1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "bootstrapper.h"
33#include "execution.h"
34#include "global-handles.h"
35#include "ic-inl.h"
36#include "natives.h"
37#include "platform.h"
38#include "runtime.h"
39#include "serialize.h"
40#include "stub-cache.h"
41#include "v8threads.h"
42
43namespace v8 {
44namespace internal {
45
46
47// -----------------------------------------------------------------------------
48// Coding of external references.
49
50// The encoding of an external reference. The type is in the high word.
51// The id is in the low word.
52static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
53  return static_cast<uint32_t>(type) << 16 | id;
54}
55
56
57static int* GetInternalPointer(StatsCounter* counter) {
58  // All counters refer to dummy_counter, if deserializing happens without
59  // setting up counters.
60  static int dummy_counter = 0;
61  return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
62}
63
64
65ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
66  ExternalReferenceTable* external_reference_table =
67      isolate->external_reference_table();
68  if (external_reference_table == NULL) {
69    external_reference_table = new ExternalReferenceTable(isolate);
70    isolate->set_external_reference_table(external_reference_table);
71  }
72  return external_reference_table;
73}
74
75
76void ExternalReferenceTable::AddFromId(TypeCode type,
77                                       uint16_t id,
78                                       const char* name,
79                                       Isolate* isolate) {
80  Address address;
81  switch (type) {
82    case C_BUILTIN: {
83      ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
84      address = ref.address();
85      break;
86    }
87    case BUILTIN: {
88      ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
89      address = ref.address();
90      break;
91    }
92    case RUNTIME_FUNCTION: {
93      ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
94      address = ref.address();
95      break;
96    }
97    case IC_UTILITY: {
98      ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
99                            isolate);
100      address = ref.address();
101      break;
102    }
103    default:
104      UNREACHABLE();
105      return;
106  }
107  Add(address, type, id, name);
108}
109
110
111void ExternalReferenceTable::Add(Address address,
112                                 TypeCode type,
113                                 uint16_t id,
114                                 const char* name) {
115  ASSERT_NE(NULL, address);
116  ExternalReferenceEntry entry;
117  entry.address = address;
118  entry.code = EncodeExternal(type, id);
119  entry.name = name;
120  ASSERT_NE(0, entry.code);
121  refs_.Add(entry);
122  if (id > max_id_[type]) max_id_[type] = id;
123}
124
125
126void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
127  for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
128    max_id_[type_code] = 0;
129  }
130
131  // The following populates all of the different type of external references
132  // into the ExternalReferenceTable.
133  //
134  // NOTE: This function was originally 100k of code.  It has since been
135  // rewritten to be mostly table driven, as the callback macro style tends to
136  // very easily cause code bloat.  Please be careful in the future when adding
137  // new references.
138
139  struct RefTableEntry {
140    TypeCode type;
141    uint16_t id;
142    const char* name;
143  };
144
145  static const RefTableEntry ref_table[] = {
146  // Builtins
147#define DEF_ENTRY_C(name, ignored) \
148  { C_BUILTIN, \
149    Builtins::c_##name, \
150    "Builtins::" #name },
151
152  BUILTIN_LIST_C(DEF_ENTRY_C)
153#undef DEF_ENTRY_C
154
155#define DEF_ENTRY_C(name, ignored) \
156  { BUILTIN, \
157    Builtins::k##name, \
158    "Builtins::" #name },
159#define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
160
161  BUILTIN_LIST_C(DEF_ENTRY_C)
162  BUILTIN_LIST_A(DEF_ENTRY_A)
163  BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
164#undef DEF_ENTRY_C
165#undef DEF_ENTRY_A
166
167  // Runtime functions
168#define RUNTIME_ENTRY(name, nargs, ressize) \
169  { RUNTIME_FUNCTION, \
170    Runtime::k##name, \
171    "Runtime::" #name },
172
173  RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
174#undef RUNTIME_ENTRY
175
176  // IC utilities
177#define IC_ENTRY(name) \
178  { IC_UTILITY, \
179    IC::k##name, \
180    "IC::" #name },
181
182  IC_UTIL_LIST(IC_ENTRY)
183#undef IC_ENTRY
184  };  // end of ref_table[].
185
186  for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
187    AddFromId(ref_table[i].type,
188              ref_table[i].id,
189              ref_table[i].name,
190              isolate);
191  }
192
193#ifdef ENABLE_DEBUGGER_SUPPORT
194  // Debug addresses
195  Add(Debug_Address(Debug::k_after_break_target_address).address(isolate),
196      DEBUG_ADDRESS,
197      Debug::k_after_break_target_address << kDebugIdShift,
198      "Debug::after_break_target_address()");
199  Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate),
200      DEBUG_ADDRESS,
201      Debug::k_debug_break_slot_address << kDebugIdShift,
202      "Debug::debug_break_slot_address()");
203  Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate),
204      DEBUG_ADDRESS,
205      Debug::k_debug_break_return_address << kDebugIdShift,
206      "Debug::debug_break_return_address()");
207  Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate),
208      DEBUG_ADDRESS,
209      Debug::k_restarter_frame_function_pointer << kDebugIdShift,
210      "Debug::restarter_frame_function_pointer_address()");
211#endif
212
213  // Stat counters
214  struct StatsRefTableEntry {
215    StatsCounter* (Counters::*counter)();
216    uint16_t id;
217    const char* name;
218  };
219
220  const StatsRefTableEntry stats_ref_table[] = {
221#define COUNTER_ENTRY(name, caption) \
222  { &Counters::name,    \
223    Counters::k_##name, \
224    "Counters::" #name },
225
226  STATS_COUNTER_LIST_1(COUNTER_ENTRY)
227  STATS_COUNTER_LIST_2(COUNTER_ENTRY)
228#undef COUNTER_ENTRY
229  };  // end of stats_ref_table[].
230
231  Counters* counters = isolate->counters();
232  for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
233    Add(reinterpret_cast<Address>(GetInternalPointer(
234            (counters->*(stats_ref_table[i].counter))())),
235        STATS_COUNTER,
236        stats_ref_table[i].id,
237        stats_ref_table[i].name);
238  }
239
240  // Top addresses
241
242  const char* AddressNames[] = {
243#define BUILD_NAME_LITERAL(CamelName, hacker_name)      \
244    "Isolate::" #hacker_name "_address",
245    FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
246    NULL
247#undef C
248  };
249
250  for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
251    Add(isolate->get_address_from_id((Isolate::AddressId)i),
252        TOP_ADDRESS, i, AddressNames[i]);
253  }
254
255  // Accessors
256#define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
257  Add((Address)&Accessors::name, \
258      ACCESSOR, \
259      Accessors::k##name, \
260      "Accessors::" #name);
261
262  ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
263#undef ACCESSOR_DESCRIPTOR_DECLARATION
264
265  StubCache* stub_cache = isolate->stub_cache();
266
267  // Stub cache tables
268  Add(stub_cache->key_reference(StubCache::kPrimary).address(),
269      STUB_CACHE_TABLE,
270      1,
271      "StubCache::primary_->key");
272  Add(stub_cache->value_reference(StubCache::kPrimary).address(),
273      STUB_CACHE_TABLE,
274      2,
275      "StubCache::primary_->value");
276  Add(stub_cache->map_reference(StubCache::kPrimary).address(),
277      STUB_CACHE_TABLE,
278      3,
279      "StubCache::primary_->map");
280  Add(stub_cache->key_reference(StubCache::kSecondary).address(),
281      STUB_CACHE_TABLE,
282      4,
283      "StubCache::secondary_->key");
284  Add(stub_cache->value_reference(StubCache::kSecondary).address(),
285      STUB_CACHE_TABLE,
286      5,
287      "StubCache::secondary_->value");
288  Add(stub_cache->map_reference(StubCache::kSecondary).address(),
289      STUB_CACHE_TABLE,
290      6,
291      "StubCache::secondary_->map");
292
293  // Runtime entries
294  Add(ExternalReference::perform_gc_function(isolate).address(),
295      RUNTIME_ENTRY,
296      1,
297      "Runtime::PerformGC");
298  Add(ExternalReference::fill_heap_number_with_random_function(
299          isolate).address(),
300      RUNTIME_ENTRY,
301      2,
302      "V8::FillHeapNumberWithRandom");
303  Add(ExternalReference::random_uint32_function(isolate).address(),
304      RUNTIME_ENTRY,
305      3,
306      "V8::Random");
307  Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
308      RUNTIME_ENTRY,
309      4,
310      "HandleScope::DeleteExtensions");
311  Add(ExternalReference::
312          incremental_marking_record_write_function(isolate).address(),
313      RUNTIME_ENTRY,
314      5,
315      "IncrementalMarking::RecordWrite");
316  Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
317      RUNTIME_ENTRY,
318      6,
319      "StoreBuffer::StoreBufferOverflow");
320  Add(ExternalReference::
321          incremental_evacuation_record_write_function(isolate).address(),
322      RUNTIME_ENTRY,
323      7,
324      "IncrementalMarking::RecordWrite");
325
326
327
328  // Miscellaneous
329  Add(ExternalReference::roots_array_start(isolate).address(),
330      UNCLASSIFIED,
331      3,
332      "Heap::roots_array_start()");
333  Add(ExternalReference::address_of_stack_limit(isolate).address(),
334      UNCLASSIFIED,
335      4,
336      "StackGuard::address_of_jslimit()");
337  Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
338      UNCLASSIFIED,
339      5,
340      "StackGuard::address_of_real_jslimit()");
341#ifndef V8_INTERPRETED_REGEXP
342  Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
343      UNCLASSIFIED,
344      6,
345      "RegExpStack::limit_address()");
346  Add(ExternalReference::address_of_regexp_stack_memory_address(
347          isolate).address(),
348      UNCLASSIFIED,
349      7,
350      "RegExpStack::memory_address()");
351  Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
352      UNCLASSIFIED,
353      8,
354      "RegExpStack::memory_size()");
355  Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
356      UNCLASSIFIED,
357      9,
358      "OffsetsVector::static_offsets_vector");
359#endif  // V8_INTERPRETED_REGEXP
360  Add(ExternalReference::new_space_start(isolate).address(),
361      UNCLASSIFIED,
362      10,
363      "Heap::NewSpaceStart()");
364  Add(ExternalReference::new_space_mask(isolate).address(),
365      UNCLASSIFIED,
366      11,
367      "Heap::NewSpaceMask()");
368  Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(),
369      UNCLASSIFIED,
370      12,
371      "Heap::always_allocate_scope_depth()");
372  Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
373      UNCLASSIFIED,
374      14,
375      "Heap::NewSpaceAllocationLimitAddress()");
376  Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
377      UNCLASSIFIED,
378      15,
379      "Heap::NewSpaceAllocationTopAddress()");
380#ifdef ENABLE_DEBUGGER_SUPPORT
381  Add(ExternalReference::debug_break(isolate).address(),
382      UNCLASSIFIED,
383      16,
384      "Debug::Break()");
385  Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
386      UNCLASSIFIED,
387      17,
388      "Debug::step_in_fp_addr()");
389#endif
390  Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(),
391      UNCLASSIFIED,
392      18,
393      "add_two_doubles");
394  Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(),
395      UNCLASSIFIED,
396      19,
397      "sub_two_doubles");
398  Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(),
399      UNCLASSIFIED,
400      20,
401      "mul_two_doubles");
402  Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(),
403      UNCLASSIFIED,
404      21,
405      "div_two_doubles");
406  Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(),
407      UNCLASSIFIED,
408      22,
409      "mod_two_doubles");
410  Add(ExternalReference::compare_doubles(isolate).address(),
411      UNCLASSIFIED,
412      23,
413      "compare_doubles");
414#ifndef V8_INTERPRETED_REGEXP
415  Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
416      UNCLASSIFIED,
417      24,
418      "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
419  Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
420      UNCLASSIFIED,
421      25,
422      "RegExpMacroAssembler*::CheckStackGuardState()");
423  Add(ExternalReference::re_grow_stack(isolate).address(),
424      UNCLASSIFIED,
425      26,
426      "NativeRegExpMacroAssembler::GrowStack()");
427  Add(ExternalReference::re_word_character_map().address(),
428      UNCLASSIFIED,
429      27,
430      "NativeRegExpMacroAssembler::word_character_map");
431#endif  // V8_INTERPRETED_REGEXP
432  // Keyed lookup cache.
433  Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
434      UNCLASSIFIED,
435      28,
436      "KeyedLookupCache::keys()");
437  Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
438      UNCLASSIFIED,
439      29,
440      "KeyedLookupCache::field_offsets()");
441  Add(ExternalReference::transcendental_cache_array_address(isolate).address(),
442      UNCLASSIFIED,
443      30,
444      "TranscendentalCache::caches()");
445  Add(ExternalReference::handle_scope_next_address().address(),
446      UNCLASSIFIED,
447      31,
448      "HandleScope::next");
449  Add(ExternalReference::handle_scope_limit_address().address(),
450      UNCLASSIFIED,
451      32,
452      "HandleScope::limit");
453  Add(ExternalReference::handle_scope_level_address().address(),
454      UNCLASSIFIED,
455      33,
456      "HandleScope::level");
457  Add(ExternalReference::new_deoptimizer_function(isolate).address(),
458      UNCLASSIFIED,
459      34,
460      "Deoptimizer::New()");
461  Add(ExternalReference::compute_output_frames_function(isolate).address(),
462      UNCLASSIFIED,
463      35,
464      "Deoptimizer::ComputeOutputFrames()");
465  Add(ExternalReference::address_of_min_int().address(),
466      UNCLASSIFIED,
467      36,
468      "LDoubleConstant::min_int");
469  Add(ExternalReference::address_of_one_half().address(),
470      UNCLASSIFIED,
471      37,
472      "LDoubleConstant::one_half");
473  Add(ExternalReference::isolate_address().address(),
474      UNCLASSIFIED,
475      38,
476      "isolate");
477  Add(ExternalReference::address_of_minus_zero().address(),
478      UNCLASSIFIED,
479      39,
480      "LDoubleConstant::minus_zero");
481  Add(ExternalReference::address_of_negative_infinity().address(),
482      UNCLASSIFIED,
483      40,
484      "LDoubleConstant::negative_infinity");
485  Add(ExternalReference::power_double_double_function(isolate).address(),
486      UNCLASSIFIED,
487      41,
488      "power_double_double_function");
489  Add(ExternalReference::power_double_int_function(isolate).address(),
490      UNCLASSIFIED,
491      42,
492      "power_double_int_function");
493  Add(ExternalReference::store_buffer_top(isolate).address(),
494      UNCLASSIFIED,
495      43,
496      "store_buffer_top");
497  Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
498      UNCLASSIFIED,
499      44,
500      "canonical_nan");
501  Add(ExternalReference::address_of_the_hole_nan().address(),
502      UNCLASSIFIED,
503      45,
504      "the_hole_nan");
505  Add(ExternalReference::get_date_field_function(isolate).address(),
506      UNCLASSIFIED,
507      46,
508      "JSDate::GetField");
509  Add(ExternalReference::date_cache_stamp(isolate).address(),
510      UNCLASSIFIED,
511      47,
512      "date_cache_stamp");
513}
514
515
516ExternalReferenceEncoder::ExternalReferenceEncoder()
517    : encodings_(Match),
518      isolate_(Isolate::Current()) {
519  ExternalReferenceTable* external_references =
520      ExternalReferenceTable::instance(isolate_);
521  for (int i = 0; i < external_references->size(); ++i) {
522    Put(external_references->address(i), i);
523  }
524}
525
526
527uint32_t ExternalReferenceEncoder::Encode(Address key) const {
528  int index = IndexOf(key);
529  ASSERT(key == NULL || index >= 0);
530  return index >=0 ?
531         ExternalReferenceTable::instance(isolate_)->code(index) : 0;
532}
533
534
535const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
536  int index = IndexOf(key);
537  return index >= 0 ?
538      ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
539}
540
541
542int ExternalReferenceEncoder::IndexOf(Address key) const {
543  if (key == NULL) return -1;
544  HashMap::Entry* entry =
545      const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
546  return entry == NULL
547      ? -1
548      : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
549}
550
551
552void ExternalReferenceEncoder::Put(Address key, int index) {
553  HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
554  entry->value = reinterpret_cast<void*>(index);
555}
556
557
558ExternalReferenceDecoder::ExternalReferenceDecoder()
559    : encodings_(NewArray<Address*>(kTypeCodeCount)),
560      isolate_(Isolate::Current()) {
561  ExternalReferenceTable* external_references =
562      ExternalReferenceTable::instance(isolate_);
563  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
564    int max = external_references->max_id(type) + 1;
565    encodings_[type] = NewArray<Address>(max + 1);
566  }
567  for (int i = 0; i < external_references->size(); ++i) {
568    Put(external_references->code(i), external_references->address(i));
569  }
570}
571
572
573ExternalReferenceDecoder::~ExternalReferenceDecoder() {
574  for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
575    DeleteArray(encodings_[type]);
576  }
577  DeleteArray(encodings_);
578}
579
580
581bool Serializer::serialization_enabled_ = false;
582bool Serializer::too_late_to_enable_now_ = false;
583
584
585Deserializer::Deserializer(SnapshotByteSource* source)
586    : isolate_(NULL),
587      source_(source),
588      external_reference_decoder_(NULL) {
589}
590
591
592// This routine both allocates a new object, and also keeps
593// track of where objects have been allocated so that we can
594// fix back references when deserializing.
595Address Deserializer::Allocate(int space_index, Space* space, int size) {
596  Address address;
597  if (!SpaceIsLarge(space_index)) {
598    ASSERT(!SpaceIsPaged(space_index) ||
599           size <= Page::kPageSize - Page::kObjectStartOffset);
600    MaybeObject* maybe_new_allocation;
601    if (space_index == NEW_SPACE) {
602      maybe_new_allocation =
603          reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
604    } else {
605      maybe_new_allocation =
606          reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
607    }
608    ASSERT(!maybe_new_allocation->IsFailure());
609    Object* new_allocation = maybe_new_allocation->ToObjectUnchecked();
610    HeapObject* new_object = HeapObject::cast(new_allocation);
611    address = new_object->address();
612    high_water_[space_index] = address + size;
613  } else {
614    ASSERT(SpaceIsLarge(space_index));
615    LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
616    Object* new_allocation;
617    if (space_index == kLargeData || space_index == kLargeFixedArray) {
618      new_allocation =
619          lo_space->AllocateRaw(size, NOT_EXECUTABLE)->ToObjectUnchecked();
620    } else {
621      ASSERT_EQ(kLargeCode, space_index);
622      new_allocation =
623          lo_space->AllocateRaw(size, EXECUTABLE)->ToObjectUnchecked();
624    }
625    HeapObject* new_object = HeapObject::cast(new_allocation);
626    // Record all large objects in the same space.
627    address = new_object->address();
628    pages_[LO_SPACE].Add(address);
629  }
630  last_object_address_ = address;
631  return address;
632}
633
634
635// This returns the address of an object that has been described in the
636// snapshot as being offset bytes back in a particular space.
637HeapObject* Deserializer::GetAddressFromEnd(int space) {
638  int offset = source_->GetInt();
639  ASSERT(!SpaceIsLarge(space));
640  offset <<= kObjectAlignmentBits;
641  return HeapObject::FromAddress(high_water_[space] - offset);
642}
643
644
645// This returns the address of an object that has been described in the
646// snapshot as being offset bytes into a particular space.
647HeapObject* Deserializer::GetAddressFromStart(int space) {
648  int offset = source_->GetInt();
649  if (SpaceIsLarge(space)) {
650    // Large spaces have one object per 'page'.
651    return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
652  }
653  offset <<= kObjectAlignmentBits;
654  if (space == NEW_SPACE) {
655    // New space has only one space - numbered 0.
656    return HeapObject::FromAddress(pages_[space][0] + offset);
657  }
658  ASSERT(SpaceIsPaged(space));
659  int page_of_pointee = offset >> kPageSizeBits;
660  Address object_address = pages_[space][page_of_pointee] +
661                           (offset & Page::kPageAlignmentMask);
662  return HeapObject::FromAddress(object_address);
663}
664
665
666void Deserializer::Deserialize() {
667  isolate_ = Isolate::Current();
668  ASSERT(isolate_ != NULL);
669  // Don't GC while deserializing - just expand the heap.
670  AlwaysAllocateScope always_allocate;
671  // Don't use the free lists while deserializing.
672  LinearAllocationScope allocate_linearly;
673  // No active threads.
674  ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
675  // No active handles.
676  ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
677  // Make sure the entire partial snapshot cache is traversed, filling it with
678  // valid object pointers.
679  isolate_->set_serialize_partial_snapshot_cache_length(
680      Isolate::kPartialSnapshotCacheCapacity);
681  ASSERT_EQ(NULL, external_reference_decoder_);
682  external_reference_decoder_ = new ExternalReferenceDecoder();
683  isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
684  isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
685
686  isolate_->heap()->set_global_contexts_list(
687      isolate_->heap()->undefined_value());
688
689  // Update data pointers to the external strings containing natives sources.
690  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
691    Object* source = isolate_->heap()->natives_source_cache()->get(i);
692    if (!source->IsUndefined()) {
693      ExternalAsciiString::cast(source)->update_data_cache();
694    }
695  }
696}
697
698
699void Deserializer::DeserializePartial(Object** root) {
700  isolate_ = Isolate::Current();
701  // Don't GC while deserializing - just expand the heap.
702  AlwaysAllocateScope always_allocate;
703  // Don't use the free lists while deserializing.
704  LinearAllocationScope allocate_linearly;
705  if (external_reference_decoder_ == NULL) {
706    external_reference_decoder_ = new ExternalReferenceDecoder();
707  }
708  VisitPointer(root);
709}
710
711
712Deserializer::~Deserializer() {
713  ASSERT(source_->AtEOF());
714  if (external_reference_decoder_) {
715    delete external_reference_decoder_;
716    external_reference_decoder_ = NULL;
717  }
718}
719
720
721// This is called on the roots.  It is the driver of the deserialization
722// process.  It is also called on the body of each function.
723void Deserializer::VisitPointers(Object** start, Object** end) {
724  // The space must be new space.  Any other space would cause ReadChunk to try
725  // to update the remembered using NULL as the address.
726  ReadChunk(start, end, NEW_SPACE, NULL);
727}
728
729
730// This routine writes the new object into the pointer provided and then
731// returns true if the new object was in young space and false otherwise.
732// The reason for this strange interface is that otherwise the object is
733// written very late, which means the FreeSpace map is not set up by the
734// time we need to use it to mark the space at the end of a page free.
735void Deserializer::ReadObject(int space_number,
736                              Space* space,
737                              Object** write_back) {
738  int size = source_->GetInt() << kObjectAlignmentBits;
739  Address address = Allocate(space_number, space, size);
740  *write_back = HeapObject::FromAddress(address);
741  Object** current = reinterpret_cast<Object**>(address);
742  Object** limit = current + (size >> kPointerSizeLog2);
743  if (FLAG_log_snapshot_positions) {
744    LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
745  }
746  ReadChunk(current, limit, space_number, address);
747#ifdef DEBUG
748  bool is_codespace = (space == HEAP->code_space()) ||
749      ((space == HEAP->lo_space()) && (space_number == kLargeCode));
750  ASSERT(HeapObject::FromAddress(address)->IsCode() == is_codespace);
751#endif
752}
753
754
755// This macro is always used with a constant argument so it should all fold
756// away to almost nothing in the generated code.  It might be nicer to do this
757// with the ternary operator but there are type issues with that.
758#define ASSIGN_DEST_SPACE(space_number)                                        \
759  Space* dest_space;                                                           \
760  if (space_number == NEW_SPACE) {                                             \
761    dest_space = isolate->heap()->new_space();                                \
762  } else if (space_number == OLD_POINTER_SPACE) {                              \
763    dest_space = isolate->heap()->old_pointer_space();                         \
764  } else if (space_number == OLD_DATA_SPACE) {                                 \
765    dest_space = isolate->heap()->old_data_space();                            \
766  } else if (space_number == CODE_SPACE) {                                     \
767    dest_space = isolate->heap()->code_space();                                \
768  } else if (space_number == MAP_SPACE) {                                      \
769    dest_space = isolate->heap()->map_space();                                 \
770  } else if (space_number == CELL_SPACE) {                                     \
771    dest_space = isolate->heap()->cell_space();                                \
772  } else {                                                                     \
773    ASSERT(space_number >= LO_SPACE);                                          \
774    dest_space = isolate->heap()->lo_space();                                  \
775  }
776
777
778static const int kUnknownOffsetFromStart = -1;
779
780
781void Deserializer::ReadChunk(Object** current,
782                             Object** limit,
783                             int source_space,
784                             Address current_object_address) {
785  Isolate* const isolate = isolate_;
786  bool write_barrier_needed = (current_object_address != NULL &&
787                               source_space != NEW_SPACE &&
788                               source_space != CELL_SPACE &&
789                               source_space != CODE_SPACE &&
790                               source_space != OLD_DATA_SPACE);
791  while (current < limit) {
792    int data = source_->Get();
793    switch (data) {
794#define CASE_STATEMENT(where, how, within, space_number)                       \
795      case where + how + within + space_number:                                \
796      ASSERT((where & ~kPointedToMask) == 0);                                  \
797      ASSERT((how & ~kHowToCodeMask) == 0);                                    \
798      ASSERT((within & ~kWhereToPointMask) == 0);                              \
799      ASSERT((space_number & ~kSpaceMask) == 0);
800
801#define CASE_BODY(where, how, within, space_number_if_any, offset_from_start)  \
802      {                                                                        \
803        bool emit_write_barrier = false;                                       \
804        bool current_was_incremented = false;                                  \
805        int space_number =  space_number_if_any == kAnyOldSpace ?              \
806                            (data & kSpaceMask) : space_number_if_any;         \
807        if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
808          ASSIGN_DEST_SPACE(space_number)                                      \
809          ReadObject(space_number, dest_space, current);                       \
810          emit_write_barrier = (space_number == NEW_SPACE);                    \
811        } else {                                                               \
812          Object* new_object = NULL;  /* May not be a real Object pointer. */  \
813          if (where == kNewObject) {                                           \
814            ASSIGN_DEST_SPACE(space_number)                                    \
815            ReadObject(space_number, dest_space, &new_object);                 \
816          } else if (where == kRootArray) {                                    \
817            int root_id = source_->GetInt();                                   \
818            new_object = isolate->heap()->roots_array_start()[root_id];        \
819            emit_write_barrier = isolate->heap()->InNewSpace(new_object);      \
820          } else if (where == kPartialSnapshotCache) {                         \
821            int cache_index = source_->GetInt();                               \
822            new_object = isolate->serialize_partial_snapshot_cache()           \
823                [cache_index];                                                 \
824            emit_write_barrier = isolate->heap()->InNewSpace(new_object);      \
825          } else if (where == kExternalReference) {                            \
826            int reference_id = source_->GetInt();                              \
827            Address address = external_reference_decoder_->                    \
828                Decode(reference_id);                                          \
829            new_object = reinterpret_cast<Object*>(address);                   \
830          } else if (where == kBackref) {                                      \
831            emit_write_barrier = (space_number == NEW_SPACE);                  \
832            new_object = GetAddressFromEnd(data & kSpaceMask);                 \
833          } else {                                                             \
834            ASSERT(where == kFromStart);                                       \
835            if (offset_from_start == kUnknownOffsetFromStart) {                \
836              emit_write_barrier = (space_number == NEW_SPACE);                \
837              new_object = GetAddressFromStart(data & kSpaceMask);             \
838            } else {                                                           \
839              Address object_address = pages_[space_number][0] +               \
840                  (offset_from_start << kObjectAlignmentBits);                 \
841              new_object = HeapObject::FromAddress(object_address);            \
842            }                                                                  \
843          }                                                                    \
844          if (within == kFirstInstruction) {                                   \
845            Code* new_code_object = reinterpret_cast<Code*>(new_object);       \
846            new_object = reinterpret_cast<Object*>(                            \
847                new_code_object->instruction_start());                         \
848          }                                                                    \
849          if (how == kFromCode) {                                              \
850            Address location_of_branch_data =                                  \
851                reinterpret_cast<Address>(current);                            \
852            Assembler::deserialization_set_special_target_at(                  \
853                location_of_branch_data,                                       \
854                reinterpret_cast<Address>(new_object));                        \
855            location_of_branch_data += Assembler::kSpecialTargetSize;          \
856            current = reinterpret_cast<Object**>(location_of_branch_data);     \
857            current_was_incremented = true;                                    \
858          } else {                                                             \
859            *current = new_object;                                             \
860          }                                                                    \
861        }                                                                      \
862        if (emit_write_barrier && write_barrier_needed) {                      \
863          Address current_address = reinterpret_cast<Address>(current);        \
864          isolate->heap()->RecordWrite(                                        \
865              current_object_address,                                          \
866              static_cast<int>(current_address - current_object_address));     \
867        }                                                                      \
868        if (!current_was_incremented) {                                        \
869          current++;                                                           \
870        }                                                                      \
871        break;                                                                 \
872      }                                                                        \
873
874// This generates a case and a body for each space.  The large object spaces are
875// very rare in snapshots so they are grouped in one body.
876#define ONE_PER_SPACE(where, how, within)                                      \
877  CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
878  CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
879  CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
880  CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart)       \
881  CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
882  CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart)    \
883  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
884  CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
885  CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
886  CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart)           \
887  CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
888  CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart)            \
889  CASE_STATEMENT(where, how, within, kLargeData)                               \
890  CASE_STATEMENT(where, how, within, kLargeCode)                               \
891  CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
892  CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
893
894// This generates a case and a body for the new space (which has to do extra
895// write barrier handling) and handles the other spaces with 8 fall-through
896// cases and one body.
897#define ALL_SPACES(where, how, within)                                         \
898  CASE_STATEMENT(where, how, within, NEW_SPACE)                                \
899  CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart)            \
900  CASE_STATEMENT(where, how, within, OLD_DATA_SPACE)                           \
901  CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE)                        \
902  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
903  CASE_STATEMENT(where, how, within, CELL_SPACE)                               \
904  CASE_STATEMENT(where, how, within, MAP_SPACE)                                \
905  CASE_STATEMENT(where, how, within, kLargeData)                               \
906  CASE_STATEMENT(where, how, within, kLargeCode)                               \
907  CASE_STATEMENT(where, how, within, kLargeFixedArray)                         \
908  CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
909
910#define ONE_PER_CODE_SPACE(where, how, within)                                 \
911  CASE_STATEMENT(where, how, within, CODE_SPACE)                               \
912  CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart)           \
913  CASE_STATEMENT(where, how, within, kLargeCode)                               \
914  CASE_BODY(where, how, within, kLargeCode, kUnknownOffsetFromStart)
915
916#define FOUR_CASES(byte_code)             \
917  case byte_code:                         \
918  case byte_code + 1:                     \
919  case byte_code + 2:                     \
920  case byte_code + 3:
921
922#define SIXTEEN_CASES(byte_code)          \
923  FOUR_CASES(byte_code)                   \
924  FOUR_CASES(byte_code + 4)               \
925  FOUR_CASES(byte_code + 8)               \
926  FOUR_CASES(byte_code + 12)
927
928      // We generate 15 cases and bodies that process special tags that combine
929      // the raw data tag and the length into one byte.
930#define RAW_CASE(index, size)                                      \
931      case kRawData + index: {                                     \
932        byte* raw_data_out = reinterpret_cast<byte*>(current);     \
933        source_->CopyRaw(raw_data_out, size);                      \
934        current = reinterpret_cast<Object**>(raw_data_out + size); \
935        break;                                                     \
936      }
937      COMMON_RAW_LENGTHS(RAW_CASE)
938#undef RAW_CASE
939
940      // Deserialize a chunk of raw data that doesn't have one of the popular
941      // lengths.
942      case kRawData: {
943        int size = source_->GetInt();
944        byte* raw_data_out = reinterpret_cast<byte*>(current);
945        source_->CopyRaw(raw_data_out, size);
946        current = reinterpret_cast<Object**>(raw_data_out + size);
947        break;
948      }
949
950      SIXTEEN_CASES(kRootArrayLowConstants)
951      SIXTEEN_CASES(kRootArrayHighConstants) {
952        int root_id = RootArrayConstantFromByteCode(data);
953        Object* object = isolate->heap()->roots_array_start()[root_id];
954        ASSERT(!isolate->heap()->InNewSpace(object));
955        *current++ = object;
956        break;
957      }
958
959      case kRepeat: {
960        int repeats = source_->GetInt();
961        Object* object = current[-1];
962        ASSERT(!isolate->heap()->InNewSpace(object));
963        for (int i = 0; i < repeats; i++) current[i] = object;
964        current += repeats;
965        break;
966      }
967
968      STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
969                    Heap::kOldSpaceRoots);
970      STATIC_ASSERT(kMaxRepeats == 12);
971      FOUR_CASES(kConstantRepeat)
972      FOUR_CASES(kConstantRepeat + 4)
973      FOUR_CASES(kConstantRepeat + 8) {
974        int repeats = RepeatsForCode(data);
975        Object* object = current[-1];
976        ASSERT(!isolate->heap()->InNewSpace(object));
977        for (int i = 0; i < repeats; i++) current[i] = object;
978        current += repeats;
979        break;
980      }
981
982      // Deserialize a new object and write a pointer to it to the current
983      // object.
984      ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject)
985      // Support for direct instruction pointers in functions
986      ONE_PER_CODE_SPACE(kNewObject, kPlain, kFirstInstruction)
987      // Deserialize a new code object and write a pointer to its first
988      // instruction to the current code object.
989      ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction)
990      // Find a recently deserialized object using its offset from the current
991      // allocation point and write a pointer to it to the current object.
992      ALL_SPACES(kBackref, kPlain, kStartOfObject)
993#if V8_TARGET_ARCH_MIPS
994      // Deserialize a new object from pointer found in code and write
995      // a pointer to it to the current object. Required only for MIPS, and
996      // omitted on the other architectures because it is fully unrolled and
997      // would cause bloat.
998      ONE_PER_SPACE(kNewObject, kFromCode, kStartOfObject)
999      // Find a recently deserialized code object using its offset from the
1000      // current allocation point and write a pointer to it to the current
1001      // object. Required only for MIPS.
1002      ALL_SPACES(kBackref, kFromCode, kStartOfObject)
1003      // Find an already deserialized code object using its offset from
1004      // the start and write a pointer to it to the current object.
1005      // Required only for MIPS.
1006      ALL_SPACES(kFromStart, kFromCode, kStartOfObject)
1007#endif
1008      // Find a recently deserialized code object using its offset from the
1009      // current allocation point and write a pointer to its first instruction
1010      // to the current code object or the instruction pointer in a function
1011      // object.
1012      ALL_SPACES(kBackref, kFromCode, kFirstInstruction)
1013      ALL_SPACES(kBackref, kPlain, kFirstInstruction)
1014      // Find an already deserialized object using its offset from the start
1015      // and write a pointer to it to the current object.
1016      ALL_SPACES(kFromStart, kPlain, kStartOfObject)
1017      ALL_SPACES(kFromStart, kPlain, kFirstInstruction)
1018      // Find an already deserialized code object using its offset from the
1019      // start and write a pointer to its first instruction to the current code
1020      // object.
1021      ALL_SPACES(kFromStart, kFromCode, kFirstInstruction)
1022      // Find an object in the roots array and write a pointer to it to the
1023      // current object.
1024      CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
1025      CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart)
1026      // Find an object in the partial snapshots cache and write a pointer to it
1027      // to the current object.
1028      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
1029      CASE_BODY(kPartialSnapshotCache,
1030                kPlain,
1031                kStartOfObject,
1032                0,
1033                kUnknownOffsetFromStart)
1034      // Find an code entry in the partial snapshots cache and
1035      // write a pointer to it to the current object.
1036      CASE_STATEMENT(kPartialSnapshotCache, kPlain, kFirstInstruction, 0)
1037      CASE_BODY(kPartialSnapshotCache,
1038                kPlain,
1039                kFirstInstruction,
1040                0,
1041                kUnknownOffsetFromStart)
1042      // Find an external reference and write a pointer to it to the current
1043      // object.
1044      CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
1045      CASE_BODY(kExternalReference,
1046                kPlain,
1047                kStartOfObject,
1048                0,
1049                kUnknownOffsetFromStart)
1050      // Find an external reference and write a pointer to it in the current
1051      // code object.
1052      CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
1053      CASE_BODY(kExternalReference,
1054                kFromCode,
1055                kStartOfObject,
1056                0,
1057                kUnknownOffsetFromStart)
1058
1059#undef CASE_STATEMENT
1060#undef CASE_BODY
1061#undef ONE_PER_SPACE
1062#undef ALL_SPACES
1063#undef ASSIGN_DEST_SPACE
1064
1065      case kNewPage: {
1066        int space = source_->Get();
1067        pages_[space].Add(last_object_address_);
1068        if (space == CODE_SPACE) {
1069          CPU::FlushICache(last_object_address_, Page::kPageSize);
1070        }
1071        break;
1072      }
1073
1074      case kSkip: {
1075        current++;
1076        break;
1077      }
1078
1079      case kNativesStringResource: {
1080        int index = source_->Get();
1081        Vector<const char> source_vector = Natives::GetRawScriptSource(index);
1082        NativesExternalStringResource* resource =
1083            new NativesExternalStringResource(isolate->bootstrapper(),
1084                                              source_vector.start(),
1085                                              source_vector.length());
1086        *current++ = reinterpret_cast<Object*>(resource);
1087        break;
1088      }
1089
1090      case kSynchronize: {
1091        // If we get here then that indicates that you have a mismatch between
1092        // the number of GC roots when serializing and deserializing.
1093        UNREACHABLE();
1094      }
1095
1096      default:
1097        UNREACHABLE();
1098    }
1099  }
1100  ASSERT_EQ(current, limit);
1101}
1102
1103
1104void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
1105  const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
1106  for (int shift = max_shift; shift > 0; shift -= 7) {
1107    if (integer >= static_cast<uintptr_t>(1u) << shift) {
1108      Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
1109    }
1110  }
1111  PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
1112}
1113
1114
1115Serializer::Serializer(SnapshotByteSink* sink)
1116    : sink_(sink),
1117      current_root_index_(0),
1118      external_reference_encoder_(new ExternalReferenceEncoder),
1119      large_object_total_(0),
1120      root_index_wave_front_(0) {
1121  isolate_ = Isolate::Current();
1122  // The serializer is meant to be used only to generate initial heap images
1123  // from a context in which there is only one isolate.
1124  ASSERT(isolate_->IsDefaultIsolate());
1125  for (int i = 0; i <= LAST_SPACE; i++) {
1126    fullness_[i] = 0;
1127  }
1128}
1129
1130
1131Serializer::~Serializer() {
1132  delete external_reference_encoder_;
1133}
1134
1135
1136void StartupSerializer::SerializeStrongReferences() {
1137  Isolate* isolate = Isolate::Current();
1138  // No active threads.
1139  CHECK_EQ(NULL, Isolate::Current()->thread_manager()->FirstThreadStateInUse());
1140  // No active or weak handles.
1141  CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
1142  CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
1143  // We don't support serializing installed extensions.
1144  CHECK(!isolate->has_installed_extensions());
1145
1146  HEAP->IterateStrongRoots(this, VISIT_ONLY_STRONG);
1147}
1148
1149
1150void PartialSerializer::Serialize(Object** object) {
1151  this->VisitPointer(object);
1152  Isolate* isolate = Isolate::Current();
1153
1154  // After we have done the partial serialization the partial snapshot cache
1155  // will contain some references needed to decode the partial snapshot.  We
1156  // fill it up with undefineds so it has a predictable length so the
1157  // deserialization code doesn't need to know the length.
1158  for (int index = isolate->serialize_partial_snapshot_cache_length();
1159       index < Isolate::kPartialSnapshotCacheCapacity;
1160       index++) {
1161    isolate->serialize_partial_snapshot_cache()[index] =
1162        isolate->heap()->undefined_value();
1163    startup_serializer_->VisitPointer(
1164        &isolate->serialize_partial_snapshot_cache()[index]);
1165  }
1166  isolate->set_serialize_partial_snapshot_cache_length(
1167      Isolate::kPartialSnapshotCacheCapacity);
1168}
1169
1170
1171void Serializer::VisitPointers(Object** start, Object** end) {
1172  Isolate* isolate = Isolate::Current();
1173
1174  for (Object** current = start; current < end; current++) {
1175    if (start == isolate->heap()->roots_array_start()) {
1176      root_index_wave_front_ =
1177          Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
1178    }
1179    if (reinterpret_cast<Address>(current) ==
1180        isolate->heap()->store_buffer()->TopAddress()) {
1181      sink_->Put(kSkip, "Skip");
1182    } else if ((*current)->IsSmi()) {
1183      sink_->Put(kRawData, "RawData");
1184      sink_->PutInt(kPointerSize, "length");
1185      for (int i = 0; i < kPointerSize; i++) {
1186        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1187      }
1188    } else {
1189      SerializeObject(*current, kPlain, kStartOfObject);
1190    }
1191  }
1192}
1193
1194
1195// This ensures that the partial snapshot cache keeps things alive during GC and
1196// tracks their movement.  When it is called during serialization of the startup
1197// snapshot the partial snapshot is empty, so nothing happens.  When the partial
1198// (context) snapshot is created, this array is populated with the pointers that
1199// the partial snapshot will need. As that happens we emit serialized objects to
1200// the startup snapshot that correspond to the elements of this cache array.  On
1201// deserialization we therefore need to visit the cache array.  This fills it up
1202// with pointers to deserialized objects.
1203void SerializerDeserializer::Iterate(ObjectVisitor* visitor) {
1204  Isolate* isolate = Isolate::Current();
1205  visitor->VisitPointers(
1206      isolate->serialize_partial_snapshot_cache(),
1207      &isolate->serialize_partial_snapshot_cache()[
1208          isolate->serialize_partial_snapshot_cache_length()]);
1209}
1210
1211
1212// When deserializing we need to set the size of the snapshot cache.  This means
1213// the root iteration code (above) will iterate over array elements, writing the
1214// references to deserialized objects in them.
1215void SerializerDeserializer::SetSnapshotCacheSize(int size) {
1216  Isolate::Current()->set_serialize_partial_snapshot_cache_length(size);
1217}
1218
1219
1220int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1221  Isolate* isolate = Isolate::Current();
1222
1223  for (int i = 0;
1224       i < isolate->serialize_partial_snapshot_cache_length();
1225       i++) {
1226    Object* entry = isolate->serialize_partial_snapshot_cache()[i];
1227    if (entry == heap_object) return i;
1228  }
1229
1230  // We didn't find the object in the cache.  So we add it to the cache and
1231  // then visit the pointer so that it becomes part of the startup snapshot
1232  // and we can refer to it from the partial snapshot.
1233  int length = isolate->serialize_partial_snapshot_cache_length();
1234  CHECK(length < Isolate::kPartialSnapshotCacheCapacity);
1235  isolate->serialize_partial_snapshot_cache()[length] = heap_object;
1236  startup_serializer_->VisitPointer(
1237      &isolate->serialize_partial_snapshot_cache()[length]);
1238  // We don't recurse from the startup snapshot generator into the partial
1239  // snapshot generator.
1240  ASSERT(length == isolate->serialize_partial_snapshot_cache_length());
1241  isolate->set_serialize_partial_snapshot_cache_length(length + 1);
1242  return length;
1243}
1244
1245
1246int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) {
1247  Heap* heap = HEAP;
1248  if (heap->InNewSpace(heap_object)) return kInvalidRootIndex;
1249  for (int i = 0; i < root_index_wave_front_; i++) {
1250    Object* root = heap->roots_array_start()[i];
1251    if (!root->IsSmi() && root == heap_object) {
1252#if V8_TARGET_ARCH_MIPS
1253      if (from == kFromCode) {
1254        // In order to avoid code bloat in the deserializer we don't have
1255        // support for the encoding that specifies a particular root should
1256        // be written into the lui/ori instructions on MIPS.  Therefore we
1257        // should not generate such serialization data for MIPS.
1258        return kInvalidRootIndex;
1259      }
1260#endif
1261      return i;
1262    }
1263  }
1264  return kInvalidRootIndex;
1265}
1266
1267
1268// Encode the location of an already deserialized object in order to write its
1269// location into a later object.  We can encode the location as an offset from
1270// the start of the deserialized objects or as an offset backwards from the
1271// current allocation pointer.
1272void Serializer::SerializeReferenceToPreviousObject(
1273    int space,
1274    int address,
1275    HowToCode how_to_code,
1276    WhereToPoint where_to_point) {
1277  int offset = CurrentAllocationAddress(space) - address;
1278  bool from_start = true;
1279  if (SpaceIsPaged(space)) {
1280    // For paged space it is simple to encode back from current allocation if
1281    // the object is on the same page as the current allocation pointer.
1282    if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
1283        (address >> kPageSizeBits)) {
1284      from_start = false;
1285      address = offset;
1286    }
1287  } else if (space == NEW_SPACE) {
1288    // For new space it is always simple to encode back from current allocation.
1289    if (offset < address) {
1290      from_start = false;
1291      address = offset;
1292    }
1293  }
1294  // If we are actually dealing with real offsets (and not a numbering of
1295  // all objects) then we should shift out the bits that are always 0.
1296  if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
1297  if (from_start) {
1298    sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer");
1299    sink_->PutInt(address, "address");
1300  } else {
1301    sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1302    sink_->PutInt(address, "address");
1303  }
1304}
1305
1306
1307void StartupSerializer::SerializeObject(
1308    Object* o,
1309    HowToCode how_to_code,
1310    WhereToPoint where_to_point) {
1311  CHECK(o->IsHeapObject());
1312  HeapObject* heap_object = HeapObject::cast(o);
1313
1314  int root_index;
1315  if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1316    PutRoot(root_index, heap_object, how_to_code, where_to_point);
1317    return;
1318  }
1319
1320  if (address_mapper_.IsMapped(heap_object)) {
1321    int space = SpaceOfAlreadySerializedObject(heap_object);
1322    int address = address_mapper_.MappedTo(heap_object);
1323    SerializeReferenceToPreviousObject(space,
1324                                       address,
1325                                       how_to_code,
1326                                       where_to_point);
1327  } else {
1328    // Object has not yet been serialized.  Serialize it here.
1329    ObjectSerializer object_serializer(this,
1330                                       heap_object,
1331                                       sink_,
1332                                       how_to_code,
1333                                       where_to_point);
1334    object_serializer.Serialize();
1335  }
1336}
1337
1338
1339void StartupSerializer::SerializeWeakReferences() {
1340  for (int i = Isolate::Current()->serialize_partial_snapshot_cache_length();
1341       i < Isolate::kPartialSnapshotCacheCapacity;
1342       i++) {
1343    sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization");
1344    sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
1345  }
1346  HEAP->IterateWeakRoots(this, VISIT_ALL);
1347}
1348
1349
1350void Serializer::PutRoot(int root_index,
1351                         HeapObject* object,
1352                         SerializerDeserializer::HowToCode how_to_code,
1353                         SerializerDeserializer::WhereToPoint where_to_point) {
1354  if (how_to_code == kPlain &&
1355      where_to_point == kStartOfObject &&
1356      root_index < kRootArrayNumberOfConstantEncodings &&
1357      !HEAP->InNewSpace(object)) {
1358    if (root_index < kRootArrayNumberOfLowConstantEncodings) {
1359      sink_->Put(kRootArrayLowConstants + root_index, "RootLoConstant");
1360    } else {
1361      sink_->Put(kRootArrayHighConstants + root_index -
1362                     kRootArrayNumberOfLowConstantEncodings,
1363                 "RootHiConstant");
1364    }
1365  } else {
1366    sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
1367    sink_->PutInt(root_index, "root_index");
1368  }
1369}
1370
1371
1372void PartialSerializer::SerializeObject(
1373    Object* o,
1374    HowToCode how_to_code,
1375    WhereToPoint where_to_point) {
1376  CHECK(o->IsHeapObject());
1377  HeapObject* heap_object = HeapObject::cast(o);
1378
1379  if (heap_object->IsMap()) {
1380    // The code-caches link to context-specific code objects, which
1381    // the startup and context serializes cannot currently handle.
1382    ASSERT(Map::cast(heap_object)->code_cache() ==
1383           heap_object->GetHeap()->raw_unchecked_empty_fixed_array());
1384  }
1385
1386  int root_index;
1387  if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
1388    PutRoot(root_index, heap_object, how_to_code, where_to_point);
1389    return;
1390  }
1391
1392  if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1393    int cache_index = PartialSnapshotCacheIndex(heap_object);
1394    sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1395               "PartialSnapshotCache");
1396    sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1397    return;
1398  }
1399
1400  // Pointers from the partial snapshot to the objects in the startup snapshot
1401  // should go through the root array or through the partial snapshot cache.
1402  // If this is not the case you may have to add something to the root array.
1403  ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1404  // All the symbols that the partial snapshot needs should be either in the
1405  // root table or in the partial snapshot cache.
1406  ASSERT(!heap_object->IsSymbol());
1407
1408  if (address_mapper_.IsMapped(heap_object)) {
1409    int space = SpaceOfAlreadySerializedObject(heap_object);
1410    int address = address_mapper_.MappedTo(heap_object);
1411    SerializeReferenceToPreviousObject(space,
1412                                       address,
1413                                       how_to_code,
1414                                       where_to_point);
1415  } else {
1416    // Object has not yet been serialized.  Serialize it here.
1417    ObjectSerializer serializer(this,
1418                                heap_object,
1419                                sink_,
1420                                how_to_code,
1421                                where_to_point);
1422    serializer.Serialize();
1423  }
1424}
1425
1426
1427void Serializer::ObjectSerializer::Serialize() {
1428  int space = Serializer::SpaceOfObject(object_);
1429  int size = object_->Size();
1430
1431  sink_->Put(kNewObject + reference_representation_ + space,
1432             "ObjectSerialization");
1433  sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1434
1435  LOG(i::Isolate::Current(),
1436      SnapshotPositionEvent(object_->address(), sink_->Position()));
1437
1438  // Mark this object as already serialized.
1439  bool start_new_page;
1440  int offset = serializer_->Allocate(space, size, &start_new_page);
1441  serializer_->address_mapper()->AddMapping(object_, offset);
1442  if (start_new_page) {
1443    sink_->Put(kNewPage, "NewPage");
1444    sink_->PutSection(space, "NewPageSpace");
1445  }
1446
1447  // Serialize the map (first word of the object).
1448  serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject);
1449
1450  // Serialize the rest of the object.
1451  CHECK_EQ(0, bytes_processed_so_far_);
1452  bytes_processed_so_far_ = kPointerSize;
1453  object_->IterateBody(object_->map()->instance_type(), size, this);
1454  OutputRawData(object_->address() + size);
1455}
1456
1457
1458void Serializer::ObjectSerializer::VisitPointers(Object** start,
1459                                                 Object** end) {
1460  Object** current = start;
1461  while (current < end) {
1462    while (current < end && (*current)->IsSmi()) current++;
1463    if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1464
1465    while (current < end && !(*current)->IsSmi()) {
1466      HeapObject* current_contents = HeapObject::cast(*current);
1467      int root_index = serializer_->RootIndex(current_contents, kPlain);
1468      // Repeats are not subject to the write barrier so there are only some
1469      // objects that can be used in a repeat encoding.  These are the early
1470      // ones in the root array that are never in new space.
1471      if (current != start &&
1472          root_index != kInvalidRootIndex &&
1473          root_index < kRootArrayNumberOfConstantEncodings &&
1474          current_contents == current[-1]) {
1475        ASSERT(!HEAP->InNewSpace(current_contents));
1476        int repeat_count = 1;
1477        while (current < end - 1 && current[repeat_count] == current_contents) {
1478          repeat_count++;
1479        }
1480        current += repeat_count;
1481        bytes_processed_so_far_ += repeat_count * kPointerSize;
1482        if (repeat_count > kMaxRepeats) {
1483          sink_->Put(kRepeat, "SerializeRepeats");
1484          sink_->PutInt(repeat_count, "SerializeRepeats");
1485        } else {
1486          sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
1487        }
1488      } else {
1489        serializer_->SerializeObject(current_contents, kPlain, kStartOfObject);
1490        bytes_processed_so_far_ += kPointerSize;
1491        current++;
1492      }
1493    }
1494  }
1495}
1496
1497
1498void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
1499  Object** current = rinfo->target_object_address();
1500
1501  OutputRawData(rinfo->target_address_address());
1502  HowToCode representation = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
1503  serializer_->SerializeObject(*current, representation, kStartOfObject);
1504  bytes_processed_so_far_ += rinfo->target_address_size();
1505}
1506
1507
1508void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
1509                                                           Address* end) {
1510  Address references_start = reinterpret_cast<Address>(start);
1511  OutputRawData(references_start);
1512
1513  for (Address* current = start; current < end; current++) {
1514    sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
1515    int reference_id = serializer_->EncodeExternalReference(*current);
1516    sink_->PutInt(reference_id, "reference id");
1517  }
1518  bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
1519}
1520
1521
1522void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
1523  Address references_start = rinfo->target_address_address();
1524  OutputRawData(references_start);
1525
1526  Address* current = rinfo->target_reference_address();
1527  int representation = rinfo->IsCodedSpecially() ?
1528                       kFromCode + kStartOfObject : kPlain + kStartOfObject;
1529  sink_->Put(kExternalReference + representation, "ExternalRef");
1530  int reference_id = serializer_->EncodeExternalReference(*current);
1531  sink_->PutInt(reference_id, "reference id");
1532  bytes_processed_so_far_ += rinfo->target_address_size();
1533}
1534
1535
1536void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1537  Address target_start = rinfo->target_address_address();
1538  OutputRawData(target_start);
1539  Address target = rinfo->target_address();
1540  uint32_t encoding = serializer_->EncodeExternalReference(target);
1541  CHECK(target == NULL ? encoding == 0 : encoding != 0);
1542  int representation;
1543  // Can't use a ternary operator because of gcc.
1544  if (rinfo->IsCodedSpecially()) {
1545    representation = kStartOfObject + kFromCode;
1546  } else {
1547    representation = kStartOfObject + kPlain;
1548  }
1549  sink_->Put(kExternalReference + representation, "ExternalReference");
1550  sink_->PutInt(encoding, "reference id");
1551  bytes_processed_so_far_ += rinfo->target_address_size();
1552}
1553
1554
1555void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1556  CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
1557  Address target_start = rinfo->target_address_address();
1558  OutputRawData(target_start);
1559  Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1560  serializer_->SerializeObject(target, kFromCode, kFirstInstruction);
1561  bytes_processed_so_far_ += rinfo->target_address_size();
1562}
1563
1564
1565void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
1566  Code* target = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
1567  OutputRawData(entry_address);
1568  serializer_->SerializeObject(target, kPlain, kFirstInstruction);
1569  bytes_processed_so_far_ += kPointerSize;
1570}
1571
1572
1573void Serializer::ObjectSerializer::VisitGlobalPropertyCell(RelocInfo* rinfo) {
1574  // We shouldn't have any global property cell references in code
1575  // objects in the snapshot.
1576  UNREACHABLE();
1577}
1578
1579
1580void Serializer::ObjectSerializer::VisitExternalAsciiString(
1581    v8::String::ExternalAsciiStringResource** resource_pointer) {
1582  Address references_start = reinterpret_cast<Address>(resource_pointer);
1583  OutputRawData(references_start);
1584  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1585    Object* source = HEAP->natives_source_cache()->get(i);
1586    if (!source->IsUndefined()) {
1587      ExternalAsciiString* string = ExternalAsciiString::cast(source);
1588      typedef v8::String::ExternalAsciiStringResource Resource;
1589      const Resource* resource = string->resource();
1590      if (resource == *resource_pointer) {
1591        sink_->Put(kNativesStringResource, "NativesStringResource");
1592        sink_->PutSection(i, "NativesStringResourceEnd");
1593        bytes_processed_so_far_ += sizeof(resource);
1594        return;
1595      }
1596    }
1597  }
1598  // One of the strings in the natives cache should match the resource.  We
1599  // can't serialize any other kinds of external strings.
1600  UNREACHABLE();
1601}
1602
1603
1604void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
1605  Address object_start = object_->address();
1606  int up_to_offset = static_cast<int>(up_to - object_start);
1607  int skipped = up_to_offset - bytes_processed_so_far_;
1608  // This assert will fail if the reloc info gives us the target_address_address
1609  // locations in a non-ascending order.  Luckily that doesn't happen.
1610  ASSERT(skipped >= 0);
1611  if (skipped != 0) {
1612    Address base = object_start + bytes_processed_so_far_;
1613#define RAW_CASE(index, length)                                                \
1614    if (skipped == length) {                                                   \
1615      sink_->PutSection(kRawData + index, "RawDataFixed");                     \
1616    } else  /* NOLINT */
1617    COMMON_RAW_LENGTHS(RAW_CASE)
1618#undef RAW_CASE
1619    {  /* NOLINT */
1620      sink_->Put(kRawData, "RawData");
1621      sink_->PutInt(skipped, "length");
1622    }
1623    for (int i = 0; i < skipped; i++) {
1624      unsigned int data = base[i];
1625      sink_->PutSection(data, "Byte");
1626    }
1627    bytes_processed_so_far_ += skipped;
1628  }
1629}
1630
1631
1632int Serializer::SpaceOfObject(HeapObject* object) {
1633  for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1634    AllocationSpace s = static_cast<AllocationSpace>(i);
1635    if (HEAP->InSpace(object, s)) {
1636      if (i == LO_SPACE) {
1637        if (object->IsCode()) {
1638          return kLargeCode;
1639        } else if (object->IsFixedArray()) {
1640          return kLargeFixedArray;
1641        } else {
1642          return kLargeData;
1643        }
1644      }
1645      return i;
1646    }
1647  }
1648  UNREACHABLE();
1649  return 0;
1650}
1651
1652
1653int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
1654  for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1655    AllocationSpace s = static_cast<AllocationSpace>(i);
1656    if (HEAP->InSpace(object, s)) {
1657      return i;
1658    }
1659  }
1660  UNREACHABLE();
1661  return 0;
1662}
1663
1664
1665int Serializer::Allocate(int space, int size, bool* new_page) {
1666  CHECK(space >= 0 && space < kNumberOfSpaces);
1667  if (SpaceIsLarge(space)) {
1668    // In large object space we merely number the objects instead of trying to
1669    // determine some sort of address.
1670    *new_page = true;
1671    large_object_total_ += size;
1672    return fullness_[LO_SPACE]++;
1673  }
1674  *new_page = false;
1675  if (fullness_[space] == 0) {
1676    *new_page = true;
1677  }
1678  if (SpaceIsPaged(space)) {
1679    // Paged spaces are a little special.  We encode their addresses as if the
1680    // pages were all contiguous and each page were filled up in the range
1681    // 0 - Page::kObjectAreaSize.  In practice the pages may not be contiguous
1682    // and allocation does not start at offset 0 in the page, but this scheme
1683    // means the deserializer can get the page number quickly by shifting the
1684    // serialized address.
1685    CHECK(IsPowerOf2(Page::kPageSize));
1686    int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
1687    CHECK(size <= SpaceAreaSize(space));
1688    if (used_in_this_page + size > SpaceAreaSize(space)) {
1689      *new_page = true;
1690      fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
1691    }
1692  }
1693  int allocation_address = fullness_[space];
1694  fullness_[space] = allocation_address + size;
1695  return allocation_address;
1696}
1697
1698
1699int Serializer::SpaceAreaSize(int space) {
1700  if (space == CODE_SPACE) {
1701    return isolate_->memory_allocator()->CodePageAreaSize();
1702  } else {
1703    return Page::kPageSize - Page::kObjectStartOffset;
1704  }
1705}
1706
1707
1708} }  // namespace v8::internal
1709