1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8import java.util.concurrent.locks.*;
9import java.util.*;
10import java.io.Serializable;
11
12// BEGIN android-note
13// removed link to collections framework docs
14// END android-note
15
16/**
17 * A hash table supporting full concurrency of retrievals and
18 * adjustable expected concurrency for updates. This class obeys the
19 * same functional specification as {@link java.util.Hashtable}, and
20 * includes versions of methods corresponding to each method of
21 * <tt>Hashtable</tt>. However, even though all operations are
22 * thread-safe, retrieval operations do <em>not</em> entail locking,
23 * and there is <em>not</em> any support for locking the entire table
24 * in a way that prevents all access.  This class is fully
25 * interoperable with <tt>Hashtable</tt> in programs that rely on its
26 * thread safety but not on its synchronization details.
27 *
28 * <p> Retrieval operations (including <tt>get</tt>) generally do not
29 * block, so may overlap with update operations (including
30 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
31 * of the most recently <em>completed</em> update operations holding
32 * upon their onset.  For aggregate operations such as <tt>putAll</tt>
33 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
34 * removal of only some entries.  Similarly, Iterators and
35 * Enumerations return elements reflecting the state of the hash table
36 * at some point at or since the creation of the iterator/enumeration.
37 * They do <em>not</em> throw {@link ConcurrentModificationException}.
38 * However, iterators are designed to be used by only one thread at a time.
39 *
40 * <p> The allowed concurrency among update operations is guided by
41 * the optional <tt>concurrencyLevel</tt> constructor argument
42 * (default <tt>16</tt>), which is used as a hint for internal sizing.  The
43 * table is internally partitioned to try to permit the indicated
44 * number of concurrent updates without contention. Because placement
45 * in hash tables is essentially random, the actual concurrency will
46 * vary.  Ideally, you should choose a value to accommodate as many
47 * threads as will ever concurrently modify the table. Using a
48 * significantly higher value than you need can waste space and time,
49 * and a significantly lower value can lead to thread contention. But
50 * overestimates and underestimates within an order of magnitude do
51 * not usually have much noticeable impact. A value of one is
52 * appropriate when it is known that only one thread will modify and
53 * all others will only read. Also, resizing this or any other kind of
54 * hash table is a relatively slow operation, so, when possible, it is
55 * a good idea to provide estimates of expected table sizes in
56 * constructors.
57 *
58 * <p>This class and its views and iterators implement all of the
59 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
60 * interfaces.
61 *
62 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
63 * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
64 *
65 * @since 1.5
66 * @author Doug Lea
67 * @param <K> the type of keys maintained by this map
68 * @param <V> the type of mapped values
69 */
70public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
71        implements ConcurrentMap<K, V>, Serializable {
72    private static final long serialVersionUID = 7249069246763182397L;
73
74    /*
75     * The basic strategy is to subdivide the table among Segments,
76     * each of which itself is a concurrently readable hash table.  To
77     * reduce footprint, all but one segments are constructed only
78     * when first needed (see ensureSegment). To maintain visibility
79     * in the presence of lazy construction, accesses to segments as
80     * well as elements of segment's table must use volatile access,
81     * which is done via Unsafe within methods segmentAt etc
82     * below. These provide the functionality of AtomicReferenceArrays
83     * but reduce the levels of indirection. Additionally,
84     * volatile-writes of table elements and entry "next" fields
85     * within locked operations use the cheaper "lazySet" forms of
86     * writes (via putOrderedObject) because these writes are always
87     * followed by lock releases that maintain sequential consistency
88     * of table updates.
89     *
90     * Historical note: The previous version of this class relied
91     * heavily on "final" fields, which avoided some volatile reads at
92     * the expense of a large initial footprint.  Some remnants of
93     * that design (including forced construction of segment 0) exist
94     * to ensure serialization compatibility.
95     */
96
97    /* ---------------- Constants -------------- */
98
99    /**
100     * The default initial capacity for this table,
101     * used when not otherwise specified in a constructor.
102     */
103    static final int DEFAULT_INITIAL_CAPACITY = 16;
104
105    /**
106     * The default load factor for this table, used when not
107     * otherwise specified in a constructor.
108     */
109    static final float DEFAULT_LOAD_FACTOR = 0.75f;
110
111    /**
112     * The default concurrency level for this table, used when not
113     * otherwise specified in a constructor.
114     */
115    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
116
117    /**
118     * The maximum capacity, used if a higher value is implicitly
119     * specified by either of the constructors with arguments.  MUST
120     * be a power of two <= 1<<30 to ensure that entries are indexable
121     * using ints.
122     */
123    static final int MAXIMUM_CAPACITY = 1 << 30;
124
125    /**
126     * The minimum capacity for per-segment tables.  Must be a power
127     * of two, at least two to avoid immediate resizing on next use
128     * after lazy construction.
129     */
130    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
131
132    /**
133     * The maximum number of segments to allow; used to bound
134     * constructor arguments. Must be power of two less than 1 << 24.
135     */
136    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
137
138    /**
139     * Number of unsynchronized retries in size and containsValue
140     * methods before resorting to locking. This is used to avoid
141     * unbounded retries if tables undergo continuous modification
142     * which would make it impossible to obtain an accurate result.
143     */
144    static final int RETRIES_BEFORE_LOCK = 2;
145
146    /* ---------------- Fields -------------- */
147
148    /**
149     * Mask value for indexing into segments. The upper bits of a
150     * key's hash code are used to choose the segment.
151     */
152    final int segmentMask;
153
154    /**
155     * Shift value for indexing within segments.
156     */
157    final int segmentShift;
158
159    /**
160     * The segments, each of which is a specialized hash table.
161     */
162    final Segment<K,V>[] segments;
163
164    transient Set<K> keySet;
165    transient Set<Map.Entry<K,V>> entrySet;
166    transient Collection<V> values;
167
168    /**
169     * ConcurrentHashMap list entry. Note that this is never exported
170     * out as a user-visible Map.Entry.
171     */
172    static final class HashEntry<K,V> {
173        final int hash;
174        final K key;
175        volatile V value;
176        volatile HashEntry<K,V> next;
177
178        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
179            this.hash = hash;
180            this.key = key;
181            this.value = value;
182            this.next = next;
183        }
184
185        /**
186         * Sets next field with volatile write semantics.  (See above
187         * about use of putOrderedObject.)
188         */
189        final void setNext(HashEntry<K,V> n) {
190            UNSAFE.putOrderedObject(this, nextOffset, n);
191        }
192
193        // Unsafe mechanics
194        static final sun.misc.Unsafe UNSAFE;
195        static final long nextOffset;
196        static {
197            try {
198                UNSAFE = sun.misc.Unsafe.getUnsafe();
199                Class<?> k = HashEntry.class;
200                nextOffset = UNSAFE.objectFieldOffset
201                    (k.getDeclaredField("next"));
202            } catch (Exception e) {
203                throw new Error(e);
204            }
205        }
206    }
207
208    /**
209     * Gets the ith element of given table (if nonnull) with volatile
210     * read semantics. Note: This is manually integrated into a few
211     * performance-sensitive methods to reduce call overhead.
212     */
213    @SuppressWarnings("unchecked")
214    static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
215        return (tab == null) ? null :
216            (HashEntry<K,V>) UNSAFE.getObjectVolatile
217            (tab, ((long)i << TSHIFT) + TBASE);
218    }
219
220    /**
221     * Sets the ith element of given table, with volatile write
222     * semantics. (See above about use of putOrderedObject.)
223     */
224    static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
225                                       HashEntry<K,V> e) {
226        UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
227    }
228
229    /**
230     * Applies a supplemental hash function to a given hashCode, which
231     * defends against poor quality hash functions.  This is critical
232     * because ConcurrentHashMap uses power-of-two length hash tables,
233     * that otherwise encounter collisions for hashCodes that do not
234     * differ in lower or upper bits.
235     */
236    private static int hash(int h) {
237        // Spread bits to regularize both segment and index locations,
238        // using variant of single-word Wang/Jenkins hash.
239        h += (h <<  15) ^ 0xffffcd7d;
240        h ^= (h >>> 10);
241        h += (h <<   3);
242        h ^= (h >>>  6);
243        h += (h <<   2) + (h << 14);
244        return h ^ (h >>> 16);
245    }
246
247    /**
248     * Segments are specialized versions of hash tables.  This
249     * subclasses from ReentrantLock opportunistically, just to
250     * simplify some locking and avoid separate construction.
251     */
252    static final class Segment<K,V> extends ReentrantLock implements Serializable {
253        /*
254         * Segments maintain a table of entry lists that are always
255         * kept in a consistent state, so can be read (via volatile
256         * reads of segments and tables) without locking.  This
257         * requires replicating nodes when necessary during table
258         * resizing, so the old lists can be traversed by readers
259         * still using old version of table.
260         *
261         * This class defines only mutative methods requiring locking.
262         * Except as noted, the methods of this class perform the
263         * per-segment versions of ConcurrentHashMap methods.  (Other
264         * methods are integrated directly into ConcurrentHashMap
265         * methods.) These mutative methods use a form of controlled
266         * spinning on contention via methods scanAndLock and
267         * scanAndLockForPut. These intersperse tryLocks with
268         * traversals to locate nodes.  The main benefit is to absorb
269         * cache misses (which are very common for hash tables) while
270         * obtaining locks so that traversal is faster once
271         * acquired. We do not actually use the found nodes since they
272         * must be re-acquired under lock anyway to ensure sequential
273         * consistency of updates (and in any case may be undetectably
274         * stale), but they will normally be much faster to re-locate.
275         * Also, scanAndLockForPut speculatively creates a fresh node
276         * to use in put if no node is found.
277         */
278
279        private static final long serialVersionUID = 2249069246763182397L;
280
281        /**
282         * The maximum number of times to tryLock in a prescan before
283         * possibly blocking on acquire in preparation for a locked
284         * segment operation. On multiprocessors, using a bounded
285         * number of retries maintains cache acquired while locating
286         * nodes.
287         */
288        static final int MAX_SCAN_RETRIES =
289            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
290
291        /**
292         * The per-segment table. Elements are accessed via
293         * entryAt/setEntryAt providing volatile semantics.
294         */
295        transient volatile HashEntry<K,V>[] table;
296
297        /**
298         * The number of elements. Accessed only either within locks
299         * or among other volatile reads that maintain visibility.
300         */
301        transient int count;
302
303        /**
304         * The total number of mutative operations in this segment.
305         * Even though this may overflows 32 bits, it provides
306         * sufficient accuracy for stability checks in CHM isEmpty()
307         * and size() methods.  Accessed only either within locks or
308         * among other volatile reads that maintain visibility.
309         */
310        transient int modCount;
311
312        /**
313         * The table is rehashed when its size exceeds this threshold.
314         * (The value of this field is always <tt>(int)(capacity *
315         * loadFactor)</tt>.)
316         */
317        transient int threshold;
318
319        /**
320         * The load factor for the hash table.  Even though this value
321         * is same for all segments, it is replicated to avoid needing
322         * links to outer object.
323         * @serial
324         */
325        final float loadFactor;
326
327        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
328            this.loadFactor = lf;
329            this.threshold = threshold;
330            this.table = tab;
331        }
332
333        final V put(K key, int hash, V value, boolean onlyIfAbsent) {
334            HashEntry<K,V> node = tryLock() ? null :
335                scanAndLockForPut(key, hash, value);
336            V oldValue;
337            try {
338                HashEntry<K,V>[] tab = table;
339                int index = (tab.length - 1) & hash;
340                HashEntry<K,V> first = entryAt(tab, index);
341                for (HashEntry<K,V> e = first;;) {
342                    if (e != null) {
343                        K k;
344                        if ((k = e.key) == key ||
345                            (e.hash == hash && key.equals(k))) {
346                            oldValue = e.value;
347                            if (!onlyIfAbsent) {
348                                e.value = value;
349                                ++modCount;
350                            }
351                            break;
352                        }
353                        e = e.next;
354                    }
355                    else {
356                        if (node != null)
357                            node.setNext(first);
358                        else
359                            node = new HashEntry<K,V>(hash, key, value, first);
360                        int c = count + 1;
361                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)
362                            rehash(node);
363                        else
364                            setEntryAt(tab, index, node);
365                        ++modCount;
366                        count = c;
367                        oldValue = null;
368                        break;
369                    }
370                }
371            } finally {
372                unlock();
373            }
374            return oldValue;
375        }
376
377        /**
378         * Doubles size of table and repacks entries, also adding the
379         * given node to new table
380         */
381        @SuppressWarnings("unchecked")
382        private void rehash(HashEntry<K,V> node) {
383            /*
384             * Reclassify nodes in each list to new table.  Because we
385             * are using power-of-two expansion, the elements from
386             * each bin must either stay at same index, or move with a
387             * power of two offset. We eliminate unnecessary node
388             * creation by catching cases where old nodes can be
389             * reused because their next fields won't change.
390             * Statistically, at the default threshold, only about
391             * one-sixth of them need cloning when a table
392             * doubles. The nodes they replace will be garbage
393             * collectable as soon as they are no longer referenced by
394             * any reader thread that may be in the midst of
395             * concurrently traversing table. Entry accesses use plain
396             * array indexing because they are followed by volatile
397             * table write.
398             */
399            HashEntry<K,V>[] oldTable = table;
400            int oldCapacity = oldTable.length;
401            int newCapacity = oldCapacity << 1;
402            threshold = (int)(newCapacity * loadFactor);
403            HashEntry<K,V>[] newTable =
404                (HashEntry<K,V>[]) new HashEntry<?,?>[newCapacity];
405            int sizeMask = newCapacity - 1;
406            for (int i = 0; i < oldCapacity ; i++) {
407                HashEntry<K,V> e = oldTable[i];
408                if (e != null) {
409                    HashEntry<K,V> next = e.next;
410                    int idx = e.hash & sizeMask;
411                    if (next == null)   //  Single node on list
412                        newTable[idx] = e;
413                    else { // Reuse consecutive sequence at same slot
414                        HashEntry<K,V> lastRun = e;
415                        int lastIdx = idx;
416                        for (HashEntry<K,V> last = next;
417                             last != null;
418                             last = last.next) {
419                            int k = last.hash & sizeMask;
420                            if (k != lastIdx) {
421                                lastIdx = k;
422                                lastRun = last;
423                            }
424                        }
425                        newTable[lastIdx] = lastRun;
426                        // Clone remaining nodes
427                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
428                            V v = p.value;
429                            int h = p.hash;
430                            int k = h & sizeMask;
431                            HashEntry<K,V> n = newTable[k];
432                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
433                        }
434                    }
435                }
436            }
437            int nodeIndex = node.hash & sizeMask; // add the new node
438            node.setNext(newTable[nodeIndex]);
439            newTable[nodeIndex] = node;
440            table = newTable;
441        }
442
443        /**
444         * Scans for a node containing given key while trying to
445         * acquire lock, creating and returning one if not found. Upon
446         * return, guarantees that lock is held. Unlike in most
447         * methods, calls to method equals are not screened: Since
448         * traversal speed doesn't matter, we might as well help warm
449         * up the associated code and accesses as well.
450         *
451         * @return a new node if key not found, else null
452         */
453        private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
454            HashEntry<K,V> first = entryForHash(this, hash);
455            HashEntry<K,V> e = first;
456            HashEntry<K,V> node = null;
457            int retries = -1; // negative while locating node
458            while (!tryLock()) {
459                HashEntry<K,V> f; // to recheck first below
460                if (retries < 0) {
461                    if (e == null) {
462                        if (node == null) // speculatively create node
463                            node = new HashEntry<K,V>(hash, key, value, null);
464                        retries = 0;
465                    }
466                    else if (key.equals(e.key))
467                        retries = 0;
468                    else
469                        e = e.next;
470                }
471                else if (++retries > MAX_SCAN_RETRIES) {
472                    lock();
473                    break;
474                }
475                else if ((retries & 1) == 0 &&
476                         (f = entryForHash(this, hash)) != first) {
477                    e = first = f; // re-traverse if entry changed
478                    retries = -1;
479                }
480            }
481            return node;
482        }
483
484        /**
485         * Scans for a node containing the given key while trying to
486         * acquire lock for a remove or replace operation. Upon
487         * return, guarantees that lock is held.  Note that we must
488         * lock even if the key is not found, to ensure sequential
489         * consistency of updates.
490         */
491        private void scanAndLock(Object key, int hash) {
492            // similar to but simpler than scanAndLockForPut
493            HashEntry<K,V> first = entryForHash(this, hash);
494            HashEntry<K,V> e = first;
495            int retries = -1;
496            while (!tryLock()) {
497                HashEntry<K,V> f;
498                if (retries < 0) {
499                    if (e == null || key.equals(e.key))
500                        retries = 0;
501                    else
502                        e = e.next;
503                }
504                else if (++retries > MAX_SCAN_RETRIES) {
505                    lock();
506                    break;
507                }
508                else if ((retries & 1) == 0 &&
509                         (f = entryForHash(this, hash)) != first) {
510                    e = first = f;
511                    retries = -1;
512                }
513            }
514        }
515
516        /**
517         * Remove; match on key only if value null, else match both.
518         */
519        final V remove(Object key, int hash, Object value) {
520            if (!tryLock())
521                scanAndLock(key, hash);
522            V oldValue = null;
523            try {
524                HashEntry<K,V>[] tab = table;
525                int index = (tab.length - 1) & hash;
526                HashEntry<K,V> e = entryAt(tab, index);
527                HashEntry<K,V> pred = null;
528                while (e != null) {
529                    K k;
530                    HashEntry<K,V> next = e.next;
531                    if ((k = e.key) == key ||
532                        (e.hash == hash && key.equals(k))) {
533                        V v = e.value;
534                        if (value == null || value == v || value.equals(v)) {
535                            if (pred == null)
536                                setEntryAt(tab, index, next);
537                            else
538                                pred.setNext(next);
539                            ++modCount;
540                            --count;
541                            oldValue = v;
542                        }
543                        break;
544                    }
545                    pred = e;
546                    e = next;
547                }
548            } finally {
549                unlock();
550            }
551            return oldValue;
552        }
553
554        final boolean replace(K key, int hash, V oldValue, V newValue) {
555            if (!tryLock())
556                scanAndLock(key, hash);
557            boolean replaced = false;
558            try {
559                HashEntry<K,V> e;
560                for (e = entryForHash(this, hash); e != null; e = e.next) {
561                    K k;
562                    if ((k = e.key) == key ||
563                        (e.hash == hash && key.equals(k))) {
564                        if (oldValue.equals(e.value)) {
565                            e.value = newValue;
566                            ++modCount;
567                            replaced = true;
568                        }
569                        break;
570                    }
571                }
572            } finally {
573                unlock();
574            }
575            return replaced;
576        }
577
578        final V replace(K key, int hash, V value) {
579            if (!tryLock())
580                scanAndLock(key, hash);
581            V oldValue = null;
582            try {
583                HashEntry<K,V> e;
584                for (e = entryForHash(this, hash); e != null; e = e.next) {
585                    K k;
586                    if ((k = e.key) == key ||
587                        (e.hash == hash && key.equals(k))) {
588                        oldValue = e.value;
589                        e.value = value;
590                        ++modCount;
591                        break;
592                    }
593                }
594            } finally {
595                unlock();
596            }
597            return oldValue;
598        }
599
600        final void clear() {
601            lock();
602            try {
603                HashEntry<K,V>[] tab = table;
604                for (int i = 0; i < tab.length ; i++)
605                    setEntryAt(tab, i, null);
606                ++modCount;
607                count = 0;
608            } finally {
609                unlock();
610            }
611        }
612    }
613
614    // Accessing segments
615
616    /**
617     * Gets the jth element of given segment array (if nonnull) with
618     * volatile element access semantics via Unsafe. (The null check
619     * can trigger harmlessly only during deserialization.) Note:
620     * because each element of segments array is set only once (using
621     * fully ordered writes), some performance-sensitive methods rely
622     * on this method only as a recheck upon null reads.
623     */
624    @SuppressWarnings("unchecked")
625    static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
626        long u = (j << SSHIFT) + SBASE;
627        return ss == null ? null :
628            (Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
629    }
630
631    /**
632     * Returns the segment for the given index, creating it and
633     * recording in segment table (via CAS) if not already present.
634     *
635     * @param k the index
636     * @return the segment
637     */
638    @SuppressWarnings("unchecked")
639    private Segment<K,V> ensureSegment(int k) {
640        final Segment<K,V>[] ss = this.segments;
641        long u = (k << SSHIFT) + SBASE; // raw offset
642        Segment<K,V> seg;
643        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
644            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
645            int cap = proto.table.length;
646            float lf = proto.loadFactor;
647            int threshold = (int)(cap * lf);
648            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry<?,?>[cap];
649            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
650                == null) { // recheck
651                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
652                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
653                       == null) {
654                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
655                        break;
656                }
657            }
658        }
659        return seg;
660    }
661
662    // Hash-based segment and entry accesses
663
664    /**
665     * Gets the segment for the given hash code.
666     */
667    @SuppressWarnings("unchecked")
668    private Segment<K,V> segmentForHash(int h) {
669        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
670        return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
671    }
672
673    /**
674     * Gets the table entry for the given segment and hash code.
675     */
676    @SuppressWarnings("unchecked")
677    static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
678        HashEntry<K,V>[] tab;
679        return (seg == null || (tab = seg.table) == null) ? null :
680            (HashEntry<K,V>) UNSAFE.getObjectVolatile
681            (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
682    }
683
684    /* ---------------- Public operations -------------- */
685
686    /**
687     * Creates a new, empty map with the specified initial
688     * capacity, load factor and concurrency level.
689     *
690     * @param initialCapacity the initial capacity. The implementation
691     * performs internal sizing to accommodate this many elements.
692     * @param loadFactor  the load factor threshold, used to control resizing.
693     * Resizing may be performed when the average number of elements per
694     * bin exceeds this threshold.
695     * @param concurrencyLevel the estimated number of concurrently
696     * updating threads. The implementation performs internal sizing
697     * to try to accommodate this many threads.
698     * @throws IllegalArgumentException if the initial capacity is
699     * negative or the load factor or concurrencyLevel are
700     * nonpositive.
701     */
702    @SuppressWarnings("unchecked")
703    public ConcurrentHashMap(int initialCapacity,
704                             float loadFactor, int concurrencyLevel) {
705        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
706            throw new IllegalArgumentException();
707        if (concurrencyLevel > MAX_SEGMENTS)
708            concurrencyLevel = MAX_SEGMENTS;
709        // Find power-of-two sizes best matching arguments
710        int sshift = 0;
711        int ssize = 1;
712        while (ssize < concurrencyLevel) {
713            ++sshift;
714            ssize <<= 1;
715        }
716        this.segmentShift = 32 - sshift;
717        this.segmentMask = ssize - 1;
718        if (initialCapacity > MAXIMUM_CAPACITY)
719            initialCapacity = MAXIMUM_CAPACITY;
720        int c = initialCapacity / ssize;
721        if (c * ssize < initialCapacity)
722            ++c;
723        int cap = MIN_SEGMENT_TABLE_CAPACITY;
724        while (cap < c)
725            cap <<= 1;
726        // create segments and segments[0]
727        Segment<K,V> s0 =
728            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
729                             (HashEntry<K,V>[])new HashEntry<?,?>[cap]);
730        Segment<K,V>[] ss = (Segment<K,V>[])new Segment<?,?>[ssize];
731        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
732        this.segments = ss;
733    }
734
735    /**
736     * Creates a new, empty map with the specified initial capacity
737     * and load factor and with the default concurrencyLevel (16).
738     *
739     * @param initialCapacity The implementation performs internal
740     * sizing to accommodate this many elements.
741     * @param loadFactor  the load factor threshold, used to control resizing.
742     * Resizing may be performed when the average number of elements per
743     * bin exceeds this threshold.
744     * @throws IllegalArgumentException if the initial capacity of
745     * elements is negative or the load factor is nonpositive
746     *
747     * @since 1.6
748     */
749    public ConcurrentHashMap(int initialCapacity, float loadFactor) {
750        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
751    }
752
753    /**
754     * Creates a new, empty map with the specified initial capacity,
755     * and with default load factor (0.75) and concurrencyLevel (16).
756     *
757     * @param initialCapacity the initial capacity. The implementation
758     * performs internal sizing to accommodate this many elements.
759     * @throws IllegalArgumentException if the initial capacity of
760     * elements is negative.
761     */
762    public ConcurrentHashMap(int initialCapacity) {
763        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
764    }
765
766    /**
767     * Creates a new, empty map with a default initial capacity (16),
768     * load factor (0.75) and concurrencyLevel (16).
769     */
770    public ConcurrentHashMap() {
771        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
772    }
773
774    /**
775     * Creates a new map with the same mappings as the given map.
776     * The map is created with a capacity of 1.5 times the number
777     * of mappings in the given map or 16 (whichever is greater),
778     * and a default load factor (0.75) and concurrencyLevel (16).
779     *
780     * @param m the map
781     */
782    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
783        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
784                      DEFAULT_INITIAL_CAPACITY),
785             DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
786        putAll(m);
787    }
788
789    /**
790     * Returns <tt>true</tt> if this map contains no key-value mappings.
791     *
792     * @return <tt>true</tt> if this map contains no key-value mappings
793     */
794    public boolean isEmpty() {
795        /*
796         * Sum per-segment modCounts to avoid mis-reporting when
797         * elements are concurrently added and removed in one segment
798         * while checking another, in which case the table was never
799         * actually empty at any point. (The sum ensures accuracy up
800         * through at least 1<<31 per-segment modifications before
801         * recheck.)  Methods size() and containsValue() use similar
802         * constructions for stability checks.
803         */
804        long sum = 0L;
805        final Segment<K,V>[] segments = this.segments;
806        for (int j = 0; j < segments.length; ++j) {
807            Segment<K,V> seg = segmentAt(segments, j);
808            if (seg != null) {
809                if (seg.count != 0)
810                    return false;
811                sum += seg.modCount;
812            }
813        }
814        if (sum != 0L) { // recheck unless no modifications
815            for (int j = 0; j < segments.length; ++j) {
816                Segment<K,V> seg = segmentAt(segments, j);
817                if (seg != null) {
818                    if (seg.count != 0)
819                        return false;
820                    sum -= seg.modCount;
821                }
822            }
823            if (sum != 0L)
824                return false;
825        }
826        return true;
827    }
828
829    /**
830     * Returns the number of key-value mappings in this map.  If the
831     * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
832     * <tt>Integer.MAX_VALUE</tt>.
833     *
834     * @return the number of key-value mappings in this map
835     */
836    public int size() {
837        // Try a few times to get accurate count. On failure due to
838        // continuous async changes in table, resort to locking.
839        final Segment<K,V>[] segments = this.segments;
840        final int segmentCount = segments.length;
841
842        long previousSum = 0L;
843        for (int retries = -1; retries < RETRIES_BEFORE_LOCK; retries++) {
844            long sum = 0L;    // sum of modCounts
845            long size = 0L;
846            for (int i = 0; i < segmentCount; i++) {
847                Segment<K,V> segment = segmentAt(segments, i);
848                if (segment != null) {
849                    sum += segment.modCount;
850                    size += segment.count;
851                }
852            }
853            if (sum == previousSum)
854                return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
855            previousSum = sum;
856        }
857
858        long size = 0L;
859        for (int i = 0; i < segmentCount; i++) {
860            Segment<K,V> segment = ensureSegment(i);
861            segment.lock();
862            size += segment.count;
863        }
864        for (int i = 0; i < segmentCount; i++)
865            segments[i].unlock();
866        return ((size >>> 31) == 0) ? (int) size : Integer.MAX_VALUE;
867    }
868
869    /**
870     * Returns the value to which the specified key is mapped,
871     * or {@code null} if this map contains no mapping for the key.
872     *
873     * <p>More formally, if this map contains a mapping from a key
874     * {@code k} to a value {@code v} such that {@code key.equals(k)},
875     * then this method returns {@code v}; otherwise it returns
876     * {@code null}.  (There can be at most one such mapping.)
877     *
878     * @throws NullPointerException if the specified key is null
879     */
880    public V get(Object key) {
881        Segment<K,V> s; // manually integrate access methods to reduce overhead
882        HashEntry<K,V>[] tab;
883        int h = hash(key.hashCode());
884        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
885        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
886            (tab = s.table) != null) {
887            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
888                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
889                 e != null; e = e.next) {
890                K k;
891                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
892                    return e.value;
893            }
894        }
895        return null;
896    }
897
898    /**
899     * Tests if the specified object is a key in this table.
900     *
901     * @param  key   possible key
902     * @return <tt>true</tt> if and only if the specified object
903     *         is a key in this table, as determined by the
904     *         <tt>equals</tt> method; <tt>false</tt> otherwise.
905     * @throws NullPointerException if the specified key is null
906     */
907    @SuppressWarnings("unchecked")
908    public boolean containsKey(Object key) {
909        Segment<K,V> s; // same as get() except no need for volatile value read
910        HashEntry<K,V>[] tab;
911        int h = hash(key.hashCode());
912        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
913        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
914            (tab = s.table) != null) {
915            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
916                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
917                 e != null; e = e.next) {
918                K k;
919                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
920                    return true;
921            }
922        }
923        return false;
924    }
925
926    /**
927     * Returns <tt>true</tt> if this map maps one or more keys to the
928     * specified value. Note: This method requires a full internal
929     * traversal of the hash table, and so is much slower than
930     * method <tt>containsKey</tt>.
931     *
932     * @param value value whose presence in this map is to be tested
933     * @return <tt>true</tt> if this map maps one or more keys to the
934     *         specified value
935     * @throws NullPointerException if the specified value is null
936     */
937    public boolean containsValue(Object value) {
938        // Same idea as size()
939        if (value == null)
940            throw new NullPointerException();
941        final Segment<K,V>[] segments = this.segments;
942        long previousSum = 0L;
943        int lockCount = 0;
944        try {
945            for (int retries = -1; ; retries++) {
946                long sum = 0L;    // sum of modCounts
947                for (int j = 0; j < segments.length; j++) {
948                    Segment<K,V> segment;
949                    if (retries == RETRIES_BEFORE_LOCK) {
950                        segment = ensureSegment(j);
951                        segment.lock();
952                        lockCount++;
953                    } else {
954                        segment = segmentAt(segments, j);
955                        if (segment == null)
956                            continue;
957                    }
958                    HashEntry<K,V>[] tab = segment.table;
959                    if (tab != null) {
960                        for (int i = 0 ; i < tab.length; i++) {
961                            HashEntry<K,V> e;
962                            for (e = entryAt(tab, i); e != null; e = e.next) {
963                                V v = e.value;
964                                if (v != null && value.equals(v))
965                                    return true;
966                            }
967                        }
968                        sum += segment.modCount;
969                    }
970                }
971                if ((retries >= 0 && sum == previousSum) || lockCount > 0)
972                    return false;
973                previousSum = sum;
974            }
975        } finally {
976            for (int j = 0; j < lockCount; j++)
977                segments[j].unlock();
978        }
979    }
980
981    /**
982     * Legacy method testing if some key maps into the specified value
983     * in this table.  This method is identical in functionality to
984     * {@link #containsValue}, and exists solely to ensure
985     * full compatibility with class {@link java.util.Hashtable},
986     * which supported this method prior to introduction of the
987     * Java Collections framework.
988     *
989     * @param  value a value to search for
990     * @return <tt>true</tt> if and only if some key maps to the
991     *         <tt>value</tt> argument in this table as
992     *         determined by the <tt>equals</tt> method;
993     *         <tt>false</tt> otherwise
994     * @throws NullPointerException if the specified value is null
995     */
996    public boolean contains(Object value) {
997        return containsValue(value);
998    }
999
1000    /**
1001     * Maps the specified key to the specified value in this table.
1002     * Neither the key nor the value can be null.
1003     *
1004     * <p> The value can be retrieved by calling the <tt>get</tt> method
1005     * with a key that is equal to the original key.
1006     *
1007     * @param key key with which the specified value is to be associated
1008     * @param value value to be associated with the specified key
1009     * @return the previous value associated with <tt>key</tt>, or
1010     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1011     * @throws NullPointerException if the specified key or value is null
1012     */
1013    @SuppressWarnings("unchecked")
1014    public V put(K key, V value) {
1015        Segment<K,V> s;
1016        if (value == null)
1017            throw new NullPointerException();
1018        int hash = hash(key.hashCode());
1019        int j = (hash >>> segmentShift) & segmentMask;
1020        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
1021             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
1022            s = ensureSegment(j);
1023        return s.put(key, hash, value, false);
1024    }
1025
1026    /**
1027     * {@inheritDoc}
1028     *
1029     * @return the previous value associated with the specified key,
1030     *         or <tt>null</tt> if there was no mapping for the key
1031     * @throws NullPointerException if the specified key or value is null
1032     */
1033    @SuppressWarnings("unchecked")
1034    public V putIfAbsent(K key, V value) {
1035        Segment<K,V> s;
1036        if (value == null)
1037            throw new NullPointerException();
1038        int hash = hash(key.hashCode());
1039        int j = (hash >>> segmentShift) & segmentMask;
1040        if ((s = (Segment<K,V>)UNSAFE.getObject
1041             (segments, (j << SSHIFT) + SBASE)) == null)
1042            s = ensureSegment(j);
1043        return s.put(key, hash, value, true);
1044    }
1045
1046    /**
1047     * Copies all of the mappings from the specified map to this one.
1048     * These mappings replace any mappings that this map had for any of the
1049     * keys currently in the specified map.
1050     *
1051     * @param m mappings to be stored in this map
1052     */
1053    public void putAll(Map<? extends K, ? extends V> m) {
1054        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055            put(e.getKey(), e.getValue());
1056    }
1057
1058    /**
1059     * Removes the key (and its corresponding value) from this map.
1060     * This method does nothing if the key is not in the map.
1061     *
1062     * @param  key the key that needs to be removed
1063     * @return the previous value associated with <tt>key</tt>, or
1064     *         <tt>null</tt> if there was no mapping for <tt>key</tt>
1065     * @throws NullPointerException if the specified key is null
1066     */
1067    public V remove(Object key) {
1068        int hash = hash(key.hashCode());
1069        Segment<K,V> s = segmentForHash(hash);
1070        return s == null ? null : s.remove(key, hash, null);
1071    }
1072
1073    /**
1074     * {@inheritDoc}
1075     *
1076     * @throws NullPointerException if the specified key is null
1077     */
1078    public boolean remove(Object key, Object value) {
1079        int hash = hash(key.hashCode());
1080        Segment<K,V> s;
1081        return value != null && (s = segmentForHash(hash)) != null &&
1082            s.remove(key, hash, value) != null;
1083    }
1084
1085    /**
1086     * {@inheritDoc}
1087     *
1088     * @throws NullPointerException if any of the arguments are null
1089     */
1090    public boolean replace(K key, V oldValue, V newValue) {
1091        int hash = hash(key.hashCode());
1092        if (oldValue == null || newValue == null)
1093            throw new NullPointerException();
1094        Segment<K,V> s = segmentForHash(hash);
1095        return s != null && s.replace(key, hash, oldValue, newValue);
1096    }
1097
1098    /**
1099     * {@inheritDoc}
1100     *
1101     * @return the previous value associated with the specified key,
1102     *         or <tt>null</tt> if there was no mapping for the key
1103     * @throws NullPointerException if the specified key or value is null
1104     */
1105    public V replace(K key, V value) {
1106        int hash = hash(key.hashCode());
1107        if (value == null)
1108            throw new NullPointerException();
1109        Segment<K,V> s = segmentForHash(hash);
1110        return s == null ? null : s.replace(key, hash, value);
1111    }
1112
1113    /**
1114     * Removes all of the mappings from this map.
1115     */
1116    public void clear() {
1117        final Segment<K,V>[] segments = this.segments;
1118        for (int j = 0; j < segments.length; ++j) {
1119            Segment<K,V> s = segmentAt(segments, j);
1120            if (s != null)
1121                s.clear();
1122        }
1123    }
1124
1125    /**
1126     * Returns a {@link Set} view of the keys contained in this map.
1127     * The set is backed by the map, so changes to the map are
1128     * reflected in the set, and vice-versa.  The set supports element
1129     * removal, which removes the corresponding mapping from this map,
1130     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1131     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1132     * operations.  It does not support the <tt>add</tt> or
1133     * <tt>addAll</tt> operations.
1134     *
1135     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1136     * that will never throw {@link ConcurrentModificationException},
1137     * and guarantees to traverse elements as they existed upon
1138     * construction of the iterator, and may (but is not guaranteed to)
1139     * reflect any modifications subsequent to construction.
1140     */
1141    public Set<K> keySet() {
1142        Set<K> ks = keySet;
1143        return (ks != null) ? ks : (keySet = new KeySet());
1144    }
1145
1146    /**
1147     * Returns a {@link Collection} view of the values contained in this map.
1148     * The collection is backed by the map, so changes to the map are
1149     * reflected in the collection, and vice-versa.  The collection
1150     * supports element removal, which removes the corresponding
1151     * mapping from this map, via the <tt>Iterator.remove</tt>,
1152     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1153     * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not
1154     * support the <tt>add</tt> or <tt>addAll</tt> operations.
1155     *
1156     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1157     * that will never throw {@link ConcurrentModificationException},
1158     * and guarantees to traverse elements as they existed upon
1159     * construction of the iterator, and may (but is not guaranteed to)
1160     * reflect any modifications subsequent to construction.
1161     */
1162    public Collection<V> values() {
1163        Collection<V> vs = values;
1164        return (vs != null) ? vs : (values = new Values());
1165    }
1166
1167    /**
1168     * Returns a {@link Set} view of the mappings contained in this map.
1169     * The set is backed by the map, so changes to the map are
1170     * reflected in the set, and vice-versa.  The set supports element
1171     * removal, which removes the corresponding mapping from the map,
1172     * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1173     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1174     * operations.  It does not support the <tt>add</tt> or
1175     * <tt>addAll</tt> operations.
1176     *
1177     * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1178     * that will never throw {@link ConcurrentModificationException},
1179     * and guarantees to traverse elements as they existed upon
1180     * construction of the iterator, and may (but is not guaranteed to)
1181     * reflect any modifications subsequent to construction.
1182     */
1183    public Set<Map.Entry<K,V>> entrySet() {
1184        Set<Map.Entry<K,V>> es = entrySet;
1185        return (es != null) ? es : (entrySet = new EntrySet());
1186    }
1187
1188    /**
1189     * Returns an enumeration of the keys in this table.
1190     *
1191     * @return an enumeration of the keys in this table
1192     * @see #keySet()
1193     */
1194    public Enumeration<K> keys() {
1195        return new KeyIterator();
1196    }
1197
1198    /**
1199     * Returns an enumeration of the values in this table.
1200     *
1201     * @return an enumeration of the values in this table
1202     * @see #values()
1203     */
1204    public Enumeration<V> elements() {
1205        return new ValueIterator();
1206    }
1207
1208    /* ---------------- Iterator Support -------------- */
1209
1210    abstract class HashIterator {
1211        int nextSegmentIndex;
1212        int nextTableIndex;
1213        HashEntry<K,V>[] currentTable;
1214        HashEntry<K, V> nextEntry;
1215        HashEntry<K, V> lastReturned;
1216
1217        HashIterator() {
1218            nextSegmentIndex = segments.length - 1;
1219            nextTableIndex = -1;
1220            advance();
1221        }
1222
1223        /**
1224         * Sets nextEntry to first node of next non-empty table
1225         * (in backwards order, to simplify checks).
1226         */
1227        final void advance() {
1228            for (;;) {
1229                if (nextTableIndex >= 0) {
1230                    if ((nextEntry = entryAt(currentTable,
1231                                             nextTableIndex--)) != null)
1232                        break;
1233                }
1234                else if (nextSegmentIndex >= 0) {
1235                    Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
1236                    if (seg != null && (currentTable = seg.table) != null)
1237                        nextTableIndex = currentTable.length - 1;
1238                }
1239                else
1240                    break;
1241            }
1242        }
1243
1244        final HashEntry<K,V> nextEntry() {
1245            HashEntry<K,V> e = nextEntry;
1246            if (e == null)
1247                throw new NoSuchElementException();
1248            lastReturned = e; // cannot assign until after null check
1249            if ((nextEntry = e.next) == null)
1250                advance();
1251            return e;
1252        }
1253
1254        public final boolean hasNext() { return nextEntry != null; }
1255        public final boolean hasMoreElements() { return nextEntry != null; }
1256
1257        public final void remove() {
1258            if (lastReturned == null)
1259                throw new IllegalStateException();
1260            ConcurrentHashMap.this.remove(lastReturned.key);
1261            lastReturned = null;
1262        }
1263    }
1264
1265    final class KeyIterator
1266        extends HashIterator
1267        implements Iterator<K>, Enumeration<K>
1268    {
1269        public final K next()        { return super.nextEntry().key; }
1270        public final K nextElement() { return super.nextEntry().key; }
1271    }
1272
1273    final class ValueIterator
1274        extends HashIterator
1275        implements Iterator<V>, Enumeration<V>
1276    {
1277        public final V next()        { return super.nextEntry().value; }
1278        public final V nextElement() { return super.nextEntry().value; }
1279    }
1280
1281    /**
1282     * Custom Entry class used by EntryIterator.next(), that relays
1283     * setValue changes to the underlying map.
1284     */
1285    final class WriteThroughEntry
1286        extends AbstractMap.SimpleEntry<K,V>
1287    {
1288        WriteThroughEntry(K k, V v) {
1289            super(k,v);
1290        }
1291
1292        /**
1293         * Sets our entry's value and writes through to the map. The
1294         * value to return is somewhat arbitrary here. Since a
1295         * WriteThroughEntry does not necessarily track asynchronous
1296         * changes, the most recent "previous" value could be
1297         * different from what we return (or could even have been
1298         * removed in which case the put will re-establish). We do not
1299         * and cannot guarantee more.
1300         */
1301        public V setValue(V value) {
1302            if (value == null) throw new NullPointerException();
1303            V v = super.setValue(value);
1304            ConcurrentHashMap.this.put(getKey(), value);
1305            return v;
1306        }
1307    }
1308
1309    final class EntryIterator
1310        extends HashIterator
1311        implements Iterator<Entry<K,V>>
1312    {
1313        public Map.Entry<K,V> next() {
1314            HashEntry<K,V> e = super.nextEntry();
1315            return new WriteThroughEntry(e.key, e.value);
1316        }
1317    }
1318
1319    final class KeySet extends AbstractSet<K> {
1320        public Iterator<K> iterator() {
1321            return new KeyIterator();
1322        }
1323        public int size() {
1324            return ConcurrentHashMap.this.size();
1325        }
1326        public boolean isEmpty() {
1327            return ConcurrentHashMap.this.isEmpty();
1328        }
1329        public boolean contains(Object o) {
1330            return ConcurrentHashMap.this.containsKey(o);
1331        }
1332        public boolean remove(Object o) {
1333            return ConcurrentHashMap.this.remove(o) != null;
1334        }
1335        public void clear() {
1336            ConcurrentHashMap.this.clear();
1337        }
1338    }
1339
1340    final class Values extends AbstractCollection<V> {
1341        public Iterator<V> iterator() {
1342            return new ValueIterator();
1343        }
1344        public int size() {
1345            return ConcurrentHashMap.this.size();
1346        }
1347        public boolean isEmpty() {
1348            return ConcurrentHashMap.this.isEmpty();
1349        }
1350        public boolean contains(Object o) {
1351            return ConcurrentHashMap.this.containsValue(o);
1352        }
1353        public void clear() {
1354            ConcurrentHashMap.this.clear();
1355        }
1356    }
1357
1358    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1359        public Iterator<Map.Entry<K,V>> iterator() {
1360            return new EntryIterator();
1361        }
1362        public boolean contains(Object o) {
1363            if (!(o instanceof Map.Entry))
1364                return false;
1365            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1366            V v = ConcurrentHashMap.this.get(e.getKey());
1367            return v != null && v.equals(e.getValue());
1368        }
1369        public boolean remove(Object o) {
1370            if (!(o instanceof Map.Entry))
1371                return false;
1372            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1373            return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1374        }
1375        public int size() {
1376            return ConcurrentHashMap.this.size();
1377        }
1378        public boolean isEmpty() {
1379            return ConcurrentHashMap.this.isEmpty();
1380        }
1381        public void clear() {
1382            ConcurrentHashMap.this.clear();
1383        }
1384    }
1385
1386    /* ---------------- Serialization Support -------------- */
1387
1388    /**
1389     * Saves the state of the <tt>ConcurrentHashMap</tt> instance to a
1390     * stream (i.e., serializes it).
1391     * @param s the stream
1392     * @serialData
1393     * the key (Object) and value (Object)
1394     * for each key-value mapping, followed by a null pair.
1395     * The key-value mappings are emitted in no particular order.
1396     */
1397    private void writeObject(java.io.ObjectOutputStream s)
1398            throws java.io.IOException {
1399        // force all segments for serialization compatibility
1400        for (int k = 0; k < segments.length; ++k)
1401            ensureSegment(k);
1402        s.defaultWriteObject();
1403
1404        final Segment<K,V>[] segments = this.segments;
1405        for (int k = 0; k < segments.length; ++k) {
1406            Segment<K,V> seg = segmentAt(segments, k);
1407            seg.lock();
1408            try {
1409                HashEntry<K,V>[] tab = seg.table;
1410                for (int i = 0; i < tab.length; ++i) {
1411                    HashEntry<K,V> e;
1412                    for (e = entryAt(tab, i); e != null; e = e.next) {
1413                        s.writeObject(e.key);
1414                        s.writeObject(e.value);
1415                    }
1416                }
1417            } finally {
1418                seg.unlock();
1419            }
1420        }
1421        s.writeObject(null);
1422        s.writeObject(null);
1423    }
1424
1425    /**
1426     * Reconstitutes the <tt>ConcurrentHashMap</tt> instance from a
1427     * stream (i.e., deserializes it).
1428     * @param s the stream
1429     */
1430    @SuppressWarnings("unchecked")
1431    private void readObject(java.io.ObjectInputStream s)
1432            throws java.io.IOException, ClassNotFoundException {
1433        s.defaultReadObject();
1434
1435        // Re-initialize segments to be minimally sized, and let grow.
1436        int cap = MIN_SEGMENT_TABLE_CAPACITY;
1437        final Segment<K,V>[] segments = this.segments;
1438        for (int k = 0; k < segments.length; ++k) {
1439            Segment<K,V> seg = segments[k];
1440            if (seg != null) {
1441                seg.threshold = (int)(cap * seg.loadFactor);
1442                seg.table = (HashEntry<K,V>[]) new HashEntry<?,?>[cap];
1443            }
1444        }
1445
1446        // Read the keys and values, and put the mappings in the table
1447        for (;;) {
1448            K key = (K) s.readObject();
1449            V value = (V) s.readObject();
1450            if (key == null)
1451                break;
1452            put(key, value);
1453        }
1454    }
1455
1456    // Unsafe mechanics
1457    private static final sun.misc.Unsafe UNSAFE;
1458    private static final long SBASE;
1459    private static final int SSHIFT;
1460    private static final long TBASE;
1461    private static final int TSHIFT;
1462
1463    static {
1464        int ss, ts;
1465        try {
1466            UNSAFE = sun.misc.Unsafe.getUnsafe();
1467            Class<?> tc = HashEntry[].class;
1468            Class<?> sc = Segment[].class;
1469            TBASE = UNSAFE.arrayBaseOffset(tc);
1470            SBASE = UNSAFE.arrayBaseOffset(sc);
1471            ts = UNSAFE.arrayIndexScale(tc);
1472            ss = UNSAFE.arrayIndexScale(sc);
1473        } catch (Exception e) {
1474            throw new Error(e);
1475        }
1476        if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
1477            throw new Error("data type scale not a power of two");
1478        SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
1479        TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
1480    }
1481
1482}
1483