1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* this implements a sensors hardware library for the Android emulator.
18 * the following code should be built as a shared library that will be
19 * placed into /system/lib/hw/sensors.goldfish.so
20 *
21 * it will be loaded by the code in hardware/libhardware/hardware.c
22 * which is itself called from com_android_server_SensorService.cpp
23 */
24
25
26/* we connect with the emulator through the "sensors" qemud service
27 */
28#define  SENSORS_SERVICE_NAME "sensors"
29
30#define LOG_TAG "QemuSensors"
31
32#include <unistd.h>
33#include <fcntl.h>
34#include <errno.h>
35#include <string.h>
36#include <cutils/log.h>
37#include <cutils/native_handle.h>
38#include <cutils/sockets.h>
39#include <hardware/sensors.h>
40
41#if 0
42#define  D(...)  ALOGD(__VA_ARGS__)
43#else
44#define  D(...)  ((void)0)
45#endif
46
47#define  E(...)  ALOGE(__VA_ARGS__)
48
49#include <hardware/qemud.h>
50
51/** SENSOR IDS AND NAMES
52 **/
53
54#define MAX_NUM_SENSORS 5
55
56#define SUPPORTED_SENSORS  ((1<<MAX_NUM_SENSORS)-1)
57
58#define  ID_BASE           SENSORS_HANDLE_BASE
59#define  ID_ACCELERATION   (ID_BASE+0)
60#define  ID_MAGNETIC_FIELD (ID_BASE+1)
61#define  ID_ORIENTATION    (ID_BASE+2)
62#define  ID_TEMPERATURE    (ID_BASE+3)
63#define  ID_PROXIMITY      (ID_BASE+4)
64
65#define  SENSORS_ACCELERATION   (1 << ID_ACCELERATION)
66#define  SENSORS_MAGNETIC_FIELD  (1 << ID_MAGNETIC_FIELD)
67#define  SENSORS_ORIENTATION     (1 << ID_ORIENTATION)
68#define  SENSORS_TEMPERATURE     (1 << ID_TEMPERATURE)
69#define  SENSORS_PROXIMITY       (1 << ID_PROXIMITY)
70
71#define  ID_CHECK(x)  ((unsigned)((x)-ID_BASE) < MAX_NUM_SENSORS)
72
73#define  SENSORS_LIST  \
74    SENSOR_(ACCELERATION,"acceleration") \
75    SENSOR_(MAGNETIC_FIELD,"magnetic-field") \
76    SENSOR_(ORIENTATION,"orientation") \
77    SENSOR_(TEMPERATURE,"temperature") \
78    SENSOR_(PROXIMITY,"proximity") \
79
80static const struct {
81    const char*  name;
82    int          id; } _sensorIds[MAX_NUM_SENSORS] =
83{
84#define SENSOR_(x,y)  { y, ID_##x },
85    SENSORS_LIST
86#undef  SENSOR_
87};
88
89static const char*
90_sensorIdToName( int  id )
91{
92    int  nn;
93    for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
94        if (id == _sensorIds[nn].id)
95            return _sensorIds[nn].name;
96    return "<UNKNOWN>";
97}
98
99static int
100_sensorIdFromName( const char*  name )
101{
102    int  nn;
103
104    if (name == NULL)
105        return -1;
106
107    for (nn = 0; nn < MAX_NUM_SENSORS; nn++)
108        if (!strcmp(name, _sensorIds[nn].name))
109            return _sensorIds[nn].id;
110
111    return -1;
112}
113
114/** SENSORS POLL DEVICE
115 **
116 ** This one is used to read sensor data from the hardware.
117 ** We implement this by simply reading the data from the
118 ** emulator through the QEMUD channel.
119 **/
120
121typedef struct SensorPoll {
122    struct sensors_poll_device_t  device;
123    sensors_event_t               sensors[MAX_NUM_SENSORS];
124    int                           events_fd;
125    uint32_t                      pendingSensors;
126    int64_t                       timeStart;
127    int64_t                       timeOffset;
128    int                           fd;
129    uint32_t                      active_sensors;
130} SensorPoll;
131
132/* this must return a file descriptor that will be used to read
133 * the sensors data (it is passed to data__data_open() below
134 */
135static native_handle_t*
136control__open_data_source(struct sensors_poll_device_t *dev)
137{
138    SensorPoll*  ctl = (void*)dev;
139    native_handle_t* handle;
140
141    if (ctl->fd < 0) {
142        ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
143    }
144    D("%s: fd=%d", __FUNCTION__, ctl->fd);
145    handle = native_handle_create(1, 0);
146    handle->data[0] = dup(ctl->fd);
147    return handle;
148}
149
150static int
151control__activate(struct sensors_poll_device_t *dev,
152                  int handle,
153                  int enabled)
154{
155    SensorPoll*     ctl = (void*)dev;
156    uint32_t        mask, sensors, active, new_sensors, changed;
157    char            command[128];
158    int             ret;
159
160    D("%s: handle=%s (%d) fd=%d enabled=%d", __FUNCTION__,
161        _sensorIdToName(handle), handle, ctl->fd, enabled);
162
163    if (!ID_CHECK(handle)) {
164        E("%s: bad handle ID", __FUNCTION__);
165        return -1;
166    }
167
168    mask    = (1<<handle);
169    sensors = enabled ? mask : 0;
170
171    active      = ctl->active_sensors;
172    new_sensors = (active & ~mask) | (sensors & mask);
173    changed     = active ^ new_sensors;
174
175    if (!changed)
176        return 0;
177
178    snprintf(command, sizeof command, "set:%s:%d",
179                _sensorIdToName(handle), enabled != 0);
180
181    if (ctl->fd < 0) {
182        ctl->fd = qemud_channel_open(SENSORS_SERVICE_NAME);
183    }
184
185    ret = qemud_channel_send(ctl->fd, command, -1);
186    if (ret < 0) {
187        E("%s: when sending command errno=%d: %s", __FUNCTION__, errno, strerror(errno));
188        return -1;
189    }
190    ctl->active_sensors = new_sensors;
191
192    return 0;
193}
194
195static int
196control__set_delay(struct sensors_poll_device_t *dev, int32_t ms)
197{
198    SensorPoll*     ctl = (void*)dev;
199    char            command[128];
200
201    D("%s: dev=%p delay-ms=%d", __FUNCTION__, dev, ms);
202
203    snprintf(command, sizeof command, "set-delay:%d", ms);
204
205    return qemud_channel_send(ctl->fd, command, -1);
206}
207
208static int
209control__close(struct hw_device_t *dev)
210{
211    SensorPoll*  ctl = (void*)dev;
212    close(ctl->fd);
213    free(ctl);
214    return 0;
215}
216
217/* return the current time in nanoseconds */
218static int64_t
219data__now_ns(void)
220{
221    struct timespec  ts;
222
223    clock_gettime(CLOCK_MONOTONIC, &ts);
224
225    return (int64_t)ts.tv_sec * 1000000000 + ts.tv_nsec;
226}
227
228static int
229data__data_open(struct sensors_poll_device_t *dev, native_handle_t* handle)
230{
231    SensorPoll*  data = (void*)dev;
232    int i;
233    D("%s: dev=%p fd=%d", __FUNCTION__, dev, handle->data[0]);
234    memset(&data->sensors, 0, sizeof(data->sensors));
235
236    for (i=0 ; i<MAX_NUM_SENSORS ; i++) {
237        data->sensors[i].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
238    }
239    data->pendingSensors = 0;
240    data->timeStart      = 0;
241    data->timeOffset     = 0;
242
243    data->events_fd = dup(handle->data[0]);
244    D("%s: dev=%p fd=%d (was %d)", __FUNCTION__, dev, data->events_fd, handle->data[0]);
245    native_handle_close(handle);
246    native_handle_delete(handle);
247    return 0;
248}
249
250static int
251data__data_close(struct sensors_poll_device_t *dev)
252{
253    SensorPoll*  data = (void*)dev;
254    D("%s: dev=%p", __FUNCTION__, dev);
255    if (data->events_fd >= 0) {
256        close(data->events_fd);
257        data->events_fd = -1;
258    }
259    return 0;
260}
261
262static int
263pick_sensor(SensorPoll*       data,
264            sensors_event_t*  values)
265{
266    uint32_t mask = SUPPORTED_SENSORS;
267    while (mask) {
268        uint32_t i = 31 - __builtin_clz(mask);
269        mask &= ~(1<<i);
270        if (data->pendingSensors & (1<<i)) {
271            data->pendingSensors &= ~(1<<i);
272            *values = data->sensors[i];
273            values->sensor = i;
274            values->version = sizeof(*values);
275
276            D("%s: %d [%f, %f, %f]", __FUNCTION__,
277                    i,
278                    values->data[0],
279                    values->data[1],
280                    values->data[2]);
281            return i;
282        }
283    }
284    ALOGE("No sensor to return!!! pendingSensors=%08x", data->pendingSensors);
285    // we may end-up in a busy loop, slow things down, just in case.
286    usleep(100000);
287    return -EINVAL;
288}
289
290static int
291data__poll(struct sensors_poll_device_t *dev, sensors_event_t* values)
292{
293    SensorPoll*  data = (void*)dev;
294    int fd = data->events_fd;
295
296    D("%s: data=%p", __FUNCTION__, dev);
297
298    // there are pending sensors, returns them now...
299    if (data->pendingSensors) {
300        return pick_sensor(data, values);
301    }
302
303    // wait until we get a complete event for an enabled sensor
304    uint32_t new_sensors = 0;
305
306    while (1) {
307        /* read the next event */
308        char     buff[256];
309        int      len = qemud_channel_recv(data->events_fd, buff, sizeof buff-1);
310        float    params[3];
311        int64_t  event_time;
312
313        if (len < 0) {
314            E("%s: len=%d, errno=%d: %s", __FUNCTION__, len, errno, strerror(errno));
315            return -errno;
316        }
317
318        buff[len] = 0;
319
320        /* "wake" is sent from the emulator to exit this loop. */
321        if (!strcmp((const char*)data, "wake")) {
322            return 0x7FFFFFFF;
323        }
324
325        /* "acceleration:<x>:<y>:<z>" corresponds to an acceleration event */
326        if (sscanf(buff, "acceleration:%g:%g:%g", params+0, params+1, params+2) == 3) {
327            new_sensors |= SENSORS_ACCELERATION;
328            data->sensors[ID_ACCELERATION].acceleration.x = params[0];
329            data->sensors[ID_ACCELERATION].acceleration.y = params[1];
330            data->sensors[ID_ACCELERATION].acceleration.z = params[2];
331            continue;
332        }
333
334        /* "orientation:<azimuth>:<pitch>:<roll>" is sent when orientation changes */
335        if (sscanf(buff, "orientation:%g:%g:%g", params+0, params+1, params+2) == 3) {
336            new_sensors |= SENSORS_ORIENTATION;
337            data->sensors[ID_ORIENTATION].orientation.azimuth = params[0];
338            data->sensors[ID_ORIENTATION].orientation.pitch   = params[1];
339            data->sensors[ID_ORIENTATION].orientation.roll    = params[2];
340            continue;
341        }
342
343        /* "magnetic-field:<x>:<y>:<z>" is sent for the params of the magnetic field */
344        if (sscanf(buff, "magnetic-field:%g:%g:%g", params+0, params+1, params+2) == 3) {
345            new_sensors |= SENSORS_MAGNETIC_FIELD;
346            data->sensors[ID_MAGNETIC_FIELD].magnetic.x = params[0];
347            data->sensors[ID_MAGNETIC_FIELD].magnetic.y = params[1];
348            data->sensors[ID_MAGNETIC_FIELD].magnetic.z = params[2];
349            continue;
350        }
351
352        /* "temperature:<celsius>" */
353        if (sscanf(buff, "temperature:%g", params+0) == 2) {
354            new_sensors |= SENSORS_TEMPERATURE;
355            data->sensors[ID_TEMPERATURE].temperature = params[0];
356            continue;
357        }
358
359        /* "proximity:<value>" */
360        if (sscanf(buff, "proximity:%g", params+0) == 1) {
361            new_sensors |= SENSORS_PROXIMITY;
362            data->sensors[ID_PROXIMITY].distance = params[0];
363            continue;
364        }
365
366        /* "sync:<time>" is sent after a series of sensor events.
367         * where 'time' is expressed in micro-seconds and corresponds
368         * to the VM time when the real poll occured.
369         */
370        if (sscanf(buff, "sync:%lld", &event_time) == 1) {
371            if (new_sensors) {
372                data->pendingSensors = new_sensors;
373                int64_t t = event_time * 1000LL;  /* convert to nano-seconds */
374
375                /* use the time at the first sync: as the base for later
376                 * time values */
377                if (data->timeStart == 0) {
378                    data->timeStart  = data__now_ns();
379                    data->timeOffset = data->timeStart - t;
380                }
381                t += data->timeOffset;
382
383                while (new_sensors) {
384                    uint32_t i = 31 - __builtin_clz(new_sensors);
385                    new_sensors &= ~(1<<i);
386                    data->sensors[i].timestamp = t;
387                }
388                return pick_sensor(data, values);
389            } else {
390                D("huh ? sync without any sensor data ?");
391            }
392            continue;
393        }
394        D("huh ? unsupported command");
395    }
396    return -1;
397}
398
399static int
400data__close(struct hw_device_t *dev)
401{
402    SensorPoll* data = (SensorPoll*)dev;
403    if (data) {
404        if (data->events_fd >= 0) {
405            //ALOGD("(device close) about to close fd=%d", data->events_fd);
406            close(data->events_fd);
407        }
408        free(data);
409    }
410    return 0;
411}
412
413/** SENSORS POLL DEVICE FUNCTIONS **/
414
415static int poll__close(struct hw_device_t* dev)
416{
417    SensorPoll*  ctl = (void*)dev;
418    close(ctl->fd);
419    if (ctl->fd >= 0) {
420        close(ctl->fd);
421    }
422    if (ctl->events_fd >= 0) {
423        close(ctl->events_fd);
424    }
425    free(ctl);
426    return 0;
427}
428
429static int poll__poll(struct sensors_poll_device_t *dev,
430            sensors_event_t* data, int count)
431{
432    SensorPoll*  datadev = (void*)dev;
433    int ret;
434    int i;
435    D("%s: dev=%p data=%p count=%d ", __FUNCTION__, dev, data, count);
436
437    for (i = 0; i < count; i++)  {
438        ret = data__poll(dev, data);
439        data++;
440        if (ret > MAX_NUM_SENSORS || ret < 0) {
441           return i;
442        }
443        if (!datadev->pendingSensors) {
444           return i + 1;
445        }
446    }
447    return count;
448}
449
450static int poll__activate(struct sensors_poll_device_t *dev,
451            int handle, int enabled)
452{
453    int ret;
454    native_handle_t* hdl;
455    SensorPoll*  ctl = (void*)dev;
456    D("%s: dev=%p handle=%x enable=%d ", __FUNCTION__, dev, handle, enabled);
457    if (ctl->fd < 0) {
458        D("%s: OPEN CTRL and DATA ", __FUNCTION__);
459        hdl = control__open_data_source(dev);
460        ret = data__data_open(dev,hdl);
461    }
462    ret = control__activate(dev, handle, enabled);
463    return ret;
464}
465
466static int poll__setDelay(struct sensors_poll_device_t *dev,
467            int handle, int64_t ns)
468{
469    // TODO
470    return 0;
471}
472
473/** MODULE REGISTRATION SUPPORT
474 **
475 ** This is required so that hardware/libhardware/hardware.c
476 ** will dlopen() this library appropriately.
477 **/
478
479/*
480 * the following is the list of all supported sensors.
481 * this table is used to build sSensorList declared below
482 * according to which hardware sensors are reported as
483 * available from the emulator (see get_sensors_list below)
484 *
485 * note: numerical values for maxRange/resolution/power were
486 *       taken from the reference AK8976A implementation
487 */
488static const struct sensor_t sSensorListInit[] = {
489        { .name       = "Goldfish 3-axis Accelerometer",
490          .vendor     = "The Android Open Source Project",
491          .version    = 1,
492          .handle     = ID_ACCELERATION,
493          .type       = SENSOR_TYPE_ACCELEROMETER,
494          .maxRange   = 2.8f,
495          .resolution = 1.0f/4032.0f,
496          .power      = 3.0f,
497          .reserved   = {}
498        },
499
500        { .name       = "Goldfish 3-axis Magnetic field sensor",
501          .vendor     = "The Android Open Source Project",
502          .version    = 1,
503          .handle     = ID_MAGNETIC_FIELD,
504          .type       = SENSOR_TYPE_MAGNETIC_FIELD,
505          .maxRange   = 2000.0f,
506          .resolution = 1.0f,
507          .power      = 6.7f,
508          .reserved   = {}
509        },
510
511        { .name       = "Goldfish Orientation sensor",
512          .vendor     = "The Android Open Source Project",
513          .version    = 1,
514          .handle     = ID_ORIENTATION,
515          .type       = SENSOR_TYPE_ORIENTATION,
516          .maxRange   = 360.0f,
517          .resolution = 1.0f,
518          .power      = 9.7f,
519          .reserved   = {}
520        },
521
522        { .name       = "Goldfish Temperature sensor",
523          .vendor     = "The Android Open Source Project",
524          .version    = 1,
525          .handle     = ID_TEMPERATURE,
526          .type       = SENSOR_TYPE_TEMPERATURE,
527          .maxRange   = 80.0f,
528          .resolution = 1.0f,
529          .power      = 0.0f,
530          .reserved   = {}
531        },
532
533        { .name       = "Goldfish Proximity sensor",
534          .vendor     = "The Android Open Source Project",
535          .version    = 1,
536          .handle     = ID_PROXIMITY,
537          .type       = SENSOR_TYPE_PROXIMITY,
538          .maxRange   = 1.0f,
539          .resolution = 1.0f,
540          .power      = 20.0f,
541          .reserved   = {}
542        },
543};
544
545static struct sensor_t  sSensorList[MAX_NUM_SENSORS];
546
547static int sensors__get_sensors_list(struct sensors_module_t* module,
548        struct sensor_t const** list)
549{
550    int  fd = qemud_channel_open(SENSORS_SERVICE_NAME);
551    char buffer[12];
552    int  mask, nn, count;
553
554    int  ret;
555    if (fd < 0) {
556        E("%s: no qemud connection", __FUNCTION__);
557        return 0;
558    }
559    ret = qemud_channel_send(fd, "list-sensors", -1);
560    if (ret < 0) {
561        E("%s: could not query sensor list: %s", __FUNCTION__,
562          strerror(errno));
563        close(fd);
564        return 0;
565    }
566    ret = qemud_channel_recv(fd, buffer, sizeof buffer-1);
567    if (ret < 0) {
568        E("%s: could not receive sensor list: %s", __FUNCTION__,
569          strerror(errno));
570        close(fd);
571        return 0;
572    }
573    buffer[ret] = 0;
574    close(fd);
575
576    /* the result is a integer used as a mask for available sensors */
577    mask  = atoi(buffer);
578    count = 0;
579    for (nn = 0; nn < MAX_NUM_SENSORS; nn++) {
580        if (((1 << nn) & mask) == 0)
581            continue;
582
583        sSensorList[count++] = sSensorListInit[nn];
584    }
585    D("%s: returned %d sensors (mask=%d)", __FUNCTION__, count, mask);
586    *list = sSensorList;
587    return count;
588}
589
590
591static int
592open_sensors(const struct hw_module_t* module,
593             const char*               name,
594             struct hw_device_t*      *device)
595{
596    int  status = -EINVAL;
597
598    D("%s: name=%s", __FUNCTION__, name);
599
600    if (!strcmp(name, SENSORS_HARDWARE_POLL)) {
601        SensorPoll *dev = malloc(sizeof(*dev));
602
603        memset(dev, 0, sizeof(*dev));
604
605        dev->device.common.tag     = HARDWARE_DEVICE_TAG;
606        dev->device.common.version = 0;
607        dev->device.common.module  = (struct hw_module_t*) module;
608        dev->device.common.close   = poll__close;
609        dev->device.poll           = poll__poll;
610        dev->device.activate       = poll__activate;
611        dev->device.setDelay       = poll__setDelay;
612        dev->events_fd             = -1;
613        dev->fd                    = -1;
614
615        *device = &dev->device.common;
616        status  = 0;
617    }
618    return status;
619}
620
621
622static struct hw_module_methods_t sensors_module_methods = {
623    .open = open_sensors
624};
625
626struct sensors_module_t HAL_MODULE_INFO_SYM = {
627    .common = {
628        .tag = HARDWARE_MODULE_TAG,
629        .version_major = 1,
630        .version_minor = 0,
631        .id = SENSORS_HARDWARE_MODULE_ID,
632        .name = "Goldfish SENSORS Module",
633        .author = "The Android Open Source Project",
634        .methods = &sensors_module_methods,
635    },
636    .get_sensors_list = sensors__get_sensors_list
637};
638