1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17// #define LOG_NDEBUG 0
18#define LOG_TAG "libutils.threads"
19
20#include <utils/threads.h>
21#include <utils/Log.h>
22
23#include <cutils/sched_policy.h>
24#include <cutils/properties.h>
25
26#include <stdio.h>
27#include <stdlib.h>
28#include <memory.h>
29#include <errno.h>
30#include <assert.h>
31#include <unistd.h>
32
33#if defined(HAVE_PTHREADS)
34# include <pthread.h>
35# include <sched.h>
36# include <sys/resource.h>
37#ifdef HAVE_ANDROID_OS
38# include <bionic_pthread.h>
39#endif
40#elif defined(HAVE_WIN32_THREADS)
41# include <windows.h>
42# include <stdint.h>
43# include <process.h>
44# define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
45#endif
46
47#if defined(HAVE_PRCTL)
48#include <sys/prctl.h>
49#endif
50
51/*
52 * ===========================================================================
53 *      Thread wrappers
54 * ===========================================================================
55 */
56
57using namespace android;
58
59// ----------------------------------------------------------------------------
60#if defined(HAVE_PTHREADS)
61// ----------------------------------------------------------------------------
62
63/*
64 * Create and run a new thread.
65 *
66 * We create it "detached", so it cleans up after itself.
67 */
68
69typedef void* (*android_pthread_entry)(void*);
70
71static pthread_once_t gDoSchedulingGroupOnce = PTHREAD_ONCE_INIT;
72static bool gDoSchedulingGroup = true;
73
74static void checkDoSchedulingGroup(void) {
75    char buf[PROPERTY_VALUE_MAX];
76    int len = property_get("debug.sys.noschedgroups", buf, "");
77    if (len > 0) {
78        int temp;
79        if (sscanf(buf, "%d", &temp) == 1) {
80            gDoSchedulingGroup = temp == 0;
81        }
82    }
83}
84
85struct thread_data_t {
86    thread_func_t   entryFunction;
87    void*           userData;
88    int             priority;
89    char *          threadName;
90
91    // we use this trampoline when we need to set the priority with
92    // nice/setpriority, and name with prctl.
93    static int trampoline(const thread_data_t* t) {
94        thread_func_t f = t->entryFunction;
95        void* u = t->userData;
96        int prio = t->priority;
97        char * name = t->threadName;
98        delete t;
99        setpriority(PRIO_PROCESS, 0, prio);
100        pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
101        if (gDoSchedulingGroup) {
102            if (prio >= ANDROID_PRIORITY_BACKGROUND) {
103                set_sched_policy(androidGetTid(), SP_BACKGROUND);
104            } else if (prio > ANDROID_PRIORITY_AUDIO) {
105                set_sched_policy(androidGetTid(), SP_FOREGROUND);
106            } else {
107                // defaults to that of parent, or as set by requestPriority()
108            }
109        }
110
111        if (name) {
112#if defined(HAVE_PRCTL)
113            // Mac OS doesn't have this, and we build libutil for the host too
114            int hasAt = 0;
115            int hasDot = 0;
116            char *s = name;
117            while (*s) {
118                if (*s == '.') hasDot = 1;
119                else if (*s == '@') hasAt = 1;
120                s++;
121            }
122            int len = s - name;
123            if (len < 15 || hasAt || !hasDot) {
124                s = name;
125            } else {
126                s = name + len - 15;
127            }
128            prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
129#endif
130            free(name);
131        }
132        return f(u);
133    }
134};
135
136int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
137                               void *userData,
138                               const char* threadName,
139                               int32_t threadPriority,
140                               size_t threadStackSize,
141                               android_thread_id_t *threadId)
142{
143    pthread_attr_t attr;
144    pthread_attr_init(&attr);
145    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
146
147#ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
148    if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
149        // Now that the pthread_t has a method to find the associated
150        // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
151        // this trampoline in some cases as the parent could set the properties
152        // for the child.  However, there would be a race condition because the
153        // child becomes ready immediately, and it doesn't work for the name.
154        // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
155        // proposed but not yet accepted.
156        thread_data_t* t = new thread_data_t;
157        t->priority = threadPriority;
158        t->threadName = threadName ? strdup(threadName) : NULL;
159        t->entryFunction = entryFunction;
160        t->userData = userData;
161        entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
162        userData = t;
163    }
164#endif
165
166    if (threadStackSize) {
167        pthread_attr_setstacksize(&attr, threadStackSize);
168    }
169
170    errno = 0;
171    pthread_t thread;
172    int result = pthread_create(&thread, &attr,
173                    (android_pthread_entry)entryFunction, userData);
174    pthread_attr_destroy(&attr);
175    if (result != 0) {
176        ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
177             "(android threadPriority=%d)",
178            entryFunction, result, errno, threadPriority);
179        return 0;
180    }
181
182    // Note that *threadID is directly available to the parent only, as it is
183    // assigned after the child starts.  Use memory barrier / lock if the child
184    // or other threads also need access.
185    if (threadId != NULL) {
186        *threadId = (android_thread_id_t)thread; // XXX: this is not portable
187    }
188    return 1;
189}
190
191#ifdef HAVE_ANDROID_OS
192static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
193{
194    return (pthread_t) thread;
195}
196#endif
197
198android_thread_id_t androidGetThreadId()
199{
200    return (android_thread_id_t)pthread_self();
201}
202
203// ----------------------------------------------------------------------------
204#elif defined(HAVE_WIN32_THREADS)
205// ----------------------------------------------------------------------------
206
207/*
208 * Trampoline to make us __stdcall-compliant.
209 *
210 * We're expected to delete "vDetails" when we're done.
211 */
212struct threadDetails {
213    int (*func)(void*);
214    void* arg;
215};
216static __stdcall unsigned int threadIntermediary(void* vDetails)
217{
218    struct threadDetails* pDetails = (struct threadDetails*) vDetails;
219    int result;
220
221    result = (*(pDetails->func))(pDetails->arg);
222
223    delete pDetails;
224
225    ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
226    return (unsigned int) result;
227}
228
229/*
230 * Create and run a new thread.
231 */
232static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
233{
234    HANDLE hThread;
235    struct threadDetails* pDetails = new threadDetails; // must be on heap
236    unsigned int thrdaddr;
237
238    pDetails->func = fn;
239    pDetails->arg = arg;
240
241#if defined(HAVE__BEGINTHREADEX)
242    hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
243                    &thrdaddr);
244    if (hThread == 0)
245#elif defined(HAVE_CREATETHREAD)
246    hThread = CreateThread(NULL, 0,
247                    (LPTHREAD_START_ROUTINE) threadIntermediary,
248                    (void*) pDetails, 0, (DWORD*) &thrdaddr);
249    if (hThread == NULL)
250#endif
251    {
252        ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
253        return false;
254    }
255
256#if defined(HAVE_CREATETHREAD)
257    /* close the management handle */
258    CloseHandle(hThread);
259#endif
260
261    if (id != NULL) {
262      	*id = (android_thread_id_t)thrdaddr;
263    }
264
265    return true;
266}
267
268int androidCreateRawThreadEtc(android_thread_func_t fn,
269                               void *userData,
270                               const char* threadName,
271                               int32_t threadPriority,
272                               size_t threadStackSize,
273                               android_thread_id_t *threadId)
274{
275    return doCreateThread(  fn, userData, threadId);
276}
277
278android_thread_id_t androidGetThreadId()
279{
280    return (android_thread_id_t)GetCurrentThreadId();
281}
282
283// ----------------------------------------------------------------------------
284#else
285#error "Threads not supported"
286#endif
287
288// ----------------------------------------------------------------------------
289
290int androidCreateThread(android_thread_func_t fn, void* arg)
291{
292    return createThreadEtc(fn, arg);
293}
294
295int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
296{
297    return createThreadEtc(fn, arg, "android:unnamed_thread",
298                           PRIORITY_DEFAULT, 0, id);
299}
300
301static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
302
303int androidCreateThreadEtc(android_thread_func_t entryFunction,
304                            void *userData,
305                            const char* threadName,
306                            int32_t threadPriority,
307                            size_t threadStackSize,
308                            android_thread_id_t *threadId)
309{
310    return gCreateThreadFn(entryFunction, userData, threadName,
311        threadPriority, threadStackSize, threadId);
312}
313
314void androidSetCreateThreadFunc(android_create_thread_fn func)
315{
316    gCreateThreadFn = func;
317}
318
319pid_t androidGetTid()
320{
321#ifdef HAVE_GETTID
322    return gettid();
323#else
324    return getpid();
325#endif
326}
327
328#ifdef HAVE_ANDROID_OS
329int androidSetThreadPriority(pid_t tid, int pri)
330{
331    int rc = 0;
332
333#if defined(HAVE_PTHREADS)
334    int lasterr = 0;
335
336    pthread_once(&gDoSchedulingGroupOnce, checkDoSchedulingGroup);
337    if (gDoSchedulingGroup) {
338        // set_sched_policy does not support tid == 0
339        int policy_tid;
340        if (tid == 0) {
341            policy_tid = androidGetTid();
342        } else {
343            policy_tid = tid;
344        }
345        if (pri >= ANDROID_PRIORITY_BACKGROUND) {
346            rc = set_sched_policy(policy_tid, SP_BACKGROUND);
347        } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
348            rc = set_sched_policy(policy_tid, SP_FOREGROUND);
349        }
350    }
351
352    if (rc) {
353        lasterr = errno;
354    }
355
356    if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
357        rc = INVALID_OPERATION;
358    } else {
359        errno = lasterr;
360    }
361#endif
362
363    return rc;
364}
365
366int androidGetThreadPriority(pid_t tid) {
367#if defined(HAVE_PTHREADS)
368    return getpriority(PRIO_PROCESS, tid);
369#else
370    return ANDROID_PRIORITY_NORMAL;
371#endif
372}
373
374#endif
375
376namespace android {
377
378/*
379 * ===========================================================================
380 *      Mutex class
381 * ===========================================================================
382 */
383
384#if defined(HAVE_PTHREADS)
385// implemented as inlines in threads.h
386#elif defined(HAVE_WIN32_THREADS)
387
388Mutex::Mutex()
389{
390    HANDLE hMutex;
391
392    assert(sizeof(hMutex) == sizeof(mState));
393
394    hMutex = CreateMutex(NULL, FALSE, NULL);
395    mState = (void*) hMutex;
396}
397
398Mutex::Mutex(const char* name)
399{
400    // XXX: name not used for now
401    HANDLE hMutex;
402
403    assert(sizeof(hMutex) == sizeof(mState));
404
405    hMutex = CreateMutex(NULL, FALSE, NULL);
406    mState = (void*) hMutex;
407}
408
409Mutex::Mutex(int type, const char* name)
410{
411    // XXX: type and name not used for now
412    HANDLE hMutex;
413
414    assert(sizeof(hMutex) == sizeof(mState));
415
416    hMutex = CreateMutex(NULL, FALSE, NULL);
417    mState = (void*) hMutex;
418}
419
420Mutex::~Mutex()
421{
422    CloseHandle((HANDLE) mState);
423}
424
425status_t Mutex::lock()
426{
427    DWORD dwWaitResult;
428    dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
429    return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
430}
431
432void Mutex::unlock()
433{
434    if (!ReleaseMutex((HANDLE) mState))
435        ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
436}
437
438status_t Mutex::tryLock()
439{
440    DWORD dwWaitResult;
441
442    dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
443    if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
444        ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
445    return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
446}
447
448#else
449#error "Somebody forgot to implement threads for this platform."
450#endif
451
452
453/*
454 * ===========================================================================
455 *      Condition class
456 * ===========================================================================
457 */
458
459#if defined(HAVE_PTHREADS)
460// implemented as inlines in threads.h
461#elif defined(HAVE_WIN32_THREADS)
462
463/*
464 * Windows doesn't have a condition variable solution.  It's possible
465 * to create one, but it's easy to get it wrong.  For a discussion, and
466 * the origin of this implementation, see:
467 *
468 *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
469 *
470 * The implementation shown on the page does NOT follow POSIX semantics.
471 * As an optimization they require acquiring the external mutex before
472 * calling signal() and broadcast(), whereas POSIX only requires grabbing
473 * it before calling wait().  The implementation here has been un-optimized
474 * to have the correct behavior.
475 */
476typedef struct WinCondition {
477    // Number of waiting threads.
478    int                 waitersCount;
479
480    // Serialize access to waitersCount.
481    CRITICAL_SECTION    waitersCountLock;
482
483    // Semaphore used to queue up threads waiting for the condition to
484    // become signaled.
485    HANDLE              sema;
486
487    // An auto-reset event used by the broadcast/signal thread to wait
488    // for all the waiting thread(s) to wake up and be released from
489    // the semaphore.
490    HANDLE              waitersDone;
491
492    // This mutex wouldn't be necessary if we required that the caller
493    // lock the external mutex before calling signal() and broadcast().
494    // I'm trying to mimic pthread semantics though.
495    HANDLE              internalMutex;
496
497    // Keeps track of whether we were broadcasting or signaling.  This
498    // allows us to optimize the code if we're just signaling.
499    bool                wasBroadcast;
500
501    status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
502    {
503        // Increment the wait count, avoiding race conditions.
504        EnterCriticalSection(&condState->waitersCountLock);
505        condState->waitersCount++;
506        //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
507        //    condState->waitersCount, getThreadId());
508        LeaveCriticalSection(&condState->waitersCountLock);
509
510        DWORD timeout = INFINITE;
511        if (abstime) {
512            nsecs_t reltime = *abstime - systemTime();
513            if (reltime < 0)
514                reltime = 0;
515            timeout = reltime/1000000;
516        }
517
518        // Atomically release the external mutex and wait on the semaphore.
519        DWORD res =
520            SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
521
522        //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
523
524        // Reacquire lock to avoid race conditions.
525        EnterCriticalSection(&condState->waitersCountLock);
526
527        // No longer waiting.
528        condState->waitersCount--;
529
530        // Check to see if we're the last waiter after a broadcast.
531        bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
532
533        //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
534        //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
535
536        LeaveCriticalSection(&condState->waitersCountLock);
537
538        // If we're the last waiter thread during this particular broadcast
539        // then signal broadcast() that we're all awake.  It'll drop the
540        // internal mutex.
541        if (lastWaiter) {
542            // Atomically signal the "waitersDone" event and wait until we
543            // can acquire the internal mutex.  We want to do this in one step
544            // because it ensures that everybody is in the mutex FIFO before
545            // any thread has a chance to run.  Without it, another thread
546            // could wake up, do work, and hop back in ahead of us.
547            SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
548                INFINITE, FALSE);
549        } else {
550            // Grab the internal mutex.
551            WaitForSingleObject(condState->internalMutex, INFINITE);
552        }
553
554        // Release the internal and grab the external.
555        ReleaseMutex(condState->internalMutex);
556        WaitForSingleObject(hMutex, INFINITE);
557
558        return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
559    }
560} WinCondition;
561
562/*
563 * Constructor.  Set up the WinCondition stuff.
564 */
565Condition::Condition()
566{
567    WinCondition* condState = new WinCondition;
568
569    condState->waitersCount = 0;
570    condState->wasBroadcast = false;
571    // semaphore: no security, initial value of 0
572    condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
573    InitializeCriticalSection(&condState->waitersCountLock);
574    // auto-reset event, not signaled initially
575    condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
576    // used so we don't have to lock external mutex on signal/broadcast
577    condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
578
579    mState = condState;
580}
581
582/*
583 * Destructor.  Free Windows resources as well as our allocated storage.
584 */
585Condition::~Condition()
586{
587    WinCondition* condState = (WinCondition*) mState;
588    if (condState != NULL) {
589        CloseHandle(condState->sema);
590        CloseHandle(condState->waitersDone);
591        delete condState;
592    }
593}
594
595
596status_t Condition::wait(Mutex& mutex)
597{
598    WinCondition* condState = (WinCondition*) mState;
599    HANDLE hMutex = (HANDLE) mutex.mState;
600
601    return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
602}
603
604status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
605{
606    WinCondition* condState = (WinCondition*) mState;
607    HANDLE hMutex = (HANDLE) mutex.mState;
608    nsecs_t absTime = systemTime()+reltime;
609
610    return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
611}
612
613/*
614 * Signal the condition variable, allowing one thread to continue.
615 */
616void Condition::signal()
617{
618    WinCondition* condState = (WinCondition*) mState;
619
620    // Lock the internal mutex.  This ensures that we don't clash with
621    // broadcast().
622    WaitForSingleObject(condState->internalMutex, INFINITE);
623
624    EnterCriticalSection(&condState->waitersCountLock);
625    bool haveWaiters = (condState->waitersCount > 0);
626    LeaveCriticalSection(&condState->waitersCountLock);
627
628    // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
629    // down a notch.
630    if (haveWaiters)
631        ReleaseSemaphore(condState->sema, 1, 0);
632
633    // Release internal mutex.
634    ReleaseMutex(condState->internalMutex);
635}
636
637/*
638 * Signal the condition variable, allowing all threads to continue.
639 *
640 * First we have to wake up all threads waiting on the semaphore, then
641 * we wait until all of the threads have actually been woken before
642 * releasing the internal mutex.  This ensures that all threads are woken.
643 */
644void Condition::broadcast()
645{
646    WinCondition* condState = (WinCondition*) mState;
647
648    // Lock the internal mutex.  This keeps the guys we're waking up
649    // from getting too far.
650    WaitForSingleObject(condState->internalMutex, INFINITE);
651
652    EnterCriticalSection(&condState->waitersCountLock);
653    bool haveWaiters = false;
654
655    if (condState->waitersCount > 0) {
656        haveWaiters = true;
657        condState->wasBroadcast = true;
658    }
659
660    if (haveWaiters) {
661        // Wake up all the waiters.
662        ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
663
664        LeaveCriticalSection(&condState->waitersCountLock);
665
666        // Wait for all awakened threads to acquire the counting semaphore.
667        // The last guy who was waiting sets this.
668        WaitForSingleObject(condState->waitersDone, INFINITE);
669
670        // Reset wasBroadcast.  (No crit section needed because nobody
671        // else can wake up to poke at it.)
672        condState->wasBroadcast = 0;
673    } else {
674        // nothing to do
675        LeaveCriticalSection(&condState->waitersCountLock);
676    }
677
678    // Release internal mutex.
679    ReleaseMutex(condState->internalMutex);
680}
681
682#else
683#error "condition variables not supported on this platform"
684#endif
685
686// ----------------------------------------------------------------------------
687
688/*
689 * This is our thread object!
690 */
691
692Thread::Thread(bool canCallJava)
693    :   mCanCallJava(canCallJava),
694        mThread(thread_id_t(-1)),
695        mLock("Thread::mLock"),
696        mStatus(NO_ERROR),
697        mExitPending(false), mRunning(false)
698#ifdef HAVE_ANDROID_OS
699        , mTid(-1)
700#endif
701{
702}
703
704Thread::~Thread()
705{
706}
707
708status_t Thread::readyToRun()
709{
710    return NO_ERROR;
711}
712
713status_t Thread::run(const char* name, int32_t priority, size_t stack)
714{
715    Mutex::Autolock _l(mLock);
716
717    if (mRunning) {
718        // thread already started
719        return INVALID_OPERATION;
720    }
721
722    // reset status and exitPending to their default value, so we can
723    // try again after an error happened (either below, or in readyToRun())
724    mStatus = NO_ERROR;
725    mExitPending = false;
726    mThread = thread_id_t(-1);
727
728    // hold a strong reference on ourself
729    mHoldSelf = this;
730
731    mRunning = true;
732
733    bool res;
734    if (mCanCallJava) {
735        res = createThreadEtc(_threadLoop,
736                this, name, priority, stack, &mThread);
737    } else {
738        res = androidCreateRawThreadEtc(_threadLoop,
739                this, name, priority, stack, &mThread);
740    }
741
742    if (res == false) {
743        mStatus = UNKNOWN_ERROR;   // something happened!
744        mRunning = false;
745        mThread = thread_id_t(-1);
746        mHoldSelf.clear();  // "this" may have gone away after this.
747
748        return UNKNOWN_ERROR;
749    }
750
751    // Do not refer to mStatus here: The thread is already running (may, in fact
752    // already have exited with a valid mStatus result). The NO_ERROR indication
753    // here merely indicates successfully starting the thread and does not
754    // imply successful termination/execution.
755    return NO_ERROR;
756
757    // Exiting scope of mLock is a memory barrier and allows new thread to run
758}
759
760int Thread::_threadLoop(void* user)
761{
762    Thread* const self = static_cast<Thread*>(user);
763
764    sp<Thread> strong(self->mHoldSelf);
765    wp<Thread> weak(strong);
766    self->mHoldSelf.clear();
767
768#ifdef HAVE_ANDROID_OS
769    // this is very useful for debugging with gdb
770    self->mTid = gettid();
771#endif
772
773    bool first = true;
774
775    do {
776        bool result;
777        if (first) {
778            first = false;
779            self->mStatus = self->readyToRun();
780            result = (self->mStatus == NO_ERROR);
781
782            if (result && !self->exitPending()) {
783                // Binder threads (and maybe others) rely on threadLoop
784                // running at least once after a successful ::readyToRun()
785                // (unless, of course, the thread has already been asked to exit
786                // at that point).
787                // This is because threads are essentially used like this:
788                //   (new ThreadSubclass())->run();
789                // The caller therefore does not retain a strong reference to
790                // the thread and the thread would simply disappear after the
791                // successful ::readyToRun() call instead of entering the
792                // threadLoop at least once.
793                result = self->threadLoop();
794            }
795        } else {
796            result = self->threadLoop();
797        }
798
799        // establish a scope for mLock
800        {
801        Mutex::Autolock _l(self->mLock);
802        if (result == false || self->mExitPending) {
803            self->mExitPending = true;
804            self->mRunning = false;
805            // clear thread ID so that requestExitAndWait() does not exit if
806            // called by a new thread using the same thread ID as this one.
807            self->mThread = thread_id_t(-1);
808            // note that interested observers blocked in requestExitAndWait are
809            // awoken by broadcast, but blocked on mLock until break exits scope
810            self->mThreadExitedCondition.broadcast();
811            break;
812        }
813        }
814
815        // Release our strong reference, to let a chance to the thread
816        // to die a peaceful death.
817        strong.clear();
818        // And immediately, re-acquire a strong reference for the next loop
819        strong = weak.promote();
820    } while(strong != 0);
821
822    return 0;
823}
824
825void Thread::requestExit()
826{
827    Mutex::Autolock _l(mLock);
828    mExitPending = true;
829}
830
831status_t Thread::requestExitAndWait()
832{
833    Mutex::Autolock _l(mLock);
834    if (mThread == getThreadId()) {
835        ALOGW(
836        "Thread (this=%p): don't call waitForExit() from this "
837        "Thread object's thread. It's a guaranteed deadlock!",
838        this);
839
840        return WOULD_BLOCK;
841    }
842
843    mExitPending = true;
844
845    while (mRunning == true) {
846        mThreadExitedCondition.wait(mLock);
847    }
848    // This next line is probably not needed any more, but is being left for
849    // historical reference. Note that each interested party will clear flag.
850    mExitPending = false;
851
852    return mStatus;
853}
854
855status_t Thread::join()
856{
857    Mutex::Autolock _l(mLock);
858    if (mThread == getThreadId()) {
859        ALOGW(
860        "Thread (this=%p): don't call join() from this "
861        "Thread object's thread. It's a guaranteed deadlock!",
862        this);
863
864        return WOULD_BLOCK;
865    }
866
867    while (mRunning == true) {
868        mThreadExitedCondition.wait(mLock);
869    }
870
871    return mStatus;
872}
873
874#ifdef HAVE_ANDROID_OS
875pid_t Thread::getTid() const
876{
877    // mTid is not defined until the child initializes it, and the caller may need it earlier
878    Mutex::Autolock _l(mLock);
879    pid_t tid;
880    if (mRunning) {
881        pthread_t pthread = android_thread_id_t_to_pthread(mThread);
882        tid = __pthread_gettid(pthread);
883    } else {
884        ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
885        tid = -1;
886    }
887    return tid;
888}
889#endif
890
891bool Thread::exitPending() const
892{
893    Mutex::Autolock _l(mLock);
894    return mExitPending;
895}
896
897
898
899};  // namespace android
900