1// Copyright (c) 2005, 2007, Google Inc.
2// All rights reserved.
3// Copyright (C) 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved.
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// ---
32// Author: Sanjay Ghemawat <opensource@google.com>
33//
34// A malloc that uses a per-thread cache to satisfy small malloc requests.
35// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
36//
37// See doc/tcmalloc.html for a high-level
38// description of how this malloc works.
39//
40// SYNCHRONIZATION
41//  1. The thread-specific lists are accessed without acquiring any locks.
42//     This is safe because each such list is only accessed by one thread.
43//  2. We have a lock per central free-list, and hold it while manipulating
44//     the central free list for a particular size.
45//  3. The central page allocator is protected by "pageheap_lock".
46//  4. The pagemap (which maps from page-number to descriptor),
47//     can be read without holding any locks, and written while holding
48//     the "pageheap_lock".
49//  5. To improve performance, a subset of the information one can get
50//     from the pagemap is cached in a data structure, pagemap_cache_,
51//     that atomically reads and writes its entries.  This cache can be
52//     read and written without locking.
53//
54//     This multi-threaded access to the pagemap is safe for fairly
55//     subtle reasons.  We basically assume that when an object X is
56//     allocated by thread A and deallocated by thread B, there must
57//     have been appropriate synchronization in the handoff of object
58//     X from thread A to thread B.  The same logic applies to pagemap_cache_.
59//
60// THE PAGEID-TO-SIZECLASS CACHE
61// Hot PageID-to-sizeclass mappings are held by pagemap_cache_.  If this cache
62// returns 0 for a particular PageID then that means "no information," not that
63// the sizeclass is 0.  The cache may have stale information for pages that do
64// not hold the beginning of any free()'able object.  Staleness is eliminated
65// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
66// do_memalign() for all other relevant pages.
67//
68// TODO: Bias reclamation to larger addresses
69// TODO: implement mallinfo/mallopt
70// TODO: Better testing
71//
72// 9/28/2003 (new page-level allocator replaces ptmalloc2):
73// * malloc/free of small objects goes from ~300 ns to ~50 ns.
74// * allocation of a reasonably complicated struct
75//   goes from about 1100 ns to about 300 ns.
76
77#include "config.h"
78#include "FastMalloc.h"
79
80#include "Assertions.h"
81#include <limits>
82#if ENABLE(JSC_MULTIPLE_THREADS)
83#include <pthread.h>
84#endif
85#include <wtf/StdLibExtras.h>
86
87#ifndef NO_TCMALLOC_SAMPLES
88#ifdef WTF_CHANGES
89#define NO_TCMALLOC_SAMPLES
90#endif
91#endif
92
93#if !(defined(USE_SYSTEM_MALLOC) && USE_SYSTEM_MALLOC) && defined(NDEBUG)
94#define FORCE_SYSTEM_MALLOC 0
95#else
96#define FORCE_SYSTEM_MALLOC 1
97#endif
98
99// Use a background thread to periodically scavenge memory to release back to the system
100// https://bugs.webkit.org/show_bug.cgi?id=27900: don't turn this on for Tiger until we have figured out why it caused a crash.
101#if defined(BUILDING_ON_TIGER)
102#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 0
103#else
104#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
105#endif
106
107#ifndef NDEBUG
108namespace WTF {
109
110#if ENABLE(JSC_MULTIPLE_THREADS)
111static pthread_key_t isForbiddenKey;
112static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
113static void initializeIsForbiddenKey()
114{
115  pthread_key_create(&isForbiddenKey, 0);
116}
117
118#if !ASSERT_DISABLED
119static bool isForbidden()
120{
121    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
122    return !!pthread_getspecific(isForbiddenKey);
123}
124#endif
125
126void fastMallocForbid()
127{
128    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
129    pthread_setspecific(isForbiddenKey, &isForbiddenKey);
130}
131
132void fastMallocAllow()
133{
134    pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
135    pthread_setspecific(isForbiddenKey, 0);
136}
137
138#else
139
140static bool staticIsForbidden;
141static bool isForbidden()
142{
143    return staticIsForbidden;
144}
145
146void fastMallocForbid()
147{
148    staticIsForbidden = true;
149}
150
151void fastMallocAllow()
152{
153    staticIsForbidden = false;
154}
155#endif // ENABLE(JSC_MULTIPLE_THREADS)
156
157} // namespace WTF
158#endif // NDEBUG
159
160#include <string.h>
161
162namespace WTF {
163
164#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
165
166namespace Internal {
167
168void fastMallocMatchFailed(void*)
169{
170    CRASH();
171}
172
173} // namespace Internal
174
175#endif
176
177void* fastZeroedMalloc(size_t n)
178{
179    void* result = fastMalloc(n);
180    memset(result, 0, n);
181    return result;
182}
183
184char* fastStrDup(const char* src)
185{
186    size_t len = strlen(src) + 1;
187    char* dup = static_cast<char*>(fastMalloc(len));
188    memcpy(dup, src, len);
189    return dup;
190}
191
192TryMallocReturnValue tryFastZeroedMalloc(size_t n)
193{
194    void* result;
195    if (!tryFastMalloc(n).getValue(result))
196        return 0;
197    memset(result, 0, n);
198    return result;
199}
200
201} // namespace WTF
202
203#if FORCE_SYSTEM_MALLOC
204
205#if PLATFORM(BREWMP)
206#include "brew/SystemMallocBrew.h"
207#endif
208
209#if OS(DARWIN)
210#include <malloc/malloc.h>
211#elif OS(WINDOWS)
212#include <malloc.h>
213#endif
214
215namespace WTF {
216
217TryMallocReturnValue tryFastMalloc(size_t n)
218{
219    ASSERT(!isForbidden());
220
221#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
222    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur...
223        return 0;
224
225    void* result = malloc(n + sizeof(AllocAlignmentInteger));
226    if (!result)
227        return 0;
228
229    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
230    result = static_cast<AllocAlignmentInteger*>(result) + 1;
231
232    return result;
233#else
234    return malloc(n);
235#endif
236}
237
238void* fastMalloc(size_t n)
239{
240    ASSERT(!isForbidden());
241
242#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
243    TryMallocReturnValue returnValue = tryFastMalloc(n);
244    void* result;
245    if (!returnValue.getValue(result))
246        CRASH();
247#else
248    void* result = malloc(n);
249#endif
250
251    if (!result) {
252#if PLATFORM(BREWMP)
253        // The behavior of malloc(0) is implementation defined.
254        // To make sure that fastMalloc never returns 0, retry with fastMalloc(1).
255        if (!n)
256            return fastMalloc(1);
257#endif
258        CRASH();
259    }
260
261    return result;
262}
263
264TryMallocReturnValue tryFastCalloc(size_t n_elements, size_t element_size)
265{
266    ASSERT(!isForbidden());
267
268#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
269    size_t totalBytes = n_elements * element_size;
270    if (n_elements > 1 && element_size && (totalBytes / element_size) != n_elements || (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes))
271        return 0;
272
273    totalBytes += sizeof(AllocAlignmentInteger);
274    void* result = malloc(totalBytes);
275    if (!result)
276        return 0;
277
278    memset(result, 0, totalBytes);
279    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
280    result = static_cast<AllocAlignmentInteger*>(result) + 1;
281    return result;
282#else
283    return calloc(n_elements, element_size);
284#endif
285}
286
287void* fastCalloc(size_t n_elements, size_t element_size)
288{
289    ASSERT(!isForbidden());
290
291#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
292    TryMallocReturnValue returnValue = tryFastCalloc(n_elements, element_size);
293    void* result;
294    if (!returnValue.getValue(result))
295        CRASH();
296#else
297    void* result = calloc(n_elements, element_size);
298#endif
299
300    if (!result) {
301#if PLATFORM(BREWMP)
302        // If either n_elements or element_size is 0, the behavior of calloc is implementation defined.
303        // To make sure that fastCalloc never returns 0, retry with fastCalloc(1, 1).
304        if (!n_elements || !element_size)
305            return fastCalloc(1, 1);
306#endif
307        CRASH();
308    }
309
310    return result;
311}
312
313void fastFree(void* p)
314{
315    ASSERT(!isForbidden());
316
317#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
318    if (!p)
319        return;
320
321    AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
322    if (*header != Internal::AllocTypeMalloc)
323        Internal::fastMallocMatchFailed(p);
324    free(header);
325#else
326    free(p);
327#endif
328}
329
330TryMallocReturnValue tryFastRealloc(void* p, size_t n)
331{
332    ASSERT(!isForbidden());
333
334#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
335    if (p) {
336        if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= n)  // If overflow would occur...
337            return 0;
338        AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(p);
339        if (*header != Internal::AllocTypeMalloc)
340            Internal::fastMallocMatchFailed(p);
341        void* result = realloc(header, n + sizeof(AllocAlignmentInteger));
342        if (!result)
343            return 0;
344
345        // This should not be needed because the value is already there:
346        // *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
347        result = static_cast<AllocAlignmentInteger*>(result) + 1;
348        return result;
349    } else {
350        return fastMalloc(n);
351    }
352#else
353    return realloc(p, n);
354#endif
355}
356
357void* fastRealloc(void* p, size_t n)
358{
359    ASSERT(!isForbidden());
360
361#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
362    TryMallocReturnValue returnValue = tryFastRealloc(p, n);
363    void* result;
364    if (!returnValue.getValue(result))
365        CRASH();
366#else
367    void* result = realloc(p, n);
368#endif
369
370    if (!result)
371        CRASH();
372    return result;
373}
374
375void releaseFastMallocFreeMemory() { }
376
377FastMallocStatistics fastMallocStatistics()
378{
379    FastMallocStatistics statistics = { 0, 0, 0 };
380    return statistics;
381}
382
383size_t fastMallocSize(const void* p)
384{
385#if OS(DARWIN)
386    return malloc_size(p);
387#elif OS(WINDOWS) && !PLATFORM(BREWMP)
388    // Brew MP uses its own memory allocator, so _msize does not work on the Brew MP simulator.
389    return _msize(const_cast<void*>(p));
390#else
391    return 1;
392#endif
393}
394
395} // namespace WTF
396
397#if OS(DARWIN)
398// This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
399// It will never be used in this case, so it's type and value are less interesting than its presence.
400extern "C" const int jscore_fastmalloc_introspection = 0;
401#endif
402
403#else // FORCE_SYSTEM_MALLOC
404
405#if HAVE(STDINT_H)
406#include <stdint.h>
407#elif HAVE(INTTYPES_H)
408#include <inttypes.h>
409#else
410#include <sys/types.h>
411#endif
412
413#include "AlwaysInline.h"
414#include "Assertions.h"
415#include "TCPackedCache.h"
416#include "TCPageMap.h"
417#include "TCSpinLock.h"
418#include "TCSystemAlloc.h"
419#include <algorithm>
420#include <limits>
421#include <pthread.h>
422#include <stdarg.h>
423#include <stddef.h>
424#include <stdio.h>
425#if HAVE(ERRNO_H)
426#include <errno.h>
427#endif
428#if OS(UNIX)
429#include <unistd.h>
430#endif
431#if OS(WINDOWS)
432#ifndef WIN32_LEAN_AND_MEAN
433#define WIN32_LEAN_AND_MEAN
434#endif
435#include <windows.h>
436#endif
437
438#ifdef WTF_CHANGES
439
440#if OS(DARWIN)
441#include "MallocZoneSupport.h"
442#include <wtf/HashSet.h>
443#include <wtf/Vector.h>
444#endif
445
446#if HAVE(HEADER_DETECTION_H)
447#include "HeaderDetection.h"
448#endif
449
450#if HAVE(DISPATCH_H)
451#include <dispatch/dispatch.h>
452#endif
453
454#if HAVE(PTHREAD_MACHDEP_H)
455#include <System/pthread_machdep.h>
456
457#if defined(__PTK_FRAMEWORK_JAVASCRIPTCORE_KEY0)
458#define WTF_USE_PTHREAD_GETSPECIFIC_DIRECT 1
459#endif
460#endif
461
462#ifndef PRIuS
463#define PRIuS "zu"
464#endif
465
466// Calling pthread_getspecific through a global function pointer is faster than a normal
467// call to the function on Mac OS X, and it's used in performance-critical code. So we
468// use a function pointer. But that's not necessarily faster on other platforms, and we had
469// problems with this technique on Windows, so we'll do this only on Mac OS X.
470#if OS(DARWIN)
471#if !USE(PTHREAD_GETSPECIFIC_DIRECT)
472static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
473#define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
474#else
475#define pthread_getspecific(key) _pthread_getspecific_direct(key)
476#define pthread_setspecific(key, val) _pthread_setspecific_direct(key, (val))
477#endif
478#endif
479
480#define DEFINE_VARIABLE(type, name, value, meaning) \
481  namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead {  \
482  type FLAGS_##name(value);                                \
483  char FLAGS_no##name;                                                        \
484  }                                                                           \
485  using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
486
487#define DEFINE_int64(name, value, meaning) \
488  DEFINE_VARIABLE(int64_t, name, value, meaning)
489
490#define DEFINE_double(name, value, meaning) \
491  DEFINE_VARIABLE(double, name, value, meaning)
492
493namespace WTF {
494
495#define malloc fastMalloc
496#define calloc fastCalloc
497#define free fastFree
498#define realloc fastRealloc
499
500#define MESSAGE LOG_ERROR
501#define CHECK_CONDITION ASSERT
502
503#if OS(DARWIN)
504struct Span;
505class TCMalloc_Central_FreeListPadded;
506class TCMalloc_PageHeap;
507class TCMalloc_ThreadCache;
508template <typename T> class PageHeapAllocator;
509
510class FastMallocZone {
511public:
512    static void init();
513
514    static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
515    static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
516    static boolean_t check(malloc_zone_t*) { return true; }
517    static void  print(malloc_zone_t*, boolean_t) { }
518    static void log(malloc_zone_t*, void*) { }
519    static void forceLock(malloc_zone_t*) { }
520    static void forceUnlock(malloc_zone_t*) { }
521    static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
522
523private:
524    FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
525    static size_t size(malloc_zone_t*, const void*);
526    static void* zoneMalloc(malloc_zone_t*, size_t);
527    static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
528    static void zoneFree(malloc_zone_t*, void*);
529    static void* zoneRealloc(malloc_zone_t*, void*, size_t);
530    static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
531    static void zoneDestroy(malloc_zone_t*) { }
532
533    malloc_zone_t m_zone;
534    TCMalloc_PageHeap* m_pageHeap;
535    TCMalloc_ThreadCache** m_threadHeaps;
536    TCMalloc_Central_FreeListPadded* m_centralCaches;
537    PageHeapAllocator<Span>* m_spanAllocator;
538    PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
539};
540
541#endif
542
543#endif
544
545#ifndef WTF_CHANGES
546// This #ifdef should almost never be set.  Set NO_TCMALLOC_SAMPLES if
547// you're porting to a system where you really can't get a stacktrace.
548#ifdef NO_TCMALLOC_SAMPLES
549// We use #define so code compiles even if you #include stacktrace.h somehow.
550# define GetStackTrace(stack, depth, skip)  (0)
551#else
552# include <google/stacktrace.h>
553#endif
554#endif
555
556// Even if we have support for thread-local storage in the compiler
557// and linker, the OS may not support it.  We need to check that at
558// runtime.  Right now, we have to keep a manual set of "bad" OSes.
559#if defined(HAVE_TLS)
560  static bool kernel_supports_tls = false;      // be conservative
561  static inline bool KernelSupportsTLS() {
562    return kernel_supports_tls;
563  }
564# if !HAVE_DECL_UNAME   // if too old for uname, probably too old for TLS
565    static void CheckIfKernelSupportsTLS() {
566      kernel_supports_tls = false;
567    }
568# else
569#   include <sys/utsname.h>    // DECL_UNAME checked for <sys/utsname.h> too
570    static void CheckIfKernelSupportsTLS() {
571      struct utsname buf;
572      if (uname(&buf) != 0) {   // should be impossible
573        MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
574        kernel_supports_tls = false;
575      } else if (strcasecmp(buf.sysname, "linux") == 0) {
576        // The linux case: the first kernel to support TLS was 2.6.0
577        if (buf.release[0] < '2' && buf.release[1] == '.')    // 0.x or 1.x
578          kernel_supports_tls = false;
579        else if (buf.release[0] == '2' && buf.release[1] == '.' &&
580                 buf.release[2] >= '0' && buf.release[2] < '6' &&
581                 buf.release[3] == '.')                       // 2.0 - 2.5
582          kernel_supports_tls = false;
583        else
584          kernel_supports_tls = true;
585      } else {        // some other kernel, we'll be optimisitic
586        kernel_supports_tls = true;
587      }
588      // TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
589    }
590#  endif  // HAVE_DECL_UNAME
591#endif    // HAVE_TLS
592
593// __THROW is defined in glibc systems.  It means, counter-intuitively,
594// "This function will never throw an exception."  It's an optional
595// optimization tool, but we may need to use it to match glibc prototypes.
596#ifndef __THROW    // I guess we're not on a glibc system
597# define __THROW   // __THROW is just an optimization, so ok to make it ""
598#endif
599
600//-------------------------------------------------------------------
601// Configuration
602//-------------------------------------------------------------------
603
604// Not all possible combinations of the following parameters make
605// sense.  In particular, if kMaxSize increases, you may have to
606// increase kNumClasses as well.
607static const size_t kPageShift  = 12;
608static const size_t kPageSize   = 1 << kPageShift;
609static const size_t kMaxSize    = 8u * kPageSize;
610static const size_t kAlignShift = 3;
611static const size_t kAlignment  = 1 << kAlignShift;
612static const size_t kNumClasses = 68;
613
614// Allocates a big block of memory for the pagemap once we reach more than
615// 128MB
616static const size_t kPageMapBigAllocationThreshold = 128 << 20;
617
618// Minimum number of pages to fetch from system at a time.  Must be
619// significantly bigger than kPageSize to amortize system-call
620// overhead, and also to reduce external fragementation.  Also, we
621// should keep this value big because various incarnations of Linux
622// have small limits on the number of mmap() regions per
623// address-space.
624static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
625
626// Number of objects to move between a per-thread list and a central
627// list in one shot.  We want this to be not too small so we can
628// amortize the lock overhead for accessing the central list.  Making
629// it too big may temporarily cause unnecessary memory wastage in the
630// per-thread free list until the scavenger cleans up the list.
631static int num_objects_to_move[kNumClasses];
632
633// Maximum length we allow a per-thread free-list to have before we
634// move objects from it into the corresponding central free-list.  We
635// want this big to avoid locking the central free-list too often.  It
636// should not hurt to make this list somewhat big because the
637// scavenging code will shrink it down when its contents are not in use.
638static const int kMaxFreeListLength = 256;
639
640// Lower and upper bounds on the per-thread cache sizes
641static const size_t kMinThreadCacheSize = kMaxSize * 2;
642static const size_t kMaxThreadCacheSize = 2 << 20;
643
644// Default bound on the total amount of thread caches
645static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
646
647// For all span-lengths < kMaxPages we keep an exact-size list.
648// REQUIRED: kMaxPages >= kMinSystemAlloc;
649static const size_t kMaxPages = kMinSystemAlloc;
650
651/* The smallest prime > 2^n */
652static int primes_list[] = {
653    // Small values might cause high rates of sampling
654    // and hence commented out.
655    // 2, 5, 11, 17, 37, 67, 131, 257,
656    // 521, 1031, 2053, 4099, 8209, 16411,
657    32771, 65537, 131101, 262147, 524309, 1048583,
658    2097169, 4194319, 8388617, 16777259, 33554467 };
659
660// Twice the approximate gap between sampling actions.
661// I.e., we take one sample approximately once every
662//      tcmalloc_sample_parameter/2
663// bytes of allocation, i.e., ~ once every 128KB.
664// Must be a prime number.
665#ifdef NO_TCMALLOC_SAMPLES
666DEFINE_int64(tcmalloc_sample_parameter, 0,
667             "Unused: code is compiled with NO_TCMALLOC_SAMPLES");
668static size_t sample_period = 0;
669#else
670DEFINE_int64(tcmalloc_sample_parameter, 262147,
671         "Twice the approximate gap between sampling actions."
672         " Must be a prime number. Otherwise will be rounded up to a "
673         " larger prime number");
674static size_t sample_period = 262147;
675#endif
676
677// Protects sample_period above
678static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
679
680// Parameters for controlling how fast memory is returned to the OS.
681
682DEFINE_double(tcmalloc_release_rate, 1,
683              "Rate at which we release unused memory to the system.  "
684              "Zero means we never release memory back to the system.  "
685              "Increase this flag to return memory faster; decrease it "
686              "to return memory slower.  Reasonable rates are in the "
687              "range [0,10]");
688
689//-------------------------------------------------------------------
690// Mapping from size to size_class and vice versa
691//-------------------------------------------------------------------
692
693// Sizes <= 1024 have an alignment >= 8.  So for such sizes we have an
694// array indexed by ceil(size/8).  Sizes > 1024 have an alignment >= 128.
695// So for these larger sizes we have an array indexed by ceil(size/128).
696//
697// We flatten both logical arrays into one physical array and use
698// arithmetic to compute an appropriate index.  The constants used by
699// ClassIndex() were selected to make the flattening work.
700//
701// Examples:
702//   Size       Expression                      Index
703//   -------------------------------------------------------
704//   0          (0 + 7) / 8                     0
705//   1          (1 + 7) / 8                     1
706//   ...
707//   1024       (1024 + 7) / 8                  128
708//   1025       (1025 + 127 + (120<<7)) / 128   129
709//   ...
710//   32768      (32768 + 127 + (120<<7)) / 128  376
711static const size_t kMaxSmallSize = 1024;
712static const int shift_amount[2] = { 3, 7 };  // For divides by 8 or 128
713static const int add_amount[2] = { 7, 127 + (120 << 7) };
714static unsigned char class_array[377];
715
716// Compute index of the class_array[] entry for a given size
717static inline int ClassIndex(size_t s) {
718  const int i = (s > kMaxSmallSize);
719  return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
720}
721
722// Mapping from size class to max size storable in that class
723static size_t class_to_size[kNumClasses];
724
725// Mapping from size class to number of pages to allocate at a time
726static size_t class_to_pages[kNumClasses];
727
728// TransferCache is used to cache transfers of num_objects_to_move[size_class]
729// back and forth between thread caches and the central cache for a given size
730// class.
731struct TCEntry {
732  void *head;  // Head of chain of objects.
733  void *tail;  // Tail of chain of objects.
734};
735// A central cache freelist can have anywhere from 0 to kNumTransferEntries
736// slots to put link list chains into.  To keep memory usage bounded the total
737// number of TCEntries across size classes is fixed.  Currently each size
738// class is initially given one TCEntry which also means that the maximum any
739// one class can have is kNumClasses.
740static const int kNumTransferEntries = kNumClasses;
741
742// Note: the following only works for "n"s that fit in 32-bits, but
743// that is fine since we only use it for small sizes.
744static inline int LgFloor(size_t n) {
745  int log = 0;
746  for (int i = 4; i >= 0; --i) {
747    int shift = (1 << i);
748    size_t x = n >> shift;
749    if (x != 0) {
750      n = x;
751      log += shift;
752    }
753  }
754  ASSERT(n == 1);
755  return log;
756}
757
758// Some very basic linked list functions for dealing with using void * as
759// storage.
760
761static inline void *SLL_Next(void *t) {
762  return *(reinterpret_cast<void**>(t));
763}
764
765static inline void SLL_SetNext(void *t, void *n) {
766  *(reinterpret_cast<void**>(t)) = n;
767}
768
769static inline void SLL_Push(void **list, void *element) {
770  SLL_SetNext(element, *list);
771  *list = element;
772}
773
774static inline void *SLL_Pop(void **list) {
775  void *result = *list;
776  *list = SLL_Next(*list);
777  return result;
778}
779
780
781// Remove N elements from a linked list to which head points.  head will be
782// modified to point to the new head.  start and end will point to the first
783// and last nodes of the range.  Note that end will point to NULL after this
784// function is called.
785static inline void SLL_PopRange(void **head, int N, void **start, void **end) {
786  if (N == 0) {
787    *start = NULL;
788    *end = NULL;
789    return;
790  }
791
792  void *tmp = *head;
793  for (int i = 1; i < N; ++i) {
794    tmp = SLL_Next(tmp);
795  }
796
797  *start = *head;
798  *end = tmp;
799  *head = SLL_Next(tmp);
800  // Unlink range from list.
801  SLL_SetNext(tmp, NULL);
802}
803
804static inline void SLL_PushRange(void **head, void *start, void *end) {
805  if (!start) return;
806  SLL_SetNext(end, *head);
807  *head = start;
808}
809
810static inline size_t SLL_Size(void *head) {
811  int count = 0;
812  while (head) {
813    count++;
814    head = SLL_Next(head);
815  }
816  return count;
817}
818
819// Setup helper functions.
820
821static ALWAYS_INLINE size_t SizeClass(size_t size) {
822  return class_array[ClassIndex(size)];
823}
824
825// Get the byte-size for a specified class
826static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
827  return class_to_size[cl];
828}
829static int NumMoveSize(size_t size) {
830  if (size == 0) return 0;
831  // Use approx 64k transfers between thread and central caches.
832  int num = static_cast<int>(64.0 * 1024.0 / size);
833  if (num < 2) num = 2;
834  // Clamp well below kMaxFreeListLength to avoid ping pong between central
835  // and thread caches.
836  if (num > static_cast<int>(0.8 * kMaxFreeListLength))
837    num = static_cast<int>(0.8 * kMaxFreeListLength);
838
839  // Also, avoid bringing in too many objects into small object free
840  // lists.  There are lots of such lists, and if we allow each one to
841  // fetch too many at a time, we end up having to scavenge too often
842  // (especially when there are lots of threads and each thread gets a
843  // small allowance for its thread cache).
844  //
845  // TODO: Make thread cache free list sizes dynamic so that we do not
846  // have to equally divide a fixed resource amongst lots of threads.
847  if (num > 32) num = 32;
848
849  return num;
850}
851
852// Initialize the mapping arrays
853static void InitSizeClasses() {
854  // Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
855  if (ClassIndex(0) < 0) {
856    MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
857    CRASH();
858  }
859  if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
860    MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
861    CRASH();
862  }
863
864  // Compute the size classes we want to use
865  size_t sc = 1;   // Next size class to assign
866  unsigned char alignshift = kAlignShift;
867  int last_lg = -1;
868  for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
869    int lg = LgFloor(size);
870    if (lg > last_lg) {
871      // Increase alignment every so often.
872      //
873      // Since we double the alignment every time size doubles and
874      // size >= 128, this means that space wasted due to alignment is
875      // at most 16/128 i.e., 12.5%.  Plus we cap the alignment at 256
876      // bytes, so the space wasted as a percentage starts falling for
877      // sizes > 2K.
878      if ((lg >= 7) && (alignshift < 8)) {
879        alignshift++;
880      }
881      last_lg = lg;
882    }
883
884    // Allocate enough pages so leftover is less than 1/8 of total.
885    // This bounds wasted space to at most 12.5%.
886    size_t psize = kPageSize;
887    while ((psize % size) > (psize >> 3)) {
888      psize += kPageSize;
889    }
890    const size_t my_pages = psize >> kPageShift;
891
892    if (sc > 1 && my_pages == class_to_pages[sc-1]) {
893      // See if we can merge this into the previous class without
894      // increasing the fragmentation of the previous class.
895      const size_t my_objects = (my_pages << kPageShift) / size;
896      const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
897                                  / class_to_size[sc-1];
898      if (my_objects == prev_objects) {
899        // Adjust last class to include this size
900        class_to_size[sc-1] = size;
901        continue;
902      }
903    }
904
905    // Add new class
906    class_to_pages[sc] = my_pages;
907    class_to_size[sc] = size;
908    sc++;
909  }
910  if (sc != kNumClasses) {
911    MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
912            sc, int(kNumClasses));
913    CRASH();
914  }
915
916  // Initialize the mapping arrays
917  int next_size = 0;
918  for (unsigned char c = 1; c < kNumClasses; c++) {
919    const size_t max_size_in_class = class_to_size[c];
920    for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
921      class_array[ClassIndex(s)] = c;
922    }
923    next_size = static_cast<int>(max_size_in_class + kAlignment);
924  }
925
926  // Double-check sizes just to be safe
927  for (size_t size = 0; size <= kMaxSize; size++) {
928    const size_t sc = SizeClass(size);
929    if (sc == 0) {
930      MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
931      CRASH();
932    }
933    if (sc > 1 && size <= class_to_size[sc-1]) {
934      MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
935              "\n", sc, size);
936      CRASH();
937    }
938    if (sc >= kNumClasses) {
939      MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
940      CRASH();
941    }
942    const size_t s = class_to_size[sc];
943    if (size > s) {
944     MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
945      CRASH();
946    }
947    if (s == 0) {
948      MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
949      CRASH();
950    }
951  }
952
953  // Initialize the num_objects_to_move array.
954  for (size_t cl = 1; cl  < kNumClasses; ++cl) {
955    num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
956  }
957
958#ifndef WTF_CHANGES
959  if (false) {
960    // Dump class sizes and maximum external wastage per size class
961    for (size_t cl = 1; cl  < kNumClasses; ++cl) {
962      const int alloc_size = class_to_pages[cl] << kPageShift;
963      const int alloc_objs = alloc_size / class_to_size[cl];
964      const int min_used = (class_to_size[cl-1] + 1) * alloc_objs;
965      const int max_waste = alloc_size - min_used;
966      MESSAGE("SC %3d [ %8d .. %8d ] from %8d ; %2.0f%% maxwaste\n",
967              int(cl),
968              int(class_to_size[cl-1] + 1),
969              int(class_to_size[cl]),
970              int(class_to_pages[cl] << kPageShift),
971              max_waste * 100.0 / alloc_size
972              );
973    }
974  }
975#endif
976}
977
978// -------------------------------------------------------------------------
979// Simple allocator for objects of a specified type.  External locking
980// is required before accessing one of these objects.
981// -------------------------------------------------------------------------
982
983// Metadata allocator -- keeps stats about how many bytes allocated
984static uint64_t metadata_system_bytes = 0;
985static void* MetaDataAlloc(size_t bytes) {
986  void* result = TCMalloc_SystemAlloc(bytes, 0);
987  if (result != NULL) {
988    metadata_system_bytes += bytes;
989  }
990  return result;
991}
992
993template <class T>
994class PageHeapAllocator {
995 private:
996  // How much to allocate from system at a time
997  static const size_t kAllocIncrement = 32 << 10;
998
999  // Aligned size of T
1000  static const size_t kAlignedSize
1001  = (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
1002
1003  // Free area from which to carve new objects
1004  char* free_area_;
1005  size_t free_avail_;
1006
1007  // Linked list of all regions allocated by this allocator
1008  void* allocated_regions_;
1009
1010  // Free list of already carved objects
1011  void* free_list_;
1012
1013  // Number of allocated but unfreed objects
1014  int inuse_;
1015
1016 public:
1017  void Init() {
1018    ASSERT(kAlignedSize <= kAllocIncrement);
1019    inuse_ = 0;
1020    allocated_regions_ = 0;
1021    free_area_ = NULL;
1022    free_avail_ = 0;
1023    free_list_ = NULL;
1024  }
1025
1026  T* New() {
1027    // Consult free list
1028    void* result;
1029    if (free_list_ != NULL) {
1030      result = free_list_;
1031      free_list_ = *(reinterpret_cast<void**>(result));
1032    } else {
1033      if (free_avail_ < kAlignedSize) {
1034        // Need more room
1035        char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
1036        if (!new_allocation)
1037          CRASH();
1038
1039        *reinterpret_cast_ptr<void**>(new_allocation) = allocated_regions_;
1040        allocated_regions_ = new_allocation;
1041        free_area_ = new_allocation + kAlignedSize;
1042        free_avail_ = kAllocIncrement - kAlignedSize;
1043      }
1044      result = free_area_;
1045      free_area_ += kAlignedSize;
1046      free_avail_ -= kAlignedSize;
1047    }
1048    inuse_++;
1049    return reinterpret_cast<T*>(result);
1050  }
1051
1052  void Delete(T* p) {
1053    *(reinterpret_cast<void**>(p)) = free_list_;
1054    free_list_ = p;
1055    inuse_--;
1056  }
1057
1058  int inuse() const { return inuse_; }
1059
1060#if defined(WTF_CHANGES) && OS(DARWIN)
1061  template <class Recorder>
1062  void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
1063  {
1064      for (void* adminAllocation = allocated_regions_; adminAllocation; adminAllocation = reader.nextEntryInLinkedList(reinterpret_cast<void**>(adminAllocation)))
1065          recorder.recordRegion(reinterpret_cast<vm_address_t>(adminAllocation), kAllocIncrement);
1066  }
1067#endif
1068};
1069
1070// -------------------------------------------------------------------------
1071// Span - a contiguous run of pages
1072// -------------------------------------------------------------------------
1073
1074// Type that can hold a page number
1075typedef uintptr_t PageID;
1076
1077// Type that can hold the length of a run of pages
1078typedef uintptr_t Length;
1079
1080static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
1081
1082// Convert byte size into pages.  This won't overflow, but may return
1083// an unreasonably large value if bytes is huge enough.
1084static inline Length pages(size_t bytes) {
1085  return (bytes >> kPageShift) +
1086      ((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
1087}
1088
1089// Convert a user size into the number of bytes that will actually be
1090// allocated
1091static size_t AllocationSize(size_t bytes) {
1092  if (bytes > kMaxSize) {
1093    // Large object: we allocate an integral number of pages
1094    ASSERT(bytes <= (kMaxValidPages << kPageShift));
1095    return pages(bytes) << kPageShift;
1096  } else {
1097    // Small object: find the size class to which it belongs
1098    return ByteSizeForClass(SizeClass(bytes));
1099  }
1100}
1101
1102// Information kept for a span (a contiguous run of pages).
1103struct Span {
1104  PageID        start;          // Starting page number
1105  Length        length;         // Number of pages in span
1106  Span*         next;           // Used when in link list
1107  Span*         prev;           // Used when in link list
1108  void*         objects;        // Linked list of free objects
1109  unsigned int  free : 1;       // Is the span free
1110#ifndef NO_TCMALLOC_SAMPLES
1111  unsigned int  sample : 1;     // Sampled object?
1112#endif
1113  unsigned int  sizeclass : 8;  // Size-class for small objects (or 0)
1114  unsigned int  refcount : 11;  // Number of non-free objects
1115  bool decommitted : 1;
1116
1117#undef SPAN_HISTORY
1118#ifdef SPAN_HISTORY
1119  // For debugging, we can keep a log events per span
1120  int nexthistory;
1121  char history[64];
1122  int value[64];
1123#endif
1124};
1125
1126#define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
1127
1128#ifdef SPAN_HISTORY
1129void Event(Span* span, char op, int v = 0) {
1130  span->history[span->nexthistory] = op;
1131  span->value[span->nexthistory] = v;
1132  span->nexthistory++;
1133  if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
1134}
1135#else
1136#define Event(s,o,v) ((void) 0)
1137#endif
1138
1139// Allocator/deallocator for spans
1140static PageHeapAllocator<Span> span_allocator;
1141static Span* NewSpan(PageID p, Length len) {
1142  Span* result = span_allocator.New();
1143  memset(result, 0, sizeof(*result));
1144  result->start = p;
1145  result->length = len;
1146#ifdef SPAN_HISTORY
1147  result->nexthistory = 0;
1148#endif
1149  return result;
1150}
1151
1152static inline void DeleteSpan(Span* span) {
1153#ifndef NDEBUG
1154  // In debug mode, trash the contents of deleted Spans
1155  memset(span, 0x3f, sizeof(*span));
1156#endif
1157  span_allocator.Delete(span);
1158}
1159
1160// -------------------------------------------------------------------------
1161// Doubly linked list of spans.
1162// -------------------------------------------------------------------------
1163
1164static inline void DLL_Init(Span* list) {
1165  list->next = list;
1166  list->prev = list;
1167}
1168
1169static inline void DLL_Remove(Span* span) {
1170  span->prev->next = span->next;
1171  span->next->prev = span->prev;
1172  span->prev = NULL;
1173  span->next = NULL;
1174}
1175
1176static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
1177  return list->next == list;
1178}
1179
1180static int DLL_Length(const Span* list) {
1181  int result = 0;
1182  for (Span* s = list->next; s != list; s = s->next) {
1183    result++;
1184  }
1185  return result;
1186}
1187
1188#if 0 /* Not needed at the moment -- causes compiler warnings if not used */
1189static void DLL_Print(const char* label, const Span* list) {
1190  MESSAGE("%-10s %p:", label, list);
1191  for (const Span* s = list->next; s != list; s = s->next) {
1192    MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
1193  }
1194  MESSAGE("\n");
1195}
1196#endif
1197
1198static inline void DLL_Prepend(Span* list, Span* span) {
1199  ASSERT(span->next == NULL);
1200  ASSERT(span->prev == NULL);
1201  span->next = list->next;
1202  span->prev = list;
1203  list->next->prev = span;
1204  list->next = span;
1205}
1206
1207// -------------------------------------------------------------------------
1208// Stack traces kept for sampled allocations
1209//   The following state is protected by pageheap_lock_.
1210// -------------------------------------------------------------------------
1211
1212// size/depth are made the same size as a pointer so that some generic
1213// code below can conveniently cast them back and forth to void*.
1214static const int kMaxStackDepth = 31;
1215struct StackTrace {
1216  uintptr_t size;          // Size of object
1217  uintptr_t depth;         // Number of PC values stored in array below
1218  void*     stack[kMaxStackDepth];
1219};
1220static PageHeapAllocator<StackTrace> stacktrace_allocator;
1221static Span sampled_objects;
1222
1223// -------------------------------------------------------------------------
1224// Map from page-id to per-page data
1225// -------------------------------------------------------------------------
1226
1227// We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
1228// We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
1229// because sometimes the sizeclass is all the information we need.
1230
1231// Selector class -- general selector uses 3-level map
1232template <int BITS> class MapSelector {
1233 public:
1234  typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
1235  typedef PackedCache<BITS, uint64_t> CacheType;
1236};
1237
1238#if defined(WTF_CHANGES)
1239#if CPU(X86_64)
1240// On all known X86-64 platforms, the upper 16 bits are always unused and therefore
1241// can be excluded from the PageMap key.
1242// See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
1243
1244static const size_t kBitsUnusedOn64Bit = 16;
1245#else
1246static const size_t kBitsUnusedOn64Bit = 0;
1247#endif
1248
1249// A three-level map for 64-bit machines
1250template <> class MapSelector<64> {
1251 public:
1252  typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
1253  typedef PackedCache<64, uint64_t> CacheType;
1254};
1255#endif
1256
1257// A two-level map for 32-bit machines
1258template <> class MapSelector<32> {
1259 public:
1260  typedef TCMalloc_PageMap2<32 - kPageShift> Type;
1261  typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
1262};
1263
1264// -------------------------------------------------------------------------
1265// Page-level allocator
1266//  * Eager coalescing
1267//
1268// Heap for page-level allocation.  We allow allocating and freeing a
1269// contiguous runs of pages (called a "span").
1270// -------------------------------------------------------------------------
1271
1272#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1273// The page heap maintains a free list for spans that are no longer in use by
1274// the central cache or any thread caches. We use a background thread to
1275// periodically scan the free list and release a percentage of it back to the OS.
1276
1277// If free_committed_pages_ exceeds kMinimumFreeCommittedPageCount, the
1278// background thread:
1279//     - wakes up
1280//     - pauses for kScavengeDelayInSeconds
1281//     - returns to the OS a percentage of the memory that remained unused during
1282//       that pause (kScavengePercentage * min_free_committed_pages_since_last_scavenge_)
1283// The goal of this strategy is to reduce memory pressure in a timely fashion
1284// while avoiding thrashing the OS allocator.
1285
1286// Time delay before the page heap scavenger will consider returning pages to
1287// the OS.
1288static const int kScavengeDelayInSeconds = 2;
1289
1290// Approximate percentage of free committed pages to return to the OS in one
1291// scavenge.
1292static const float kScavengePercentage = .5f;
1293
1294// number of span lists to keep spans in when memory is returned.
1295static const int kMinSpanListsWithSpans = 32;
1296
1297// Number of free committed pages that we want to keep around.  The minimum number of pages used when there
1298// is 1 span in each of the first kMinSpanListsWithSpans spanlists.  Currently 528 pages.
1299static const size_t kMinimumFreeCommittedPageCount = kMinSpanListsWithSpans * ((1.0f+kMinSpanListsWithSpans) / 2.0f);
1300
1301#endif
1302
1303class TCMalloc_PageHeap {
1304 public:
1305  void init();
1306
1307  // Allocate a run of "n" pages.  Returns zero if out of memory.
1308  Span* New(Length n);
1309
1310  // Delete the span "[p, p+n-1]".
1311  // REQUIRES: span was returned by earlier call to New() and
1312  //           has not yet been deleted.
1313  void Delete(Span* span);
1314
1315  // Mark an allocated span as being used for small objects of the
1316  // specified size-class.
1317  // REQUIRES: span was returned by an earlier call to New()
1318  //           and has not yet been deleted.
1319  void RegisterSizeClass(Span* span, size_t sc);
1320
1321  // Split an allocated span into two spans: one of length "n" pages
1322  // followed by another span of length "span->length - n" pages.
1323  // Modifies "*span" to point to the first span of length "n" pages.
1324  // Returns a pointer to the second span.
1325  //
1326  // REQUIRES: "0 < n < span->length"
1327  // REQUIRES: !span->free
1328  // REQUIRES: span->sizeclass == 0
1329  Span* Split(Span* span, Length n);
1330
1331  // Return the descriptor for the specified page.
1332  inline Span* GetDescriptor(PageID p) const {
1333    return reinterpret_cast<Span*>(pagemap_.get(p));
1334  }
1335
1336#ifdef WTF_CHANGES
1337  inline Span* GetDescriptorEnsureSafe(PageID p)
1338  {
1339      pagemap_.Ensure(p, 1);
1340      return GetDescriptor(p);
1341  }
1342
1343  size_t ReturnedBytes() const;
1344#endif
1345
1346  // Dump state to stderr
1347#ifndef WTF_CHANGES
1348  void Dump(TCMalloc_Printer* out);
1349#endif
1350
1351  // Return number of bytes allocated from system
1352  inline uint64_t SystemBytes() const { return system_bytes_; }
1353
1354  // Return number of free bytes in heap
1355  uint64_t FreeBytes() const {
1356    return (static_cast<uint64_t>(free_pages_) << kPageShift);
1357  }
1358
1359  bool Check();
1360  bool CheckList(Span* list, Length min_pages, Length max_pages);
1361
1362  // Release all pages on the free list for reuse by the OS:
1363  void ReleaseFreePages();
1364
1365  // Return 0 if we have no information, or else the correct sizeclass for p.
1366  // Reads and writes to pagemap_cache_ do not require locking.
1367  // The entries are 64 bits on 64-bit hardware and 16 bits on
1368  // 32-bit hardware, and we don't mind raciness as long as each read of
1369  // an entry yields a valid entry, not a partially updated entry.
1370  size_t GetSizeClassIfCached(PageID p) const {
1371    return pagemap_cache_.GetOrDefault(p, 0);
1372  }
1373  void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
1374
1375 private:
1376  // Pick the appropriate map and cache types based on pointer size
1377  typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
1378  typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
1379  PageMap pagemap_;
1380  mutable PageMapCache pagemap_cache_;
1381
1382  // We segregate spans of a given size into two circular linked
1383  // lists: one for normal spans, and one for spans whose memory
1384  // has been returned to the system.
1385  struct SpanList {
1386    Span        normal;
1387    Span        returned;
1388  };
1389
1390  // List of free spans of length >= kMaxPages
1391  SpanList large_;
1392
1393  // Array mapping from span length to a doubly linked list of free spans
1394  SpanList free_[kMaxPages];
1395
1396  // Number of pages kept in free lists
1397  uintptr_t free_pages_;
1398
1399  // Bytes allocated from system
1400  uint64_t system_bytes_;
1401
1402#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1403  // Number of pages kept in free lists that are still committed.
1404  Length free_committed_pages_;
1405
1406  // Minimum number of free committed pages since last scavenge. (Can be 0 if
1407  // we've committed new pages since the last scavenge.)
1408  Length min_free_committed_pages_since_last_scavenge_;
1409#endif
1410
1411  bool GrowHeap(Length n);
1412
1413  // REQUIRES   span->length >= n
1414  // Remove span from its free list, and move any leftover part of
1415  // span into appropriate free lists.  Also update "span" to have
1416  // length exactly "n" and mark it as non-free so it can be returned
1417  // to the client.
1418  //
1419  // "released" is true iff "span" was found on a "returned" list.
1420  void Carve(Span* span, Length n, bool released);
1421
1422  void RecordSpan(Span* span) {
1423    pagemap_.set(span->start, span);
1424    if (span->length > 1) {
1425      pagemap_.set(span->start + span->length - 1, span);
1426    }
1427  }
1428
1429    // Allocate a large span of length == n.  If successful, returns a
1430  // span of exactly the specified length.  Else, returns NULL.
1431  Span* AllocLarge(Length n);
1432
1433#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1434  // Incrementally release some memory to the system.
1435  // IncrementalScavenge(n) is called whenever n pages are freed.
1436  void IncrementalScavenge(Length n);
1437#endif
1438
1439  // Number of pages to deallocate before doing more scavenging
1440  int64_t scavenge_counter_;
1441
1442  // Index of last free list we scavenged
1443  size_t scavenge_index_;
1444
1445#if defined(WTF_CHANGES) && OS(DARWIN)
1446  friend class FastMallocZone;
1447#endif
1448
1449#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1450  void initializeScavenger();
1451  ALWAYS_INLINE void signalScavenger();
1452  void scavenge();
1453  ALWAYS_INLINE bool shouldScavenge() const;
1454
1455#if HAVE(DISPATCH_H) || OS(WINDOWS)
1456  void periodicScavenge();
1457  ALWAYS_INLINE bool isScavengerSuspended();
1458  ALWAYS_INLINE void scheduleScavenger();
1459  ALWAYS_INLINE void rescheduleScavenger();
1460  ALWAYS_INLINE void suspendScavenger();
1461#endif
1462
1463#if HAVE(DISPATCH_H)
1464  dispatch_queue_t m_scavengeQueue;
1465  dispatch_source_t m_scavengeTimer;
1466  bool m_scavengingSuspended;
1467#elif OS(WINDOWS)
1468  static void CALLBACK scavengerTimerFired(void*, BOOLEAN);
1469  HANDLE m_scavengeQueueTimer;
1470#else
1471  static NO_RETURN_WITH_VALUE void* runScavengerThread(void*);
1472  NO_RETURN void scavengerThread();
1473
1474  // Keeps track of whether the background thread is actively scavenging memory every kScavengeDelayInSeconds, or
1475  // it's blocked waiting for more pages to be deleted.
1476  bool m_scavengeThreadActive;
1477
1478  pthread_mutex_t m_scavengeMutex;
1479  pthread_cond_t m_scavengeCondition;
1480#endif
1481
1482#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1483};
1484
1485void TCMalloc_PageHeap::init()
1486{
1487  pagemap_.init(MetaDataAlloc);
1488  pagemap_cache_ = PageMapCache(0);
1489  free_pages_ = 0;
1490  system_bytes_ = 0;
1491
1492#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1493  free_committed_pages_ = 0;
1494  min_free_committed_pages_since_last_scavenge_ = 0;
1495#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1496
1497  scavenge_counter_ = 0;
1498  // Start scavenging at kMaxPages list
1499  scavenge_index_ = kMaxPages-1;
1500  COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
1501  DLL_Init(&large_.normal);
1502  DLL_Init(&large_.returned);
1503  for (size_t i = 0; i < kMaxPages; i++) {
1504    DLL_Init(&free_[i].normal);
1505    DLL_Init(&free_[i].returned);
1506  }
1507
1508#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1509  initializeScavenger();
1510#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1511}
1512
1513#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1514
1515#if HAVE(DISPATCH_H)
1516
1517void TCMalloc_PageHeap::initializeScavenger()
1518{
1519    m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger", NULL);
1520    m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue);
1521    dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, kScavengeDelayInSeconds * NSEC_PER_SEC);
1522    dispatch_source_set_timer(m_scavengeTimer, startTime, kScavengeDelayInSeconds * NSEC_PER_SEC, 1000 * NSEC_PER_USEC);
1523    dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); });
1524    m_scavengingSuspended = true;
1525}
1526
1527ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
1528{
1529    ASSERT(IsHeld(pageheap_lock));
1530    return m_scavengingSuspended;
1531}
1532
1533ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
1534{
1535    ASSERT(IsHeld(pageheap_lock));
1536    m_scavengingSuspended = false;
1537    dispatch_resume(m_scavengeTimer);
1538}
1539
1540ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
1541{
1542    // Nothing to do here for libdispatch.
1543}
1544
1545ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
1546{
1547    ASSERT(IsHeld(pageheap_lock));
1548    m_scavengingSuspended = true;
1549    dispatch_suspend(m_scavengeTimer);
1550}
1551
1552#elif OS(WINDOWS)
1553
1554void TCMalloc_PageHeap::scavengerTimerFired(void* context, BOOLEAN)
1555{
1556    static_cast<TCMalloc_PageHeap*>(context)->periodicScavenge();
1557}
1558
1559void TCMalloc_PageHeap::initializeScavenger()
1560{
1561    m_scavengeQueueTimer = 0;
1562}
1563
1564ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
1565{
1566    ASSERT(IsHeld(pageheap_lock));
1567    return !m_scavengeQueueTimer;
1568}
1569
1570ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
1571{
1572    // We need to use WT_EXECUTEONLYONCE here and reschedule the timer, because
1573    // Windows will fire the timer event even when the function is already running.
1574    ASSERT(IsHeld(pageheap_lock));
1575    CreateTimerQueueTimer(&m_scavengeQueueTimer, 0, scavengerTimerFired, this, kScavengeDelayInSeconds * 1000, 0, WT_EXECUTEONLYONCE);
1576}
1577
1578ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
1579{
1580    // We must delete the timer and create it again, because it is not possible to retrigger a timer on Windows.
1581    suspendScavenger();
1582    scheduleScavenger();
1583}
1584
1585ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
1586{
1587    ASSERT(IsHeld(pageheap_lock));
1588    HANDLE scavengeQueueTimer = m_scavengeQueueTimer;
1589    m_scavengeQueueTimer = 0;
1590    DeleteTimerQueueTimer(0, scavengeQueueTimer, 0);
1591}
1592
1593#else
1594
1595void TCMalloc_PageHeap::initializeScavenger()
1596{
1597    // Create a non-recursive mutex.
1598#if !defined(PTHREAD_MUTEX_NORMAL) || PTHREAD_MUTEX_NORMAL == PTHREAD_MUTEX_DEFAULT
1599    pthread_mutex_init(&m_scavengeMutex, 0);
1600#else
1601    pthread_mutexattr_t attr;
1602    pthread_mutexattr_init(&attr);
1603    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
1604
1605    pthread_mutex_init(&m_scavengeMutex, &attr);
1606
1607    pthread_mutexattr_destroy(&attr);
1608#endif
1609
1610    pthread_cond_init(&m_scavengeCondition, 0);
1611    m_scavengeThreadActive = true;
1612    pthread_t thread;
1613    pthread_create(&thread, 0, runScavengerThread, this);
1614}
1615
1616void* TCMalloc_PageHeap::runScavengerThread(void* context)
1617{
1618    static_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
1619#if (COMPILER(MSVC) || COMPILER(SUNCC))
1620    // Without this, Visual Studio and Sun Studio will complain that this method does not return a value.
1621    return 0;
1622#endif
1623}
1624
1625ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
1626{
1627    // m_scavengeMutex should be held before accessing m_scavengeThreadActive.
1628    ASSERT(pthread_mutex_trylock(m_scavengeMutex));
1629    if (!m_scavengeThreadActive && shouldScavenge())
1630        pthread_cond_signal(&m_scavengeCondition);
1631}
1632
1633#endif
1634
1635void TCMalloc_PageHeap::scavenge()
1636{
1637    size_t pagesToRelease = min_free_committed_pages_since_last_scavenge_ * kScavengePercentage;
1638    size_t targetPageCount = std::max<size_t>(kMinimumFreeCommittedPageCount, free_committed_pages_ - pagesToRelease);
1639
1640    while (free_committed_pages_ > targetPageCount) {
1641        for (int i = kMaxPages; i > 0 && free_committed_pages_ >= targetPageCount; i--) {
1642            SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
1643            // If the span size is bigger than kMinSpanListsWithSpans pages return all the spans in the list, else return all but 1 span.
1644            // Return only 50% of a spanlist at a time so spans of size 1 are not the only ones left.
1645            size_t length = DLL_Length(&slist->normal);
1646            size_t numSpansToReturn = (i > kMinSpanListsWithSpans) ? length : length / 2;
1647            for (int j = 0; static_cast<size_t>(j) < numSpansToReturn && !DLL_IsEmpty(&slist->normal) && free_committed_pages_ > targetPageCount; j++) {
1648                Span* s = slist->normal.prev;
1649                DLL_Remove(s);
1650                ASSERT(!s->decommitted);
1651                if (!s->decommitted) {
1652                    TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1653                                           static_cast<size_t>(s->length << kPageShift));
1654                    ASSERT(free_committed_pages_ >= s->length);
1655                    free_committed_pages_ -= s->length;
1656                    s->decommitted = true;
1657                }
1658                DLL_Prepend(&slist->returned, s);
1659            }
1660        }
1661    }
1662
1663    min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1664}
1665
1666ALWAYS_INLINE bool TCMalloc_PageHeap::shouldScavenge() const
1667{
1668    return free_committed_pages_ > kMinimumFreeCommittedPageCount;
1669}
1670
1671#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1672
1673inline Span* TCMalloc_PageHeap::New(Length n) {
1674  ASSERT(Check());
1675  ASSERT(n > 0);
1676
1677  // Find first size >= n that has a non-empty list
1678  for (Length s = n; s < kMaxPages; s++) {
1679    Span* ll = NULL;
1680    bool released = false;
1681    if (!DLL_IsEmpty(&free_[s].normal)) {
1682      // Found normal span
1683      ll = &free_[s].normal;
1684    } else if (!DLL_IsEmpty(&free_[s].returned)) {
1685      // Found returned span; reallocate it
1686      ll = &free_[s].returned;
1687      released = true;
1688    } else {
1689      // Keep looking in larger classes
1690      continue;
1691    }
1692
1693    Span* result = ll->next;
1694    Carve(result, n, released);
1695#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1696    // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
1697    // free committed pages count.
1698    ASSERT(free_committed_pages_ >= n);
1699    free_committed_pages_ -= n;
1700    if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
1701      min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1702#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1703    ASSERT(Check());
1704    free_pages_ -= n;
1705    return result;
1706  }
1707
1708  Span* result = AllocLarge(n);
1709  if (result != NULL) {
1710      ASSERT_SPAN_COMMITTED(result);
1711      return result;
1712  }
1713
1714  // Grow the heap and try again
1715  if (!GrowHeap(n)) {
1716    ASSERT(Check());
1717    return NULL;
1718  }
1719
1720  return AllocLarge(n);
1721}
1722
1723Span* TCMalloc_PageHeap::AllocLarge(Length n) {
1724  // find the best span (closest to n in size).
1725  // The following loops implements address-ordered best-fit.
1726  bool from_released = false;
1727  Span *best = NULL;
1728
1729  // Search through normal list
1730  for (Span* span = large_.normal.next;
1731       span != &large_.normal;
1732       span = span->next) {
1733    if (span->length >= n) {
1734      if ((best == NULL)
1735          || (span->length < best->length)
1736          || ((span->length == best->length) && (span->start < best->start))) {
1737        best = span;
1738        from_released = false;
1739      }
1740    }
1741  }
1742
1743  // Search through released list in case it has a better fit
1744  for (Span* span = large_.returned.next;
1745       span != &large_.returned;
1746       span = span->next) {
1747    if (span->length >= n) {
1748      if ((best == NULL)
1749          || (span->length < best->length)
1750          || ((span->length == best->length) && (span->start < best->start))) {
1751        best = span;
1752        from_released = true;
1753      }
1754    }
1755  }
1756
1757  if (best != NULL) {
1758    Carve(best, n, from_released);
1759#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1760    // The newly allocated memory is from a span that's in the normal span list (already committed).  Update the
1761    // free committed pages count.
1762    ASSERT(free_committed_pages_ >= n);
1763    free_committed_pages_ -= n;
1764    if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
1765      min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1766#endif  // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1767    ASSERT(Check());
1768    free_pages_ -= n;
1769    return best;
1770  }
1771  return NULL;
1772}
1773
1774Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
1775  ASSERT(0 < n);
1776  ASSERT(n < span->length);
1777  ASSERT(!span->free);
1778  ASSERT(span->sizeclass == 0);
1779  Event(span, 'T', n);
1780
1781  const Length extra = span->length - n;
1782  Span* leftover = NewSpan(span->start + n, extra);
1783  Event(leftover, 'U', extra);
1784  RecordSpan(leftover);
1785  pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
1786  span->length = n;
1787
1788  return leftover;
1789}
1790
1791inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
1792  ASSERT(n > 0);
1793  DLL_Remove(span);
1794  span->free = 0;
1795  Event(span, 'A', n);
1796
1797  if (released) {
1798    // If the span chosen to carve from is decommited, commit the entire span at once to avoid committing spans 1 page at a time.
1799    ASSERT(span->decommitted);
1800    TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift), static_cast<size_t>(span->length << kPageShift));
1801    span->decommitted = false;
1802#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1803    free_committed_pages_ += span->length;
1804#endif
1805  }
1806
1807  const int extra = static_cast<int>(span->length - n);
1808  ASSERT(extra >= 0);
1809  if (extra > 0) {
1810    Span* leftover = NewSpan(span->start + n, extra);
1811    leftover->free = 1;
1812    leftover->decommitted = false;
1813    Event(leftover, 'S', extra);
1814    RecordSpan(leftover);
1815
1816    // Place leftover span on appropriate free list
1817    SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
1818    Span* dst = &listpair->normal;
1819    DLL_Prepend(dst, leftover);
1820
1821    span->length = n;
1822    pagemap_.set(span->start + n - 1, span);
1823  }
1824}
1825
1826static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
1827{
1828    if (destination->decommitted && !other->decommitted) {
1829        TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
1830                               static_cast<size_t>(other->length << kPageShift));
1831    } else if (other->decommitted && !destination->decommitted) {
1832        TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
1833                               static_cast<size_t>(destination->length << kPageShift));
1834        destination->decommitted = true;
1835    }
1836}
1837
1838inline void TCMalloc_PageHeap::Delete(Span* span) {
1839  ASSERT(Check());
1840  ASSERT(!span->free);
1841  ASSERT(span->length > 0);
1842  ASSERT(GetDescriptor(span->start) == span);
1843  ASSERT(GetDescriptor(span->start + span->length - 1) == span);
1844  span->sizeclass = 0;
1845#ifndef NO_TCMALLOC_SAMPLES
1846  span->sample = 0;
1847#endif
1848
1849  // Coalesce -- we guarantee that "p" != 0, so no bounds checking
1850  // necessary.  We do not bother resetting the stale pagemap
1851  // entries for the pieces we are merging together because we only
1852  // care about the pagemap entries for the boundaries.
1853#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1854  // Track the total size of the neighboring free spans that are committed.
1855  Length neighboringCommittedSpansLength = 0;
1856#endif
1857  const PageID p = span->start;
1858  const Length n = span->length;
1859  Span* prev = GetDescriptor(p-1);
1860  if (prev != NULL && prev->free) {
1861    // Merge preceding span into this span
1862    ASSERT(prev->start + prev->length == p);
1863    const Length len = prev->length;
1864#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1865    if (!prev->decommitted)
1866        neighboringCommittedSpansLength += len;
1867#endif
1868    mergeDecommittedStates(span, prev);
1869    DLL_Remove(prev);
1870    DeleteSpan(prev);
1871    span->start -= len;
1872    span->length += len;
1873    pagemap_.set(span->start, span);
1874    Event(span, 'L', len);
1875  }
1876  Span* next = GetDescriptor(p+n);
1877  if (next != NULL && next->free) {
1878    // Merge next span into this span
1879    ASSERT(next->start == p+n);
1880    const Length len = next->length;
1881#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1882    if (!next->decommitted)
1883        neighboringCommittedSpansLength += len;
1884#endif
1885    mergeDecommittedStates(span, next);
1886    DLL_Remove(next);
1887    DeleteSpan(next);
1888    span->length += len;
1889    pagemap_.set(span->start + span->length - 1, span);
1890    Event(span, 'R', len);
1891  }
1892
1893  Event(span, 'D', span->length);
1894  span->free = 1;
1895  if (span->decommitted) {
1896    if (span->length < kMaxPages)
1897      DLL_Prepend(&free_[span->length].returned, span);
1898    else
1899      DLL_Prepend(&large_.returned, span);
1900  } else {
1901    if (span->length < kMaxPages)
1902      DLL_Prepend(&free_[span->length].normal, span);
1903    else
1904      DLL_Prepend(&large_.normal, span);
1905  }
1906  free_pages_ += n;
1907
1908#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1909  if (span->decommitted) {
1910      // If the merged span is decommitted, that means we decommitted any neighboring spans that were
1911      // committed.  Update the free committed pages count.
1912      free_committed_pages_ -= neighboringCommittedSpansLength;
1913      if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
1914            min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
1915  } else {
1916      // If the merged span remains committed, add the deleted span's size to the free committed pages count.
1917      free_committed_pages_ += n;
1918  }
1919
1920  // Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
1921  signalScavenger();
1922#else
1923  IncrementalScavenge(n);
1924#endif
1925
1926  ASSERT(Check());
1927}
1928
1929#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
1930void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
1931  // Fast path; not yet time to release memory
1932  scavenge_counter_ -= n;
1933  if (scavenge_counter_ >= 0) return;  // Not yet time to scavenge
1934
1935  // If there is nothing to release, wait for so many pages before
1936  // scavenging again.  With 4K pages, this comes to 16MB of memory.
1937  static const size_t kDefaultReleaseDelay = 1 << 8;
1938
1939  // Find index of free list to scavenge
1940  size_t index = scavenge_index_ + 1;
1941  for (size_t i = 0; i < kMaxPages+1; i++) {
1942    if (index > kMaxPages) index = 0;
1943    SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
1944    if (!DLL_IsEmpty(&slist->normal)) {
1945      // Release the last span on the normal portion of this list
1946      Span* s = slist->normal.prev;
1947      DLL_Remove(s);
1948      TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
1949                             static_cast<size_t>(s->length << kPageShift));
1950      s->decommitted = true;
1951      DLL_Prepend(&slist->returned, s);
1952
1953      scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
1954
1955      if (index == kMaxPages && !DLL_IsEmpty(&slist->normal))
1956        scavenge_index_ = index - 1;
1957      else
1958        scavenge_index_ = index;
1959      return;
1960    }
1961    index++;
1962  }
1963
1964  // Nothing to scavenge, delay for a while
1965  scavenge_counter_ = kDefaultReleaseDelay;
1966}
1967#endif
1968
1969void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
1970  // Associate span object with all interior pages as well
1971  ASSERT(!span->free);
1972  ASSERT(GetDescriptor(span->start) == span);
1973  ASSERT(GetDescriptor(span->start+span->length-1) == span);
1974  Event(span, 'C', sc);
1975  span->sizeclass = static_cast<unsigned int>(sc);
1976  for (Length i = 1; i < span->length-1; i++) {
1977    pagemap_.set(span->start+i, span);
1978  }
1979}
1980
1981#ifdef WTF_CHANGES
1982size_t TCMalloc_PageHeap::ReturnedBytes() const {
1983    size_t result = 0;
1984    for (unsigned s = 0; s < kMaxPages; s++) {
1985        const int r_length = DLL_Length(&free_[s].returned);
1986        unsigned r_pages = s * r_length;
1987        result += r_pages << kPageShift;
1988    }
1989
1990    for (Span* s = large_.returned.next; s != &large_.returned; s = s->next)
1991        result += s->length << kPageShift;
1992    return result;
1993}
1994#endif
1995
1996#ifndef WTF_CHANGES
1997static double PagesToMB(uint64_t pages) {
1998  return (pages << kPageShift) / 1048576.0;
1999}
2000
2001void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
2002  int nonempty_sizes = 0;
2003  for (int s = 0; s < kMaxPages; s++) {
2004    if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
2005      nonempty_sizes++;
2006    }
2007  }
2008  out->printf("------------------------------------------------\n");
2009  out->printf("PageHeap: %d sizes; %6.1f MB free\n",
2010              nonempty_sizes, PagesToMB(free_pages_));
2011  out->printf("------------------------------------------------\n");
2012  uint64_t total_normal = 0;
2013  uint64_t total_returned = 0;
2014  for (int s = 0; s < kMaxPages; s++) {
2015    const int n_length = DLL_Length(&free_[s].normal);
2016    const int r_length = DLL_Length(&free_[s].returned);
2017    if (n_length + r_length > 0) {
2018      uint64_t n_pages = s * n_length;
2019      uint64_t r_pages = s * r_length;
2020      total_normal += n_pages;
2021      total_returned += r_pages;
2022      out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
2023                  "; unmapped: %6.1f MB; %6.1f MB cum\n",
2024                  s,
2025                  (n_length + r_length),
2026                  PagesToMB(n_pages + r_pages),
2027                  PagesToMB(total_normal + total_returned),
2028                  PagesToMB(r_pages),
2029                  PagesToMB(total_returned));
2030    }
2031  }
2032
2033  uint64_t n_pages = 0;
2034  uint64_t r_pages = 0;
2035  int n_spans = 0;
2036  int r_spans = 0;
2037  out->printf("Normal large spans:\n");
2038  for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
2039    out->printf("   [ %6" PRIuS " pages ] %6.1f MB\n",
2040                s->length, PagesToMB(s->length));
2041    n_pages += s->length;
2042    n_spans++;
2043  }
2044  out->printf("Unmapped large spans:\n");
2045  for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
2046    out->printf("   [ %6" PRIuS " pages ] %6.1f MB\n",
2047                s->length, PagesToMB(s->length));
2048    r_pages += s->length;
2049    r_spans++;
2050  }
2051  total_normal += n_pages;
2052  total_returned += r_pages;
2053  out->printf(">255   large * %6u spans ~ %6.1f MB; %6.1f MB cum"
2054              "; unmapped: %6.1f MB; %6.1f MB cum\n",
2055              (n_spans + r_spans),
2056              PagesToMB(n_pages + r_pages),
2057              PagesToMB(total_normal + total_returned),
2058              PagesToMB(r_pages),
2059              PagesToMB(total_returned));
2060}
2061#endif
2062
2063bool TCMalloc_PageHeap::GrowHeap(Length n) {
2064  ASSERT(kMaxPages >= kMinSystemAlloc);
2065  if (n > kMaxValidPages) return false;
2066  Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
2067  size_t actual_size;
2068  void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
2069  if (ptr == NULL) {
2070    if (n < ask) {
2071      // Try growing just "n" pages
2072      ask = n;
2073      ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
2074    }
2075    if (ptr == NULL) return false;
2076  }
2077  ask = actual_size >> kPageShift;
2078
2079  uint64_t old_system_bytes = system_bytes_;
2080  system_bytes_ += (ask << kPageShift);
2081  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
2082  ASSERT(p > 0);
2083
2084  // If we have already a lot of pages allocated, just pre allocate a bunch of
2085  // memory for the page map. This prevents fragmentation by pagemap metadata
2086  // when a program keeps allocating and freeing large blocks.
2087
2088  if (old_system_bytes < kPageMapBigAllocationThreshold
2089      && system_bytes_ >= kPageMapBigAllocationThreshold) {
2090    pagemap_.PreallocateMoreMemory();
2091  }
2092
2093  // Make sure pagemap_ has entries for all of the new pages.
2094  // Plus ensure one before and one after so coalescing code
2095  // does not need bounds-checking.
2096  if (pagemap_.Ensure(p-1, ask+2)) {
2097    // Pretend the new area is allocated and then Delete() it to
2098    // cause any necessary coalescing to occur.
2099    //
2100    // We do not adjust free_pages_ here since Delete() will do it for us.
2101    Span* span = NewSpan(p, ask);
2102    RecordSpan(span);
2103    Delete(span);
2104    ASSERT(Check());
2105    return true;
2106  } else {
2107    // We could not allocate memory within "pagemap_"
2108    // TODO: Once we can return memory to the system, return the new span
2109    return false;
2110  }
2111}
2112
2113bool TCMalloc_PageHeap::Check() {
2114  ASSERT(free_[0].normal.next == &free_[0].normal);
2115  ASSERT(free_[0].returned.next == &free_[0].returned);
2116  CheckList(&large_.normal, kMaxPages, 1000000000);
2117  CheckList(&large_.returned, kMaxPages, 1000000000);
2118  for (Length s = 1; s < kMaxPages; s++) {
2119    CheckList(&free_[s].normal, s, s);
2120    CheckList(&free_[s].returned, s, s);
2121  }
2122  return true;
2123}
2124
2125#if ASSERT_DISABLED
2126bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
2127  return true;
2128}
2129#else
2130bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
2131  for (Span* s = list->next; s != list; s = s->next) {
2132    CHECK_CONDITION(s->free);
2133    CHECK_CONDITION(s->length >= min_pages);
2134    CHECK_CONDITION(s->length <= max_pages);
2135    CHECK_CONDITION(GetDescriptor(s->start) == s);
2136    CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
2137  }
2138  return true;
2139}
2140#endif
2141
2142static void ReleaseFreeList(Span* list, Span* returned) {
2143  // Walk backwards through list so that when we push these
2144  // spans on the "returned" list, we preserve the order.
2145  while (!DLL_IsEmpty(list)) {
2146    Span* s = list->prev;
2147    DLL_Remove(s);
2148    DLL_Prepend(returned, s);
2149    TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
2150                           static_cast<size_t>(s->length << kPageShift));
2151  }
2152}
2153
2154void TCMalloc_PageHeap::ReleaseFreePages() {
2155  for (Length s = 0; s < kMaxPages; s++) {
2156    ReleaseFreeList(&free_[s].normal, &free_[s].returned);
2157  }
2158  ReleaseFreeList(&large_.normal, &large_.returned);
2159  ASSERT(Check());
2160}
2161
2162//-------------------------------------------------------------------
2163// Free list
2164//-------------------------------------------------------------------
2165
2166class TCMalloc_ThreadCache_FreeList {
2167 private:
2168  void*    list_;       // Linked list of nodes
2169  uint16_t length_;     // Current length
2170  uint16_t lowater_;    // Low water mark for list length
2171
2172 public:
2173  void Init() {
2174    list_ = NULL;
2175    length_ = 0;
2176    lowater_ = 0;
2177  }
2178
2179  // Return current length of list
2180  int length() const {
2181    return length_;
2182  }
2183
2184  // Is list empty?
2185  bool empty() const {
2186    return list_ == NULL;
2187  }
2188
2189  // Low-water mark management
2190  int lowwatermark() const { return lowater_; }
2191  void clear_lowwatermark() { lowater_ = length_; }
2192
2193  ALWAYS_INLINE void Push(void* ptr) {
2194    SLL_Push(&list_, ptr);
2195    length_++;
2196  }
2197
2198  void PushRange(int N, void *start, void *end) {
2199    SLL_PushRange(&list_, start, end);
2200    length_ = length_ + static_cast<uint16_t>(N);
2201  }
2202
2203  void PopRange(int N, void **start, void **end) {
2204    SLL_PopRange(&list_, N, start, end);
2205    ASSERT(length_ >= N);
2206    length_ = length_ - static_cast<uint16_t>(N);
2207    if (length_ < lowater_) lowater_ = length_;
2208  }
2209
2210  ALWAYS_INLINE void* Pop() {
2211    ASSERT(list_ != NULL);
2212    length_--;
2213    if (length_ < lowater_) lowater_ = length_;
2214    return SLL_Pop(&list_);
2215  }
2216
2217#ifdef WTF_CHANGES
2218  template <class Finder, class Reader>
2219  void enumerateFreeObjects(Finder& finder, const Reader& reader)
2220  {
2221      for (void* nextObject = list_; nextObject; nextObject = reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject)))
2222          finder.visit(nextObject);
2223  }
2224#endif
2225};
2226
2227//-------------------------------------------------------------------
2228// Data kept per thread
2229//-------------------------------------------------------------------
2230
2231class TCMalloc_ThreadCache {
2232 private:
2233  typedef TCMalloc_ThreadCache_FreeList FreeList;
2234#if OS(WINDOWS)
2235  typedef DWORD ThreadIdentifier;
2236#else
2237  typedef pthread_t ThreadIdentifier;
2238#endif
2239
2240  size_t        size_;                  // Combined size of data
2241  ThreadIdentifier tid_;                // Which thread owns it
2242  bool          in_setspecific_;           // Called pthread_setspecific?
2243  FreeList      list_[kNumClasses];     // Array indexed by size-class
2244
2245  // We sample allocations, biased by the size of the allocation
2246  uint32_t      rnd_;                   // Cheap random number generator
2247  size_t        bytes_until_sample_;    // Bytes until we sample next
2248
2249  // Allocate a new heap. REQUIRES: pageheap_lock is held.
2250  static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid);
2251
2252  // Use only as pthread thread-specific destructor function.
2253  static void DestroyThreadCache(void* ptr);
2254 public:
2255  // All ThreadCache objects are kept in a linked list (for stats collection)
2256  TCMalloc_ThreadCache* next_;
2257  TCMalloc_ThreadCache* prev_;
2258
2259  void Init(ThreadIdentifier tid);
2260  void Cleanup();
2261
2262  // Accessors (mostly just for printing stats)
2263  int freelist_length(size_t cl) const { return list_[cl].length(); }
2264
2265  // Total byte size in cache
2266  size_t Size() const { return size_; }
2267
2268  ALWAYS_INLINE void* Allocate(size_t size);
2269  void Deallocate(void* ptr, size_t size_class);
2270
2271  ALWAYS_INLINE void FetchFromCentralCache(size_t cl, size_t allocationSize);
2272  void ReleaseToCentralCache(size_t cl, int N);
2273  void Scavenge();
2274  void Print() const;
2275
2276  // Record allocation of "k" bytes.  Return true iff allocation
2277  // should be sampled
2278  bool SampleAllocation(size_t k);
2279
2280  // Pick next sampling point
2281  void PickNextSample(size_t k);
2282
2283  static void                  InitModule();
2284  static void                  InitTSD();
2285  static TCMalloc_ThreadCache* GetThreadHeap();
2286  static TCMalloc_ThreadCache* GetCache();
2287  static TCMalloc_ThreadCache* GetCacheIfPresent();
2288  static TCMalloc_ThreadCache* CreateCacheIfNecessary();
2289  static void                  DeleteCache(TCMalloc_ThreadCache* heap);
2290  static void                  BecomeIdle();
2291  static void                  RecomputeThreadCacheSize();
2292
2293#ifdef WTF_CHANGES
2294  template <class Finder, class Reader>
2295  void enumerateFreeObjects(Finder& finder, const Reader& reader)
2296  {
2297      for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
2298          list_[sizeClass].enumerateFreeObjects(finder, reader);
2299  }
2300#endif
2301};
2302
2303//-------------------------------------------------------------------
2304// Data kept per size-class in central cache
2305//-------------------------------------------------------------------
2306
2307class TCMalloc_Central_FreeList {
2308 public:
2309  void Init(size_t cl);
2310
2311  // These methods all do internal locking.
2312
2313  // Insert the specified range into the central freelist.  N is the number of
2314  // elements in the range.
2315  void InsertRange(void *start, void *end, int N);
2316
2317  // Returns the actual number of fetched elements into N.
2318  void RemoveRange(void **start, void **end, int *N);
2319
2320  // Returns the number of free objects in cache.
2321  size_t length() {
2322    SpinLockHolder h(&lock_);
2323    return counter_;
2324  }
2325
2326  // Returns the number of free objects in the transfer cache.
2327  int tc_length() {
2328    SpinLockHolder h(&lock_);
2329    return used_slots_ * num_objects_to_move[size_class_];
2330  }
2331
2332#ifdef WTF_CHANGES
2333  template <class Finder, class Reader>
2334  void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
2335  {
2336    for (Span* span = &empty_; span && span != &empty_; span = (span->next ? reader(span->next) : 0))
2337      ASSERT(!span->objects);
2338
2339    ASSERT(!nonempty_.objects);
2340    static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
2341
2342    Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
2343    Span* remoteSpan = nonempty_.next;
2344
2345    for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->next, span = (span->next ? reader(span->next) : 0)) {
2346      for (void* nextObject = span->objects; nextObject; nextObject = reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject)))
2347        finder.visit(nextObject);
2348    }
2349  }
2350#endif
2351
2352 private:
2353  // REQUIRES: lock_ is held
2354  // Remove object from cache and return.
2355  // Return NULL if no free entries in cache.
2356  void* FetchFromSpans();
2357
2358  // REQUIRES: lock_ is held
2359  // Remove object from cache and return.  Fetches
2360  // from pageheap if cache is empty.  Only returns
2361  // NULL on allocation failure.
2362  void* FetchFromSpansSafe();
2363
2364  // REQUIRES: lock_ is held
2365  // Release a linked list of objects to spans.
2366  // May temporarily release lock_.
2367  void ReleaseListToSpans(void *start);
2368
2369  // REQUIRES: lock_ is held
2370  // Release an object to spans.
2371  // May temporarily release lock_.
2372  ALWAYS_INLINE void ReleaseToSpans(void* object);
2373
2374  // REQUIRES: lock_ is held
2375  // Populate cache by fetching from the page heap.
2376  // May temporarily release lock_.
2377  ALWAYS_INLINE void Populate();
2378
2379  // REQUIRES: lock is held.
2380  // Tries to make room for a TCEntry.  If the cache is full it will try to
2381  // expand it at the cost of some other cache size.  Return false if there is
2382  // no space.
2383  bool MakeCacheSpace();
2384
2385  // REQUIRES: lock_ for locked_size_class is held.
2386  // Picks a "random" size class to steal TCEntry slot from.  In reality it
2387  // just iterates over the sizeclasses but does so without taking a lock.
2388  // Returns true on success.
2389  // May temporarily lock a "random" size class.
2390  static ALWAYS_INLINE bool EvictRandomSizeClass(size_t locked_size_class, bool force);
2391
2392  // REQUIRES: lock_ is *not* held.
2393  // Tries to shrink the Cache.  If force is true it will relase objects to
2394  // spans if it allows it to shrink the cache.  Return false if it failed to
2395  // shrink the cache.  Decrements cache_size_ on succeess.
2396  // May temporarily take lock_.  If it takes lock_, the locked_size_class
2397  // lock is released to the thread from holding two size class locks
2398  // concurrently which could lead to a deadlock.
2399  bool ShrinkCache(int locked_size_class, bool force);
2400
2401  // This lock protects all the data members.  cached_entries and cache_size_
2402  // may be looked at without holding the lock.
2403  SpinLock lock_;
2404
2405  // We keep linked lists of empty and non-empty spans.
2406  size_t   size_class_;     // My size class
2407  Span     empty_;          // Dummy header for list of empty spans
2408  Span     nonempty_;       // Dummy header for list of non-empty spans
2409  size_t   counter_;        // Number of free objects in cache entry
2410
2411  // Here we reserve space for TCEntry cache slots.  Since one size class can
2412  // end up getting all the TCEntries quota in the system we just preallocate
2413  // sufficient number of entries here.
2414  TCEntry tc_slots_[kNumTransferEntries];
2415
2416  // Number of currently used cached entries in tc_slots_.  This variable is
2417  // updated under a lock but can be read without one.
2418  int32_t used_slots_;
2419  // The current number of slots for this size class.  This is an
2420  // adaptive value that is increased if there is lots of traffic
2421  // on a given size class.
2422  int32_t cache_size_;
2423};
2424
2425// Pad each CentralCache object to multiple of 64 bytes
2426class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
2427 private:
2428  char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
2429};
2430
2431//-------------------------------------------------------------------
2432// Global variables
2433//-------------------------------------------------------------------
2434
2435// Central cache -- a collection of free-lists, one per size-class.
2436// We have a separate lock per free-list to reduce contention.
2437static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
2438
2439// Page-level allocator
2440static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
2441static AllocAlignmentInteger pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(AllocAlignmentInteger) - 1) / sizeof(AllocAlignmentInteger)];
2442static bool phinited = false;
2443
2444// Avoid extra level of indirection by making "pageheap" be just an alias
2445// of pageheap_memory.
2446typedef union {
2447    void* m_memory;
2448    TCMalloc_PageHeap* m_pageHeap;
2449} PageHeapUnion;
2450
2451static inline TCMalloc_PageHeap* getPageHeap()
2452{
2453    PageHeapUnion u = { &pageheap_memory[0] };
2454    return u.m_pageHeap;
2455}
2456
2457#define pageheap getPageHeap()
2458
2459#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
2460
2461#if HAVE(DISPATCH_H) || OS(WINDOWS)
2462
2463void TCMalloc_PageHeap::periodicScavenge()
2464{
2465    SpinLockHolder h(&pageheap_lock);
2466    pageheap->scavenge();
2467
2468    if (shouldScavenge()) {
2469        rescheduleScavenger();
2470        return;
2471    }
2472
2473    suspendScavenger();
2474}
2475
2476ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
2477{
2478    ASSERT(IsHeld(pageheap_lock));
2479    if (isScavengerSuspended() && shouldScavenge())
2480        scheduleScavenger();
2481}
2482
2483#else
2484
2485void TCMalloc_PageHeap::scavengerThread()
2486{
2487#if HAVE(PTHREAD_SETNAME_NP)
2488  pthread_setname_np("JavaScriptCore: FastMalloc scavenger");
2489#endif
2490
2491  while (1) {
2492      if (!shouldScavenge()) {
2493          pthread_mutex_lock(&m_scavengeMutex);
2494          m_scavengeThreadActive = false;
2495          // Block until there are enough free committed pages to release back to the system.
2496          pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
2497          m_scavengeThreadActive = true;
2498          pthread_mutex_unlock(&m_scavengeMutex);
2499      }
2500      sleep(kScavengeDelayInSeconds);
2501      {
2502          SpinLockHolder h(&pageheap_lock);
2503          pageheap->scavenge();
2504      }
2505  }
2506}
2507
2508#endif
2509
2510#endif
2511
2512// If TLS is available, we also store a copy
2513// of the per-thread object in a __thread variable
2514// since __thread variables are faster to read
2515// than pthread_getspecific().  We still need
2516// pthread_setspecific() because __thread
2517// variables provide no way to run cleanup
2518// code when a thread is destroyed.
2519#ifdef HAVE_TLS
2520static __thread TCMalloc_ThreadCache *threadlocal_heap;
2521#endif
2522// Thread-specific key.  Initialization here is somewhat tricky
2523// because some Linux startup code invokes malloc() before it
2524// is in a good enough state to handle pthread_keycreate().
2525// Therefore, we use TSD keys only after tsd_inited is set to true.
2526// Until then, we use a slow path to get the heap object.
2527static bool tsd_inited = false;
2528#if USE(PTHREAD_GETSPECIFIC_DIRECT)
2529static const pthread_key_t heap_key = __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY0;
2530#else
2531static pthread_key_t heap_key;
2532#endif
2533#if OS(WINDOWS)
2534DWORD tlsIndex = TLS_OUT_OF_INDEXES;
2535#endif
2536
2537static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
2538{
2539#if USE(PTHREAD_GETSPECIFIC_DIRECT)
2540    // Can't have two libraries both doing this in the same process,
2541    // so check and make this crash right away.
2542    if (pthread_getspecific(heap_key))
2543        CRASH();
2544#endif
2545
2546    // Still do pthread_setspecific even if there's an alternate form
2547    // of thread-local storage in use, to benefit from the delete callback.
2548    pthread_setspecific(heap_key, heap);
2549
2550#if OS(WINDOWS)
2551    TlsSetValue(tlsIndex, heap);
2552#endif
2553}
2554
2555// Allocator for thread heaps
2556static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
2557
2558// Linked list of heap objects.  Protected by pageheap_lock.
2559static TCMalloc_ThreadCache* thread_heaps = NULL;
2560static int thread_heap_count = 0;
2561
2562// Overall thread cache size.  Protected by pageheap_lock.
2563static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
2564
2565// Global per-thread cache size.  Writes are protected by
2566// pageheap_lock.  Reads are done without any locking, which should be
2567// fine as long as size_t can be written atomically and we don't place
2568// invariants between this variable and other pieces of state.
2569static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
2570
2571//-------------------------------------------------------------------
2572// Central cache implementation
2573//-------------------------------------------------------------------
2574
2575void TCMalloc_Central_FreeList::Init(size_t cl) {
2576  lock_.Init();
2577  size_class_ = cl;
2578  DLL_Init(&empty_);
2579  DLL_Init(&nonempty_);
2580  counter_ = 0;
2581
2582  cache_size_ = 1;
2583  used_slots_ = 0;
2584  ASSERT(cache_size_ <= kNumTransferEntries);
2585}
2586
2587void TCMalloc_Central_FreeList::ReleaseListToSpans(void* start) {
2588  while (start) {
2589    void *next = SLL_Next(start);
2590    ReleaseToSpans(start);
2591    start = next;
2592  }
2593}
2594
2595ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(void* object) {
2596  const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
2597  Span* span = pageheap->GetDescriptor(p);
2598  ASSERT(span != NULL);
2599  ASSERT(span->refcount > 0);
2600
2601  // If span is empty, move it to non-empty list
2602  if (span->objects == NULL) {
2603    DLL_Remove(span);
2604    DLL_Prepend(&nonempty_, span);
2605    Event(span, 'N', 0);
2606  }
2607
2608  // The following check is expensive, so it is disabled by default
2609  if (false) {
2610    // Check that object does not occur in list
2611    unsigned got = 0;
2612    for (void* p = span->objects; p != NULL; p = *((void**) p)) {
2613      ASSERT(p != object);
2614      got++;
2615    }
2616    ASSERT(got + span->refcount ==
2617           (span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
2618  }
2619
2620  counter_++;
2621  span->refcount--;
2622  if (span->refcount == 0) {
2623    Event(span, '#', 0);
2624    counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
2625    DLL_Remove(span);
2626
2627    // Release central list lock while operating on pageheap
2628    lock_.Unlock();
2629    {
2630      SpinLockHolder h(&pageheap_lock);
2631      pageheap->Delete(span);
2632    }
2633    lock_.Lock();
2634  } else {
2635    *(reinterpret_cast<void**>(object)) = span->objects;
2636    span->objects = object;
2637  }
2638}
2639
2640ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
2641    size_t locked_size_class, bool force) {
2642  static int race_counter = 0;
2643  int t = race_counter++;  // Updated without a lock, but who cares.
2644  if (t >= static_cast<int>(kNumClasses)) {
2645    while (t >= static_cast<int>(kNumClasses)) {
2646      t -= kNumClasses;
2647    }
2648    race_counter = t;
2649  }
2650  ASSERT(t >= 0);
2651  ASSERT(t < static_cast<int>(kNumClasses));
2652  if (t == static_cast<int>(locked_size_class)) return false;
2653  return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
2654}
2655
2656bool TCMalloc_Central_FreeList::MakeCacheSpace() {
2657  // Is there room in the cache?
2658  if (used_slots_ < cache_size_) return true;
2659  // Check if we can expand this cache?
2660  if (cache_size_ == kNumTransferEntries) return false;
2661  // Ok, we'll try to grab an entry from some other size class.
2662  if (EvictRandomSizeClass(size_class_, false) ||
2663      EvictRandomSizeClass(size_class_, true)) {
2664    // Succeeded in evicting, we're going to make our cache larger.
2665    cache_size_++;
2666    return true;
2667  }
2668  return false;
2669}
2670
2671
2672namespace {
2673class LockInverter {
2674 private:
2675  SpinLock *held_, *temp_;
2676 public:
2677  inline explicit LockInverter(SpinLock* held, SpinLock *temp)
2678    : held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
2679  inline ~LockInverter() { temp_->Unlock(); held_->Lock();  }
2680};
2681}
2682
2683bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
2684  // Start with a quick check without taking a lock.
2685  if (cache_size_ == 0) return false;
2686  // We don't evict from a full cache unless we are 'forcing'.
2687  if (force == false && used_slots_ == cache_size_) return false;
2688
2689  // Grab lock, but first release the other lock held by this thread.  We use
2690  // the lock inverter to ensure that we never hold two size class locks
2691  // concurrently.  That can create a deadlock because there is no well
2692  // defined nesting order.
2693  LockInverter li(&central_cache[locked_size_class].lock_, &lock_);
2694  ASSERT(used_slots_ <= cache_size_);
2695  ASSERT(0 <= cache_size_);
2696  if (cache_size_ == 0) return false;
2697  if (used_slots_ == cache_size_) {
2698    if (force == false) return false;
2699    // ReleaseListToSpans releases the lock, so we have to make all the
2700    // updates to the central list before calling it.
2701    cache_size_--;
2702    used_slots_--;
2703    ReleaseListToSpans(tc_slots_[used_slots_].head);
2704    return true;
2705  }
2706  cache_size_--;
2707  return true;
2708}
2709
2710void TCMalloc_Central_FreeList::InsertRange(void *start, void *end, int N) {
2711  SpinLockHolder h(&lock_);
2712  if (N == num_objects_to_move[size_class_] &&
2713    MakeCacheSpace()) {
2714    int slot = used_slots_++;
2715    ASSERT(slot >=0);
2716    ASSERT(slot < kNumTransferEntries);
2717    TCEntry *entry = &tc_slots_[slot];
2718    entry->head = start;
2719    entry->tail = end;
2720    return;
2721  }
2722  ReleaseListToSpans(start);
2723}
2724
2725void TCMalloc_Central_FreeList::RemoveRange(void **start, void **end, int *N) {
2726  int num = *N;
2727  ASSERT(num > 0);
2728
2729  SpinLockHolder h(&lock_);
2730  if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
2731    int slot = --used_slots_;
2732    ASSERT(slot >= 0);
2733    TCEntry *entry = &tc_slots_[slot];
2734    *start = entry->head;
2735    *end = entry->tail;
2736    return;
2737  }
2738
2739  // TODO: Prefetch multiple TCEntries?
2740  void *tail = FetchFromSpansSafe();
2741  if (!tail) {
2742    // We are completely out of memory.
2743    *start = *end = NULL;
2744    *N = 0;
2745    return;
2746  }
2747
2748  SLL_SetNext(tail, NULL);
2749  void *head = tail;
2750  int count = 1;
2751  while (count < num) {
2752    void *t = FetchFromSpans();
2753    if (!t) break;
2754    SLL_Push(&head, t);
2755    count++;
2756  }
2757  *start = head;
2758  *end = tail;
2759  *N = count;
2760}
2761
2762
2763void* TCMalloc_Central_FreeList::FetchFromSpansSafe() {
2764  void *t = FetchFromSpans();
2765  if (!t) {
2766    Populate();
2767    t = FetchFromSpans();
2768  }
2769  return t;
2770}
2771
2772void* TCMalloc_Central_FreeList::FetchFromSpans() {
2773  if (DLL_IsEmpty(&nonempty_)) return NULL;
2774  Span* span = nonempty_.next;
2775
2776  ASSERT(span->objects != NULL);
2777  ASSERT_SPAN_COMMITTED(span);
2778  span->refcount++;
2779  void* result = span->objects;
2780  span->objects = *(reinterpret_cast<void**>(result));
2781  if (span->objects == NULL) {
2782    // Move to empty list
2783    DLL_Remove(span);
2784    DLL_Prepend(&empty_, span);
2785    Event(span, 'E', 0);
2786  }
2787  counter_--;
2788  return result;
2789}
2790
2791// Fetch memory from the system and add to the central cache freelist.
2792ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
2793  // Release central list lock while operating on pageheap
2794  lock_.Unlock();
2795  const size_t npages = class_to_pages[size_class_];
2796
2797  Span* span;
2798  {
2799    SpinLockHolder h(&pageheap_lock);
2800    span = pageheap->New(npages);
2801    if (span) pageheap->RegisterSizeClass(span, size_class_);
2802  }
2803  if (span == NULL) {
2804#if HAVE(ERRNO_H)
2805    MESSAGE("allocation failed: %d\n", errno);
2806#elif OS(WINDOWS)
2807    MESSAGE("allocation failed: %d\n", ::GetLastError());
2808#else
2809    MESSAGE("allocation failed\n");
2810#endif
2811    lock_.Lock();
2812    return;
2813  }
2814  ASSERT_SPAN_COMMITTED(span);
2815  ASSERT(span->length == npages);
2816  // Cache sizeclass info eagerly.  Locking is not necessary.
2817  // (Instead of being eager, we could just replace any stale info
2818  // about this span, but that seems to be no better in practice.)
2819  for (size_t i = 0; i < npages; i++) {
2820    pageheap->CacheSizeClass(span->start + i, size_class_);
2821  }
2822
2823  // Split the block into pieces and add to the free-list
2824  // TODO: coloring of objects to avoid cache conflicts?
2825  void** tail = &span->objects;
2826  char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
2827  char* limit = ptr + (npages << kPageShift);
2828  const size_t size = ByteSizeForClass(size_class_);
2829  int num = 0;
2830  char* nptr;
2831  while ((nptr = ptr + size) <= limit) {
2832    *tail = ptr;
2833    tail = reinterpret_cast_ptr<void**>(ptr);
2834    ptr = nptr;
2835    num++;
2836  }
2837  ASSERT(ptr <= limit);
2838  *tail = NULL;
2839  span->refcount = 0; // No sub-object in use yet
2840
2841  // Add span to list of non-empty spans
2842  lock_.Lock();
2843  DLL_Prepend(&nonempty_, span);
2844  counter_ += num;
2845}
2846
2847//-------------------------------------------------------------------
2848// TCMalloc_ThreadCache implementation
2849//-------------------------------------------------------------------
2850
2851inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
2852  if (bytes_until_sample_ < k) {
2853    PickNextSample(k);
2854    return true;
2855  } else {
2856    bytes_until_sample_ -= k;
2857    return false;
2858  }
2859}
2860
2861void TCMalloc_ThreadCache::Init(ThreadIdentifier tid) {
2862  size_ = 0;
2863  next_ = NULL;
2864  prev_ = NULL;
2865  tid_  = tid;
2866  in_setspecific_ = false;
2867  for (size_t cl = 0; cl < kNumClasses; ++cl) {
2868    list_[cl].Init();
2869  }
2870
2871  // Initialize RNG -- run it for a bit to get to good values
2872  bytes_until_sample_ = 0;
2873  rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
2874  for (int i = 0; i < 100; i++) {
2875    PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
2876  }
2877}
2878
2879void TCMalloc_ThreadCache::Cleanup() {
2880  // Put unused memory back into central cache
2881  for (size_t cl = 0; cl < kNumClasses; ++cl) {
2882    if (list_[cl].length() > 0) {
2883      ReleaseToCentralCache(cl, list_[cl].length());
2884    }
2885  }
2886}
2887
2888ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
2889  ASSERT(size <= kMaxSize);
2890  const size_t cl = SizeClass(size);
2891  FreeList* list = &list_[cl];
2892  size_t allocationSize = ByteSizeForClass(cl);
2893  if (list->empty()) {
2894    FetchFromCentralCache(cl, allocationSize);
2895    if (list->empty()) return NULL;
2896  }
2897  size_ -= allocationSize;
2898  return list->Pop();
2899}
2900
2901inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
2902  size_ += ByteSizeForClass(cl);
2903  FreeList* list = &list_[cl];
2904  list->Push(ptr);
2905  // If enough data is free, put back into central cache
2906  if (list->length() > kMaxFreeListLength) {
2907    ReleaseToCentralCache(cl, num_objects_to_move[cl]);
2908  }
2909  if (size_ >= per_thread_cache_size) Scavenge();
2910}
2911
2912// Remove some objects of class "cl" from central cache and add to thread heap
2913ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
2914  int fetch_count = num_objects_to_move[cl];
2915  void *start, *end;
2916  central_cache[cl].RemoveRange(&start, &end, &fetch_count);
2917  list_[cl].PushRange(fetch_count, start, end);
2918  size_ += allocationSize * fetch_count;
2919}
2920
2921// Remove some objects of class "cl" from thread heap and add to central cache
2922inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
2923  ASSERT(N > 0);
2924  FreeList* src = &list_[cl];
2925  if (N > src->length()) N = src->length();
2926  size_ -= N*ByteSizeForClass(cl);
2927
2928  // We return prepackaged chains of the correct size to the central cache.
2929  // TODO: Use the same format internally in the thread caches?
2930  int batch_size = num_objects_to_move[cl];
2931  while (N > batch_size) {
2932    void *tail, *head;
2933    src->PopRange(batch_size, &head, &tail);
2934    central_cache[cl].InsertRange(head, tail, batch_size);
2935    N -= batch_size;
2936  }
2937  void *tail, *head;
2938  src->PopRange(N, &head, &tail);
2939  central_cache[cl].InsertRange(head, tail, N);
2940}
2941
2942// Release idle memory to the central cache
2943inline void TCMalloc_ThreadCache::Scavenge() {
2944  // If the low-water mark for the free list is L, it means we would
2945  // not have had to allocate anything from the central cache even if
2946  // we had reduced the free list size by L.  We aim to get closer to
2947  // that situation by dropping L/2 nodes from the free list.  This
2948  // may not release much memory, but if so we will call scavenge again
2949  // pretty soon and the low-water marks will be high on that call.
2950  //int64 start = CycleClock::Now();
2951
2952  for (size_t cl = 0; cl < kNumClasses; cl++) {
2953    FreeList* list = &list_[cl];
2954    const int lowmark = list->lowwatermark();
2955    if (lowmark > 0) {
2956      const int drop = (lowmark > 1) ? lowmark/2 : 1;
2957      ReleaseToCentralCache(cl, drop);
2958    }
2959    list->clear_lowwatermark();
2960  }
2961
2962  //int64 finish = CycleClock::Now();
2963  //CycleTimer ct;
2964  //MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
2965}
2966
2967void TCMalloc_ThreadCache::PickNextSample(size_t k) {
2968  // Make next "random" number
2969  // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
2970  static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
2971  uint32_t r = rnd_;
2972  rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
2973
2974  // Next point is "rnd_ % (sample_period)".  I.e., average
2975  // increment is "sample_period/2".
2976  const int flag_value = static_cast<int>(FLAGS_tcmalloc_sample_parameter);
2977  static int last_flag_value = -1;
2978
2979  if (flag_value != last_flag_value) {
2980    SpinLockHolder h(&sample_period_lock);
2981    int i;
2982    for (i = 0; i < (static_cast<int>(sizeof(primes_list)/sizeof(primes_list[0])) - 1); i++) {
2983      if (primes_list[i] >= flag_value) {
2984        break;
2985      }
2986    }
2987    sample_period = primes_list[i];
2988    last_flag_value = flag_value;
2989  }
2990
2991  bytes_until_sample_ += rnd_ % sample_period;
2992
2993  if (k > (static_cast<size_t>(-1) >> 2)) {
2994    // If the user has asked for a huge allocation then it is possible
2995    // for the code below to loop infinitely.  Just return (note that
2996    // this throws off the sampling accuracy somewhat, but a user who
2997    // is allocating more than 1G of memory at a time can live with a
2998    // minor inaccuracy in profiling of small allocations, and also
2999    // would rather not wait for the loop below to terminate).
3000    return;
3001  }
3002
3003  while (bytes_until_sample_ < k) {
3004    // Increase bytes_until_sample_ by enough average sampling periods
3005    // (sample_period >> 1) to allow us to sample past the current
3006    // allocation.
3007    bytes_until_sample_ += (sample_period >> 1);
3008  }
3009
3010  bytes_until_sample_ -= k;
3011}
3012
3013void TCMalloc_ThreadCache::InitModule() {
3014  // There is a slight potential race here because of double-checked
3015  // locking idiom.  However, as long as the program does a small
3016  // allocation before switching to multi-threaded mode, we will be
3017  // fine.  We increase the chances of doing such a small allocation
3018  // by doing one in the constructor of the module_enter_exit_hook
3019  // object declared below.
3020  SpinLockHolder h(&pageheap_lock);
3021  if (!phinited) {
3022#ifdef WTF_CHANGES
3023    InitTSD();
3024#endif
3025    InitSizeClasses();
3026    threadheap_allocator.Init();
3027    span_allocator.Init();
3028    span_allocator.New(); // Reduce cache conflicts
3029    span_allocator.New(); // Reduce cache conflicts
3030    stacktrace_allocator.Init();
3031    DLL_Init(&sampled_objects);
3032    for (size_t i = 0; i < kNumClasses; ++i) {
3033      central_cache[i].Init(i);
3034    }
3035    pageheap->init();
3036    phinited = 1;
3037#if defined(WTF_CHANGES) && OS(DARWIN)
3038    FastMallocZone::init();
3039#endif
3040  }
3041}
3042
3043inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::NewHeap(ThreadIdentifier tid) {
3044  // Create the heap and add it to the linked list
3045  TCMalloc_ThreadCache *heap = threadheap_allocator.New();
3046  heap->Init(tid);
3047  heap->next_ = thread_heaps;
3048  heap->prev_ = NULL;
3049  if (thread_heaps != NULL) thread_heaps->prev_ = heap;
3050  thread_heaps = heap;
3051  thread_heap_count++;
3052  RecomputeThreadCacheSize();
3053  return heap;
3054}
3055
3056inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetThreadHeap() {
3057#ifdef HAVE_TLS
3058    // __thread is faster, but only when the kernel supports it
3059  if (KernelSupportsTLS())
3060    return threadlocal_heap;
3061#elif OS(WINDOWS)
3062    return static_cast<TCMalloc_ThreadCache*>(TlsGetValue(tlsIndex));
3063#else
3064    return static_cast<TCMalloc_ThreadCache*>(pthread_getspecific(heap_key));
3065#endif
3066}
3067
3068inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
3069  TCMalloc_ThreadCache* ptr = NULL;
3070  if (!tsd_inited) {
3071    InitModule();
3072  } else {
3073    ptr = GetThreadHeap();
3074  }
3075  if (ptr == NULL) ptr = CreateCacheIfNecessary();
3076  return ptr;
3077}
3078
3079// In deletion paths, we do not try to create a thread-cache.  This is
3080// because we may be in the thread destruction code and may have
3081// already cleaned up the cache for this thread.
3082inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
3083  if (!tsd_inited) return NULL;
3084  void* const p = GetThreadHeap();
3085  return reinterpret_cast<TCMalloc_ThreadCache*>(p);
3086}
3087
3088void TCMalloc_ThreadCache::InitTSD() {
3089  ASSERT(!tsd_inited);
3090#if USE(PTHREAD_GETSPECIFIC_DIRECT)
3091  pthread_key_init_np(heap_key, DestroyThreadCache);
3092#else
3093  pthread_key_create(&heap_key, DestroyThreadCache);
3094#endif
3095#if OS(WINDOWS)
3096  tlsIndex = TlsAlloc();
3097#endif
3098  tsd_inited = true;
3099
3100#if !OS(WINDOWS)
3101  // We may have used a fake pthread_t for the main thread.  Fix it.
3102  pthread_t zero;
3103  memset(&zero, 0, sizeof(zero));
3104#endif
3105#ifndef WTF_CHANGES
3106  SpinLockHolder h(&pageheap_lock);
3107#else
3108  ASSERT(pageheap_lock.IsHeld());
3109#endif
3110  for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3111#if OS(WINDOWS)
3112    if (h->tid_ == 0) {
3113      h->tid_ = GetCurrentThreadId();
3114    }
3115#else
3116    if (pthread_equal(h->tid_, zero)) {
3117      h->tid_ = pthread_self();
3118    }
3119#endif
3120  }
3121}
3122
3123TCMalloc_ThreadCache* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
3124  // Initialize per-thread data if necessary
3125  TCMalloc_ThreadCache* heap = NULL;
3126  {
3127    SpinLockHolder h(&pageheap_lock);
3128
3129#if OS(WINDOWS)
3130    DWORD me;
3131    if (!tsd_inited) {
3132      me = 0;
3133    } else {
3134      me = GetCurrentThreadId();
3135    }
3136#else
3137    // Early on in glibc's life, we cannot even call pthread_self()
3138    pthread_t me;
3139    if (!tsd_inited) {
3140      memset(&me, 0, sizeof(me));
3141    } else {
3142      me = pthread_self();
3143    }
3144#endif
3145
3146    // This may be a recursive malloc call from pthread_setspecific()
3147    // In that case, the heap for this thread has already been created
3148    // and added to the linked list.  So we search for that first.
3149    for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3150#if OS(WINDOWS)
3151      if (h->tid_ == me) {
3152#else
3153      if (pthread_equal(h->tid_, me)) {
3154#endif
3155        heap = h;
3156        break;
3157      }
3158    }
3159
3160    if (heap == NULL) heap = NewHeap(me);
3161  }
3162
3163  // We call pthread_setspecific() outside the lock because it may
3164  // call malloc() recursively.  The recursive call will never get
3165  // here again because it will find the already allocated heap in the
3166  // linked list of heaps.
3167  if (!heap->in_setspecific_ && tsd_inited) {
3168    heap->in_setspecific_ = true;
3169    setThreadHeap(heap);
3170  }
3171  return heap;
3172}
3173
3174void TCMalloc_ThreadCache::BecomeIdle() {
3175  if (!tsd_inited) return;              // No caches yet
3176  TCMalloc_ThreadCache* heap = GetThreadHeap();
3177  if (heap == NULL) return;             // No thread cache to remove
3178  if (heap->in_setspecific_) return;    // Do not disturb the active caller
3179
3180  heap->in_setspecific_ = true;
3181  setThreadHeap(NULL);
3182#ifdef HAVE_TLS
3183  // Also update the copy in __thread
3184  threadlocal_heap = NULL;
3185#endif
3186  heap->in_setspecific_ = false;
3187  if (GetThreadHeap() == heap) {
3188    // Somehow heap got reinstated by a recursive call to malloc
3189    // from pthread_setspecific.  We give up in this case.
3190    return;
3191  }
3192
3193  // We can now get rid of the heap
3194  DeleteCache(heap);
3195}
3196
3197void TCMalloc_ThreadCache::DestroyThreadCache(void* ptr) {
3198  // Note that "ptr" cannot be NULL since pthread promises not
3199  // to invoke the destructor on NULL values, but for safety,
3200  // we check anyway.
3201  if (ptr == NULL) return;
3202#ifdef HAVE_TLS
3203  // Prevent fast path of GetThreadHeap() from returning heap.
3204  threadlocal_heap = NULL;
3205#endif
3206  DeleteCache(reinterpret_cast<TCMalloc_ThreadCache*>(ptr));
3207}
3208
3209void TCMalloc_ThreadCache::DeleteCache(TCMalloc_ThreadCache* heap) {
3210  // Remove all memory from heap
3211  heap->Cleanup();
3212
3213  // Remove from linked list
3214  SpinLockHolder h(&pageheap_lock);
3215  if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
3216  if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
3217  if (thread_heaps == heap) thread_heaps = heap->next_;
3218  thread_heap_count--;
3219  RecomputeThreadCacheSize();
3220
3221  threadheap_allocator.Delete(heap);
3222}
3223
3224void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
3225  // Divide available space across threads
3226  int n = thread_heap_count > 0 ? thread_heap_count : 1;
3227  size_t space = overall_thread_cache_size / n;
3228
3229  // Limit to allowed range
3230  if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
3231  if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
3232
3233  per_thread_cache_size = space;
3234}
3235
3236void TCMalloc_ThreadCache::Print() const {
3237  for (size_t cl = 0; cl < kNumClasses; ++cl) {
3238    MESSAGE("      %5" PRIuS " : %4d len; %4d lo\n",
3239            ByteSizeForClass(cl),
3240            list_[cl].length(),
3241            list_[cl].lowwatermark());
3242  }
3243}
3244
3245// Extract interesting stats
3246struct TCMallocStats {
3247  uint64_t system_bytes;        // Bytes alloced from system
3248  uint64_t thread_bytes;        // Bytes in thread caches
3249  uint64_t central_bytes;       // Bytes in central cache
3250  uint64_t transfer_bytes;      // Bytes in central transfer cache
3251  uint64_t pageheap_bytes;      // Bytes in page heap
3252  uint64_t metadata_bytes;      // Bytes alloced for metadata
3253};
3254
3255#ifndef WTF_CHANGES
3256// Get stats into "r".  Also get per-size-class counts if class_count != NULL
3257static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
3258  r->central_bytes = 0;
3259  r->transfer_bytes = 0;
3260  for (int cl = 0; cl < kNumClasses; ++cl) {
3261    const int length = central_cache[cl].length();
3262    const int tc_length = central_cache[cl].tc_length();
3263    r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
3264    r->transfer_bytes +=
3265      static_cast<uint64_t>(ByteSizeForClass(cl)) * tc_length;
3266    if (class_count) class_count[cl] = length + tc_length;
3267  }
3268
3269  // Add stats from per-thread heaps
3270  r->thread_bytes = 0;
3271  { // scope
3272    SpinLockHolder h(&pageheap_lock);
3273    for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
3274      r->thread_bytes += h->Size();
3275      if (class_count) {
3276        for (size_t cl = 0; cl < kNumClasses; ++cl) {
3277          class_count[cl] += h->freelist_length(cl);
3278        }
3279      }
3280    }
3281  }
3282
3283  { //scope
3284    SpinLockHolder h(&pageheap_lock);
3285    r->system_bytes = pageheap->SystemBytes();
3286    r->metadata_bytes = metadata_system_bytes;
3287    r->pageheap_bytes = pageheap->FreeBytes();
3288  }
3289}
3290#endif
3291
3292#ifndef WTF_CHANGES
3293// WRITE stats to "out"
3294static void DumpStats(TCMalloc_Printer* out, int level) {
3295  TCMallocStats stats;
3296  uint64_t class_count[kNumClasses];
3297  ExtractStats(&stats, (level >= 2 ? class_count : NULL));
3298
3299  if (level >= 2) {
3300    out->printf("------------------------------------------------\n");
3301    uint64_t cumulative = 0;
3302    for (int cl = 0; cl < kNumClasses; ++cl) {
3303      if (class_count[cl] > 0) {
3304        uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
3305        cumulative += class_bytes;
3306        out->printf("class %3d [ %8" PRIuS " bytes ] : "
3307                "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
3308                cl, ByteSizeForClass(cl),
3309                class_count[cl],
3310                class_bytes / 1048576.0,
3311                cumulative / 1048576.0);
3312      }
3313    }
3314
3315    SpinLockHolder h(&pageheap_lock);
3316    pageheap->Dump(out);
3317  }
3318
3319  const uint64_t bytes_in_use = stats.system_bytes
3320                                - stats.pageheap_bytes
3321                                - stats.central_bytes
3322                                - stats.transfer_bytes
3323                                - stats.thread_bytes;
3324
3325  out->printf("------------------------------------------------\n"
3326              "MALLOC: %12" PRIu64 " Heap size\n"
3327              "MALLOC: %12" PRIu64 " Bytes in use by application\n"
3328              "MALLOC: %12" PRIu64 " Bytes free in page heap\n"
3329              "MALLOC: %12" PRIu64 " Bytes free in central cache\n"
3330              "MALLOC: %12" PRIu64 " Bytes free in transfer cache\n"
3331              "MALLOC: %12" PRIu64 " Bytes free in thread caches\n"
3332              "MALLOC: %12" PRIu64 " Spans in use\n"
3333              "MALLOC: %12" PRIu64 " Thread heaps in use\n"
3334              "MALLOC: %12" PRIu64 " Metadata allocated\n"
3335              "------------------------------------------------\n",
3336              stats.system_bytes,
3337              bytes_in_use,
3338              stats.pageheap_bytes,
3339              stats.central_bytes,
3340              stats.transfer_bytes,
3341              stats.thread_bytes,
3342              uint64_t(span_allocator.inuse()),
3343              uint64_t(threadheap_allocator.inuse()),
3344              stats.metadata_bytes);
3345}
3346
3347static void PrintStats(int level) {
3348  const int kBufferSize = 16 << 10;
3349  char* buffer = new char[kBufferSize];
3350  TCMalloc_Printer printer(buffer, kBufferSize);
3351  DumpStats(&printer, level);
3352  write(STDERR_FILENO, buffer, strlen(buffer));
3353  delete[] buffer;
3354}
3355
3356static void** DumpStackTraces() {
3357  // Count how much space we need
3358  int needed_slots = 0;
3359  {
3360    SpinLockHolder h(&pageheap_lock);
3361    for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
3362      StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
3363      needed_slots += 3 + stack->depth;
3364    }
3365    needed_slots += 100;            // Slop in case sample grows
3366    needed_slots += needed_slots/8; // An extra 12.5% slop
3367  }
3368
3369  void** result = new void*[needed_slots];
3370  if (result == NULL) {
3371    MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
3372            needed_slots);
3373    return NULL;
3374  }
3375
3376  SpinLockHolder h(&pageheap_lock);
3377  int used_slots = 0;
3378  for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
3379    ASSERT(used_slots < needed_slots);  // Need to leave room for terminator
3380    StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
3381    if (used_slots + 3 + stack->depth >= needed_slots) {
3382      // No more room
3383      break;
3384    }
3385
3386    result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
3387    result[used_slots+1] = reinterpret_cast<void*>(stack->size);
3388    result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
3389    for (int d = 0; d < stack->depth; d++) {
3390      result[used_slots+3+d] = stack->stack[d];
3391    }
3392    used_slots += 3 + stack->depth;
3393  }
3394  result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
3395  return result;
3396}
3397#endif
3398
3399#ifndef WTF_CHANGES
3400
3401// TCMalloc's support for extra malloc interfaces
3402class TCMallocImplementation : public MallocExtension {
3403 public:
3404  virtual void GetStats(char* buffer, int buffer_length) {
3405    ASSERT(buffer_length > 0);
3406    TCMalloc_Printer printer(buffer, buffer_length);
3407
3408    // Print level one stats unless lots of space is available
3409    if (buffer_length < 10000) {
3410      DumpStats(&printer, 1);
3411    } else {
3412      DumpStats(&printer, 2);
3413    }
3414  }
3415
3416  virtual void** ReadStackTraces() {
3417    return DumpStackTraces();
3418  }
3419
3420  virtual bool GetNumericProperty(const char* name, size_t* value) {
3421    ASSERT(name != NULL);
3422
3423    if (strcmp(name, "generic.current_allocated_bytes") == 0) {
3424      TCMallocStats stats;
3425      ExtractStats(&stats, NULL);
3426      *value = stats.system_bytes
3427               - stats.thread_bytes
3428               - stats.central_bytes
3429               - stats.pageheap_bytes;
3430      return true;
3431    }
3432
3433    if (strcmp(name, "generic.heap_size") == 0) {
3434      TCMallocStats stats;
3435      ExtractStats(&stats, NULL);
3436      *value = stats.system_bytes;
3437      return true;
3438    }
3439
3440    if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
3441      // We assume that bytes in the page heap are not fragmented too
3442      // badly, and are therefore available for allocation.
3443      SpinLockHolder l(&pageheap_lock);
3444      *value = pageheap->FreeBytes();
3445      return true;
3446    }
3447
3448    if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
3449      SpinLockHolder l(&pageheap_lock);
3450      *value = overall_thread_cache_size;
3451      return true;
3452    }
3453
3454    if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
3455      TCMallocStats stats;
3456      ExtractStats(&stats, NULL);
3457      *value = stats.thread_bytes;
3458      return true;
3459    }
3460
3461    return false;
3462  }
3463
3464  virtual bool SetNumericProperty(const char* name, size_t value) {
3465    ASSERT(name != NULL);
3466
3467    if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
3468      // Clip the value to a reasonable range
3469      if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
3470      if (value > (1<<30)) value = (1<<30);     // Limit to 1GB
3471
3472      SpinLockHolder l(&pageheap_lock);
3473      overall_thread_cache_size = static_cast<size_t>(value);
3474      TCMalloc_ThreadCache::RecomputeThreadCacheSize();
3475      return true;
3476    }
3477
3478    return false;
3479  }
3480
3481  virtual void MarkThreadIdle() {
3482    TCMalloc_ThreadCache::BecomeIdle();
3483  }
3484
3485  virtual void ReleaseFreeMemory() {
3486    SpinLockHolder h(&pageheap_lock);
3487    pageheap->ReleaseFreePages();
3488  }
3489};
3490#endif
3491
3492// The constructor allocates an object to ensure that initialization
3493// runs before main(), and therefore we do not have a chance to become
3494// multi-threaded before initialization.  We also create the TSD key
3495// here.  Presumably by the time this constructor runs, glibc is in
3496// good enough shape to handle pthread_key_create().
3497//
3498// The constructor also takes the opportunity to tell STL to use
3499// tcmalloc.  We want to do this early, before construct time, so
3500// all user STL allocations go through tcmalloc (which works really
3501// well for STL).
3502//
3503// The destructor prints stats when the program exits.
3504class TCMallocGuard {
3505 public:
3506
3507  TCMallocGuard() {
3508#ifdef HAVE_TLS    // this is true if the cc/ld/libc combo support TLS
3509    // Check whether the kernel also supports TLS (needs to happen at runtime)
3510    CheckIfKernelSupportsTLS();
3511#endif
3512#ifndef WTF_CHANGES
3513#ifdef WIN32                    // patch the windows VirtualAlloc, etc.
3514    PatchWindowsFunctions();    // defined in windows/patch_functions.cc
3515#endif
3516#endif
3517    free(malloc(1));
3518    TCMalloc_ThreadCache::InitTSD();
3519    free(malloc(1));
3520#ifndef WTF_CHANGES
3521    MallocExtension::Register(new TCMallocImplementation);
3522#endif
3523  }
3524
3525#ifndef WTF_CHANGES
3526  ~TCMallocGuard() {
3527    const char* env = getenv("MALLOCSTATS");
3528    if (env != NULL) {
3529      int level = atoi(env);
3530      if (level < 1) level = 1;
3531      PrintStats(level);
3532    }
3533#ifdef WIN32
3534    UnpatchWindowsFunctions();
3535#endif
3536  }
3537#endif
3538};
3539
3540#ifndef WTF_CHANGES
3541static TCMallocGuard module_enter_exit_hook;
3542#endif
3543
3544
3545//-------------------------------------------------------------------
3546// Helpers for the exported routines below
3547//-------------------------------------------------------------------
3548
3549#ifndef WTF_CHANGES
3550
3551static Span* DoSampledAllocation(size_t size) {
3552
3553  // Grab the stack trace outside the heap lock
3554  StackTrace tmp;
3555  tmp.depth = GetStackTrace(tmp.stack, kMaxStackDepth, 1);
3556  tmp.size = size;
3557
3558  SpinLockHolder h(&pageheap_lock);
3559  // Allocate span
3560  Span *span = pageheap->New(pages(size == 0 ? 1 : size));
3561  if (span == NULL) {
3562    return NULL;
3563  }
3564
3565  // Allocate stack trace
3566  StackTrace *stack = stacktrace_allocator.New();
3567  if (stack == NULL) {
3568    // Sampling failed because of lack of memory
3569    return span;
3570  }
3571
3572  *stack = tmp;
3573  span->sample = 1;
3574  span->objects = stack;
3575  DLL_Prepend(&sampled_objects, span);
3576
3577  return span;
3578}
3579#endif
3580
3581static inline bool CheckCachedSizeClass(void *ptr) {
3582  PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3583  size_t cached_value = pageheap->GetSizeClassIfCached(p);
3584  return cached_value == 0 ||
3585      cached_value == pageheap->GetDescriptor(p)->sizeclass;
3586}
3587
3588static inline void* CheckedMallocResult(void *result)
3589{
3590  ASSERT(result == 0 || CheckCachedSizeClass(result));
3591  return result;
3592}
3593
3594static inline void* SpanToMallocResult(Span *span) {
3595  ASSERT_SPAN_COMMITTED(span);
3596  pageheap->CacheSizeClass(span->start, 0);
3597  return
3598      CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
3599}
3600
3601#ifdef WTF_CHANGES
3602template <bool crashOnFailure>
3603#endif
3604static ALWAYS_INLINE void* do_malloc(size_t size) {
3605  void* ret = NULL;
3606
3607#ifdef WTF_CHANGES
3608    ASSERT(!isForbidden());
3609#endif
3610
3611  // The following call forces module initialization
3612  TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3613#ifndef WTF_CHANGES
3614  if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
3615    Span* span = DoSampledAllocation(size);
3616    if (span != NULL) {
3617      ret = SpanToMallocResult(span);
3618    }
3619  } else
3620#endif
3621  if (size > kMaxSize) {
3622    // Use page-level allocator
3623    SpinLockHolder h(&pageheap_lock);
3624    Span* span = pageheap->New(pages(size));
3625    if (span != NULL) {
3626      ret = SpanToMallocResult(span);
3627    }
3628  } else {
3629    // The common case, and also the simplest.  This just pops the
3630    // size-appropriate freelist, afer replenishing it if it's empty.
3631    ret = CheckedMallocResult(heap->Allocate(size));
3632  }
3633  if (!ret) {
3634#ifdef WTF_CHANGES
3635    if (crashOnFailure) // This branch should be optimized out by the compiler.
3636        CRASH();
3637#else
3638    errno = ENOMEM;
3639#endif
3640  }
3641  return ret;
3642}
3643
3644static ALWAYS_INLINE void do_free(void* ptr) {
3645  if (ptr == NULL) return;
3646  ASSERT(pageheap != NULL);  // Should not call free() before malloc()
3647  const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
3648  Span* span = NULL;
3649  size_t cl = pageheap->GetSizeClassIfCached(p);
3650
3651  if (cl == 0) {
3652    span = pageheap->GetDescriptor(p);
3653    cl = span->sizeclass;
3654    pageheap->CacheSizeClass(p, cl);
3655  }
3656  if (cl != 0) {
3657#ifndef NO_TCMALLOC_SAMPLES
3658    ASSERT(!pageheap->GetDescriptor(p)->sample);
3659#endif
3660    TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
3661    if (heap != NULL) {
3662      heap->Deallocate(ptr, cl);
3663    } else {
3664      // Delete directly into central cache
3665      SLL_SetNext(ptr, NULL);
3666      central_cache[cl].InsertRange(ptr, ptr, 1);
3667    }
3668  } else {
3669    SpinLockHolder h(&pageheap_lock);
3670    ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
3671    ASSERT(span != NULL && span->start == p);
3672#ifndef NO_TCMALLOC_SAMPLES
3673    if (span->sample) {
3674      DLL_Remove(span);
3675      stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
3676      span->objects = NULL;
3677    }
3678#endif
3679    pageheap->Delete(span);
3680  }
3681}
3682
3683#ifndef WTF_CHANGES
3684// For use by exported routines below that want specific alignments
3685//
3686// Note: this code can be slow, and can significantly fragment memory.
3687// The expectation is that memalign/posix_memalign/valloc/pvalloc will
3688// not be invoked very often.  This requirement simplifies our
3689// implementation and allows us to tune for expected allocation
3690// patterns.
3691static void* do_memalign(size_t align, size_t size) {
3692  ASSERT((align & (align - 1)) == 0);
3693  ASSERT(align > 0);
3694  if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
3695
3696  // Allocate at least one byte to avoid boundary conditions below
3697  if (size == 0) size = 1;
3698
3699  if (size <= kMaxSize && align < kPageSize) {
3700    // Search through acceptable size classes looking for one with
3701    // enough alignment.  This depends on the fact that
3702    // InitSizeClasses() currently produces several size classes that
3703    // are aligned at powers of two.  We will waste time and space if
3704    // we miss in the size class array, but that is deemed acceptable
3705    // since memalign() should be used rarely.
3706    size_t cl = SizeClass(size);
3707    while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
3708      cl++;
3709    }
3710    if (cl < kNumClasses) {
3711      TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
3712      return CheckedMallocResult(heap->Allocate(class_to_size[cl]));
3713    }
3714  }
3715
3716  // We will allocate directly from the page heap
3717  SpinLockHolder h(&pageheap_lock);
3718
3719  if (align <= kPageSize) {
3720    // Any page-level allocation will be fine
3721    // TODO: We could put the rest of this page in the appropriate
3722    // TODO: cache but it does not seem worth it.
3723    Span* span = pageheap->New(pages(size));
3724    return span == NULL ? NULL : SpanToMallocResult(span);
3725  }
3726
3727  // Allocate extra pages and carve off an aligned portion
3728  const Length alloc = pages(size + align);
3729  Span* span = pageheap->New(alloc);
3730  if (span == NULL) return NULL;
3731
3732  // Skip starting portion so that we end up aligned
3733  Length skip = 0;
3734  while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
3735    skip++;
3736  }
3737  ASSERT(skip < alloc);
3738  if (skip > 0) {
3739    Span* rest = pageheap->Split(span, skip);
3740    pageheap->Delete(span);
3741    span = rest;
3742  }
3743
3744  // Skip trailing portion that we do not need to return
3745  const Length needed = pages(size);
3746  ASSERT(span->length >= needed);
3747  if (span->length > needed) {
3748    Span* trailer = pageheap->Split(span, needed);
3749    pageheap->Delete(trailer);
3750  }
3751  return SpanToMallocResult(span);
3752}
3753#endif
3754
3755// Helpers for use by exported routines below:
3756
3757#ifndef WTF_CHANGES
3758static inline void do_malloc_stats() {
3759  PrintStats(1);
3760}
3761#endif
3762
3763static inline int do_mallopt(int, int) {
3764  return 1;     // Indicates error
3765}
3766
3767#ifdef HAVE_STRUCT_MALLINFO  // mallinfo isn't defined on freebsd, for instance
3768static inline struct mallinfo do_mallinfo() {
3769  TCMallocStats stats;
3770  ExtractStats(&stats, NULL);
3771
3772  // Just some of the fields are filled in.
3773  struct mallinfo info;
3774  memset(&info, 0, sizeof(info));
3775
3776  // Unfortunately, the struct contains "int" field, so some of the
3777  // size values will be truncated.
3778  info.arena     = static_cast<int>(stats.system_bytes);
3779  info.fsmblks   = static_cast<int>(stats.thread_bytes
3780                                    + stats.central_bytes
3781                                    + stats.transfer_bytes);
3782  info.fordblks  = static_cast<int>(stats.pageheap_bytes);
3783  info.uordblks  = static_cast<int>(stats.system_bytes
3784                                    - stats.thread_bytes
3785                                    - stats.central_bytes
3786                                    - stats.transfer_bytes
3787                                    - stats.pageheap_bytes);
3788
3789  return info;
3790}
3791#endif
3792
3793//-------------------------------------------------------------------
3794// Exported routines
3795//-------------------------------------------------------------------
3796
3797// CAVEAT: The code structure below ensures that MallocHook methods are always
3798//         called from the stack frame of the invoked allocation function.
3799//         heap-checker.cc depends on this to start a stack trace from
3800//         the call to the (de)allocation function.
3801
3802#ifndef WTF_CHANGES
3803extern "C"
3804#else
3805#define do_malloc do_malloc<crashOnFailure>
3806
3807template <bool crashOnFailure>
3808ALWAYS_INLINE void* malloc(size_t);
3809
3810void* fastMalloc(size_t size)
3811{
3812    return malloc<true>(size);
3813}
3814
3815TryMallocReturnValue tryFastMalloc(size_t size)
3816{
3817    return malloc<false>(size);
3818}
3819
3820template <bool crashOnFailure>
3821ALWAYS_INLINE
3822#endif
3823void* malloc(size_t size) {
3824#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3825    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= size)  // If overflow would occur...
3826        return 0;
3827    size += sizeof(AllocAlignmentInteger);
3828    void* result = do_malloc(size);
3829    if (!result)
3830        return 0;
3831
3832    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
3833    result = static_cast<AllocAlignmentInteger*>(result) + 1;
3834#else
3835    void* result = do_malloc(size);
3836#endif
3837
3838#ifndef WTF_CHANGES
3839  MallocHook::InvokeNewHook(result, size);
3840#endif
3841  return result;
3842}
3843
3844#ifndef WTF_CHANGES
3845extern "C"
3846#endif
3847void free(void* ptr) {
3848#ifndef WTF_CHANGES
3849  MallocHook::InvokeDeleteHook(ptr);
3850#endif
3851
3852#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3853    if (!ptr)
3854        return;
3855
3856    AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(ptr);
3857    if (*header != Internal::AllocTypeMalloc)
3858        Internal::fastMallocMatchFailed(ptr);
3859    do_free(header);
3860#else
3861    do_free(ptr);
3862#endif
3863}
3864
3865#ifndef WTF_CHANGES
3866extern "C"
3867#else
3868template <bool crashOnFailure>
3869ALWAYS_INLINE void* calloc(size_t, size_t);
3870
3871void* fastCalloc(size_t n, size_t elem_size)
3872{
3873    return calloc<true>(n, elem_size);
3874}
3875
3876TryMallocReturnValue tryFastCalloc(size_t n, size_t elem_size)
3877{
3878    return calloc<false>(n, elem_size);
3879}
3880
3881template <bool crashOnFailure>
3882ALWAYS_INLINE
3883#endif
3884void* calloc(size_t n, size_t elem_size) {
3885  size_t totalBytes = n * elem_size;
3886
3887  // Protect against overflow
3888  if (n > 1 && elem_size && (totalBytes / elem_size) != n)
3889    return 0;
3890
3891#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3892    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= totalBytes)  // If overflow would occur...
3893        return 0;
3894
3895    totalBytes += sizeof(AllocAlignmentInteger);
3896    void* result = do_malloc(totalBytes);
3897    if (!result)
3898        return 0;
3899
3900    memset(result, 0, totalBytes);
3901    *static_cast<AllocAlignmentInteger*>(result) = Internal::AllocTypeMalloc;
3902    result = static_cast<AllocAlignmentInteger*>(result) + 1;
3903#else
3904    void* result = do_malloc(totalBytes);
3905    if (result != NULL) {
3906        memset(result, 0, totalBytes);
3907    }
3908#endif
3909
3910#ifndef WTF_CHANGES
3911  MallocHook::InvokeNewHook(result, totalBytes);
3912#endif
3913  return result;
3914}
3915
3916// Since cfree isn't used anywhere, we don't compile it in.
3917#ifndef WTF_CHANGES
3918#ifndef WTF_CHANGES
3919extern "C"
3920#endif
3921void cfree(void* ptr) {
3922#ifndef WTF_CHANGES
3923    MallocHook::InvokeDeleteHook(ptr);
3924#endif
3925  do_free(ptr);
3926}
3927#endif
3928
3929#ifndef WTF_CHANGES
3930extern "C"
3931#else
3932template <bool crashOnFailure>
3933ALWAYS_INLINE void* realloc(void*, size_t);
3934
3935void* fastRealloc(void* old_ptr, size_t new_size)
3936{
3937    return realloc<true>(old_ptr, new_size);
3938}
3939
3940TryMallocReturnValue tryFastRealloc(void* old_ptr, size_t new_size)
3941{
3942    return realloc<false>(old_ptr, new_size);
3943}
3944
3945template <bool crashOnFailure>
3946ALWAYS_INLINE
3947#endif
3948void* realloc(void* old_ptr, size_t new_size) {
3949  if (old_ptr == NULL) {
3950#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3951    void* result = malloc(new_size);
3952#else
3953    void* result = do_malloc(new_size);
3954#ifndef WTF_CHANGES
3955    MallocHook::InvokeNewHook(result, new_size);
3956#endif
3957#endif
3958    return result;
3959  }
3960  if (new_size == 0) {
3961#ifndef WTF_CHANGES
3962    MallocHook::InvokeDeleteHook(old_ptr);
3963#endif
3964    free(old_ptr);
3965    return NULL;
3966  }
3967
3968#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
3969    if (std::numeric_limits<size_t>::max() - sizeof(AllocAlignmentInteger) <= new_size)  // If overflow would occur...
3970        return 0;
3971    new_size += sizeof(AllocAlignmentInteger);
3972    AllocAlignmentInteger* header = Internal::fastMallocMatchValidationValue(old_ptr);
3973    if (*header != Internal::AllocTypeMalloc)
3974        Internal::fastMallocMatchFailed(old_ptr);
3975    old_ptr = header;
3976#endif
3977
3978  // Get the size of the old entry
3979  const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
3980  size_t cl = pageheap->GetSizeClassIfCached(p);
3981  Span *span = NULL;
3982  size_t old_size;
3983  if (cl == 0) {
3984    span = pageheap->GetDescriptor(p);
3985    cl = span->sizeclass;
3986    pageheap->CacheSizeClass(p, cl);
3987  }
3988  if (cl != 0) {
3989    old_size = ByteSizeForClass(cl);
3990  } else {
3991    ASSERT(span != NULL);
3992    old_size = span->length << kPageShift;
3993  }
3994
3995  // Reallocate if the new size is larger than the old size,
3996  // or if the new size is significantly smaller than the old size.
3997  if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
3998    // Need to reallocate
3999    void* new_ptr = do_malloc(new_size);
4000    if (new_ptr == NULL) {
4001      return NULL;
4002    }
4003#ifndef WTF_CHANGES
4004    MallocHook::InvokeNewHook(new_ptr, new_size);
4005#endif
4006    memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
4007#ifndef WTF_CHANGES
4008    MallocHook::InvokeDeleteHook(old_ptr);
4009#endif
4010    // We could use a variant of do_free() that leverages the fact
4011    // that we already know the sizeclass of old_ptr.  The benefit
4012    // would be small, so don't bother.
4013    do_free(old_ptr);
4014#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
4015    new_ptr = static_cast<AllocAlignmentInteger*>(new_ptr) + 1;
4016#endif
4017    return new_ptr;
4018  } else {
4019#if ENABLE(FAST_MALLOC_MATCH_VALIDATION)
4020    old_ptr = static_cast<AllocAlignmentInteger*>(old_ptr) + 1; // Set old_ptr back to the user pointer.
4021#endif
4022    return old_ptr;
4023  }
4024}
4025
4026#ifdef WTF_CHANGES
4027#undef do_malloc
4028#else
4029
4030static SpinLock set_new_handler_lock = SPINLOCK_INITIALIZER;
4031
4032static inline void* cpp_alloc(size_t size, bool nothrow) {
4033  for (;;) {
4034    void* p = do_malloc(size);
4035#ifdef PREANSINEW
4036    return p;
4037#else
4038    if (p == NULL) {  // allocation failed
4039      // Get the current new handler.  NB: this function is not
4040      // thread-safe.  We make a feeble stab at making it so here, but
4041      // this lock only protects against tcmalloc interfering with
4042      // itself, not with other libraries calling set_new_handler.
4043      std::new_handler nh;
4044      {
4045        SpinLockHolder h(&set_new_handler_lock);
4046        nh = std::set_new_handler(0);
4047        (void) std::set_new_handler(nh);
4048      }
4049      // If no new_handler is established, the allocation failed.
4050      if (!nh) {
4051        if (nothrow) return 0;
4052        throw std::bad_alloc();
4053      }
4054      // Otherwise, try the new_handler.  If it returns, retry the
4055      // allocation.  If it throws std::bad_alloc, fail the allocation.
4056      // if it throws something else, don't interfere.
4057      try {
4058        (*nh)();
4059      } catch (const std::bad_alloc&) {
4060        if (!nothrow) throw;
4061        return p;
4062      }
4063    } else {  // allocation success
4064      return p;
4065    }
4066#endif
4067  }
4068}
4069
4070#if ENABLE(GLOBAL_FASTMALLOC_NEW)
4071
4072void* operator new(size_t size) {
4073  void* p = cpp_alloc(size, false);
4074  // We keep this next instruction out of cpp_alloc for a reason: when
4075  // it's in, and new just calls cpp_alloc, the optimizer may fold the
4076  // new call into cpp_alloc, which messes up our whole section-based
4077  // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
4078  // isn't the last thing this fn calls, and prevents the folding.
4079  MallocHook::InvokeNewHook(p, size);
4080  return p;
4081}
4082
4083void* operator new(size_t size, const std::nothrow_t&) __THROW {
4084  void* p = cpp_alloc(size, true);
4085  MallocHook::InvokeNewHook(p, size);
4086  return p;
4087}
4088
4089void operator delete(void* p) __THROW {
4090  MallocHook::InvokeDeleteHook(p);
4091  do_free(p);
4092}
4093
4094void operator delete(void* p, const std::nothrow_t&) __THROW {
4095  MallocHook::InvokeDeleteHook(p);
4096  do_free(p);
4097}
4098
4099void* operator new[](size_t size) {
4100  void* p = cpp_alloc(size, false);
4101  // We keep this next instruction out of cpp_alloc for a reason: when
4102  // it's in, and new just calls cpp_alloc, the optimizer may fold the
4103  // new call into cpp_alloc, which messes up our whole section-based
4104  // stacktracing (see ATTRIBUTE_SECTION, above).  This ensures cpp_alloc
4105  // isn't the last thing this fn calls, and prevents the folding.
4106  MallocHook::InvokeNewHook(p, size);
4107  return p;
4108}
4109
4110void* operator new[](size_t size, const std::nothrow_t&) __THROW {
4111  void* p = cpp_alloc(size, true);
4112  MallocHook::InvokeNewHook(p, size);
4113  return p;
4114}
4115
4116void operator delete[](void* p) __THROW {
4117  MallocHook::InvokeDeleteHook(p);
4118  do_free(p);
4119}
4120
4121void operator delete[](void* p, const std::nothrow_t&) __THROW {
4122  MallocHook::InvokeDeleteHook(p);
4123  do_free(p);
4124}
4125
4126#endif
4127
4128extern "C" void* memalign(size_t align, size_t size) __THROW {
4129  void* result = do_memalign(align, size);
4130  MallocHook::InvokeNewHook(result, size);
4131  return result;
4132}
4133
4134extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size)
4135    __THROW {
4136  if (((align % sizeof(void*)) != 0) ||
4137      ((align & (align - 1)) != 0) ||
4138      (align == 0)) {
4139    return EINVAL;
4140  }
4141
4142  void* result = do_memalign(align, size);
4143  MallocHook::InvokeNewHook(result, size);
4144  if (result == NULL) {
4145    return ENOMEM;
4146  } else {
4147    *result_ptr = result;
4148    return 0;
4149  }
4150}
4151
4152static size_t pagesize = 0;
4153
4154extern "C" void* valloc(size_t size) __THROW {
4155  // Allocate page-aligned object of length >= size bytes
4156  if (pagesize == 0) pagesize = getpagesize();
4157  void* result = do_memalign(pagesize, size);
4158  MallocHook::InvokeNewHook(result, size);
4159  return result;
4160}
4161
4162extern "C" void* pvalloc(size_t size) __THROW {
4163  // Round up size to a multiple of pagesize
4164  if (pagesize == 0) pagesize = getpagesize();
4165  size = (size + pagesize - 1) & ~(pagesize - 1);
4166  void* result = do_memalign(pagesize, size);
4167  MallocHook::InvokeNewHook(result, size);
4168  return result;
4169}
4170
4171extern "C" void malloc_stats(void) {
4172  do_malloc_stats();
4173}
4174
4175extern "C" int mallopt(int cmd, int value) {
4176  return do_mallopt(cmd, value);
4177}
4178
4179#ifdef HAVE_STRUCT_MALLINFO
4180extern "C" struct mallinfo mallinfo(void) {
4181  return do_mallinfo();
4182}
4183#endif
4184
4185//-------------------------------------------------------------------
4186// Some library routines on RedHat 9 allocate memory using malloc()
4187// and free it using __libc_free() (or vice-versa).  Since we provide
4188// our own implementations of malloc/free, we need to make sure that
4189// the __libc_XXX variants (defined as part of glibc) also point to
4190// the same implementations.
4191//-------------------------------------------------------------------
4192
4193#if defined(__GLIBC__)
4194extern "C" {
4195#if COMPILER(GCC) && !defined(__MACH__) && defined(HAVE___ATTRIBUTE__)
4196  // Potentially faster variants that use the gcc alias extension.
4197  // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
4198# define ALIAS(x) __attribute__ ((weak, alias (x)))
4199  void* __libc_malloc(size_t size)              ALIAS("malloc");
4200  void  __libc_free(void* ptr)                  ALIAS("free");
4201  void* __libc_realloc(void* ptr, size_t size)  ALIAS("realloc");
4202  void* __libc_calloc(size_t n, size_t size)    ALIAS("calloc");
4203  void  __libc_cfree(void* ptr)                 ALIAS("cfree");
4204  void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
4205  void* __libc_valloc(size_t size)              ALIAS("valloc");
4206  void* __libc_pvalloc(size_t size)             ALIAS("pvalloc");
4207  int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
4208# undef ALIAS
4209# else   /* not __GNUC__ */
4210  // Portable wrappers
4211  void* __libc_malloc(size_t size)              { return malloc(size);       }
4212  void  __libc_free(void* ptr)                  { free(ptr);                 }
4213  void* __libc_realloc(void* ptr, size_t size)  { return realloc(ptr, size); }
4214  void* __libc_calloc(size_t n, size_t size)    { return calloc(n, size);    }
4215  void  __libc_cfree(void* ptr)                 { cfree(ptr);                }
4216  void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
4217  void* __libc_valloc(size_t size)              { return valloc(size);       }
4218  void* __libc_pvalloc(size_t size)             { return pvalloc(size);      }
4219  int __posix_memalign(void** r, size_t a, size_t s) {
4220    return posix_memalign(r, a, s);
4221  }
4222# endif  /* __GNUC__ */
4223}
4224#endif   /* __GLIBC__ */
4225
4226// Override __libc_memalign in libc on linux boxes specially.
4227// They have a bug in libc that causes them to (very rarely) allocate
4228// with __libc_memalign() yet deallocate with free() and the
4229// definitions above don't catch it.
4230// This function is an exception to the rule of calling MallocHook method
4231// from the stack frame of the allocation function;
4232// heap-checker handles this special case explicitly.
4233static void *MemalignOverride(size_t align, size_t size, const void *caller)
4234    __THROW {
4235  void* result = do_memalign(align, size);
4236  MallocHook::InvokeNewHook(result, size);
4237  return result;
4238}
4239void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
4240
4241#endif
4242
4243#ifdef WTF_CHANGES
4244void releaseFastMallocFreeMemory()
4245{
4246    // Flush free pages in the current thread cache back to the page heap.
4247    // Low watermark mechanism in Scavenge() prevents full return on the first pass.
4248    // The second pass flushes everything.
4249    if (TCMalloc_ThreadCache* threadCache = TCMalloc_ThreadCache::GetCacheIfPresent()) {
4250        threadCache->Scavenge();
4251        threadCache->Scavenge();
4252    }
4253
4254    SpinLockHolder h(&pageheap_lock);
4255    pageheap->ReleaseFreePages();
4256}
4257
4258FastMallocStatistics fastMallocStatistics()
4259{
4260    FastMallocStatistics statistics;
4261
4262    SpinLockHolder lockHolder(&pageheap_lock);
4263    statistics.reservedVMBytes = static_cast<size_t>(pageheap->SystemBytes());
4264    statistics.committedVMBytes = statistics.reservedVMBytes - pageheap->ReturnedBytes();
4265
4266    statistics.freeListBytes = 0;
4267    for (unsigned cl = 0; cl < kNumClasses; ++cl) {
4268        const int length = central_cache[cl].length();
4269        const int tc_length = central_cache[cl].tc_length();
4270
4271        statistics.freeListBytes += ByteSizeForClass(cl) * (length + tc_length);
4272    }
4273    for (TCMalloc_ThreadCache* threadCache = thread_heaps; threadCache ; threadCache = threadCache->next_)
4274        statistics.freeListBytes += threadCache->Size();
4275
4276    return statistics;
4277}
4278
4279size_t fastMallocSize(const void* ptr)
4280{
4281    const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
4282    Span* span = pageheap->GetDescriptorEnsureSafe(p);
4283
4284    if (!span || span->free)
4285        return 0;
4286
4287    for (void* free = span->objects; free != NULL; free = *((void**) free)) {
4288        if (ptr == free)
4289            return 0;
4290    }
4291
4292    if (size_t cl = span->sizeclass)
4293        return ByteSizeForClass(cl);
4294
4295    return span->length << kPageShift;
4296}
4297
4298#if OS(DARWIN)
4299
4300class FreeObjectFinder {
4301    const RemoteMemoryReader& m_reader;
4302    HashSet<void*> m_freeObjects;
4303
4304public:
4305    FreeObjectFinder(const RemoteMemoryReader& reader) : m_reader(reader) { }
4306
4307    void visit(void* ptr) { m_freeObjects.add(ptr); }
4308    bool isFreeObject(void* ptr) const { return m_freeObjects.contains(ptr); }
4309    bool isFreeObject(vm_address_t ptr) const { return isFreeObject(reinterpret_cast<void*>(ptr)); }
4310    size_t freeObjectCount() const { return m_freeObjects.size(); }
4311
4312    void findFreeObjects(TCMalloc_ThreadCache* threadCache)
4313    {
4314        for (; threadCache; threadCache = (threadCache->next_ ? m_reader(threadCache->next_) : 0))
4315            threadCache->enumerateFreeObjects(*this, m_reader);
4316    }
4317
4318    void findFreeObjects(TCMalloc_Central_FreeListPadded* centralFreeList, size_t numSizes, TCMalloc_Central_FreeListPadded* remoteCentralFreeList)
4319    {
4320        for (unsigned i = 0; i < numSizes; i++)
4321            centralFreeList[i].enumerateFreeObjects(*this, m_reader, remoteCentralFreeList + i);
4322    }
4323};
4324
4325class PageMapFreeObjectFinder {
4326    const RemoteMemoryReader& m_reader;
4327    FreeObjectFinder& m_freeObjectFinder;
4328
4329public:
4330    PageMapFreeObjectFinder(const RemoteMemoryReader& reader, FreeObjectFinder& freeObjectFinder)
4331        : m_reader(reader)
4332        , m_freeObjectFinder(freeObjectFinder)
4333    { }
4334
4335    int visit(void* ptr) const
4336    {
4337        if (!ptr)
4338            return 1;
4339
4340        Span* span = m_reader(reinterpret_cast<Span*>(ptr));
4341        if (!span)
4342            return 1;
4343
4344        if (span->free) {
4345            void* ptr = reinterpret_cast<void*>(span->start << kPageShift);
4346            m_freeObjectFinder.visit(ptr);
4347        } else if (span->sizeclass) {
4348            // Walk the free list of the small-object span, keeping track of each object seen
4349            for (void* nextObject = span->objects; nextObject; nextObject = m_reader.nextEntryInLinkedList(reinterpret_cast<void**>(nextObject)))
4350                m_freeObjectFinder.visit(nextObject);
4351        }
4352        return span->length;
4353    }
4354};
4355
4356class PageMapMemoryUsageRecorder {
4357    task_t m_task;
4358    void* m_context;
4359    unsigned m_typeMask;
4360    vm_range_recorder_t* m_recorder;
4361    const RemoteMemoryReader& m_reader;
4362    const FreeObjectFinder& m_freeObjectFinder;
4363
4364    HashSet<void*> m_seenPointers;
4365    Vector<Span*> m_coalescedSpans;
4366
4367public:
4368    PageMapMemoryUsageRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader, const FreeObjectFinder& freeObjectFinder)
4369        : m_task(task)
4370        , m_context(context)
4371        , m_typeMask(typeMask)
4372        , m_recorder(recorder)
4373        , m_reader(reader)
4374        , m_freeObjectFinder(freeObjectFinder)
4375    { }
4376
4377    ~PageMapMemoryUsageRecorder()
4378    {
4379        ASSERT(!m_coalescedSpans.size());
4380    }
4381
4382    void recordPendingRegions()
4383    {
4384        Span* lastSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
4385        vm_range_t ptrRange = { m_coalescedSpans[0]->start << kPageShift, 0 };
4386        ptrRange.size = (lastSpan->start << kPageShift) - ptrRange.address + (lastSpan->length * kPageSize);
4387
4388        // Mark the memory region the spans represent as a candidate for containing pointers
4389        if (m_typeMask & MALLOC_PTR_REGION_RANGE_TYPE)
4390            (*m_recorder)(m_task, m_context, MALLOC_PTR_REGION_RANGE_TYPE, &ptrRange, 1);
4391
4392        if (!(m_typeMask & MALLOC_PTR_IN_USE_RANGE_TYPE)) {
4393            m_coalescedSpans.clear();
4394            return;
4395        }
4396
4397        Vector<vm_range_t, 1024> allocatedPointers;
4398        for (size_t i = 0; i < m_coalescedSpans.size(); ++i) {
4399            Span *theSpan = m_coalescedSpans[i];
4400            if (theSpan->free)
4401                continue;
4402
4403            vm_address_t spanStartAddress = theSpan->start << kPageShift;
4404            vm_size_t spanSizeInBytes = theSpan->length * kPageSize;
4405
4406            if (!theSpan->sizeclass) {
4407                // If it's an allocated large object span, mark it as in use
4408                if (!m_freeObjectFinder.isFreeObject(spanStartAddress))
4409                    allocatedPointers.append((vm_range_t){spanStartAddress, spanSizeInBytes});
4410            } else {
4411                const size_t objectSize = ByteSizeForClass(theSpan->sizeclass);
4412
4413                // Mark each allocated small object within the span as in use
4414                const vm_address_t endOfSpan = spanStartAddress + spanSizeInBytes;
4415                for (vm_address_t object = spanStartAddress; object + objectSize <= endOfSpan; object += objectSize) {
4416                    if (!m_freeObjectFinder.isFreeObject(object))
4417                        allocatedPointers.append((vm_range_t){object, objectSize});
4418                }
4419            }
4420        }
4421
4422        (*m_recorder)(m_task, m_context, MALLOC_PTR_IN_USE_RANGE_TYPE, allocatedPointers.data(), allocatedPointers.size());
4423
4424        m_coalescedSpans.clear();
4425    }
4426
4427    int visit(void* ptr)
4428    {
4429        if (!ptr)
4430            return 1;
4431
4432        Span* span = m_reader(reinterpret_cast<Span*>(ptr));
4433        if (!span || !span->start)
4434            return 1;
4435
4436        if (m_seenPointers.contains(ptr))
4437            return span->length;
4438        m_seenPointers.add(ptr);
4439
4440        if (!m_coalescedSpans.size()) {
4441            m_coalescedSpans.append(span);
4442            return span->length;
4443        }
4444
4445        Span* previousSpan = m_coalescedSpans[m_coalescedSpans.size() - 1];
4446        vm_address_t previousSpanStartAddress = previousSpan->start << kPageShift;
4447        vm_size_t previousSpanSizeInBytes = previousSpan->length * kPageSize;
4448
4449        // If the new span is adjacent to the previous span, do nothing for now.
4450        vm_address_t spanStartAddress = span->start << kPageShift;
4451        if (spanStartAddress == previousSpanStartAddress + previousSpanSizeInBytes) {
4452            m_coalescedSpans.append(span);
4453            return span->length;
4454        }
4455
4456        // New span is not adjacent to previous span, so record the spans coalesced so far.
4457        recordPendingRegions();
4458        m_coalescedSpans.append(span);
4459
4460        return span->length;
4461    }
4462};
4463
4464class AdminRegionRecorder {
4465    task_t m_task;
4466    void* m_context;
4467    unsigned m_typeMask;
4468    vm_range_recorder_t* m_recorder;
4469    const RemoteMemoryReader& m_reader;
4470
4471    Vector<vm_range_t, 1024> m_pendingRegions;
4472
4473public:
4474    AdminRegionRecorder(task_t task, void* context, unsigned typeMask, vm_range_recorder_t* recorder, const RemoteMemoryReader& reader)
4475        : m_task(task)
4476        , m_context(context)
4477        , m_typeMask(typeMask)
4478        , m_recorder(recorder)
4479        , m_reader(reader)
4480    { }
4481
4482    void recordRegion(vm_address_t ptr, size_t size)
4483    {
4484        if (m_typeMask & MALLOC_ADMIN_REGION_RANGE_TYPE)
4485            m_pendingRegions.append((vm_range_t){ ptr, size });
4486    }
4487
4488    void visit(void *ptr, size_t size)
4489    {
4490        recordRegion(reinterpret_cast<vm_address_t>(ptr), size);
4491    }
4492
4493    void recordPendingRegions()
4494    {
4495        if (m_pendingRegions.size()) {
4496            (*m_recorder)(m_task, m_context, MALLOC_ADMIN_REGION_RANGE_TYPE, m_pendingRegions.data(), m_pendingRegions.size());
4497            m_pendingRegions.clear();
4498        }
4499    }
4500
4501    ~AdminRegionRecorder()
4502    {
4503        ASSERT(!m_pendingRegions.size());
4504    }
4505};
4506
4507kern_return_t FastMallocZone::enumerate(task_t task, void* context, unsigned typeMask, vm_address_t zoneAddress, memory_reader_t reader, vm_range_recorder_t recorder)
4508{
4509    RemoteMemoryReader memoryReader(task, reader);
4510
4511    InitSizeClasses();
4512
4513    FastMallocZone* mzone = memoryReader(reinterpret_cast<FastMallocZone*>(zoneAddress));
4514    TCMalloc_PageHeap* pageHeap = memoryReader(mzone->m_pageHeap);
4515    TCMalloc_ThreadCache** threadHeapsPointer = memoryReader(mzone->m_threadHeaps);
4516    TCMalloc_ThreadCache* threadHeaps = memoryReader(*threadHeapsPointer);
4517
4518    TCMalloc_Central_FreeListPadded* centralCaches = memoryReader(mzone->m_centralCaches, sizeof(TCMalloc_Central_FreeListPadded) * kNumClasses);
4519
4520    FreeObjectFinder finder(memoryReader);
4521    finder.findFreeObjects(threadHeaps);
4522    finder.findFreeObjects(centralCaches, kNumClasses, mzone->m_centralCaches);
4523
4524    TCMalloc_PageHeap::PageMap* pageMap = &pageHeap->pagemap_;
4525    PageMapFreeObjectFinder pageMapFinder(memoryReader, finder);
4526    pageMap->visitValues(pageMapFinder, memoryReader);
4527
4528    PageMapMemoryUsageRecorder usageRecorder(task, context, typeMask, recorder, memoryReader, finder);
4529    pageMap->visitValues(usageRecorder, memoryReader);
4530    usageRecorder.recordPendingRegions();
4531
4532    AdminRegionRecorder adminRegionRecorder(task, context, typeMask, recorder, memoryReader);
4533    pageMap->visitAllocations(adminRegionRecorder, memoryReader);
4534
4535    PageHeapAllocator<Span>* spanAllocator = memoryReader(mzone->m_spanAllocator);
4536    PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator = memoryReader(mzone->m_pageHeapAllocator);
4537
4538    spanAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
4539    pageHeapAllocator->recordAdministrativeRegions(adminRegionRecorder, memoryReader);
4540
4541    adminRegionRecorder.recordPendingRegions();
4542
4543    return 0;
4544}
4545
4546size_t FastMallocZone::size(malloc_zone_t*, const void*)
4547{
4548    return 0;
4549}
4550
4551void* FastMallocZone::zoneMalloc(malloc_zone_t*, size_t)
4552{
4553    return 0;
4554}
4555
4556void* FastMallocZone::zoneCalloc(malloc_zone_t*, size_t, size_t)
4557{
4558    return 0;
4559}
4560
4561void FastMallocZone::zoneFree(malloc_zone_t*, void* ptr)
4562{
4563    // Due to <rdar://problem/5671357> zoneFree may be called by the system free even if the pointer
4564    // is not in this zone.  When this happens, the pointer being freed was not allocated by any
4565    // zone so we need to print a useful error for the application developer.
4566    malloc_printf("*** error for object %p: pointer being freed was not allocated\n", ptr);
4567}
4568
4569void* FastMallocZone::zoneRealloc(malloc_zone_t*, void*, size_t)
4570{
4571    return 0;
4572}
4573
4574
4575#undef malloc
4576#undef free
4577#undef realloc
4578#undef calloc
4579
4580extern "C" {
4581malloc_introspection_t jscore_fastmalloc_introspection = { &FastMallocZone::enumerate, &FastMallocZone::goodSize, &FastMallocZone::check, &FastMallocZone::print,
4582    &FastMallocZone::log, &FastMallocZone::forceLock, &FastMallocZone::forceUnlock, &FastMallocZone::statistics
4583
4584#if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD)
4585    , 0 // zone_locked will not be called on the zone unless it advertises itself as version five or higher.
4586#endif
4587#if !defined(BUILDING_ON_TIGER) && !defined(BUILDING_ON_LEOPARD) && !defined(BUILDING_ON_SNOW_LEOPARD)
4588    , 0, 0, 0, 0 // These members will not be used unless the zone advertises itself as version seven or higher.
4589#endif
4590
4591    };
4592}
4593
4594FastMallocZone::FastMallocZone(TCMalloc_PageHeap* pageHeap, TCMalloc_ThreadCache** threadHeaps, TCMalloc_Central_FreeListPadded* centralCaches, PageHeapAllocator<Span>* spanAllocator, PageHeapAllocator<TCMalloc_ThreadCache>* pageHeapAllocator)
4595    : m_pageHeap(pageHeap)
4596    , m_threadHeaps(threadHeaps)
4597    , m_centralCaches(centralCaches)
4598    , m_spanAllocator(spanAllocator)
4599    , m_pageHeapAllocator(pageHeapAllocator)
4600{
4601    memset(&m_zone, 0, sizeof(m_zone));
4602    m_zone.version = 4;
4603    m_zone.zone_name = "JavaScriptCore FastMalloc";
4604    m_zone.size = &FastMallocZone::size;
4605    m_zone.malloc = &FastMallocZone::zoneMalloc;
4606    m_zone.calloc = &FastMallocZone::zoneCalloc;
4607    m_zone.realloc = &FastMallocZone::zoneRealloc;
4608    m_zone.free = &FastMallocZone::zoneFree;
4609    m_zone.valloc = &FastMallocZone::zoneValloc;
4610    m_zone.destroy = &FastMallocZone::zoneDestroy;
4611    m_zone.introspect = &jscore_fastmalloc_introspection;
4612    malloc_zone_register(&m_zone);
4613}
4614
4615
4616void FastMallocZone::init()
4617{
4618    static FastMallocZone zone(pageheap, &thread_heaps, static_cast<TCMalloc_Central_FreeListPadded*>(central_cache), &span_allocator, &threadheap_allocator);
4619}
4620
4621#endif // OS(DARWIN)
4622
4623} // namespace WTF
4624#endif // WTF_CHANGES
4625
4626#endif // FORCE_SYSTEM_MALLOC
4627