1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_MIPS_CODE_STUBS_ARM_H_
29#define V8_MIPS_CODE_STUBS_ARM_H_
30
31#include "ic-inl.h"
32
33
34namespace v8 {
35namespace internal {
36
37
38// Compute a transcendental math function natively, or call the
39// TranscendentalCache runtime function.
40class TranscendentalCacheStub: public CodeStub {
41 public:
42  enum ArgumentType {
43    TAGGED = 0 << TranscendentalCache::kTranscendentalTypeBits,
44    UNTAGGED = 1 << TranscendentalCache::kTranscendentalTypeBits
45  };
46
47  TranscendentalCacheStub(TranscendentalCache::Type type,
48                          ArgumentType argument_type)
49      : type_(type), argument_type_(argument_type) { }
50  void Generate(MacroAssembler* masm);
51 private:
52  TranscendentalCache::Type type_;
53  ArgumentType argument_type_;
54  void GenerateCallCFunction(MacroAssembler* masm, Register scratch);
55
56  Major MajorKey() { return TranscendentalCache; }
57  int MinorKey() { return type_ | argument_type_; }
58  Runtime::FunctionId RuntimeFunction();
59};
60
61
62class StoreBufferOverflowStub: public CodeStub {
63 public:
64  explicit StoreBufferOverflowStub(SaveFPRegsMode save_fp)
65      : save_doubles_(save_fp) { }
66
67  void Generate(MacroAssembler* masm);
68
69  virtual bool IsPregenerated();
70  static void GenerateFixedRegStubsAheadOfTime();
71  virtual bool SometimesSetsUpAFrame() { return false; }
72
73 private:
74  SaveFPRegsMode save_doubles_;
75
76  Major MajorKey() { return StoreBufferOverflow; }
77  int MinorKey() { return (save_doubles_ == kSaveFPRegs) ? 1 : 0; }
78};
79
80
81class UnaryOpStub: public CodeStub {
82 public:
83  UnaryOpStub(Token::Value op,
84              UnaryOverwriteMode mode,
85              UnaryOpIC::TypeInfo operand_type = UnaryOpIC::UNINITIALIZED)
86      : op_(op),
87        mode_(mode),
88        operand_type_(operand_type) {
89  }
90
91 private:
92  Token::Value op_;
93  UnaryOverwriteMode mode_;
94
95  // Operand type information determined at runtime.
96  UnaryOpIC::TypeInfo operand_type_;
97
98  virtual void PrintName(StringStream* stream);
99
100  class ModeBits: public BitField<UnaryOverwriteMode, 0, 1> {};
101  class OpBits: public BitField<Token::Value, 1, 7> {};
102  class OperandTypeInfoBits: public BitField<UnaryOpIC::TypeInfo, 8, 3> {};
103
104  Major MajorKey() { return UnaryOp; }
105  int MinorKey() {
106    return ModeBits::encode(mode_)
107           | OpBits::encode(op_)
108           | OperandTypeInfoBits::encode(operand_type_);
109  }
110
111  // Note: A lot of the helper functions below will vanish when we use virtual
112  // function instead of switch more often.
113  void Generate(MacroAssembler* masm);
114
115  void GenerateTypeTransition(MacroAssembler* masm);
116
117  void GenerateSmiStub(MacroAssembler* masm);
118  void GenerateSmiStubSub(MacroAssembler* masm);
119  void GenerateSmiStubBitNot(MacroAssembler* masm);
120  void GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* slow);
121  void GenerateSmiCodeBitNot(MacroAssembler* masm, Label* slow);
122
123  void GenerateHeapNumberStub(MacroAssembler* masm);
124  void GenerateHeapNumberStubSub(MacroAssembler* masm);
125  void GenerateHeapNumberStubBitNot(MacroAssembler* masm);
126  void GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow);
127  void GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow);
128
129  void GenerateGenericStub(MacroAssembler* masm);
130  void GenerateGenericStubSub(MacroAssembler* masm);
131  void GenerateGenericStubBitNot(MacroAssembler* masm);
132  void GenerateGenericCodeFallback(MacroAssembler* masm);
133
134  virtual int GetCodeKind() { return Code::UNARY_OP_IC; }
135
136  virtual InlineCacheState GetICState() {
137    return UnaryOpIC::ToState(operand_type_);
138  }
139
140  virtual void FinishCode(Handle<Code> code) {
141    code->set_unary_op_type(operand_type_);
142  }
143};
144
145
146class BinaryOpStub: public CodeStub {
147 public:
148  BinaryOpStub(Token::Value op, OverwriteMode mode)
149      : op_(op),
150        mode_(mode),
151        operands_type_(BinaryOpIC::UNINITIALIZED),
152        result_type_(BinaryOpIC::UNINITIALIZED) {
153    use_fpu_ = CpuFeatures::IsSupported(FPU);
154    ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
155  }
156
157  BinaryOpStub(
158      int key,
159      BinaryOpIC::TypeInfo operands_type,
160      BinaryOpIC::TypeInfo result_type = BinaryOpIC::UNINITIALIZED)
161      : op_(OpBits::decode(key)),
162        mode_(ModeBits::decode(key)),
163        use_fpu_(FPUBits::decode(key)),
164        operands_type_(operands_type),
165        result_type_(result_type) { }
166
167 private:
168  enum SmiCodeGenerateHeapNumberResults {
169    ALLOW_HEAPNUMBER_RESULTS,
170    NO_HEAPNUMBER_RESULTS
171  };
172
173  Token::Value op_;
174  OverwriteMode mode_;
175  bool use_fpu_;
176
177  // Operand type information determined at runtime.
178  BinaryOpIC::TypeInfo operands_type_;
179  BinaryOpIC::TypeInfo result_type_;
180
181  virtual void PrintName(StringStream* stream);
182
183  // Minor key encoding in 16 bits RRRTTTVOOOOOOOMM.
184  class ModeBits: public BitField<OverwriteMode, 0, 2> {};
185  class OpBits: public BitField<Token::Value, 2, 7> {};
186  class FPUBits: public BitField<bool, 9, 1> {};
187  class OperandTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 10, 3> {};
188  class ResultTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 13, 3> {};
189
190  Major MajorKey() { return BinaryOp; }
191  int MinorKey() {
192    return OpBits::encode(op_)
193           | ModeBits::encode(mode_)
194           | FPUBits::encode(use_fpu_)
195           | OperandTypeInfoBits::encode(operands_type_)
196           | ResultTypeInfoBits::encode(result_type_);
197  }
198
199  void Generate(MacroAssembler* masm);
200  void GenerateGeneric(MacroAssembler* masm);
201  void GenerateSmiSmiOperation(MacroAssembler* masm);
202  void GenerateFPOperation(MacroAssembler* masm,
203                           bool smi_operands,
204                           Label* not_numbers,
205                           Label* gc_required);
206  void GenerateSmiCode(MacroAssembler* masm,
207                       Label* use_runtime,
208                       Label* gc_required,
209                       SmiCodeGenerateHeapNumberResults heapnumber_results);
210  void GenerateLoadArguments(MacroAssembler* masm);
211  void GenerateReturn(MacroAssembler* masm);
212  void GenerateUninitializedStub(MacroAssembler* masm);
213  void GenerateSmiStub(MacroAssembler* masm);
214  void GenerateInt32Stub(MacroAssembler* masm);
215  void GenerateHeapNumberStub(MacroAssembler* masm);
216  void GenerateOddballStub(MacroAssembler* masm);
217  void GenerateStringStub(MacroAssembler* masm);
218  void GenerateBothStringStub(MacroAssembler* masm);
219  void GenerateGenericStub(MacroAssembler* masm);
220  void GenerateAddStrings(MacroAssembler* masm);
221  void GenerateCallRuntime(MacroAssembler* masm);
222
223  void GenerateHeapResultAllocation(MacroAssembler* masm,
224                                    Register result,
225                                    Register heap_number_map,
226                                    Register scratch1,
227                                    Register scratch2,
228                                    Label* gc_required);
229  void GenerateRegisterArgsPush(MacroAssembler* masm);
230  void GenerateTypeTransition(MacroAssembler* masm);
231  void GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm);
232
233  virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
234
235  virtual InlineCacheState GetICState() {
236    return BinaryOpIC::ToState(operands_type_);
237  }
238
239  virtual void FinishCode(Handle<Code> code) {
240    code->set_binary_op_type(operands_type_);
241    code->set_binary_op_result_type(result_type_);
242  }
243
244  friend class CodeGenerator;
245};
246
247
248class StringHelper : public AllStatic {
249 public:
250  // Generate code for copying characters using a simple loop. This should only
251  // be used in places where the number of characters is small and the
252  // additional setup and checking in GenerateCopyCharactersLong adds too much
253  // overhead. Copying of overlapping regions is not supported.
254  // Dest register ends at the position after the last character written.
255  static void GenerateCopyCharacters(MacroAssembler* masm,
256                                     Register dest,
257                                     Register src,
258                                     Register count,
259                                     Register scratch,
260                                     bool ascii);
261
262  // Generate code for copying a large number of characters. This function
263  // is allowed to spend extra time setting up conditions to make copying
264  // faster. Copying of overlapping regions is not supported.
265  // Dest register ends at the position after the last character written.
266  static void GenerateCopyCharactersLong(MacroAssembler* masm,
267                                         Register dest,
268                                         Register src,
269                                         Register count,
270                                         Register scratch1,
271                                         Register scratch2,
272                                         Register scratch3,
273                                         Register scratch4,
274                                         Register scratch5,
275                                         int flags);
276
277
278  // Probe the symbol table for a two character string. If the string is
279  // not found by probing a jump to the label not_found is performed. This jump
280  // does not guarantee that the string is not in the symbol table. If the
281  // string is found the code falls through with the string in register r0.
282  // Contents of both c1 and c2 registers are modified. At the exit c1 is
283  // guaranteed to contain halfword with low and high bytes equal to
284  // initial contents of c1 and c2 respectively.
285  static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
286                                                   Register c1,
287                                                   Register c2,
288                                                   Register scratch1,
289                                                   Register scratch2,
290                                                   Register scratch3,
291                                                   Register scratch4,
292                                                   Register scratch5,
293                                                   Label* not_found);
294
295  // Generate string hash.
296  static void GenerateHashInit(MacroAssembler* masm,
297                               Register hash,
298                               Register character);
299
300  static void GenerateHashAddCharacter(MacroAssembler* masm,
301                                       Register hash,
302                                       Register character);
303
304  static void GenerateHashGetHash(MacroAssembler* masm,
305                                  Register hash);
306
307 private:
308  DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
309};
310
311
312// Flag that indicates how to generate code for the stub StringAddStub.
313enum StringAddFlags {
314  NO_STRING_ADD_FLAGS = 0,
315  // Omit left string check in stub (left is definitely a string).
316  NO_STRING_CHECK_LEFT_IN_STUB = 1 << 0,
317  // Omit right string check in stub (right is definitely a string).
318  NO_STRING_CHECK_RIGHT_IN_STUB = 1 << 1,
319  // Omit both string checks in stub.
320  NO_STRING_CHECK_IN_STUB =
321      NO_STRING_CHECK_LEFT_IN_STUB | NO_STRING_CHECK_RIGHT_IN_STUB
322};
323
324
325class StringAddStub: public CodeStub {
326 public:
327  explicit StringAddStub(StringAddFlags flags) : flags_(flags) {}
328
329 private:
330  Major MajorKey() { return StringAdd; }
331  int MinorKey() { return flags_; }
332
333  void Generate(MacroAssembler* masm);
334
335  void GenerateConvertArgument(MacroAssembler* masm,
336                               int stack_offset,
337                               Register arg,
338                               Register scratch1,
339                               Register scratch2,
340                               Register scratch3,
341                               Register scratch4,
342                               Label* slow);
343
344  const StringAddFlags flags_;
345};
346
347
348class SubStringStub: public CodeStub {
349 public:
350  SubStringStub() {}
351
352 private:
353  Major MajorKey() { return SubString; }
354  int MinorKey() { return 0; }
355
356  void Generate(MacroAssembler* masm);
357};
358
359
360class StringCompareStub: public CodeStub {
361 public:
362  StringCompareStub() { }
363
364  // Compare two flat ASCII strings and returns result in v0.
365  static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
366                                              Register left,
367                                              Register right,
368                                              Register scratch1,
369                                              Register scratch2,
370                                              Register scratch3,
371                                              Register scratch4);
372
373  // Compares two flat ASCII strings for equality and returns result
374  // in v0.
375  static void GenerateFlatAsciiStringEquals(MacroAssembler* masm,
376                                            Register left,
377                                            Register right,
378                                            Register scratch1,
379                                            Register scratch2,
380                                            Register scratch3);
381
382 private:
383  virtual Major MajorKey() { return StringCompare; }
384  virtual int MinorKey() { return 0; }
385  virtual void Generate(MacroAssembler* masm);
386
387  static void GenerateAsciiCharsCompareLoop(MacroAssembler* masm,
388                                            Register left,
389                                            Register right,
390                                            Register length,
391                                            Register scratch1,
392                                            Register scratch2,
393                                            Register scratch3,
394                                            Label* chars_not_equal);
395};
396
397
398// This stub can convert a signed int32 to a heap number (double).  It does
399// not work for int32s that are in Smi range!  No GC occurs during this stub
400// so you don't have to set up the frame.
401class WriteInt32ToHeapNumberStub : public CodeStub {
402 public:
403  WriteInt32ToHeapNumberStub(Register the_int,
404                             Register the_heap_number,
405                             Register scratch,
406                             Register scratch2)
407      : the_int_(the_int),
408        the_heap_number_(the_heap_number),
409        scratch_(scratch),
410        sign_(scratch2) {
411    ASSERT(IntRegisterBits::is_valid(the_int_.code()));
412    ASSERT(HeapNumberRegisterBits::is_valid(the_heap_number_.code()));
413    ASSERT(ScratchRegisterBits::is_valid(scratch_.code()));
414    ASSERT(SignRegisterBits::is_valid(sign_.code()));
415  }
416
417  bool IsPregenerated();
418  static void GenerateFixedRegStubsAheadOfTime();
419
420 private:
421  Register the_int_;
422  Register the_heap_number_;
423  Register scratch_;
424  Register sign_;
425
426  // Minor key encoding in 16 bits.
427  class IntRegisterBits: public BitField<int, 0, 4> {};
428  class HeapNumberRegisterBits: public BitField<int, 4, 4> {};
429  class ScratchRegisterBits: public BitField<int, 8, 4> {};
430  class SignRegisterBits: public BitField<int, 12, 4> {};
431
432  Major MajorKey() { return WriteInt32ToHeapNumber; }
433  int MinorKey() {
434    // Encode the parameters in a unique 16 bit value.
435    return IntRegisterBits::encode(the_int_.code())
436           | HeapNumberRegisterBits::encode(the_heap_number_.code())
437           | ScratchRegisterBits::encode(scratch_.code())
438           | SignRegisterBits::encode(sign_.code());
439  }
440
441  void Generate(MacroAssembler* masm);
442};
443
444
445class NumberToStringStub: public CodeStub {
446 public:
447  NumberToStringStub() { }
448
449  // Generate code to do a lookup in the number string cache. If the number in
450  // the register object is found in the cache the generated code falls through
451  // with the result in the result register. The object and the result register
452  // can be the same. If the number is not found in the cache the code jumps to
453  // the label not_found with only the content of register object unchanged.
454  static void GenerateLookupNumberStringCache(MacroAssembler* masm,
455                                              Register object,
456                                              Register result,
457                                              Register scratch1,
458                                              Register scratch2,
459                                              Register scratch3,
460                                              bool object_is_smi,
461                                              Label* not_found);
462
463 private:
464  Major MajorKey() { return NumberToString; }
465  int MinorKey() { return 0; }
466
467  void Generate(MacroAssembler* masm);
468};
469
470
471class RecordWriteStub: public CodeStub {
472 public:
473  RecordWriteStub(Register object,
474                  Register value,
475                  Register address,
476                  RememberedSetAction remembered_set_action,
477                  SaveFPRegsMode fp_mode)
478      : object_(object),
479        value_(value),
480        address_(address),
481        remembered_set_action_(remembered_set_action),
482        save_fp_regs_mode_(fp_mode),
483        regs_(object,   // An input reg.
484              address,  // An input reg.
485              value) {  // One scratch reg.
486  }
487
488  enum Mode {
489    STORE_BUFFER_ONLY,
490    INCREMENTAL,
491    INCREMENTAL_COMPACTION
492  };
493
494  virtual bool IsPregenerated();
495  static void GenerateFixedRegStubsAheadOfTime();
496  virtual bool SometimesSetsUpAFrame() { return false; }
497
498  static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
499    const unsigned offset = masm->instr_at(pos) & kImm16Mask;
500    masm->instr_at_put(pos, BNE | (zero_reg.code() << kRsShift) |
501        (zero_reg.code() << kRtShift) | (offset & kImm16Mask));
502    ASSERT(Assembler::IsBne(masm->instr_at(pos)));
503  }
504
505  static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
506    const unsigned offset = masm->instr_at(pos) & kImm16Mask;
507    masm->instr_at_put(pos, BEQ | (zero_reg.code() << kRsShift) |
508        (zero_reg.code() << kRtShift) | (offset & kImm16Mask));
509    ASSERT(Assembler::IsBeq(masm->instr_at(pos)));
510  }
511
512  static Mode GetMode(Code* stub) {
513    Instr first_instruction = Assembler::instr_at(stub->instruction_start());
514    Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
515                                                   2 * Assembler::kInstrSize);
516
517    if (Assembler::IsBeq(first_instruction)) {
518      return INCREMENTAL;
519    }
520
521    ASSERT(Assembler::IsBne(first_instruction));
522
523    if (Assembler::IsBeq(second_instruction)) {
524      return INCREMENTAL_COMPACTION;
525    }
526
527    ASSERT(Assembler::IsBne(second_instruction));
528
529    return STORE_BUFFER_ONLY;
530  }
531
532  static void Patch(Code* stub, Mode mode) {
533    MacroAssembler masm(NULL,
534                        stub->instruction_start(),
535                        stub->instruction_size());
536    switch (mode) {
537      case STORE_BUFFER_ONLY:
538        ASSERT(GetMode(stub) == INCREMENTAL ||
539               GetMode(stub) == INCREMENTAL_COMPACTION);
540        PatchBranchIntoNop(&masm, 0);
541        PatchBranchIntoNop(&masm, 2 * Assembler::kInstrSize);
542        break;
543      case INCREMENTAL:
544        ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
545        PatchNopIntoBranch(&masm, 0);
546        break;
547      case INCREMENTAL_COMPACTION:
548        ASSERT(GetMode(stub) == STORE_BUFFER_ONLY);
549        PatchNopIntoBranch(&masm, 2 * Assembler::kInstrSize);
550        break;
551    }
552    ASSERT(GetMode(stub) == mode);
553    CPU::FlushICache(stub->instruction_start(), 4 * Assembler::kInstrSize);
554  }
555
556 private:
557  // This is a helper class for freeing up 3 scratch registers.  The input is
558  // two registers that must be preserved and one scratch register provided by
559  // the caller.
560  class RegisterAllocation {
561   public:
562    RegisterAllocation(Register object,
563                       Register address,
564                       Register scratch0)
565        : object_(object),
566          address_(address),
567          scratch0_(scratch0) {
568      ASSERT(!AreAliased(scratch0, object, address, no_reg));
569      scratch1_ = GetRegThatIsNotOneOf(object_, address_, scratch0_);
570    }
571
572    void Save(MacroAssembler* masm) {
573      ASSERT(!AreAliased(object_, address_, scratch1_, scratch0_));
574      // We don't have to save scratch0_ because it was given to us as
575      // a scratch register.
576      masm->push(scratch1_);
577    }
578
579    void Restore(MacroAssembler* masm) {
580      masm->pop(scratch1_);
581    }
582
583    // If we have to call into C then we need to save and restore all caller-
584    // saved registers that were not already preserved.  The scratch registers
585    // will be restored by other means so we don't bother pushing them here.
586    void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
587      masm->MultiPush((kJSCallerSaved | ra.bit()) & ~scratch1_.bit());
588      if (mode == kSaveFPRegs) {
589        CpuFeatures::Scope scope(FPU);
590        masm->MultiPushFPU(kCallerSavedFPU);
591      }
592    }
593
594    inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
595                                           SaveFPRegsMode mode) {
596      if (mode == kSaveFPRegs) {
597        CpuFeatures::Scope scope(FPU);
598        masm->MultiPopFPU(kCallerSavedFPU);
599      }
600      masm->MultiPop((kJSCallerSaved | ra.bit()) & ~scratch1_.bit());
601    }
602
603    inline Register object() { return object_; }
604    inline Register address() { return address_; }
605    inline Register scratch0() { return scratch0_; }
606    inline Register scratch1() { return scratch1_; }
607
608   private:
609    Register object_;
610    Register address_;
611    Register scratch0_;
612    Register scratch1_;
613
614    Register GetRegThatIsNotOneOf(Register r1,
615                                  Register r2,
616                                  Register r3) {
617      for (int i = 0; i < Register::kNumAllocatableRegisters; i++) {
618        Register candidate = Register::FromAllocationIndex(i);
619        if (candidate.is(r1)) continue;
620        if (candidate.is(r2)) continue;
621        if (candidate.is(r3)) continue;
622        return candidate;
623      }
624      UNREACHABLE();
625      return no_reg;
626    }
627    friend class RecordWriteStub;
628  };
629
630  enum OnNoNeedToInformIncrementalMarker {
631    kReturnOnNoNeedToInformIncrementalMarker,
632    kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
633  };
634
635  void Generate(MacroAssembler* masm);
636  void GenerateIncremental(MacroAssembler* masm, Mode mode);
637  void CheckNeedsToInformIncrementalMarker(
638      MacroAssembler* masm,
639      OnNoNeedToInformIncrementalMarker on_no_need,
640      Mode mode);
641  void InformIncrementalMarker(MacroAssembler* masm, Mode mode);
642
643  Major MajorKey() { return RecordWrite; }
644
645  int MinorKey() {
646    return ObjectBits::encode(object_.code()) |
647        ValueBits::encode(value_.code()) |
648        AddressBits::encode(address_.code()) |
649        RememberedSetActionBits::encode(remembered_set_action_) |
650        SaveFPRegsModeBits::encode(save_fp_regs_mode_);
651  }
652
653  void Activate(Code* code) {
654    code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
655  }
656
657  class ObjectBits: public BitField<int, 0, 5> {};
658  class ValueBits: public BitField<int, 5, 5> {};
659  class AddressBits: public BitField<int, 10, 5> {};
660  class RememberedSetActionBits: public BitField<RememberedSetAction, 15, 1> {};
661  class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 16, 1> {};
662
663  Register object_;
664  Register value_;
665  Register address_;
666  RememberedSetAction remembered_set_action_;
667  SaveFPRegsMode save_fp_regs_mode_;
668  Label slow_;
669  RegisterAllocation regs_;
670};
671
672
673// Enter C code from generated RegExp code in a way that allows
674// the C code to fix the return address in case of a GC.
675// Currently only needed on ARM and MIPS.
676class RegExpCEntryStub: public CodeStub {
677 public:
678  RegExpCEntryStub() {}
679  virtual ~RegExpCEntryStub() {}
680  void Generate(MacroAssembler* masm);
681
682 private:
683  Major MajorKey() { return RegExpCEntry; }
684  int MinorKey() { return 0; }
685
686  bool NeedsImmovableCode() { return true; }
687};
688
689// Trampoline stub to call into native code. To call safely into native code
690// in the presence of compacting GC (which can move code objects) we need to
691// keep the code which called into native pinned in the memory. Currently the
692// simplest approach is to generate such stub early enough so it can never be
693// moved by GC
694class DirectCEntryStub: public CodeStub {
695 public:
696  DirectCEntryStub() {}
697  void Generate(MacroAssembler* masm);
698  void GenerateCall(MacroAssembler* masm,
699                                ExternalReference function);
700  void GenerateCall(MacroAssembler* masm, Register target);
701
702 private:
703  Major MajorKey() { return DirectCEntry; }
704  int MinorKey() { return 0; }
705
706  bool NeedsImmovableCode() { return true; }
707};
708
709class FloatingPointHelper : public AllStatic {
710 public:
711  enum Destination {
712    kFPURegisters,
713    kCoreRegisters
714  };
715
716
717  // Loads smis from a0 and a1 (right and left in binary operations) into
718  // floating point registers. Depending on the destination the values ends up
719  // either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination
720  // is floating point registers FPU must be supported. If core registers are
721  // requested when FPU is supported f12 and f14 will be scratched.
722  static void LoadSmis(MacroAssembler* masm,
723                       Destination destination,
724                       Register scratch1,
725                       Register scratch2);
726
727  // Loads objects from a0 and a1 (right and left in binary operations) into
728  // floating point registers. Depending on the destination the values ends up
729  // either f14 and f12 or in a2/a3 and a0/a1 respectively. If the destination
730  // is floating point registers FPU must be supported. If core registers are
731  // requested when FPU is supported f12 and f14 will still be scratched. If
732  // either a0 or a1 is not a number (not smi and not heap number object) the
733  // not_number label is jumped to with a0 and a1 intact.
734  static void LoadOperands(MacroAssembler* masm,
735                           FloatingPointHelper::Destination destination,
736                           Register heap_number_map,
737                           Register scratch1,
738                           Register scratch2,
739                           Label* not_number);
740
741  // Convert the smi or heap number in object to an int32 using the rules
742  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
743  // and brought into the range -2^31 .. +2^31 - 1.
744  static void ConvertNumberToInt32(MacroAssembler* masm,
745                                   Register object,
746                                   Register dst,
747                                   Register heap_number_map,
748                                   Register scratch1,
749                                   Register scratch2,
750                                   Register scratch3,
751                                   FPURegister double_scratch,
752                                   Label* not_int32);
753
754  // Converts the integer (untagged smi) in |int_scratch| to a double, storing
755  // the result either in |double_dst| or |dst2:dst1|, depending on
756  // |destination|.
757  // Warning: The value in |int_scratch| will be changed in the process!
758  static void ConvertIntToDouble(MacroAssembler* masm,
759                                 Register int_scratch,
760                                 Destination destination,
761                                 FPURegister double_dst,
762                                 Register dst1,
763                                 Register dst2,
764                                 Register scratch2,
765                                 FPURegister single_scratch);
766
767  // Load the number from object into double_dst in the double format.
768  // Control will jump to not_int32 if the value cannot be exactly represented
769  // by a 32-bit integer.
770  // Floating point value in the 32-bit integer range that are not exact integer
771  // won't be loaded.
772  static void LoadNumberAsInt32Double(MacroAssembler* masm,
773                                      Register object,
774                                      Destination destination,
775                                      FPURegister double_dst,
776                                      Register dst1,
777                                      Register dst2,
778                                      Register heap_number_map,
779                                      Register scratch1,
780                                      Register scratch2,
781                                      FPURegister single_scratch,
782                                      Label* not_int32);
783
784  // Loads the number from object into dst as a 32-bit integer.
785  // Control will jump to not_int32 if the object cannot be exactly represented
786  // by a 32-bit integer.
787  // Floating point value in the 32-bit integer range that are not exact integer
788  // won't be converted.
789  // scratch3 is not used when FPU is supported.
790  static void LoadNumberAsInt32(MacroAssembler* masm,
791                                Register object,
792                                Register dst,
793                                Register heap_number_map,
794                                Register scratch1,
795                                Register scratch2,
796                                Register scratch3,
797                                FPURegister double_scratch,
798                                Label* not_int32);
799
800  // Generate non FPU code to check if a double can be exactly represented by a
801  // 32-bit integer. This does not check for 0 or -0, which need
802  // to be checked for separately.
803  // Control jumps to not_int32 if the value is not a 32-bit integer, and falls
804  // through otherwise.
805  // src1 and src2 will be cloberred.
806  //
807  // Expected input:
808  // - src1: higher (exponent) part of the double value.
809  // - src2: lower (mantissa) part of the double value.
810  // Output status:
811  // - dst: 32 higher bits of the mantissa. (mantissa[51:20])
812  // - src2: contains 1.
813  // - other registers are clobbered.
814  static void DoubleIs32BitInteger(MacroAssembler* masm,
815                                   Register src1,
816                                   Register src2,
817                                   Register dst,
818                                   Register scratch,
819                                   Label* not_int32);
820
821  // Generates code to call a C function to do a double operation using core
822  // registers. (Used when FPU is not supported.)
823  // This code never falls through, but returns with a heap number containing
824  // the result in v0.
825  // Register heapnumber_result must be a heap number in which the
826  // result of the operation will be stored.
827  // Requires the following layout on entry:
828  // a0: Left value (least significant part of mantissa).
829  // a1: Left value (sign, exponent, top of mantissa).
830  // a2: Right value (least significant part of mantissa).
831  // a3: Right value (sign, exponent, top of mantissa).
832  static void CallCCodeForDoubleOperation(MacroAssembler* masm,
833                                          Token::Value op,
834                                          Register heap_number_result,
835                                          Register scratch);
836
837 private:
838  static void LoadNumber(MacroAssembler* masm,
839                         FloatingPointHelper::Destination destination,
840                         Register object,
841                         FPURegister dst,
842                         Register dst1,
843                         Register dst2,
844                         Register heap_number_map,
845                         Register scratch1,
846                         Register scratch2,
847                         Label* not_number);
848};
849
850
851class StringDictionaryLookupStub: public CodeStub {
852 public:
853  enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
854
855  explicit StringDictionaryLookupStub(LookupMode mode) : mode_(mode) { }
856
857  void Generate(MacroAssembler* masm);
858
859  static void GenerateNegativeLookup(MacroAssembler* masm,
860                                     Label* miss,
861                                     Label* done,
862                                     Register receiver,
863                                     Register properties,
864                                     Handle<String> name,
865                                     Register scratch0);
866
867  static void GeneratePositiveLookup(MacroAssembler* masm,
868                                     Label* miss,
869                                     Label* done,
870                                     Register elements,
871                                     Register name,
872                                     Register r0,
873                                     Register r1);
874
875  virtual bool SometimesSetsUpAFrame() { return false; }
876
877 private:
878  static const int kInlinedProbes = 4;
879  static const int kTotalProbes = 20;
880
881  static const int kCapacityOffset =
882      StringDictionary::kHeaderSize +
883      StringDictionary::kCapacityIndex * kPointerSize;
884
885  static const int kElementsStartOffset =
886      StringDictionary::kHeaderSize +
887      StringDictionary::kElementsStartIndex * kPointerSize;
888
889  Major MajorKey() { return StringDictionaryLookup; }
890
891  int MinorKey() {
892    return LookupModeBits::encode(mode_);
893  }
894
895  class LookupModeBits: public BitField<LookupMode, 0, 1> {};
896
897  LookupMode mode_;
898};
899
900
901} }  // namespace v8::internal
902
903#endif  // V8_MIPS_CODE_STUBS_ARM_H_
904