t0, t1);
5107  // Argument 2 (a1): Previous index.
5108  // Already there
5109
5110  // Argument 1 (a0): Subject string.
5111  __ mov(a0, subject);
5112
5113  // Locate the code entry and call it.
5114  __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
5115  DirectCEntryStub stub;
5116  stub.GenerateCall(masm, t9);
5117
5118  __ LeaveExitFrame(false, no_reg);
5119
5120  // v0: result
5121  // subject: subject string (callee saved)
5122  // regexp_data: RegExp data (callee saved)
5123  // last_match_info_elements: Last match info elements (callee saved)
5124
5125  // Check the result.
5126
5127  Label success;
5128  __ Branch(&success, eq, v0, Operand(NativeRegExpMacroAssembler::SUCCESS));
5129  Label failure;
5130  __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
5131  // If not exception it can only be retry. Handle that in the runtime system.
5132  __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
5133  // Result must now be exception. If there is no pending exception already a
5134  // stack overflow (on the backtrack stack) was detected in RegExp code but
5135  // haven't created the exception yet. Handle that in the runtime system.
5136  // TODO(592): Rerunning the RegExp to get the stack overflow exception.
5137  __ li(a1, Operand(isolate->factory()->the_hole_value()));
5138  __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
5139                                      isolate)));
5140  __ lw(v0, MemOperand(a2, 0));
5141  __ Branch(&runtime, eq, v0, Operand(a1));
5142
5143  __ sw(a1, MemOperand(a2, 0));  // Clear pending exception.
5144
5145  // Check if the exception is a termination. If so, throw as uncatchable.
5146  __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
5147  Label termination_exception;
5148  __ Branch(&termination_exception, eq, v0, Operand(a0));
5149
5150  __ Throw(v0);
5151
5152  __ bind(&termination_exception);
5153  __ ThrowUncatchable(v0);
5154
5155  __ bind(&failure);
5156  // For failure and exception return null.
5157  __ li(v0, Operand(isolate->factory()->null_value()));
5158  __ DropAndRet(4);
5159
5160  // Process the result from the native regexp code.
5161  __ bind(&success);
5162  __ lw(a1,
5163         FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
5164  // Calculate number of capture registers (number_of_captures + 1) * 2.
5165  STATIC_ASSERT(kSmiTag == 0);
5166  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5167  __ Addu(a1, a1, Operand(2));  // a1 was a smi.
5168
5169  // a1: number of capture registers
5170  // subject: subject string
5171  // Store the capture count.
5172  __ sll(a2, a1, kSmiTagSize + kSmiShiftSize);  // To smi.
5173  __ sw(a2, FieldMemOperand(last_match_info_elements,
5174                             RegExpImpl::kLastCaptureCountOffset));
5175  // Store last subject and last input.
5176  __ sw(subject,
5177         FieldMemOperand(last_match_info_elements,
5178                         RegExpImpl::kLastSubjectOffset));
5179  __ mov(a2, subject);
5180  __ RecordWriteField(last_match_info_elements,
5181                      RegExpImpl::kLastSubjectOffset,
5182                      a2,
5183                      t3,
5184                      kRAHasNotBeenSaved,
5185                      kDontSaveFPRegs);
5186  __ sw(subject,
5187         FieldMemOperand(last_match_info_elements,
5188                         RegExpImpl::kLastInputOffset));
5189  __ RecordWriteField(last_match_info_elements,
5190                      RegExpImpl::kLastInputOffset,
5191                      subject,
5192                      t3,
5193                      kRAHasNotBeenSaved,
5194                      kDontSaveFPRegs);
5195
5196  // Get the static offsets vector filled by the native regexp code.
5197  ExternalReference address_of_static_offsets_vector =
5198      ExternalReference::address_of_static_offsets_vector(isolate);
5199  __ li(a2, Operand(address_of_static_offsets_vector));
5200
5201  // a1: number of capture registers
5202  // a2: offsets vector
5203  Label next_capture, done;
5204  // Capture register counter starts from number of capture registers and
5205  // counts down until wrapping after zero.
5206  __ Addu(a0,
5207         last_match_info_elements,
5208         Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
5209  __ bind(&next_capture);
5210  __ Subu(a1, a1, Operand(1));
5211  __ Branch(&done, lt, a1, Operand(zero_reg));
5212  // Read the value from the static offsets vector buffer.
5213  __ lw(a3, MemOperand(a2, 0));
5214  __ addiu(a2, a2, kPointerSize);
5215  // Store the smi value in the last match info.
5216  __ sll(a3, a3, kSmiTagSize);  // Convert to Smi.
5217  __ sw(a3, MemOperand(a0, 0));
5218  __ Branch(&next_capture, USE_DELAY_SLOT);
5219  __ addiu(a0, a0, kPointerSize);  // In branch delay slot.
5220
5221  __ bind(&done);
5222
5223  // Return last match info.
5224  __ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
5225  __ DropAndRet(4);
5226
5227  // External string.  Short external strings have already been ruled out.
5228  // a0: scratch
5229  __ bind(&external_string);
5230  __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
5231  __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
5232  if (FLAG_debug_code) {
5233    // Assert that we do not have a cons or slice (indirect strings) here.
5234    // Sequential strings have already been ruled out.
5235    __ And(at, a0, Operand(kIsIndirectStringMask));
5236    __ Assert(eq,
5237              "external string expected, but not found",
5238              at,
5239              Operand(zero_reg));
5240  }
5241  __ lw(subject,
5242        FieldMemOperand(subject, ExternalString::kResourceDataOffset));
5243  // Move the pointer so that offset-wise, it looks like a sequential string.
5244  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
5245  __ Subu(subject,
5246          subject,
5247          SeqTwoByteString::kHeaderSize - kHeapObjectTag);
5248  __ jmp(&seq_string);
5249
5250  // Do the runtime call to execute the regexp.
5251  __ bind(&runtime);
5252  __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5253#endif  // V8_INTERPRETED_REGEXP
5254}
5255
5256
5257void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
5258  const int kMaxInlineLength = 100;
5259  Label slowcase;
5260  Label done;
5261  __ lw(a1, MemOperand(sp, kPointerSize * 2));
5262  STATIC_ASSERT(kSmiTag == 0);
5263  STATIC_ASSERT(kSmiTagSize == 1);
5264  __ JumpIfNotSmi(a1, &slowcase);
5265  __ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength)));
5266  // Smi-tagging is equivalent to multiplying by 2.
5267  // Allocate RegExpResult followed by FixedArray with size in ebx.
5268  // JSArray:   [Map][empty properties][Elements][Length-smi][index][input]
5269  // Elements:  [Map][Length][..elements..]
5270  // Size of JSArray with two in-object properties and the header of a
5271  // FixedArray.
5272  int objects_size =
5273      (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
5274  __ srl(t1, a1, kSmiTagSize + kSmiShiftSize);
5275  __ Addu(a2, t1, Operand(objects_size));
5276  __ AllocateInNewSpace(
5277      a2,  // In: Size, in words.
5278      v0,  // Out: Start of allocation (tagged).
5279      a3,  // Scratch register.
5280      t0,  // Scratch register.
5281      &slowcase,
5282      static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
5283  // v0: Start of allocated area, object-tagged.
5284  // a1: Number of elements in array, as smi.
5285  // t1: Number of elements, untagged.
5286
5287  // Set JSArray map to global.regexp_result_map().
5288  // Set empty properties FixedArray.
5289  // Set elements to point to FixedArray allocated right after the JSArray.
5290  // Interleave operations for better latency.
5291  __ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
5292  __ Addu(a3, v0, Operand(JSRegExpResult::kSize));
5293  __ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array()));
5294  __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
5295  __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
5296  __ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX));
5297  __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset));
5298  __ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
5299
5300  // Set input, index and length fields from arguments.
5301  __ lw(a1, MemOperand(sp, kPointerSize * 0));
5302  __ lw(a2, MemOperand(sp, kPointerSize * 1));
5303  __ lw(t2, MemOperand(sp, kPointerSize * 2));
5304  __ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset));
5305  __ sw(a2, FieldMemOperand(v0, JSRegExpResult::kIndexOffset));
5306  __ sw(t2, FieldMemOperand(v0, JSArray::kLengthOffset));
5307
5308  // Fill out the elements FixedArray.
5309  // v0: JSArray, tagged.
5310  // a3: FixedArray, tagged.
5311  // t1: Number of elements in array, untagged.
5312
5313  // Set map.
5314  __ li(a2, Operand(masm->isolate()->factory()->fixed_array_map()));
5315  __ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
5316  // Set FixedArray length.
5317  __ sll(t2, t1, kSmiTagSize);
5318  __ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset));
5319  // Fill contents of fixed-array with the-hole.
5320  __ li(a2, Operand(masm->isolate()->factory()->the_hole_value()));
5321  __ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5322  // Fill fixed array elements with hole.
5323  // v0: JSArray, tagged.
5324  // a2: the hole.
5325  // a3: Start of elements in FixedArray.
5326  // t1: Number of elements to fill.
5327  Label loop;
5328  __ sll(t1, t1, kPointerSizeLog2);  // Convert num elements to num bytes.
5329  __ addu(t1, t1, a3);  // Point past last element to store.
5330  __ bind(&loop);
5331  __ Branch(&done, ge, a3, Operand(t1));  // Break when a3 past end of elem.
5332  __ sw(a2, MemOperand(a3));
5333  __ Branch(&loop, USE_DELAY_SLOT);
5334  __ addiu(a3, a3, kPointerSize);  // In branch delay slot.
5335
5336  __ bind(&done);
5337  __ DropAndRet(3);
5338
5339  __ bind(&slowcase);
5340  __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
5341}
5342
5343
5344static void GenerateRecordCallTarget(MacroAssembler* masm) {
5345  // Cache the called function in a global property cell.  Cache states
5346  // are uninitialized, monomorphic (indicated by a JSFunction), and
5347  // megamorphic.
5348  // a1 : the function to call
5349  // a2 : cache cell for call target
5350  Label done;
5351
5352  ASSERT_EQ(*TypeFeedbackCells::MegamorphicSentinel(masm->isolate()),
5353            masm->isolate()->heap()->undefined_value());
5354  ASSERT_EQ(*TypeFeedbackCells::UninitializedSentinel(masm->isolate()),
5355            masm->isolate()->heap()->the_hole_value());
5356
5357  // Load the cache state into a3.
5358  __ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
5359
5360  // A monomorphic cache hit or an already megamorphic state: invoke the
5361  // function without changing the state.
5362  __ Branch(&done, eq, a3, Operand(a1));
5363  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5364  __ Branch(&done, eq, a3, Operand(at));
5365
5366  // A monomorphic miss (i.e, here the cache is not uninitialized) goes
5367  // megamorphic.
5368  __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5369
5370  __ Branch(USE_DELAY_SLOT, &done, eq, a3, Operand(at));
5371  // An uninitialized cache is patched with the function.
5372  // Store a1 in the delay slot. This may or may not get overwritten depending
5373  // on the result of the comparison.
5374  __ sw(a1, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
5375  // No need for a write barrier here - cells are rescanned.
5376
5377  // MegamorphicSentinel is an immortal immovable object (undefined) so no
5378  // write-barrier is needed.
5379  __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5380  __ sw(at, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
5381
5382  __ bind(&done);
5383}
5384
5385
5386void CallFunctionStub::Generate(MacroAssembler* masm) {
5387  // a1 : the function to call
5388  // a2 : cache cell for call target
5389  Label slow, non_function;
5390
5391  // The receiver might implicitly be the global object. This is
5392  // indicated by passing the hole as the receiver to the call
5393  // function stub.
5394  if (ReceiverMightBeImplicit()) {
5395    Label call;
5396    // Get the receiver from the stack.
5397    // function, receiver [, arguments]
5398    __ lw(t0, MemOperand(sp, argc_ * kPointerSize));
5399    // Call as function is indicated with the hole.
5400    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5401    __ Branch(&call, ne, t0, Operand(at));
5402    // Patch the receiver on the stack with the global receiver object.
5403    __ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
5404    __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
5405    __ sw(a2, MemOperand(sp, argc_ * kPointerSize));
5406    __ bind(&call);
5407  }
5408
5409  // Check that the function is really a JavaScript function.
5410  // a1: pushed function (to be verified)
5411  __ JumpIfSmi(a1, &non_function);
5412  // Get the map of the function object.
5413  __ GetObjectType(a1, a2, a2);
5414  __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
5415
5416  // Fast-case: Invoke the function now.
5417  // a1: pushed function
5418  ParameterCount actual(argc_);
5419
5420  if (ReceiverMightBeImplicit()) {
5421    Label call_as_function;
5422    __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
5423    __ Branch(&call_as_function, eq, t0, Operand(at));
5424    __ InvokeFunction(a1,
5425                      actual,
5426                      JUMP_FUNCTION,
5427                      NullCallWrapper(),
5428                      CALL_AS_METHOD);
5429    __ bind(&call_as_function);
5430  }
5431  __ InvokeFunction(a1,
5432                    actual,
5433                    JUMP_FUNCTION,
5434                    NullCallWrapper(),
5435                    CALL_AS_FUNCTION);
5436
5437  // Slow-case: Non-function called.
5438  __ bind(&slow);
5439  // Check for function proxy.
5440  __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_PROXY_TYPE));
5441  __ push(a1);  // Put proxy as additional argument.
5442  __ li(a0, Operand(argc_ + 1, RelocInfo::NONE));
5443  __ li(a2, Operand(0, RelocInfo::NONE));
5444  __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY);
5445  __ SetCallKind(t1, CALL_AS_METHOD);
5446  {
5447    Handle<Code> adaptor =
5448      masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
5449    __ Jump(adaptor, RelocInfo::CODE_TARGET);
5450  }
5451
5452  // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
5453  // of the original receiver from the call site).
5454  __ bind(&non_function);
5455  __ sw(a1, MemOperand(sp, argc_ * kPointerSize));
5456  __ li(a0, Operand(argc_));  // Set up the number of arguments.
5457  __ mov(a2, zero_reg);
5458  __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
5459  __ SetCallKind(t1, CALL_AS_METHOD);
5460  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5461          RelocInfo::CODE_TARGET);
5462}
5463
5464
5465void CallConstructStub::Generate(MacroAssembler* masm) {
5466  // a0 : number of arguments
5467  // a1 : the function to call
5468  // a2 : cache cell for call target
5469  Label slow, non_function_call;
5470
5471  // Check that the function is not a smi.
5472  __ JumpIfSmi(a1, &non_function_call);
5473  // Check that the function is a JSFunction.
5474  __ GetObjectType(a1, a3, a3);
5475  __ Branch(&slow, ne, a3, Operand(JS_FUNCTION_TYPE));
5476
5477  if (RecordCallTarget()) {
5478    GenerateRecordCallTarget(masm);
5479  }
5480
5481  // Jump to the function-specific construct stub.
5482  __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
5483  __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset));
5484  __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
5485  __ Jump(at);
5486
5487  // a0: number of arguments
5488  // a1: called object
5489  // a3: object type
5490  Label do_call;
5491  __ bind(&slow);
5492  __ Branch(&non_function_call, ne, a3, Operand(JS_FUNCTION_PROXY_TYPE));
5493  __ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
5494  __ jmp(&do_call);
5495
5496  __ bind(&non_function_call);
5497  __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
5498  __ bind(&do_call);
5499  // Set expected number of arguments to zero (not changing r0).
5500  __ li(a2, Operand(0, RelocInfo::NONE));
5501  __ SetCallKind(t1, CALL_AS_METHOD);
5502  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
5503          RelocInfo::CODE_TARGET);
5504}
5505
5506
5507// Unfortunately you have to run without snapshots to see most of these
5508// names in the profile since most compare stubs end up in the snapshot.
5509void CompareStub::PrintName(StringStream* stream) {
5510  ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
5511         (lhs_.is(a1) && rhs_.is(a0)));
5512  const char* cc_name;
5513  switch (cc_) {
5514    case lt: cc_name = "LT"; break;
5515    case gt: cc_name = "GT"; break;
5516    case le: cc_name = "LE"; break;
5517    case ge: cc_name = "GE"; break;
5518    case eq: cc_name = "EQ"; break;
5519    case ne: cc_name = "NE"; break;
5520    default: cc_name = "UnknownCondition"; break;
5521  }
5522  bool is_equality = cc_ == eq || cc_ == ne;
5523  stream->Add("CompareStub_%s", cc_name);
5524  stream->Add(lhs_.is(a0) ? "_a0" : "_a1");
5525  stream->Add(rhs_.is(a0) ? "_a0" : "_a1");
5526  if (strict_ && is_equality) stream->Add("_STRICT");
5527  if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
5528  if (!include_number_compare_) stream->Add("_NO_NUMBER");
5529  if (!include_smi_compare_) stream->Add("_NO_SMI");
5530}
5531
5532
5533int CompareStub::MinorKey() {
5534  // Encode the two parameters in a unique 16 bit value.
5535  ASSERT(static_cast<unsigned>(cc_) < (1 << 14));
5536  ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
5537         (lhs_.is(a1) && rhs_.is(a0)));
5538  return ConditionField::encode(static_cast<unsigned>(cc_))
5539         | RegisterField::encode(lhs_.is(a0))
5540         | StrictField::encode(strict_)
5541         | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
5542         | IncludeSmiCompareField::encode(include_smi_compare_);
5543}
5544
5545
5546// StringCharCodeAtGenerator.
5547void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
5548  Label flat_string;
5549  Label ascii_string;
5550  Label got_char_code;
5551  Label sliced_string;
5552
5553  ASSERT(!t0.is(index_));
5554  ASSERT(!t0.is(result_));
5555  ASSERT(!t0.is(object_));
5556
5557  // If the receiver is a smi trigger the non-string case.
5558  __ JumpIfSmi(object_, receiver_not_string_);
5559
5560  // Fetch the instance type of the receiver into result register.
5561  __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5562  __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5563  // If the receiver is not a string trigger the non-string case.
5564  __ And(t0, result_, Operand(kIsNotStringMask));
5565  __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
5566
5567  // If the index is non-smi trigger the non-smi case.
5568  __ JumpIfNotSmi(index_, &index_not_smi_);
5569
5570  __ bind(&got_smi_index_);
5571
5572  // Check for index out of range.
5573  __ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
5574  __ Branch(index_out_of_range_, ls, t0, Operand(index_));
5575
5576  __ sra(index_, index_, kSmiTagSize);
5577
5578  StringCharLoadGenerator::Generate(masm,
5579                                    object_,
5580                                    index_,
5581                                    result_,
5582                                    &call_runtime_);
5583
5584  __ sll(result_, result_, kSmiTagSize);
5585  __ bind(&exit_);
5586}
5587
5588
5589void StringCharCodeAtGenerator::GenerateSlow(
5590    MacroAssembler* masm,
5591    const RuntimeCallHelper& call_helper) {
5592  __ Abort("Unexpected fallthrough to CharCodeAt slow case");
5593
5594  // Index is not a smi.
5595  __ bind(&index_not_smi_);
5596  // If index is a heap number, try converting it to an integer.
5597  __ CheckMap(index_,
5598              result_,
5599              Heap::kHeapNumberMapRootIndex,
5600              index_not_number_,
5601              DONT_DO_SMI_CHECK);
5602  call_helper.BeforeCall(masm);
5603  // Consumed by runtime conversion function:
5604  __ Push(object_, index_);
5605  if (index_flags_ == STRING_INDEX_IS_NUMBER) {
5606    __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
5607  } else {
5608    ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
5609    // NumberToSmi discards numbers that are not exact integers.
5610    __ CallRuntime(Runtime::kNumberToSmi, 1);
5611  }
5612
5613  // Save the conversion result before the pop instructions below
5614  // have a chance to overwrite it.
5615
5616  __ Move(index_, v0);
5617  __ pop(object_);
5618  // Reload the instance type.
5619  __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5620  __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5621  call_helper.AfterCall(masm);
5622  // If index is still not a smi, it must be out of range.
5623  __ JumpIfNotSmi(index_, index_out_of_range_);
5624  // Otherwise, return to the fast path.
5625  __ Branch(&got_smi_index_);
5626
5627  // Call runtime. We get here when the receiver is a string and the
5628  // index is a number, but the code of getting the actual character
5629  // is too complex (e.g., when the string needs to be flattened).
5630  __ bind(&call_runtime_);
5631  call_helper.BeforeCall(masm);
5632  __ sll(index_, index_, kSmiTagSize);
5633  __ Push(object_, index_);
5634  __ CallRuntime(Runtime::kStringCharCodeAt, 2);
5635
5636  __ Move(result_, v0);
5637
5638  call_helper.AfterCall(masm);
5639  __ jmp(&exit_);
5640
5641  __ Abort("Unexpected fallthrough from CharCodeAt slow case");
5642}
5643
5644
5645// -------------------------------------------------------------------------
5646// StringCharFromCodeGenerator
5647
5648void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
5649  // Fast case of Heap::LookupSingleCharacterStringFromCode.
5650
5651  ASSERT(!t0.is(result_));
5652  ASSERT(!t0.is(code_));
5653
5654  STATIC_ASSERT(kSmiTag == 0);
5655  STATIC_ASSERT(kSmiShiftSize == 0);
5656  ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
5657  __ And(t0,
5658         code_,
5659         Operand(kSmiTagMask |
5660                 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
5661  __ Branch(&slow_case_, ne, t0, Operand(zero_reg));
5662
5663  __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
5664  // At this point code register contains smi tagged ASCII char code.
5665  STATIC_ASSERT(kSmiTag == 0);
5666  __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
5667  __ Addu(result_, result_, t0);
5668  __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
5669  __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
5670  __ Branch(&slow_case_, eq, result_, Operand(t0));
5671  __ bind(&exit_);
5672}
5673
5674
5675void StringCharFromCodeGenerator::GenerateSlow(
5676    MacroAssembler* masm,
5677    const RuntimeCallHelper& call_helper) {
5678  __ Abort("Unexpected fallthrough to CharFromCode slow case");
5679
5680  __ bind(&slow_case_);
5681  call_helper.BeforeCall(masm);
5682  __ push(code_);
5683  __ CallRuntime(Runtime::kCharFromCode, 1);
5684  __ Move(result_, v0);
5685
5686  call_helper.AfterCall(masm);
5687  __ Branch(&exit_);
5688
5689  __ Abort("Unexpected fallthrough from CharFromCode slow case");
5690}
5691
5692
5693// -------------------------------------------------------------------------
5694// StringCharAtGenerator
5695
5696void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5697  char_code_at_generator_.GenerateFast(masm);
5698  char_from_code_generator_.GenerateFast(masm);
5699}
5700
5701
5702void StringCharAtGenerator::GenerateSlow(
5703    MacroAssembler* masm,
5704    const RuntimeCallHelper& call_helper) {
5705  char_code_at_generator_.GenerateSlow(masm, call_helper);
5706  char_from_code_generator_.GenerateSlow(masm, call_helper);
5707}
5708
5709
5710void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5711                                          Register dest,
5712                                          Register src,
5713                                          Register count,
5714                                          Register scratch,
5715                                          bool ascii) {
5716  Label loop;
5717  Label done;
5718  // This loop just copies one character at a time, as it is only used for
5719  // very short strings.
5720  if (!ascii) {
5721    __ addu(count, count, count);
5722  }
5723  __ Branch(&done, eq, count, Operand(zero_reg));
5724  __ addu(count, dest, count);  // Count now points to the last dest byte.
5725
5726  __ bind(&loop);
5727  __ lbu(scratch, MemOperand(src));
5728  __ addiu(src, src, 1);
5729  __ sb(scratch, MemOperand(dest));
5730  __ addiu(dest, dest, 1);
5731  __ Branch(&loop, lt, dest, Operand(count));
5732
5733  __ bind(&done);
5734}
5735
5736
5737enum CopyCharactersFlags {
5738  COPY_ASCII = 1,
5739  DEST_ALWAYS_ALIGNED = 2
5740};
5741
5742
5743void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5744                                              Register dest,
5745                                              Register src,
5746                                              Register count,
5747                                              Register scratch1,
5748                                              Register scratch2,
5749                                              Register scratch3,
5750                                              Register scratch4,
5751                                              Register scratch5,
5752                                              int flags) {
5753  bool ascii = (flags & COPY_ASCII) != 0;
5754  bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5755
5756  if (dest_always_aligned && FLAG_debug_code) {
5757    // Check that destination is actually word aligned if the flag says
5758    // that it is.
5759    __ And(scratch4, dest, Operand(kPointerAlignmentMask));
5760    __ Check(eq,
5761             "Destination of copy not aligned.",
5762             scratch4,
5763             Operand(zero_reg));
5764  }
5765
5766  const int kReadAlignment = 4;
5767  const int kReadAlignmentMask = kReadAlignment - 1;
5768  // Ensure that reading an entire aligned word containing the last character
5769  // of a string will not read outside the allocated area (because we pad up
5770  // to kObjectAlignment).
5771  STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5772  // Assumes word reads and writes are little endian.
5773  // Nothing to do for zero characters.
5774  Label done;
5775
5776  if (!ascii) {
5777    __ addu(count, count, count);
5778  }
5779  __ Branch(&done, eq, count, Operand(zero_reg));
5780
5781  Label byte_loop;
5782  // Must copy at least eight bytes, otherwise just do it one byte at a time.
5783  __ Subu(scratch1, count, Operand(8));
5784  __ Addu(count, dest, Operand(count));
5785  Register limit = count;  // Read until src equals this.
5786  __ Branch(&byte_loop, lt, scratch1, Operand(zero_reg));
5787
5788  if (!dest_always_aligned) {
5789    // Align dest by byte copying. Copies between zero and three bytes.
5790    __ And(scratch4, dest, Operand(kReadAlignmentMask));
5791    Label dest_aligned;
5792    __ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg));
5793    Label aligned_loop;
5794    __ bind(&aligned_loop);
5795    __ lbu(scratch1, MemOperand(src));
5796    __ addiu(src, src, 1);
5797    __ sb(scratch1, MemOperand(dest));
5798    __ addiu(dest, dest, 1);
5799    __ addiu(scratch4, scratch4, 1);
5800    __ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask));
5801    __ bind(&dest_aligned);
5802  }
5803
5804  Label simple_loop;
5805
5806  __ And(scratch4, src, Operand(kReadAlignmentMask));
5807  __ Branch(&simple_loop, eq, scratch4, Operand(zero_reg));
5808
5809  // Loop for src/dst that are not aligned the same way.
5810  // This loop uses lwl and lwr instructions. These instructions
5811  // depend on the endianness, and the implementation assumes little-endian.
5812  {
5813    Label loop;
5814    __ bind(&loop);
5815    __ lwr(scratch1, MemOperand(src));
5816    __ Addu(src, src, Operand(kReadAlignment));
5817    __ lwl(scratch1, MemOperand(src, -1));
5818    __ sw(scratch1, MemOperand(dest));
5819    __ Addu(dest, dest, Operand(kReadAlignment));
5820    __ Subu(scratch2, limit, dest);
5821    __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
5822  }
5823
5824  __ Branch(&byte_loop);
5825
5826  // Simple loop.
5827  // Copy words from src to dest, until less than four bytes left.
5828  // Both src and dest are word aligned.
5829  __ bind(&simple_loop);
5830  {
5831    Label loop;
5832    __ bind(&loop);
5833    __ lw(scratch1, MemOperand(src));
5834    __ Addu(src, src, Operand(kReadAlignment));
5835    __ sw(scratch1, MemOperand(dest));
5836    __ Addu(dest, dest, Operand(kReadAlignment));
5837    __ Subu(scratch2, limit, dest);
5838    __ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
5839  }
5840
5841  // Copy bytes from src to dest until dest hits limit.
5842  __ bind(&byte_loop);
5843  // Test if dest has already reached the limit.
5844  __ Branch(&done, ge, dest, Operand(limit));
5845  __ lbu(scratch1, MemOperand(src));
5846  __ addiu(src, src, 1);
5847  __ sb(scratch1, MemOperand(dest));
5848  __ addiu(dest, dest, 1);
5849  __ Branch(&byte_loop);
5850
5851  __ bind(&done);
5852}
5853
5854
5855void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5856                                                        Register c1,
5857                                                        Register c2,
5858                                                        Register scratch1,
5859                                                        Register scratch2,
5860                                                        Register scratch3,
5861                                                        Register scratch4,
5862                                                        Register scratch5,
5863                                                        Label* not_found) {
5864  // Register scratch3 is the general scratch register in this function.
5865  Register scratch = scratch3;
5866
5867  // Make sure that both characters are not digits as such strings has a
5868  // different hash algorithm. Don't try to look for these in the symbol table.
5869  Label not_array_index;
5870  __ Subu(scratch, c1, Operand(static_cast<int>('0')));
5871  __ Branch(&not_array_index,
5872            Ugreater,
5873            scratch,
5874            Operand(static_cast<int>('9' - '0')));
5875  __ Subu(scratch, c2, Operand(static_cast<int>('0')));
5876
5877  // If check failed combine both characters into single halfword.
5878  // This is required by the contract of the method: code at the
5879  // not_found branch expects this combination in c1 register.
5880  Label tmp;
5881  __ sll(scratch1, c2, kBitsPerByte);
5882  __ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0')));
5883  __ Or(c1, c1, scratch1);
5884  __ bind(&tmp);
5885  __ Branch(
5886      not_found, Uless_equal, scratch, Operand(static_cast<int>('9' - '0')));
5887
5888  __ bind(&not_array_index);
5889  // Calculate the two character string hash.
5890  Register hash = scratch1;
5891  StringHelper::GenerateHashInit(masm, hash, c1);
5892  StringHelper::GenerateHashAddCharacter(masm, hash, c2);
5893  StringHelper::GenerateHashGetHash(masm, hash);
5894
5895  // Collect the two characters in a register.
5896  Register chars = c1;
5897  __ sll(scratch, c2, kBitsPerByte);
5898  __ Or(chars, chars, scratch);
5899
5900  // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5901  // hash:  hash of two character string.
5902
5903  // Load symbol table.
5904  // Load address of first element of the symbol table.
5905  Register symbol_table = c2;
5906  __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
5907
5908  Register undefined = scratch4;
5909  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5910
5911  // Calculate capacity mask from the symbol table capacity.
5912  Register mask = scratch2;
5913  __ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
5914  __ sra(mask, mask, 1);
5915  __ Addu(mask, mask, -1);
5916
5917  // Calculate untagged address of the first element of the symbol table.
5918  Register first_symbol_table_element = symbol_table;
5919  __ Addu(first_symbol_table_element, symbol_table,
5920         Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
5921
5922  // Registers.
5923  // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5924  // hash:  hash of two character string
5925  // mask:  capacity mask
5926  // first_symbol_table_element: address of the first element of
5927  //                             the symbol table
5928  // undefined: the undefined object
5929  // scratch: -
5930
5931  // Perform a number of probes in the symbol table.
5932  const int kProbes = 4;
5933  Label found_in_symbol_table;
5934  Label next_probe[kProbes];
5935  Register candidate = scratch5;  // Scratch register contains candidate.
5936  for (int i = 0; i < kProbes; i++) {
5937    // Calculate entry in symbol table.
5938    if (i > 0) {
5939      __ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5940    } else {
5941      __ mov(candidate, hash);
5942    }
5943
5944    __ And(candidate, candidate, Operand(mask));
5945
5946    // Load the entry from the symble table.
5947    STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5948    __ sll(scratch, candidate, kPointerSizeLog2);
5949    __ Addu(scratch, scratch, first_symbol_table_element);
5950    __ lw(candidate, MemOperand(scratch));
5951
5952    // If entry is undefined no string with this hash can be found.
5953    Label is_string;
5954    __ GetObjectType(candidate, scratch, scratch);
5955    __ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE));
5956
5957    __ Branch(not_found, eq, undefined, Operand(candidate));
5958    // Must be the hole (deleted entry).
5959    if (FLAG_debug_code) {
5960      __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
5961      __ Assert(eq, "oddball in symbol table is not undefined or the hole",
5962          scratch, Operand(candidate));
5963    }
5964    __ jmp(&next_probe[i]);
5965
5966    __ bind(&is_string);
5967
5968    // Check that the candidate is a non-external ASCII string.  The instance
5969    // type is still in the scratch register from the CompareObjectType
5970    // operation.
5971    __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
5972
5973    // If length is not 2 the string is not a candidate.
5974    __ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5975    __ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2)));
5976
5977    // Check if the two characters match.
5978    // Assumes that word load is little endian.
5979    __ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5980    __ Branch(&found_in_symbol_table, eq, chars, Operand(scratch));
5981    __ bind(&next_probe[i]);
5982  }
5983
5984  // No matching 2 character string found by probing.
5985  __ jmp(not_found);
5986
5987  // Scratch register contains result when we fall through to here.
5988  Register result = candidate;
5989  __ bind(&found_in_symbol_table);
5990  __ mov(v0, result);
5991}
5992
5993
5994void StringHelper::GenerateHashInit(MacroAssembler* masm,
5995                                    Register hash,
5996                                    Register character) {
5997  // hash = seed + character + ((seed + character) << 10);
5998  __ LoadRoot(hash, Heap::kHashSeedRootIndex);
5999  // Untag smi seed and add the character.
6000  __ SmiUntag(hash);
6001  __ addu(hash, hash, character);
6002  __ sll(at, hash, 10);
6003  __ addu(hash, hash, at);
6004  // hash ^= hash >> 6;
6005  __ srl(at, hash, 6);
6006  __ xor_(hash, hash, at);
6007}
6008
6009
6010void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
6011                                            Register hash,
6012                                            Register character) {
6013  // hash += character;
6014  __ addu(hash, hash, character);
6015  // hash += hash << 10;
6016  __ sll(at, hash, 10);
6017  __ addu(hash, hash, at);
6018  // hash ^= hash >> 6;
6019  __ srl(at, hash, 6);
6020  __ xor_(hash, hash, at);
6021}
6022
6023
6024void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
6025                                       Register hash) {
6026  // hash += hash << 3;
6027  __ sll(at, hash, 3);
6028  __ addu(hash, hash, at);
6029  // hash ^= hash >> 11;
6030  __ srl(at, hash, 11);
6031  __ xor_(hash, hash, at);
6032  // hash += hash << 15;
6033  __ sll(at, hash, 15);
6034  __ addu(hash, hash, at);
6035
6036  __ li(at, Operand(String::kHashBitMask));
6037  __ and_(hash, hash, at);
6038
6039  // if (hash == 0) hash = 27;
6040  __ ori(at, zero_reg, StringHasher::kZeroHash);
6041  __ Movz(hash, at, hash);
6042}
6043
6044
6045void SubStringStub::Generate(MacroAssembler* masm) {
6046  Label runtime;
6047  // Stack frame on entry.
6048  //  ra: return address
6049  //  sp[0]: to
6050  //  sp[4]: from
6051  //  sp[8]: string
6052
6053  // This stub is called from the native-call %_SubString(...), so
6054  // nothing can be assumed about the arguments. It is tested that:
6055  //  "string" is a sequential string,
6056  //  both "from" and "to" are smis, and
6057  //  0 <= from <= to <= string.length.
6058  // If any of these assumptions fail, we call the runtime system.
6059
6060  const int kToOffset = 0 * kPointerSize;
6061  const int kFromOffset = 1 * kPointerSize;
6062  const int kStringOffset = 2 * kPointerSize;
6063
6064  __ lw(a2, MemOperand(sp, kToOffset));
6065  __ lw(a3, MemOperand(sp, kFromOffset));
6066  STATIC_ASSERT(kFromOffset == kToOffset + 4);
6067  STATIC_ASSERT(kSmiTag == 0);
6068  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
6069
6070  // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
6071  // safe in this case.
6072  __ UntagAndJumpIfNotSmi(a2, a2, &runtime);
6073  __ UntagAndJumpIfNotSmi(a3, a3, &runtime);
6074  // Both a2 and a3 are untagged integers.
6075
6076  __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.
6077
6078  __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
6079  __ Subu(a2, a2, a3);
6080
6081  // Make sure first argument is a string.
6082  __ lw(v0, MemOperand(sp, kStringOffset));
6083  __ JumpIfSmi(v0, &runtime);
6084  __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
6085  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
6086  __ And(t0, a1, Operand(kIsNotStringMask));
6087
6088  __ Branch(&runtime, ne, t0, Operand(zero_reg));
6089
6090  // Short-cut for the case of trivial substring.
6091  Label return_v0;
6092  // v0: original string
6093  // a2: result string length
6094  __ lw(t0, FieldMemOperand(v0, String::kLengthOffset));
6095  __ sra(t0, t0, 1);
6096  __ Branch(&return_v0, eq, a2, Operand(t0));
6097
6098
6099  Label result_longer_than_two;
6100  // Check for special case of two character ASCII string, in which case
6101  // we do a lookup in the symbol table first.
6102  __ li(t0, 2);
6103  __ Branch(&result_longer_than_two, gt, a2, Operand(t0));
6104  __ Branch(&runtime, lt, a2, Operand(t0));
6105
6106  __ JumpIfInstanceTypeIsNotSequentialAscii(a1, a1, &runtime);
6107
6108  // Get the two characters forming the sub string.
6109  __ Addu(v0, v0, Operand(a3));
6110  __ lbu(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
6111  __ lbu(t0, FieldMemOperand(v0, SeqAsciiString::kHeaderSize + 1));
6112
6113  // Try to lookup two character string in symbol table.
6114  Label make_two_character_string;
6115  StringHelper::GenerateTwoCharacterSymbolTableProbe(
6116      masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string);
6117  __ jmp(&return_v0);
6118
6119  // a2: result string length.
6120  // a3: two characters combined into halfword in little endian byte order.
6121  __ bind(&make_two_character_string);
6122  __ AllocateAsciiString(v0, a2, t0, t1, t4, &runtime);
6123  __ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
6124  __ jmp(&return_v0);
6125
6126  __ bind(&result_longer_than_two);
6127
6128  // Deal with different string types: update the index if necessary
6129  // and put the underlying string into t1.
6130  // v0: original string
6131  // a1: instance type
6132  // a2: length
6133  // a3: from index (untagged)
6134  Label underlying_unpacked, sliced_string, seq_or_external_string;
6135  // If the string is not indirect, it can only be sequential or external.
6136  STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
6137  STATIC_ASSERT(kIsIndirectStringMask != 0);
6138  __ And(t0, a1, Operand(kIsIndirectStringMask));
6139  __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg));
6140  // t0 is used as a scratch register and can be overwritten in either case.
6141  __ And(t0, a1, Operand(kSlicedNotConsMask));
6142  __ Branch(&sliced_string, ne, t0, Operand(zero_reg));
6143  // Cons string.  Check whether it is flat, then fetch first part.
6144  __ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset));
6145  __ LoadRoot(t0, Heap::kEmptyStringRootIndex);
6146  __ Branch(&runtime, ne, t1, Operand(t0));
6147  __ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset));
6148  // Update instance type.
6149  __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
6150  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
6151  __ jmp(&underlying_unpacked);
6152
6153  __ bind(&sliced_string);
6154  // Sliced string.  Fetch parent and correct start index by offset.
6155  __ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
6156  __ lw(t0, FieldMemOperand(v0, SlicedString::kOffsetOffset));
6157  __ sra(t0, t0, 1);  // Add offset to index.
6158  __ Addu(a3, a3, t0);
6159  // Update instance type.
6160  __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
6161  __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
6162  __ jmp(&underlying_unpacked);
6163
6164  __ bind(&seq_or_external_string);
6165  // Sequential or external string.  Just move string to the expected register.
6166  __ mov(t1, v0);
6167
6168  __ bind(&underlying_unpacked);
6169
6170  if (FLAG_string_slices) {
6171    Label copy_routine;
6172    // t1: underlying subject string
6173    // a1: instance type of underlying subject string
6174    // a2: length
6175    // a3: adjusted start index (untagged)
6176    // Short slice.  Copy instead of slicing.
6177    __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
6178    // Allocate new sliced string.  At this point we do not reload the instance
6179    // type including the string encoding because we simply rely on the info
6180    // provided by the original string.  It does not matter if the original
6181    // string's encoding is wrong because we always have to recheck encoding of
6182    // the newly created string's parent anyways due to externalized strings.
6183    Label two_byte_slice, set_slice_header;
6184    STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
6185    STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
6186    __ And(t0, a1, Operand(kStringEncodingMask));
6187    __ Branch(&two_byte_slice, eq, t0, Operand(zero_reg));
6188    __ AllocateAsciiSlicedString(v0, a2, t2, t3, &runtime);
6189    __ jmp(&set_slice_header);
6190    __ bind(&two_byte_slice);
6191    __ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime);
6192    __ bind(&set_slice_header);
6193    __ sll(a3, a3, 1);
6194    __ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
6195    __ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
6196    __ jmp(&return_v0);
6197
6198    __ bind(&copy_routine);
6199  }
6200
6201  // t1: underlying subject string
6202  // a1: instance type of underlying subject string
6203  // a2: length
6204  // a3: adjusted start index (untagged)
6205  Label two_byte_sequential, sequential_string, allocate_result;
6206  STATIC_ASSERT(kExternalStringTag != 0);
6207  STATIC_ASSERT(kSeqStringTag == 0);
6208  __ And(t0, a1, Operand(kExternalStringTag));
6209  __ Branch(&sequential_string, eq, t0, Operand(zero_reg));
6210
6211  // Handle external string.
6212  // Rule out short external strings.
6213  STATIC_CHECK(kShortExternalStringTag != 0);
6214  __ And(t0, a1, Operand(kShortExternalStringTag));
6215  __ Branch(&runtime, ne, t0, Operand(zero_reg));
6216  __ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset));
6217  // t1 already points to the first character of underlying string.
6218  __ jmp(&allocate_result);
6219
6220  __ bind(&sequential_string);
6221  // Locate first character of underlying subject string.
6222  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
6223  __ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6224
6225  __ bind(&allocate_result);
6226  // Sequential acii string.  Allocate the result.
6227  STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
6228  __ And(t0, a1, Operand(kStringEncodingMask));
6229  __ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg));
6230
6231  // Allocate and copy the resulting ASCII string.
6232  __ AllocateAsciiString(v0, a2, t0, t2, t3, &runtime);
6233
6234  // Locate first character of substring to copy.
6235  __ Addu(t1, t1, a3);
6236
6237  // Locate first character of result.
6238  __ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6239
6240  // v0: result string
6241  // a1: first character of result string
6242  // a2: result string length
6243  // t1: first character of substring to copy
6244  STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
6245  StringHelper::GenerateCopyCharactersLong(
6246      masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED);
6247  __ jmp(&return_v0);
6248
6249  // Allocate and copy the resulting two-byte string.
6250  __ bind(&two_byte_sequential);
6251  __ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime);
6252
6253  // Locate first character of substring to copy.
6254  STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
6255  __ sll(t0, a3, 1);
6256  __ Addu(t1, t1, t0);
6257  // Locate first character of result.
6258  __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6259
6260  // v0: result string.
6261  // a1: first character of result.
6262  // a2: result length.
6263  // t1: first character of substring to copy.
6264  STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
6265  StringHelper::GenerateCopyCharactersLong(
6266      masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED);
6267
6268  __ bind(&return_v0);
6269  Counters* counters = masm->isolate()->counters();
6270  __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
6271  __ DropAndRet(3);
6272
6273  // Just jump to runtime to create the sub string.
6274  __ bind(&runtime);
6275  __ TailCallRuntime(Runtime::kSubString, 3, 1);
6276}
6277
6278
6279void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
6280                                                      Register left,
6281                                                      Register right,
6282                                                      Register scratch1,
6283                                                      Register scratch2,
6284                                                      Register scratch3) {
6285  Register length = scratch1;
6286
6287  // Compare lengths.
6288  Label strings_not_equal, check_zero_length;
6289  __ lw(length, FieldMemOperand(left, String::kLengthOffset));
6290  __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
6291  __ Branch(&check_zero_length, eq, length, Operand(scratch2));
6292  __ bind(&strings_not_equal);
6293  __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
6294  __ Ret();
6295
6296  // Check if the length is zero.
6297  Label compare_chars;
6298  __ bind(&check_zero_length);
6299  STATIC_ASSERT(kSmiTag == 0);
6300  __ Branch(&compare_chars, ne, length, Operand(zero_reg));
6301  __ li(v0, Operand(Smi::FromInt(EQUAL)));
6302  __ Ret();
6303
6304  // Compare characters.
6305  __ bind(&compare_chars);
6306
6307  GenerateAsciiCharsCompareLoop(masm,
6308                                left, right, length, scratch2, scratch3, v0,
6309                                &strings_not_equal);
6310
6311  // Characters are equal.
6312  __ li(v0, Operand(Smi::FromInt(EQUAL)));
6313  __ Ret();
6314}
6315
6316
6317void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
6318                                                        Register left,
6319                                                        Register right,
6320                                                        Register scratch1,
6321                                                        Register scratch2,
6322                                                        Register scratch3,
6323                                                        Register scratch4) {
6324  Label result_not_equal, compare_lengths;
6325  // Find minimum length and length difference.
6326  __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
6327  __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
6328  __ Subu(scratch3, scratch1, Operand(scratch2));
6329  Register length_delta = scratch3;
6330  __ slt(scratch4, scratch2, scratch1);
6331  __ Movn(scratch1, scratch2, scratch4);
6332  Register min_length = scratch1;
6333  STATIC_ASSERT(kSmiTag == 0);
6334  __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
6335
6336  // Compare loop.
6337  GenerateAsciiCharsCompareLoop(masm,
6338                                left, right, min_length, scratch2, scratch4, v0,
6339                                &result_not_equal);
6340
6341  // Compare lengths - strings up to min-length are equal.
6342  __ bind(&compare_lengths);
6343  ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
6344  // Use length_delta as result if it's zero.
6345  __ mov(scratch2, length_delta);
6346  __ mov(scratch4, zero_reg);
6347  __ mov(v0, zero_reg);
6348
6349  __ bind(&result_not_equal);
6350  // Conditionally update the result based either on length_delta or
6351  // the last comparion performed in the loop above.
6352  Label ret;
6353  __ Branch(&ret, eq, scratch2, Operand(scratch4));
6354  __ li(v0, Operand(Smi::FromInt(GREATER)));
6355  __ Branch(&ret, gt, scratch2, Operand(scratch4));
6356  __ li(v0, Operand(Smi::FromInt(LESS)));
6357  __ bind(&ret);
6358  __ Ret();
6359}
6360
6361
6362void StringCompareStub::GenerateAsciiCharsCompareLoop(
6363    MacroAssembler* masm,
6364    Register left,
6365    Register right,
6366    Register length,
6367    Register scratch1,
6368    Register scratch2,
6369    Register scratch3,
6370    Label* chars_not_equal) {
6371  // Change index to run from -length to -1 by adding length to string
6372  // start. This means that loop ends when index reaches zero, which
6373  // doesn't need an additional compare.
6374  __ SmiUntag(length);
6375  __ Addu(scratch1, length,
6376          Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6377  __ Addu(left, left, Operand(scratch1));
6378  __ Addu(right, right, Operand(scratch1));
6379  __ Subu(length, zero_reg, length);
6380  Register index = length;  // index = -length;
6381
6382
6383  // Compare loop.
6384  Label loop;
6385  __ bind(&loop);
6386  __ Addu(scratch3, left, index);
6387  __ lbu(scratch1, MemOperand(scratch3));
6388  __ Addu(scratch3, right, index);
6389  __ lbu(scratch2, MemOperand(scratch3));
6390  __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
6391  __ Addu(index, index, 1);
6392  __ Branch(&loop, ne, index, Operand(zero_reg));
6393}
6394
6395
6396void StringCompareStub::Generate(MacroAssembler* masm) {
6397  Label runtime;
6398
6399  Counters* counters = masm->isolate()->counters();
6400
6401  // Stack frame on entry.
6402  //  sp[0]: right string
6403  //  sp[4]: left string
6404  __ lw(a1, MemOperand(sp, 1 * kPointerSize));  // Left.
6405  __ lw(a0, MemOperand(sp, 0 * kPointerSize));  // Right.
6406
6407  Label not_same;
6408  __ Branch(&not_same, ne, a0, Operand(a1));
6409  STATIC_ASSERT(EQUAL == 0);
6410  STATIC_ASSERT(kSmiTag == 0);
6411  __ li(v0, Operand(Smi::FromInt(EQUAL)));
6412  __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
6413  __ DropAndRet(2);
6414
6415  __ bind(&not_same);
6416
6417  // Check that both objects are sequential ASCII strings.
6418  __ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime);
6419
6420  // Compare flat ASCII strings natively. Remove arguments from stack first.
6421  __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
6422  __ Addu(sp, sp, Operand(2 * kPointerSize));
6423  GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1);
6424
6425  __ bind(&runtime);
6426  __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6427}
6428
6429
6430void StringAddStub::Generate(MacroAssembler* masm) {
6431  Label call_runtime, call_builtin;
6432  Builtins::JavaScript builtin_id = Builtins::ADD;
6433
6434  Counters* counters = masm->isolate()->counters();
6435
6436  // Stack on entry:
6437  // sp[0]: second argument (right).
6438  // sp[4]: first argument (left).
6439
6440  // Load the two arguments.
6441  __ lw(a0, MemOperand(sp, 1 * kPointerSize));  // First argument.
6442  __ lw(a1, MemOperand(sp, 0 * kPointerSize));  // Second argument.
6443
6444  // Make sure that both arguments are strings if not known in advance.
6445  if (flags_ == NO_STRING_ADD_FLAGS) {
6446    __ JumpIfEitherSmi(a0, a1, &call_runtime);
6447    // Load instance types.
6448    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6449    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6450    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6451    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6452    STATIC_ASSERT(kStringTag == 0);
6453    // If either is not a string, go to runtime.
6454    __ Or(t4, t0, Operand(t1));
6455    __ And(t4, t4, Operand(kIsNotStringMask));
6456    __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
6457  } else {
6458    // Here at least one of the arguments is definitely a string.
6459    // We convert the one that is not known to be a string.
6460    if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
6461      ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
6462      GenerateConvertArgument(
6463          masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin);
6464      builtin_id = Builtins::STRING_ADD_RIGHT;
6465    } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
6466      ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
6467      GenerateConvertArgument(
6468          masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin);
6469      builtin_id = Builtins::STRING_ADD_LEFT;
6470    }
6471  }
6472
6473  // Both arguments are strings.
6474  // a0: first string
6475  // a1: second string
6476  // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6477  // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6478  {
6479    Label strings_not_empty;
6480    // Check if either of the strings are empty. In that case return the other.
6481    // These tests use zero-length check on string-length whch is an Smi.
6482    // Assert that Smi::FromInt(0) is really 0.
6483    STATIC_ASSERT(kSmiTag == 0);
6484    ASSERT(Smi::FromInt(0) == 0);
6485    __ lw(a2, FieldMemOperand(a0, String::kLengthOffset));
6486    __ lw(a3, FieldMemOperand(a1, String::kLengthOffset));
6487    __ mov(v0, a0);       // Assume we'll return first string (from a0).
6488    __ Movz(v0, a1, a2);  // If first is empty, return second (from a1).
6489    __ slt(t4, zero_reg, a2);   // if (a2 > 0) t4 = 1.
6490    __ slt(t5, zero_reg, a3);   // if (a3 > 0) t5 = 1.
6491    __ and_(t4, t4, t5);        // Branch if both strings were non-empty.
6492    __ Branch(&strings_not_empty, ne, t4, Operand(zero_reg));
6493
6494    __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6495    __ DropAndRet(2);
6496
6497    __ bind(&strings_not_empty);
6498  }
6499
6500  // Untag both string-lengths.
6501  __ sra(a2, a2, kSmiTagSize);
6502  __ sra(a3, a3, kSmiTagSize);
6503
6504  // Both strings are non-empty.
6505  // a0: first string
6506  // a1: second string
6507  // a2: length of first string
6508  // a3: length of second string
6509  // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6510  // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6511  // Look at the length of the result of adding the two strings.
6512  Label string_add_flat_result, longer_than_two;
6513  // Adding two lengths can't overflow.
6514  STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
6515  __ Addu(t2, a2, Operand(a3));
6516  // Use the symbol table when adding two one character strings, as it
6517  // helps later optimizations to return a symbol here.
6518  __ Branch(&longer_than_two, ne, t2, Operand(2));
6519
6520  // Check that both strings are non-external ASCII strings.
6521  if (flags_ != NO_STRING_ADD_FLAGS) {
6522    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6523    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6524    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6525    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6526  }
6527  __ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3,
6528                                                 &call_runtime);
6529
6530  // Get the two characters forming the sub string.
6531  __ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize));
6532  __ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize));
6533
6534  // Try to lookup two character string in symbol table. If it is not found
6535  // just allocate a new one.
6536  Label make_two_character_string;
6537  StringHelper::GenerateTwoCharacterSymbolTableProbe(
6538      masm, a2, a3, t2, t3, t0, t1, t5, &make_two_character_string);
6539  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6540  __ DropAndRet(2);
6541
6542  __ bind(&make_two_character_string);
6543  // Resulting string has length 2 and first chars of two strings
6544  // are combined into single halfword in a2 register.
6545  // So we can fill resulting string without two loops by a single
6546  // halfword store instruction (which assumes that processor is
6547  // in a little endian mode).
6548  __ li(t2, Operand(2));
6549  __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
6550  __ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
6551  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6552  __ DropAndRet(2);
6553
6554  __ bind(&longer_than_two);
6555  // Check if resulting string will be flat.
6556  __ Branch(&string_add_flat_result, lt, t2, Operand(ConsString::kMinLength));
6557  // Handle exceptionally long strings in the runtime system.
6558  STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
6559  ASSERT(IsPowerOf2(String::kMaxLength + 1));
6560  // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
6561  __ Branch(&call_runtime, hs, t2, Operand(String::kMaxLength + 1));
6562
6563  // If result is not supposed to be flat, allocate a cons string object.
6564  // If both strings are ASCII the result is an ASCII cons string.
6565  if (flags_ != NO_STRING_ADD_FLAGS) {
6566    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6567    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6568    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6569    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6570  }
6571  Label non_ascii, allocated, ascii_data;
6572  STATIC_ASSERT(kTwoByteStringTag == 0);
6573  // Branch to non_ascii if either string-encoding field is zero (non-ASCII).
6574  __ And(t4, t0, Operand(t1));
6575  __ And(t4, t4, Operand(kStringEncodingMask));
6576  __ Branch(&non_ascii, eq, t4, Operand(zero_reg));
6577
6578  // Allocate an ASCII cons string.
6579  __ bind(&ascii_data);
6580  __ AllocateAsciiConsString(v0, t2, t0, t1, &call_runtime);
6581  __ bind(&allocated);
6582  // Fill the fields of the cons string.
6583  __ sw(a0, FieldMemOperand(v0, ConsString::kFirstOffset));
6584  __ sw(a1, FieldMemOperand(v0, ConsString::kSecondOffset));
6585  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6586  __ DropAndRet(2);
6587
6588  __ bind(&non_ascii);
6589  // At least one of the strings is two-byte. Check whether it happens
6590  // to contain only ASCII characters.
6591  // t0: first instance type.
6592  // t1: second instance type.
6593  // Branch to if _both_ instances have kAsciiDataHintMask set.
6594  __ And(at, t0, Operand(kAsciiDataHintMask));
6595  __ and_(at, at, t1);
6596  __ Branch(&ascii_data, ne, at, Operand(zero_reg));
6597
6598  __ xor_(t0, t0, t1);
6599  STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
6600  __ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
6601  __ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
6602
6603  // Allocate a two byte cons string.
6604  __ AllocateTwoByteConsString(v0, t2, t0, t1, &call_runtime);
6605  __ Branch(&allocated);
6606
6607  // We cannot encounter sliced strings or cons strings here since:
6608  STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength);
6609  // Handle creating a flat result from either external or sequential strings.
6610  // Locate the first characters' locations.
6611  // a0: first string
6612  // a1: second string
6613  // a2: length of first string
6614  // a3: length of second string
6615  // t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6616  // t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6617  // t2: sum of lengths.
6618  Label first_prepared, second_prepared;
6619  __ bind(&string_add_flat_result);
6620  if (flags_ != NO_STRING_ADD_FLAGS) {
6621    __ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
6622    __ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
6623    __ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
6624    __ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
6625  }
6626  // Check whether both strings have same encoding
6627  __ Xor(t3, t0, Operand(t1));
6628  __ And(t3, t3, Operand(kStringEncodingMask));
6629  __ Branch(&call_runtime, ne, t3, Operand(zero_reg));
6630
6631  STATIC_ASSERT(kSeqStringTag == 0);
6632  __ And(t4, t0, Operand(kStringRepresentationMask));
6633
6634  STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6635  Label skip_first_add;
6636  __ Branch(&skip_first_add, ne, t4, Operand(zero_reg));
6637  __ Branch(USE_DELAY_SLOT, &first_prepared);
6638  __ addiu(t3, a0, SeqAsciiString::kHeaderSize - kHeapObjectTag);
6639  __ bind(&skip_first_add);
6640  // External string: rule out short external string and load string resource.
6641  STATIC_ASSERT(kShortExternalStringTag != 0);
6642  __ And(t4, t0, Operand(kShortExternalStringMask));
6643  __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
6644  __ lw(t3, FieldMemOperand(a0, ExternalString::kResourceDataOffset));
6645  __ bind(&first_prepared);
6646
6647  STATIC_ASSERT(kSeqStringTag == 0);
6648  __ And(t4, t1, Operand(kStringRepresentationMask));
6649  STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
6650  Label skip_second_add;
6651  __ Branch(&skip_second_add, ne, t4, Operand(zero_reg));
6652  __ Branch(USE_DELAY_SLOT, &second_prepared);
6653  __ addiu(a1, a1, SeqAsciiString::kHeaderSize - kHeapObjectTag);
6654  __ bind(&skip_second_add);
6655  // External string: rule out short external string and load string resource.
6656  STATIC_ASSERT(kShortExternalStringTag != 0);
6657  __ And(t4, t1, Operand(kShortExternalStringMask));
6658  __ Branch(&call_runtime, ne, t4, Operand(zero_reg));
6659  __ lw(a1, FieldMemOperand(a1, ExternalString::kResourceDataOffset));
6660  __ bind(&second_prepared);
6661
6662  Label non_ascii_string_add_flat_result;
6663  // t3: first character of first string
6664  // a1: first character of second string
6665  // a2: length of first string
6666  // a3: length of second string
6667  // t2: sum of lengths.
6668  // Both strings have the same encoding.
6669  STATIC_ASSERT(kTwoByteStringTag == 0);
6670  __ And(t4, t1, Operand(kStringEncodingMask));
6671  __ Branch(&non_ascii_string_add_flat_result, eq, t4, Operand(zero_reg));
6672
6673  __ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
6674  __ Addu(t2, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6675  // v0: result string.
6676  // t3: first character of first string.
6677  // a1: first character of second string
6678  // a2: length of first string.
6679  // a3: length of second string.
6680  // t2: first character of result.
6681
6682  StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, true);
6683  // t2: next character of result.
6684  StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true);
6685  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6686  __ DropAndRet(2);
6687
6688  __ bind(&non_ascii_string_add_flat_result);
6689  __ AllocateTwoByteString(v0, t2, t0, t1, t5, &call_runtime);
6690  __ Addu(t2, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6691  // v0: result string.
6692  // t3: first character of first string.
6693  // a1: first character of second string.
6694  // a2: length of first string.
6695  // a3: length of second string.
6696  // t2: first character of result.
6697  StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, false);
6698  // t2: next character of result.
6699  StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false);
6700
6701  __ IncrementCounter(counters->string_add_native(), 1, a2, a3);
6702  __ DropAndRet(2);
6703
6704  // Just jump to runtime to add the two strings.
6705  __ bind(&call_runtime);
6706  __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
6707
6708  if (call_builtin.is_linked()) {
6709    __ bind(&call_builtin);
6710    __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
6711  }
6712}
6713
6714
6715void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6716                                            int stack_offset,
6717                                            Register arg,
6718                                            Register scratch1,
6719                                            Register scratch2,
6720                                            Register scratch3,
6721                                            Register scratch4,
6722                                            Label* slow) {
6723  // First check if the argument is already a string.
6724  Label not_string, done;
6725  __ JumpIfSmi(arg, &not_string);
6726  __ GetObjectType(arg, scratch1, scratch1);
6727  __ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE));
6728
6729  // Check the number to string cache.
6730  Label not_cached;
6731  __ bind(&not_string);
6732  // Puts the cached result into scratch1.
6733  NumberToStringStub::GenerateLookupNumberStringCache(masm,
6734                                                      arg,
6735                                                      scratch1,
6736                                                      scratch2,
6737                                                      scratch3,
6738                                                      scratch4,
6739                                                      false,
6740                                                      &not_cached);
6741  __ mov(arg, scratch1);
6742  __ sw(arg, MemOperand(sp, stack_offset));
6743  __ jmp(&done);
6744
6745  // Check if the argument is a safe string wrapper.
6746  __ bind(&not_cached);
6747  __ JumpIfSmi(arg, slow);
6748  __ GetObjectType(arg, scratch1, scratch2);  // map -> scratch1.
6749  __ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE));
6750  __ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6751  __ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf);
6752  __ And(scratch2, scratch2, scratch4);
6753  __ Branch(slow, ne, scratch2, Operand(scratch4));
6754  __ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6755  __ sw(arg, MemOperand(sp, stack_offset));
6756
6757  __ bind(&done);
6758}
6759
6760
6761void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
6762  ASSERT(state_ == CompareIC::SMIS);
6763  Label miss;
6764  __ Or(a2, a1, a0);
6765  __ JumpIfNotSmi(a2, &miss);
6766
6767  if (GetCondition() == eq) {
6768    // For equality we do not care about the sign of the result.
6769    __ Subu(v0, a0, a1);
6770  } else {
6771    // Untag before subtracting to avoid handling overflow.
6772    __ SmiUntag(a1);
6773    __ SmiUntag(a0);
6774    __ Subu(v0, a1, a0);
6775  }
6776  __ Ret();
6777
6778  __ bind(&miss);
6779  GenerateMiss(masm);
6780}
6781
6782
6783void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
6784  ASSERT(state_ == CompareIC::HEAP_NUMBERS);
6785
6786  Label generic_stub;
6787  Label unordered, maybe_undefined1, maybe_undefined2;
6788  Label miss;
6789  __ And(a2, a1, Operand(a0));
6790  __ JumpIfSmi(a2, &generic_stub);
6791
6792  __ GetObjectType(a0, a2, a2);
6793  __ Branch(&maybe_undefined1, ne, a2, Operand(HEAP_NUMBER_TYPE));
6794  __ GetObjectType(a1, a2, a2);
6795  __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
6796
6797  // Inlining the double comparison and falling back to the general compare
6798  // stub if NaN is involved or FPU is unsupported.
6799  if (CpuFeatures::IsSupported(FPU)) {
6800    CpuFeatures::Scope scope(FPU);
6801
6802    // Load left and right operand.
6803    __ Subu(a2, a1, Operand(kHeapObjectTag));
6804    __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
6805    __ Subu(a2, a0, Operand(kHeapObjectTag));
6806    __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
6807
6808    // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
6809    Label fpu_eq, fpu_lt;
6810    // Test if equal, and also handle the unordered/NaN case.
6811    __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
6812
6813    // Test if less (unordered case is already handled).
6814    __ BranchF(&fpu_lt, NULL, lt, f0, f2);
6815
6816    // Otherwise it's greater, so just fall thru, and return.
6817    __ li(v0, Operand(GREATER));
6818    __ Ret();
6819
6820    __ bind(&fpu_eq);
6821    __ li(v0, Operand(EQUAL));
6822    __ Ret();
6823
6824    __ bind(&fpu_lt);
6825    __ li(v0, Operand(LESS));
6826    __ Ret();
6827  }
6828
6829  __ bind(&unordered);
6830
6831  CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0);
6832  __ bind(&generic_stub);
6833  __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
6834
6835  __ bind(&maybe_undefined1);
6836  if (Token::IsOrderedRelationalCompareOp(op_)) {
6837    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
6838    __ Branch(&miss, ne, a0, Operand(at));
6839    __ GetObjectType(a1, a2, a2);
6840    __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
6841    __ jmp(&unordered);
6842  }
6843
6844  __ bind(&maybe_undefined2);
6845  if (Token::IsOrderedRelationalCompareOp(op_)) {
6846    __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
6847    __ Branch(&unordered, eq, a1, Operand(at));
6848  }
6849
6850  __ bind(&miss);
6851  GenerateMiss(masm);
6852}
6853
6854
6855void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
6856  ASSERT(state_ == CompareIC::SYMBOLS);
6857  Label miss;
6858
6859  // Registers containing left and right operands respectively.
6860  Register left = a1;
6861  Register right = a0;
6862  Register tmp1 = a2;
6863  Register tmp2 = a3;
6864
6865  // Check that both operands are heap objects.
6866  __ JumpIfEitherSmi(left, right, &miss);
6867
6868  // Check that both operands are symbols.
6869  __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6870  __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6871  __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6872  __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6873  STATIC_ASSERT(kSymbolTag != 0);
6874  __ And(tmp1, tmp1, Operand(tmp2));
6875  __ And(tmp1, tmp1, kIsSymbolMask);
6876  __ Branch(&miss, eq, tmp1, Operand(zero_reg));
6877  // Make sure a0 is non-zero. At this point input operands are
6878  // guaranteed to be non-zero.
6879  ASSERT(right.is(a0));
6880  STATIC_ASSERT(EQUAL == 0);
6881  STATIC_ASSERT(kSmiTag == 0);
6882  __ mov(v0, right);
6883  // Symbols are compared by identity.
6884  __ Ret(ne, left, Operand(right));
6885  __ li(v0, Operand(Smi::FromInt(EQUAL)));
6886  __ Ret();
6887
6888  __ bind(&miss);
6889  GenerateMiss(masm);
6890}
6891
6892
6893void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
6894  ASSERT(state_ == CompareIC::STRINGS);
6895  Label miss;
6896
6897  bool equality = Token::IsEqualityOp(op_);
6898
6899  // Registers containing left and right operands respectively.
6900  Register left = a1;
6901  Register right = a0;
6902  Register tmp1 = a2;
6903  Register tmp2 = a3;
6904  Register tmp3 = t0;
6905  Register tmp4 = t1;
6906  Register tmp5 = t2;
6907
6908  // Check that both operands are heap objects.
6909  __ JumpIfEitherSmi(left, right, &miss);
6910
6911  // Check that both operands are strings. This leaves the instance
6912  // types loaded in tmp1 and tmp2.
6913  __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
6914  __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
6915  __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
6916  __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
6917  STATIC_ASSERT(kNotStringTag != 0);
6918  __ Or(tmp3, tmp1, tmp2);
6919  __ And(tmp5, tmp3, Operand(kIsNotStringMask));
6920  __ Branch(&miss, ne, tmp5, Operand(zero_reg));
6921
6922  // Fast check for identical strings.
6923  Label left_ne_right;
6924  STATIC_ASSERT(EQUAL == 0);
6925  STATIC_ASSERT(kSmiTag == 0);
6926  __ Branch(&left_ne_right, ne, left, Operand(right));
6927  __ Ret(USE_DELAY_SLOT);
6928  __ mov(v0, zero_reg);  // In the delay slot.
6929  __ bind(&left_ne_right);
6930
6931  // Handle not identical strings.
6932
6933  // Check that both strings are symbols. If they are, we're done
6934  // because we already know they are not identical.
6935  if (equality) {
6936    ASSERT(GetCondition() == eq);
6937    STATIC_ASSERT(kSymbolTag != 0);
6938    __ And(tmp3, tmp1, Operand(tmp2));
6939    __ And(tmp5, tmp3, Operand(kIsSymbolMask));
6940    Label is_symbol;
6941    __ Branch(&is_symbol, eq, tmp5, Operand(zero_reg));
6942    // Make sure a0 is non-zero. At this point input operands are
6943    // guaranteed to be non-zero.
6944    ASSERT(right.is(a0));
6945    __ Ret(USE_DELAY_SLOT);
6946    __ mov(v0, a0);  // In the delay slot.
6947    __ bind(&is_symbol);
6948  }
6949
6950  // Check that both strings are sequential ASCII.
6951  Label runtime;
6952  __ JumpIfBothInstanceTypesAreNotSequentialAscii(
6953      tmp1, tmp2, tmp3, tmp4, &runtime);
6954
6955  // Compare flat ASCII strings. Returns when done.
6956  if (equality) {
6957    StringCompareStub::GenerateFlatAsciiStringEquals(
6958        masm, left, right, tmp1, tmp2, tmp3);
6959  } else {
6960    StringCompareStub::GenerateCompareFlatAsciiStrings(
6961        masm, left, right, tmp1, tmp2, tmp3, tmp4);
6962  }
6963
6964  // Handle more complex cases in runtime.
6965  __ bind(&runtime);
6966  __ Push(left, right);
6967  if (equality) {
6968    __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
6969  } else {
6970    __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6971  }
6972
6973  __ bind(&miss);
6974  GenerateMiss(masm);
6975}
6976
6977
6978void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6979  ASSERT(state_ == CompareIC::OBJECTS);
6980  Label miss;
6981  __ And(a2, a1, Operand(a0));
6982  __ JumpIfSmi(a2, &miss);
6983
6984  __ GetObjectType(a0, a2, a2);
6985  __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
6986  __ GetObjectType(a1, a2, a2);
6987  __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
6988
6989  ASSERT(GetCondition() == eq);
6990  __ Ret(USE_DELAY_SLOT);
6991  __ subu(v0, a0, a1);
6992
6993  __ bind(&miss);
6994  GenerateMiss(masm);
6995}
6996
6997
6998void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
6999  Label miss;
7000  __ And(a2, a1, a0);
7001  __ JumpIfSmi(a2, &miss);
7002  __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
7003  __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
7004  __ Branch(&miss, ne, a2, Operand(known_map_));
7005  __ Branch(&miss, ne, a3, Operand(known_map_));
7006
7007  __ Ret(USE_DELAY_SLOT);
7008  __ subu(v0, a0, a1);
7009
7010  __ bind(&miss);
7011  GenerateMiss(masm);
7012}
7013
7014void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
7015  {
7016    // Call the runtime system in a fresh internal frame.
7017    ExternalReference miss =
7018        ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
7019    FrameScope scope(masm, StackFrame::INTERNAL);
7020    __ Push(a1, a0);
7021    __ push(ra);
7022    __ Push(a1, a0);
7023    __ li(t0, Operand(Smi::FromInt(op_)));
7024    __ addiu(sp, sp, -kPointerSize);
7025    __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
7026    __ sw(t0, MemOperand(sp));  // In the delay slot.
7027    // Compute the entry point of the rewritten stub.
7028    __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
7029    // Restore registers.
7030    __ Pop(a1, a0, ra);
7031  }
7032  __ Jump(a2);
7033}
7034
7035
7036void DirectCEntryStub::Generate(MacroAssembler* masm) {
7037  // No need to pop or drop anything, LeaveExitFrame will restore the old
7038  // stack, thus dropping the allocated space for the return value.
7039  // The saved ra is after the reserved stack space for the 4 args.
7040  __ lw(t9, MemOperand(sp, kCArgsSlotsSize));
7041
7042  if (FLAG_debug_code && FLAG_enable_slow_asserts) {
7043    // In case of an error the return address may point to a memory area
7044    // filled with kZapValue by the GC.
7045    // Dereference the address and check for this.
7046    __ lw(t0, MemOperand(t9));
7047    __ Assert(ne, "Received invalid return address.", t0,
7048        Operand(reinterpret_cast<uint32_t>(kZapValue)));
7049  }
7050  __ Jump(t9);
7051}
7052
7053
7054void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
7055                                    ExternalReference function) {
7056  __ li(t9, Operand(function));
7057  this->GenerateCall(masm, t9);
7058}
7059
7060
7061void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
7062                                    Register target) {
7063  __ Move(t9, target);
7064  __ AssertStackIsAligned();
7065  // Allocate space for arg slots.
7066  __ Subu(sp, sp, kCArgsSlotsSize);
7067
7068  // Block the trampoline pool through the whole function to make sure the
7069  // number of generated instructions is constant.
7070  Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
7071
7072  // We need to get the current 'pc' value, which is not available on MIPS.
7073  Label find_ra;
7074  masm->bal(&find_ra);  // ra = pc + 8.
7075  masm->nop();  // Branch delay slot nop.
7076  masm->bind(&find_ra);
7077
7078  const int kNumInstructionsToJump = 6;
7079  masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize);
7080  // Push return address (accessible to GC through exit frame pc).
7081  // This spot for ra was reserved in EnterExitFrame.
7082  masm->sw(ra, MemOperand(sp, kCArgsSlotsSize));
7083  masm->li(ra,
7084           Operand(reinterpret_cast<intptr_t>(GetCode().location()),
7085                   RelocInfo::CODE_TARGET),
7086           CONSTANT_SIZE);
7087  // Call the function.
7088  masm->Jump(t9);
7089  // Make sure the stored 'ra' points to this position.
7090  ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra));
7091}
7092
7093
7094void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
7095                                                        Label* miss,
7096                                                        Label* done,
7097                                                        Register receiver,
7098                                                        Register properties,
7099                                                        Handle<String> name,
7100                                                        Register scratch0) {
7101  // If names of slots in range from 1 to kProbes - 1 for the hash value are
7102  // not equal to the name and kProbes-th slot is not used (its name is the
7103  // undefined value), it guarantees the hash table doesn't contain the
7104  // property. It's true even if some slots represent deleted properties
7105  // (their names are the hole value).
7106  for (int i = 0; i < kInlinedProbes; i++) {
7107    // scratch0 points to properties hash.
7108    // Compute the masked index: (hash + i + i * i) & mask.
7109    Register index = scratch0;
7110    // Capacity is smi 2^n.
7111    __ lw(index, FieldMemOperand(properties, kCapacityOffset));
7112    __ Subu(index, index, Operand(1));
7113    __ And(index, index, Operand(
7114        Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
7115
7116    // Scale the index by multiplying by the entry size.
7117    ASSERT(StringDictionary::kEntrySize == 3);
7118    __ sll(at, index, 1);
7119    __ Addu(index, index, at);
7120
7121    Register entity_name = scratch0;
7122    // Having undefined at this place means the name is not contained.
7123    ASSERT_EQ(kSmiTagSize, 1);
7124    Register tmp = properties;
7125    __ sll(scratch0, index, 1);
7126    __ Addu(tmp, properties, scratch0);
7127    __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
7128
7129    ASSERT(!tmp.is(entity_name));
7130    __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
7131    __ Branch(done, eq, entity_name, Operand(tmp));
7132
7133    if (i != kInlinedProbes - 1) {
7134      // Load the hole ready for use below:
7135      __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
7136
7137      // Stop if found the property.
7138      __ Branch(miss, eq, entity_name, Operand(Handle<String>(name)));
7139
7140      Label the_hole;
7141      __ Branch(&the_hole, eq, entity_name, Operand(tmp));
7142
7143      // Check if the entry name is not a symbol.
7144      __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
7145      __ lbu(entity_name,
7146             FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
7147      __ And(scratch0, entity_name, Operand(kIsSymbolMask));
7148      __ Branch(miss, eq, scratch0, Operand(zero_reg));
7149
7150      __ bind(&the_hole);
7151
7152      // Restore the properties.
7153      __ lw(properties,
7154            FieldMemOperand(receiver, JSObject::kPropertiesOffset));
7155    }
7156  }
7157
7158  const int spill_mask =
7159      (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
7160       a2.bit() | a1.bit() | a0.bit() | v0.bit());
7161
7162  __ MultiPush(spill_mask);
7163  __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
7164  __ li(a1, Operand(Handle<String>(name)));
7165  StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
7166  __ CallStub(&stub);
7167  __ mov(at, v0);
7168  __ MultiPop(spill_mask);
7169
7170  __ Branch(done, eq, at, Operand(zero_reg));
7171  __ Branch(miss, ne, at, Operand(zero_reg));
7172}
7173
7174
7175// Probe the string dictionary in the |elements| register. Jump to the
7176// |done| label if a property with the given name is found. Jump to
7177// the |miss| label otherwise.
7178// If lookup was successful |scratch2| will be equal to elements + 4 * index.
7179void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
7180                                                        Label* miss,
7181                                                        Label* done,
7182                                                        Register elements,
7183                                                        Register name,
7184                                                        Register scratch1,
7185                                                        Register scratch2) {
7186  ASSERT(!elements.is(scratch1));
7187  ASSERT(!elements.is(scratch2));
7188  ASSERT(!name.is(scratch1));
7189  ASSERT(!name.is(scratch2));
7190
7191  // Assert that name contains a string.
7192  if (FLAG_debug_code) __ AbortIfNotString(name);
7193
7194  // Compute the capacity mask.
7195  __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
7196  __ sra(scratch1, scratch1, kSmiTagSize);  // convert smi to int
7197  __ Subu(scratch1, scratch1, Operand(1));
7198
7199  // Generate an unrolled loop that performs a few probes before
7200  // giving up. Measurements done on Gmail indicate that 2 probes
7201  // cover ~93% of loads from dictionaries.
7202  for (int i = 0; i < kInlinedProbes; i++) {
7203    // Compute the masked index: (hash + i + i * i) & mask.
7204    __ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
7205    if (i > 0) {
7206      // Add the probe offset (i + i * i) left shifted to avoid right shifting
7207      // the hash in a separate instruction. The value hash + i + i * i is right
7208      // shifted in the following and instruction.
7209      ASSERT(StringDictionary::GetProbeOffset(i) <
7210             1 << (32 - String::kHashFieldOffset));
7211      __ Addu(scratch2, scratch2, Operand(
7212           StringDictionary::GetProbeOffset(i) << String::kHashShift));
7213    }
7214    __ srl(scratch2, scratch2, String::kHashShift);
7215    __ And(scratch2, scratch1, scratch2);
7216
7217    // Scale the index by multiplying by the element size.
7218    ASSERT(StringDictionary::kEntrySize == 3);
7219    // scratch2 = scratch2 * 3.
7220
7221    __ sll(at, scratch2, 1);
7222    __ Addu(scratch2, scratch2, at);
7223
7224    // Check if the key is identical to the name.
7225    __ sll(at, scratch2, 2);
7226    __ Addu(scratch2, elements, at);
7227    __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
7228    __ Branch(done, eq, name, Operand(at));
7229  }
7230
7231  const int spill_mask =
7232      (ra.bit() | t2.bit() | t1.bit() | t0.bit() |
7233       a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
7234      ~(scratch1.bit() | scratch2.bit());
7235
7236  __ MultiPush(spill_mask);
7237  if (name.is(a0)) {
7238    ASSERT(!elements.is(a1));
7239    __ Move(a1, name);
7240    __ Move(a0, elements);
7241  } else {
7242    __ Move(a0, elements);
7243    __ Move(a1, name);
7244  }
7245  StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
7246  __ CallStub(&stub);
7247  __ mov(scratch2, a2);
7248  __ mov(at, v0);
7249  __ MultiPop(spill_mask);
7250
7251  __ Branch(done, ne, at, Operand(zero_reg));
7252  __ Branch(miss, eq, at, Operand(zero_reg));
7253}
7254
7255
7256void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
7257  // This stub overrides SometimesSetsUpAFrame() to return false.  That means
7258  // we cannot call anything that could cause a GC from this stub.
7259  // Registers:
7260  //  result: StringDictionary to probe
7261  //  a1: key
7262  //  : StringDictionary to probe.
7263  //  index_: will hold an index of entry if lookup is successful.
7264  //          might alias with result_.
7265  // Returns:
7266  //  result_ is zero if lookup failed, non zero otherwise.
7267
7268  Register result = v0;
7269  Register dictionary = a0;
7270  Register key = a1;
7271  Register index = a2;
7272  Register mask = a3;
7273  Register hash = t0;
7274  Register undefined = t1;
7275  Register entry_key = t2;
7276
7277  Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
7278
7279  __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
7280  __ sra(mask, mask, kSmiTagSize);
7281  __ Subu(mask, mask, Operand(1));
7282
7283  __ lw(hash, FieldMemOperand(key, String::kHashFieldOffset));
7284
7285  __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
7286
7287  for (int i = kInlinedProbes; i < kTotalProbes; i++) {
7288    // Compute the masked index: (hash + i + i * i) & mask.
7289    // Capacity is smi 2^n.
7290    if (i > 0) {
7291      // Add the probe offset (i + i * i) left shifted to avoid right shifting
7292      // the hash in a separate instruction. The value hash + i + i * i is right
7293      // shifted in the following and instruction.
7294      ASSERT(StringDictionary::GetProbeOffset(i) <
7295             1 << (32 - String::kHashFieldOffset));
7296      __ Addu(index, hash, Operand(
7297           StringDictionary::GetProbeOffset(i) << String::kHashShift));
7298    } else {
7299      __ mov(index, hash);
7300    }
7301    __ srl(index, index, String::kHashShift);
7302    __ And(index, mask, index);
7303
7304    // Scale the index by multiplying by the entry size.
7305    ASSERT(StringDictionary::kEntrySize == 3);
7306    // index *= 3.
7307    __ mov(at, index);
7308    __ sll(index, index, 1);
7309    __ Addu(index, index, at);
7310
7311
7312    ASSERT_EQ(kSmiTagSize, 1);
7313    __ sll(index, index, 2);
7314    __ Addu(index, index, dictionary);
7315    __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
7316
7317    // Having undefined at this place means the name is not contained.
7318    __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
7319
7320    // Stop if found the property.
7321    __ Branch(&in_dictionary, eq, entry_key, Operand(key));
7322
7323    if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
7324      // Check if the entry name is not a symbol.
7325      __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
7326      __ lbu(entry_key,
7327             FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
7328      __ And(result, entry_key, Operand(kIsSymbolMask));
7329      __ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg));
7330    }
7331  }
7332
7333  __ bind(&maybe_in_dictionary);
7334  // If we are doing negative lookup then probing failure should be
7335  // treated as a lookup success. For positive lookup probing failure
7336  // should be treated as lookup failure.
7337  if (mode_ == POSITIVE_LOOKUP) {
7338    __ Ret(USE_DELAY_SLOT);
7339    __ mov(result, zero_reg);
7340  }
7341
7342  __ bind(&in_dictionary);
7343  __ Ret(USE_DELAY_SLOT);
7344  __ li(result, 1);
7345
7346  __ bind(&not_in_dictionary);
7347  __ Ret(USE_DELAY_SLOT);
7348  __ mov(result, zero_reg);
7349}
7350
7351
7352struct AheadOfTimeWriteBarrierStubList {
7353  Register object, value, address;
7354  RememberedSetAction action;
7355};
7356
7357#define REG(Name) { kRegister_ ## Name ## _Code }
7358
7359static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
7360  // Used in RegExpExecStub.
7361  { REG(s2), REG(s0), REG(t3), EMIT_REMEMBERED_SET },
7362  { REG(s2), REG(a2), REG(t3), EMIT_REMEMBERED_SET },
7363  // Used in CompileArrayPushCall.
7364  // Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
7365  // Also used in KeyedStoreIC::GenerateGeneric.
7366  { REG(a3), REG(t0), REG(t1), EMIT_REMEMBERED_SET },
7367  // Used in CompileStoreGlobal.
7368  { REG(t0), REG(a1), REG(a2), OMIT_REMEMBERED_SET },
7369  // Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
7370  { REG(a1), REG(a2), REG(a3), EMIT_REMEMBERED_SET },
7371  { REG(a3), REG(a2), REG(a1), EMIT_REMEMBERED_SET },
7372  // Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
7373  { REG(a2), REG(a1), REG(a3), EMIT_REMEMBERED_SET },
7374  { REG(a3), REG(a1), REG(a2), EMIT_REMEMBERED_SET },
7375  // KeyedStoreStubCompiler::GenerateStoreFastElement.
7376  { REG(a3), REG(a2), REG(t0), EMIT_REMEMBERED_SET },
7377  { REG(a2), REG(a3), REG(t0), EMIT_REMEMBERED_SET },
7378  // ElementsTransitionGenerator::GenerateSmiOnlyToObject
7379  // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
7380  // and ElementsTransitionGenerator::GenerateDoubleToObject
7381  { REG(a2), REG(a3), REG(t5), EMIT_REMEMBERED_SET },
7382  { REG(a2), REG(a3), REG(t5), OMIT_REMEMBERED_SET },
7383  // ElementsTransitionGenerator::GenerateDoubleToObject
7384  { REG(t2), REG(a2), REG(a0), EMIT_REMEMBERED_SET },
7385  { REG(a2), REG(t2), REG(t5), EMIT_REMEMBERED_SET },
7386  // StoreArrayLiteralElementStub::Generate
7387  { REG(t1), REG(a0), REG(t2), EMIT_REMEMBERED_SET },
7388  // Null termination.
7389  { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET}
7390};
7391
7392#undef REG
7393
7394
7395bool RecordWriteStub::IsPregenerated() {
7396  for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7397       !entry->object.is(no_reg);
7398       entry++) {
7399    if (object_.is(entry->object) &&
7400        value_.is(entry->value) &&
7401        address_.is(entry->address) &&
7402        remembered_set_action_ == entry->action &&
7403        save_fp_regs_mode_ == kDontSaveFPRegs) {
7404      return true;
7405    }
7406  }
7407  return false;
7408}
7409
7410
7411bool StoreBufferOverflowStub::IsPregenerated() {
7412  return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
7413}
7414
7415
7416void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
7417  StoreBufferOverflowStub stub1(kDontSaveFPRegs);
7418  stub1.GetCode()->set_is_pregenerated(true);
7419}
7420
7421
7422void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
7423  for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
7424       !entry->object.is(no_reg);
7425       entry++) {
7426    RecordWriteStub stub(entry->object,
7427                         entry->value,
7428                         entry->address,
7429                         entry->action,
7430                         kDontSaveFPRegs);
7431    stub.GetCode()->set_is_pregenerated(true);
7432  }
7433}
7434
7435
7436// Takes the input in 3 registers: address_ value_ and object_.  A pointer to
7437// the value has just been written into the object, now this stub makes sure
7438// we keep the GC informed.  The word in the object where the value has been
7439// written is in the address register.
7440void RecordWriteStub::Generate(MacroAssembler* masm) {
7441  Label skip_to_incremental_noncompacting;
7442  Label skip_to_incremental_compacting;
7443
7444  // The first two branch+nop instructions are generated with labels so as to
7445  // get the offset fixed up correctly by the bind(Label*) call.  We patch it
7446  // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
7447  // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
7448  // incremental heap marking.
7449  // See RecordWriteStub::Patch for details.
7450  __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
7451  __ nop();
7452  __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
7453  __ nop();
7454
7455  if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7456    __ RememberedSetHelper(object_,
7457                           address_,
7458                           value_,
7459                           save_fp_regs_mode_,
7460                           MacroAssembler::kReturnAtEnd);
7461  }
7462  __ Ret();
7463
7464  __ bind(&skip_to_incremental_noncompacting);
7465  GenerateIncremental(masm, INCREMENTAL);
7466
7467  __ bind(&skip_to_incremental_compacting);
7468  GenerateIncremental(masm, INCREMENTAL_COMPACTION);
7469
7470  // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
7471  // Will be checked in IncrementalMarking::ActivateGeneratedStub.
7472
7473  PatchBranchIntoNop(masm, 0);
7474  PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
7475}
7476
7477
7478void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
7479  regs_.Save(masm);
7480
7481  if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
7482    Label dont_need_remembered_set;
7483
7484    __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
7485    __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
7486                           regs_.scratch0(),
7487                           &dont_need_remembered_set);
7488
7489    __ CheckPageFlag(regs_.object(),
7490                     regs_.scratch0(),
7491                     1 << MemoryChunk::SCAN_ON_SCAVENGE,
7492                     ne,
7493                     &dont_need_remembered_set);
7494
7495    // First notify the incremental marker if necessary, then update the
7496    // remembered set.
7497    CheckNeedsToInformIncrementalMarker(
7498        masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
7499    InformIncrementalMarker(masm, mode);
7500    regs_.Restore(masm);
7501    __ RememberedSetHelper(object_,
7502                           address_,
7503                           value_,
7504                           save_fp_regs_mode_,
7505                           MacroAssembler::kReturnAtEnd);
7506
7507    __ bind(&dont_need_remembered_set);
7508  }
7509
7510  CheckNeedsToInformIncrementalMarker(
7511      masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
7512  InformIncrementalMarker(masm, mode);
7513  regs_.Restore(masm);
7514  __ Ret();
7515}
7516
7517
7518void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
7519  regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
7520  int argument_count = 3;
7521  __ PrepareCallCFunction(argument_count, regs_.scratch0());
7522  Register address =
7523      a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
7524  ASSERT(!address.is(regs_.object()));
7525  ASSERT(!address.is(a0));
7526  __ Move(address, regs_.address());
7527  __ Move(a0, regs_.object());
7528  if (mode == INCREMENTAL_COMPACTION) {
7529    __ Move(a1, address);
7530  } else {
7531    ASSERT(mode == INCREMENTAL);
7532    __ lw(a1, MemOperand(address, 0));
7533  }
7534  __ li(a2, Operand(ExternalReference::isolate_address()));
7535
7536  AllowExternalCallThatCantCauseGC scope(masm);
7537  if (mode == INCREMENTAL_COMPACTION) {
7538    __ CallCFunction(
7539        ExternalReference::incremental_evacuation_record_write_function(
7540            masm->isolate()),
7541        argument_count);
7542  } else {
7543    ASSERT(mode == INCREMENTAL);
7544    __ CallCFunction(
7545        ExternalReference::incremental_marking_record_write_function(
7546            masm->isolate()),
7547        argument_count);
7548  }
7549  regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
7550}
7551
7552
7553void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
7554    MacroAssembler* masm,
7555    OnNoNeedToInformIncrementalMarker on_no_need,
7556    Mode mode) {
7557  Label on_black;
7558  Label need_incremental;
7559  Label need_incremental_pop_scratch;
7560
7561  // Let's look at the color of the object:  If it is not black we don't have
7562  // to inform the incremental marker.
7563  __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
7564
7565  regs_.Restore(masm);
7566  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7567    __ RememberedSetHelper(object_,
7568                           address_,
7569                           value_,
7570                           save_fp_regs_mode_,
7571                           MacroAssembler::kReturnAtEnd);
7572  } else {
7573    __ Ret();
7574  }
7575
7576  __ bind(&on_black);
7577
7578  // Get the value from the slot.
7579  __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
7580
7581  if (mode == INCREMENTAL_COMPACTION) {
7582    Label ensure_not_white;
7583
7584    __ CheckPageFlag(regs_.scratch0(),  // Contains value.
7585                     regs_.scratch1(),  // Scratch.
7586                     MemoryChunk::kEvacuationCandidateMask,
7587                     eq,
7588                     &ensure_not_white);
7589
7590    __ CheckPageFlag(regs_.object(),
7591                     regs_.scratch1(),  // Scratch.
7592                     MemoryChunk::kSkipEvacuationSlotsRecordingMask,
7593                     eq,
7594                     &need_incremental);
7595
7596    __ bind(&ensure_not_white);
7597  }
7598
7599  // We need extra registers for this, so we push the object and the address
7600  // register temporarily.
7601  __ Push(regs_.object(), regs_.address());
7602  __ EnsureNotWhite(regs_.scratch0(),  // The value.
7603                    regs_.scratch1(),  // Scratch.
7604                    regs_.object(),  // Scratch.
7605                    regs_.address(),  // Scratch.
7606                    &need_incremental_pop_scratch);
7607  __ Pop(regs_.object(), regs_.address());
7608
7609  regs_.Restore(masm);
7610  if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
7611    __ RememberedSetHelper(object_,
7612                           address_,
7613                           value_,
7614                           save_fp_regs_mode_,
7615                           MacroAssembler::kReturnAtEnd);
7616  } else {
7617    __ Ret();
7618  }
7619
7620  __ bind(&need_incremental_pop_scratch);
7621  __ Pop(regs_.object(), regs_.address());
7622
7623  __ bind(&need_incremental);
7624
7625  // Fall through when we need to inform the incremental marker.
7626}
7627
7628
7629void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
7630  // ----------- S t a t e -------------
7631  //  -- a0    : element value to store
7632  //  -- a1    : array literal
7633  //  -- a2    : map of array literal
7634  //  -- a3    : element index as smi
7635  //  -- t0    : array literal index in function as smi
7636  // -----------------------------------
7637
7638  Label element_done;
7639  Label double_elements;
7640  Label smi_element;
7641  Label slow_elements;
7642  Label fast_elements;
7643
7644  __ CheckFastElements(a2, t1, &double_elements);
7645  // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
7646  __ JumpIfSmi(a0, &smi_element);
7647  __ CheckFastSmiOnlyElements(a2, t1, &fast_elements);
7648
7649  // Store into the array literal requires a elements transition. Call into
7650  // the runtime.
7651  __ bind(&slow_elements);
7652  // call.
7653  __ Push(a1, a3, a0);
7654  __ lw(t1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
7655  __ lw(t1, FieldMemOperand(t1, JSFunction::kLiteralsOffset));
7656  __ Push(t1, t0);
7657  __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
7658
7659  // Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
7660  __ bind(&fast_elements);
7661  __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
7662  __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
7663  __ Addu(t2, t1, t2);
7664  __ Addu(t2, t2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
7665  __ sw(a0, MemOperand(t2, 0));
7666  // Update the write barrier for the array store.
7667  __ RecordWrite(t1, t2, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
7668                 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
7669  __ Ret(USE_DELAY_SLOT);
7670  __ mov(v0, a0);
7671
7672  // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
7673  // FAST_ELEMENTS, and value is Smi.
7674  __ bind(&smi_element);
7675  __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
7676  __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
7677  __ Addu(t2, t1, t2);
7678  __ sw(a0, FieldMemOperand(t2, FixedArray::kHeaderSize));
7679  __ Ret(USE_DELAY_SLOT);
7680  __ mov(v0, a0);
7681
7682  // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
7683  __ bind(&double_elements);
7684  __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
7685  __ StoreNumberToDoubleElements(a0, a3, a1, t1, t2, t3, t5, a2,
7686                                 &slow_elements);
7687  __ Ret(USE_DELAY_SLOT);
7688  __ mov(v0, a0);
7689}
7690
7691
7692#undef __
7693
7694} }  // namespace v8::internal
7695
7696#endif  // V8_TARGET_ARCH_MIPS
7697