1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code to emit Aggregate Expr nodes as LLVM code. 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGObjCRuntime.h" 16#include "CodeGenModule.h" 17#include "clang/AST/ASTContext.h" 18#include "clang/AST/DeclCXX.h" 19#include "clang/AST/DeclTemplate.h" 20#include "clang/AST/StmtVisitor.h" 21#include "llvm/IR/Constants.h" 22#include "llvm/IR/Function.h" 23#include "llvm/IR/GlobalVariable.h" 24#include "llvm/IR/Intrinsics.h" 25using namespace clang; 26using namespace CodeGen; 27 28//===----------------------------------------------------------------------===// 29// Aggregate Expression Emitter 30//===----------------------------------------------------------------------===// 31 32llvm::Value *AggValueSlot::getPaddedAtomicAddr() const { 33 assert(isValueOfAtomic()); 34 llvm::GEPOperator *op = cast<llvm::GEPOperator>(getAddr()); 35 assert(op->getNumIndices() == 2); 36 assert(op->hasAllZeroIndices()); 37 return op->getPointerOperand(); 38} 39 40namespace { 41class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 42 CodeGenFunction &CGF; 43 CGBuilderTy &Builder; 44 AggValueSlot Dest; 45 46 /// We want to use 'dest' as the return slot except under two 47 /// conditions: 48 /// - The destination slot requires garbage collection, so we 49 /// need to use the GC API. 50 /// - The destination slot is potentially aliased. 51 bool shouldUseDestForReturnSlot() const { 52 return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased()); 53 } 54 55 ReturnValueSlot getReturnValueSlot() const { 56 if (!shouldUseDestForReturnSlot()) 57 return ReturnValueSlot(); 58 59 return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile()); 60 } 61 62 AggValueSlot EnsureSlot(QualType T) { 63 if (!Dest.isIgnored()) return Dest; 64 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 65 } 66 void EnsureDest(QualType T) { 67 if (!Dest.isIgnored()) return; 68 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 69 } 70 71public: 72 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest) 73 : CGF(cgf), Builder(CGF.Builder), Dest(Dest) { 74 } 75 76 //===--------------------------------------------------------------------===// 77 // Utilities 78 //===--------------------------------------------------------------------===// 79 80 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 81 /// represents a value lvalue, this method emits the address of the lvalue, 82 /// then loads the result into DestPtr. 83 void EmitAggLoadOfLValue(const Expr *E); 84 85 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 86 void EmitFinalDestCopy(QualType type, const LValue &src); 87 void EmitFinalDestCopy(QualType type, RValue src, 88 CharUnits srcAlignment = CharUnits::Zero()); 89 void EmitCopy(QualType type, const AggValueSlot &dest, 90 const AggValueSlot &src); 91 92 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 93 94 void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList); 95 void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 96 QualType elementType, InitListExpr *E); 97 98 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 99 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 100 return AggValueSlot::NeedsGCBarriers; 101 return AggValueSlot::DoesNotNeedGCBarriers; 102 } 103 104 bool TypeRequiresGCollection(QualType T); 105 106 //===--------------------------------------------------------------------===// 107 // Visitor Methods 108 //===--------------------------------------------------------------------===// 109 110 void VisitStmt(Stmt *S) { 111 CGF.ErrorUnsupported(S, "aggregate expression"); 112 } 113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 115 Visit(GE->getResultExpr()); 116 } 117 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 118 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 119 return Visit(E->getReplacement()); 120 } 121 122 // l-values. 123 void VisitDeclRefExpr(DeclRefExpr *E) { 124 // For aggregates, we should always be able to emit the variable 125 // as an l-value unless it's a reference. This is due to the fact 126 // that we can't actually ever see a normal l2r conversion on an 127 // aggregate in C++, and in C there's no language standard 128 // actively preventing us from listing variables in the captures 129 // list of a block. 130 if (E->getDecl()->getType()->isReferenceType()) { 131 if (CodeGenFunction::ConstantEmission result 132 = CGF.tryEmitAsConstant(E)) { 133 EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E)); 134 return; 135 } 136 } 137 138 EmitAggLoadOfLValue(E); 139 } 140 141 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 142 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 143 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 144 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 145 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 146 EmitAggLoadOfLValue(E); 147 } 148 void VisitPredefinedExpr(const PredefinedExpr *E) { 149 EmitAggLoadOfLValue(E); 150 } 151 152 // Operators. 153 void VisitCastExpr(CastExpr *E); 154 void VisitCallExpr(const CallExpr *E); 155 void VisitStmtExpr(const StmtExpr *E); 156 void VisitBinaryOperator(const BinaryOperator *BO); 157 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 158 void VisitBinAssign(const BinaryOperator *E); 159 void VisitBinComma(const BinaryOperator *E); 160 161 void VisitObjCMessageExpr(ObjCMessageExpr *E); 162 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 163 EmitAggLoadOfLValue(E); 164 } 165 166 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 167 void VisitChooseExpr(const ChooseExpr *CE); 168 void VisitInitListExpr(InitListExpr *E); 169 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 170 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 171 Visit(DAE->getExpr()); 172 } 173 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 174 void VisitCXXConstructExpr(const CXXConstructExpr *E); 175 void VisitLambdaExpr(LambdaExpr *E); 176 void VisitExprWithCleanups(ExprWithCleanups *E); 177 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 178 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 179 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 180 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 181 182 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 183 if (E->isGLValue()) { 184 LValue LV = CGF.EmitPseudoObjectLValue(E); 185 return EmitFinalDestCopy(E->getType(), LV); 186 } 187 188 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 189 } 190 191 void VisitVAArgExpr(VAArgExpr *E); 192 193 void EmitInitializationToLValue(Expr *E, LValue Address); 194 void EmitNullInitializationToLValue(LValue Address); 195 // case Expr::ChooseExprClass: 196 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 197 void VisitAtomicExpr(AtomicExpr *E) { 198 CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr()); 199 } 200}; 201 202/// A helper class for emitting expressions into the value sub-object 203/// of a padded atomic type. 204class ValueDestForAtomic { 205 AggValueSlot Dest; 206public: 207 ValueDestForAtomic(CodeGenFunction &CGF, AggValueSlot dest, QualType type) 208 : Dest(dest) { 209 assert(!Dest.isValueOfAtomic()); 210 if (!Dest.isIgnored() && CGF.CGM.isPaddedAtomicType(type)) { 211 llvm::Value *valueAddr = CGF.Builder.CreateStructGEP(Dest.getAddr(), 0); 212 Dest = AggValueSlot::forAddr(valueAddr, 213 Dest.getAlignment(), 214 Dest.getQualifiers(), 215 Dest.isExternallyDestructed(), 216 Dest.requiresGCollection(), 217 Dest.isPotentiallyAliased(), 218 Dest.isZeroed(), 219 AggValueSlot::IsValueOfAtomic); 220 } 221 } 222 223 const AggValueSlot &getDest() const { return Dest; } 224 225 ~ValueDestForAtomic() { 226 // Kill the GEP if we made one and it didn't end up used. 227 if (Dest.isValueOfAtomic()) { 228 llvm::Instruction *addr = cast<llvm::GetElementPtrInst>(Dest.getAddr()); 229 if (addr->use_empty()) addr->eraseFromParent(); 230 } 231 } 232}; 233} // end anonymous namespace. 234 235//===----------------------------------------------------------------------===// 236// Utilities 237//===----------------------------------------------------------------------===// 238 239/// EmitAggLoadOfLValue - Given an expression with aggregate type that 240/// represents a value lvalue, this method emits the address of the lvalue, 241/// then loads the result into DestPtr. 242void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 243 LValue LV = CGF.EmitLValue(E); 244 245 // If the type of the l-value is atomic, then do an atomic load. 246 if (LV.getType()->isAtomicType()) { 247 ValueDestForAtomic valueDest(CGF, Dest, LV.getType()); 248 CGF.EmitAtomicLoad(LV, valueDest.getDest()); 249 return; 250 } 251 252 EmitFinalDestCopy(E->getType(), LV); 253} 254 255/// \brief True if the given aggregate type requires special GC API calls. 256bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 257 // Only record types have members that might require garbage collection. 258 const RecordType *RecordTy = T->getAs<RecordType>(); 259 if (!RecordTy) return false; 260 261 // Don't mess with non-trivial C++ types. 262 RecordDecl *Record = RecordTy->getDecl(); 263 if (isa<CXXRecordDecl>(Record) && 264 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 265 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 266 return false; 267 268 // Check whether the type has an object member. 269 return Record->hasObjectMember(); 270} 271 272/// \brief Perform the final move to DestPtr if for some reason 273/// getReturnValueSlot() didn't use it directly. 274/// 275/// The idea is that you do something like this: 276/// RValue Result = EmitSomething(..., getReturnValueSlot()); 277/// EmitMoveFromReturnSlot(E, Result); 278/// 279/// If nothing interferes, this will cause the result to be emitted 280/// directly into the return value slot. Otherwise, a final move 281/// will be performed. 282void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) { 283 if (shouldUseDestForReturnSlot()) { 284 // Logically, Dest.getAddr() should equal Src.getAggregateAddr(). 285 // The possibility of undef rvalues complicates that a lot, 286 // though, so we can't really assert. 287 return; 288 } 289 290 // Otherwise, copy from there to the destination. 291 assert(Dest.getAddr() != src.getAggregateAddr()); 292 std::pair<CharUnits, CharUnits> typeInfo = 293 CGF.getContext().getTypeInfoInChars(E->getType()); 294 EmitFinalDestCopy(E->getType(), src, typeInfo.second); 295} 296 297/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 298void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src, 299 CharUnits srcAlign) { 300 assert(src.isAggregate() && "value must be aggregate value!"); 301 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign); 302 EmitFinalDestCopy(type, srcLV); 303} 304 305/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 306void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) { 307 // If Dest is ignored, then we're evaluating an aggregate expression 308 // in a context that doesn't care about the result. Note that loads 309 // from volatile l-values force the existence of a non-ignored 310 // destination. 311 if (Dest.isIgnored()) 312 return; 313 314 AggValueSlot srcAgg = 315 AggValueSlot::forLValue(src, AggValueSlot::IsDestructed, 316 needsGC(type), AggValueSlot::IsAliased); 317 EmitCopy(type, Dest, srcAgg); 318} 319 320/// Perform a copy from the source into the destination. 321/// 322/// \param type - the type of the aggregate being copied; qualifiers are 323/// ignored 324void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 325 const AggValueSlot &src) { 326 if (dest.requiresGCollection()) { 327 CharUnits sz = CGF.getContext().getTypeSizeInChars(type); 328 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 329 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 330 dest.getAddr(), 331 src.getAddr(), 332 size); 333 return; 334 } 335 336 // If the result of the assignment is used, copy the LHS there also. 337 // It's volatile if either side is. Use the minimum alignment of 338 // the two sides. 339 CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type, 340 dest.isVolatile() || src.isVolatile(), 341 std::min(dest.getAlignment(), src.getAlignment())); 342} 343 344static QualType GetStdInitializerListElementType(QualType T) { 345 // Just assume that this is really std::initializer_list. 346 ClassTemplateSpecializationDecl *specialization = 347 cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl()); 348 return specialization->getTemplateArgs()[0].getAsType(); 349} 350 351/// \brief Prepare cleanup for the temporary array. 352static void EmitStdInitializerListCleanup(CodeGenFunction &CGF, 353 QualType arrayType, 354 llvm::Value *addr, 355 const InitListExpr *initList) { 356 QualType::DestructionKind dtorKind = arrayType.isDestructedType(); 357 if (!dtorKind) 358 return; // Type doesn't need destroying. 359 if (dtorKind != QualType::DK_cxx_destructor) { 360 CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list"); 361 return; 362 } 363 364 CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind); 365 CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer, 366 /*EHCleanup=*/true); 367} 368 369/// \brief Emit the initializer for a std::initializer_list initialized with a 370/// real initializer list. 371void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr, 372 InitListExpr *initList) { 373 // We emit an array containing the elements, then have the init list point 374 // at the array. 375 ASTContext &ctx = CGF.getContext(); 376 unsigned numInits = initList->getNumInits(); 377 QualType element = GetStdInitializerListElementType(initList->getType()); 378 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 379 QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0); 380 llvm::Type *LTy = CGF.ConvertTypeForMem(array); 381 llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy); 382 alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity()); 383 alloc->setName(".initlist."); 384 385 EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList); 386 387 // FIXME: The diagnostics are somewhat out of place here. 388 RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl(); 389 RecordDecl::field_iterator field = record->field_begin(); 390 if (field == record->field_end()) { 391 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 392 return; 393 } 394 395 QualType elementPtr = ctx.getPointerType(element.withConst()); 396 397 // Start pointer. 398 if (!ctx.hasSameType(field->getType(), elementPtr)) { 399 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 400 return; 401 } 402 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType()); 403 LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field); 404 llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart"); 405 CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start); 406 ++field; 407 408 if (field == record->field_end()) { 409 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 410 return; 411 } 412 LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field); 413 if (ctx.hasSameType(field->getType(), elementPtr)) { 414 // End pointer. 415 llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend"); 416 CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength); 417 } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) { 418 // Length. 419 CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength); 420 } else { 421 CGF.ErrorUnsupported(initList, "weird std::initializer_list"); 422 return; 423 } 424 425 if (!Dest.isExternallyDestructed()) 426 EmitStdInitializerListCleanup(CGF, array, alloc, initList); 427} 428 429/// \brief Emit initialization of an array from an initializer list. 430void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType, 431 QualType elementType, InitListExpr *E) { 432 uint64_t NumInitElements = E->getNumInits(); 433 434 uint64_t NumArrayElements = AType->getNumElements(); 435 assert(NumInitElements <= NumArrayElements); 436 437 // DestPtr is an array*. Construct an elementType* by drilling 438 // down a level. 439 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 440 llvm::Value *indices[] = { zero, zero }; 441 llvm::Value *begin = 442 Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin"); 443 444 // Exception safety requires us to destroy all the 445 // already-constructed members if an initializer throws. 446 // For that, we'll need an EH cleanup. 447 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 448 llvm::AllocaInst *endOfInit = 0; 449 EHScopeStack::stable_iterator cleanup; 450 llvm::Instruction *cleanupDominator = 0; 451 if (CGF.needsEHCleanup(dtorKind)) { 452 // In principle we could tell the cleanup where we are more 453 // directly, but the control flow can get so varied here that it 454 // would actually be quite complex. Therefore we go through an 455 // alloca. 456 endOfInit = CGF.CreateTempAlloca(begin->getType(), 457 "arrayinit.endOfInit"); 458 cleanupDominator = Builder.CreateStore(begin, endOfInit); 459 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 460 CGF.getDestroyer(dtorKind)); 461 cleanup = CGF.EHStack.stable_begin(); 462 463 // Otherwise, remember that we didn't need a cleanup. 464 } else { 465 dtorKind = QualType::DK_none; 466 } 467 468 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 469 470 // The 'current element to initialize'. The invariants on this 471 // variable are complicated. Essentially, after each iteration of 472 // the loop, it points to the last initialized element, except 473 // that it points to the beginning of the array before any 474 // elements have been initialized. 475 llvm::Value *element = begin; 476 477 // Emit the explicit initializers. 478 for (uint64_t i = 0; i != NumInitElements; ++i) { 479 // Advance to the next element. 480 if (i > 0) { 481 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 482 483 // Tell the cleanup that it needs to destroy up to this 484 // element. TODO: some of these stores can be trivially 485 // observed to be unnecessary. 486 if (endOfInit) Builder.CreateStore(element, endOfInit); 487 } 488 489 // If these are nested std::initializer_list inits, do them directly, 490 // because they are conceptually the same "location". 491 InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i)); 492 if (initList && initList->initializesStdInitializerList()) { 493 EmitStdInitializerList(element, initList); 494 } else { 495 LValue elementLV = CGF.MakeAddrLValue(element, elementType); 496 EmitInitializationToLValue(E->getInit(i), elementLV); 497 } 498 } 499 500 // Check whether there's a non-trivial array-fill expression. 501 // Note that this will be a CXXConstructExpr even if the element 502 // type is an array (or array of array, etc.) of class type. 503 Expr *filler = E->getArrayFiller(); 504 bool hasTrivialFiller = true; 505 if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) { 506 assert(cons->getConstructor()->isDefaultConstructor()); 507 hasTrivialFiller = cons->getConstructor()->isTrivial(); 508 } 509 510 // Any remaining elements need to be zero-initialized, possibly 511 // using the filler expression. We can skip this if the we're 512 // emitting to zeroed memory. 513 if (NumInitElements != NumArrayElements && 514 !(Dest.isZeroed() && hasTrivialFiller && 515 CGF.getTypes().isZeroInitializable(elementType))) { 516 517 // Use an actual loop. This is basically 518 // do { *array++ = filler; } while (array != end); 519 520 // Advance to the start of the rest of the array. 521 if (NumInitElements) { 522 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 523 if (endOfInit) Builder.CreateStore(element, endOfInit); 524 } 525 526 // Compute the end of the array. 527 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 528 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 529 "arrayinit.end"); 530 531 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 532 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 533 534 // Jump into the body. 535 CGF.EmitBlock(bodyBB); 536 llvm::PHINode *currentElement = 537 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 538 currentElement->addIncoming(element, entryBB); 539 540 // Emit the actual filler expression. 541 LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType); 542 if (filler) 543 EmitInitializationToLValue(filler, elementLV); 544 else 545 EmitNullInitializationToLValue(elementLV); 546 547 // Move on to the next element. 548 llvm::Value *nextElement = 549 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 550 551 // Tell the EH cleanup that we finished with the last element. 552 if (endOfInit) Builder.CreateStore(nextElement, endOfInit); 553 554 // Leave the loop if we're done. 555 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 556 "arrayinit.done"); 557 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 558 Builder.CreateCondBr(done, endBB, bodyBB); 559 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 560 561 CGF.EmitBlock(endBB); 562 } 563 564 // Leave the partial-array cleanup if we entered one. 565 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 566} 567 568//===----------------------------------------------------------------------===// 569// Visitor Methods 570//===----------------------------------------------------------------------===// 571 572void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 573 Visit(E->GetTemporaryExpr()); 574} 575 576void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 577 EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e)); 578} 579 580void 581AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 582 if (Dest.isPotentiallyAliased() && 583 E->getType().isPODType(CGF.getContext())) { 584 // For a POD type, just emit a load of the lvalue + a copy, because our 585 // compound literal might alias the destination. 586 EmitAggLoadOfLValue(E); 587 return; 588 } 589 590 AggValueSlot Slot = EnsureSlot(E->getType()); 591 CGF.EmitAggExpr(E->getInitializer(), Slot); 592} 593 594/// Attempt to look through various unimportant expressions to find a 595/// cast of the given kind. 596static Expr *findPeephole(Expr *op, CastKind kind) { 597 while (true) { 598 op = op->IgnoreParens(); 599 if (CastExpr *castE = dyn_cast<CastExpr>(op)) { 600 if (castE->getCastKind() == kind) 601 return castE->getSubExpr(); 602 if (castE->getCastKind() == CK_NoOp) 603 continue; 604 } 605 return 0; 606 } 607} 608 609void AggExprEmitter::VisitCastExpr(CastExpr *E) { 610 switch (E->getCastKind()) { 611 case CK_Dynamic: { 612 // FIXME: Can this actually happen? We have no test coverage for it. 613 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 614 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 615 CodeGenFunction::TCK_Load); 616 // FIXME: Do we also need to handle property references here? 617 if (LV.isSimple()) 618 CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E)); 619 else 620 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 621 622 if (!Dest.isIgnored()) 623 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 624 break; 625 } 626 627 case CK_ToUnion: { 628 if (Dest.isIgnored()) break; 629 630 // GCC union extension 631 QualType Ty = E->getSubExpr()->getType(); 632 QualType PtrTy = CGF.getContext().getPointerType(Ty); 633 llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(), 634 CGF.ConvertType(PtrTy)); 635 EmitInitializationToLValue(E->getSubExpr(), 636 CGF.MakeAddrLValue(CastPtr, Ty)); 637 break; 638 } 639 640 case CK_DerivedToBase: 641 case CK_BaseToDerived: 642 case CK_UncheckedDerivedToBase: { 643 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 644 "should have been unpacked before we got here"); 645 } 646 647 case CK_NonAtomicToAtomic: 648 case CK_AtomicToNonAtomic: { 649 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 650 651 // Determine the atomic and value types. 652 QualType atomicType = E->getSubExpr()->getType(); 653 QualType valueType = E->getType(); 654 if (isToAtomic) std::swap(atomicType, valueType); 655 656 assert(atomicType->isAtomicType()); 657 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 658 atomicType->castAs<AtomicType>()->getValueType())); 659 660 // Just recurse normally if we're ignoring the result or the 661 // atomic type doesn't change representation. 662 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 663 return Visit(E->getSubExpr()); 664 } 665 666 CastKind peepholeTarget = 667 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 668 669 // These two cases are reverses of each other; try to peephole them. 670 if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) { 671 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 672 E->getType()) && 673 "peephole significantly changed types?"); 674 return Visit(op); 675 } 676 677 // If we're converting an r-value of non-atomic type to an r-value 678 // of atomic type, just make an atomic temporary, emit into that, 679 // and then copy the value out. (FIXME: do we need to 680 // zero-initialize it first?) 681 if (isToAtomic) { 682 ValueDestForAtomic valueDest(CGF, Dest, atomicType); 683 CGF.EmitAggExpr(E->getSubExpr(), valueDest.getDest()); 684 return; 685 } 686 687 // Otherwise, we're converting an atomic type to a non-atomic type. 688 689 // If the dest is a value-of-atomic subobject, drill back out. 690 if (Dest.isValueOfAtomic()) { 691 AggValueSlot atomicSlot = 692 AggValueSlot::forAddr(Dest.getPaddedAtomicAddr(), 693 Dest.getAlignment(), 694 Dest.getQualifiers(), 695 Dest.isExternallyDestructed(), 696 Dest.requiresGCollection(), 697 Dest.isPotentiallyAliased(), 698 Dest.isZeroed(), 699 AggValueSlot::IsNotValueOfAtomic); 700 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 701 return; 702 } 703 704 // Otherwise, make an atomic temporary, emit into that, and then 705 // copy the value out. 706 AggValueSlot atomicSlot = 707 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 708 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 709 710 llvm::Value *valueAddr = 711 Builder.CreateStructGEP(atomicSlot.getAddr(), 0); 712 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 713 return EmitFinalDestCopy(valueType, rvalue); 714 } 715 716 case CK_LValueToRValue: 717 // If we're loading from a volatile type, force the destination 718 // into existence. 719 if (E->getSubExpr()->getType().isVolatileQualified()) { 720 EnsureDest(E->getType()); 721 return Visit(E->getSubExpr()); 722 } 723 724 // fallthrough 725 726 case CK_NoOp: 727 case CK_UserDefinedConversion: 728 case CK_ConstructorConversion: 729 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 730 E->getType()) && 731 "Implicit cast types must be compatible"); 732 Visit(E->getSubExpr()); 733 break; 734 735 case CK_LValueBitCast: 736 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 737 738 case CK_Dependent: 739 case CK_BitCast: 740 case CK_ArrayToPointerDecay: 741 case CK_FunctionToPointerDecay: 742 case CK_NullToPointer: 743 case CK_NullToMemberPointer: 744 case CK_BaseToDerivedMemberPointer: 745 case CK_DerivedToBaseMemberPointer: 746 case CK_MemberPointerToBoolean: 747 case CK_ReinterpretMemberPointer: 748 case CK_IntegralToPointer: 749 case CK_PointerToIntegral: 750 case CK_PointerToBoolean: 751 case CK_ToVoid: 752 case CK_VectorSplat: 753 case CK_IntegralCast: 754 case CK_IntegralToBoolean: 755 case CK_IntegralToFloating: 756 case CK_FloatingToIntegral: 757 case CK_FloatingToBoolean: 758 case CK_FloatingCast: 759 case CK_CPointerToObjCPointerCast: 760 case CK_BlockPointerToObjCPointerCast: 761 case CK_AnyPointerToBlockPointerCast: 762 case CK_ObjCObjectLValueCast: 763 case CK_FloatingRealToComplex: 764 case CK_FloatingComplexToReal: 765 case CK_FloatingComplexToBoolean: 766 case CK_FloatingComplexCast: 767 case CK_FloatingComplexToIntegralComplex: 768 case CK_IntegralRealToComplex: 769 case CK_IntegralComplexToReal: 770 case CK_IntegralComplexToBoolean: 771 case CK_IntegralComplexCast: 772 case CK_IntegralComplexToFloatingComplex: 773 case CK_ARCProduceObject: 774 case CK_ARCConsumeObject: 775 case CK_ARCReclaimReturnedObject: 776 case CK_ARCExtendBlockObject: 777 case CK_CopyAndAutoreleaseBlockObject: 778 case CK_BuiltinFnToFnPtr: 779 case CK_ZeroToOCLEvent: 780 llvm_unreachable("cast kind invalid for aggregate types"); 781 } 782} 783 784void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 785 if (E->getCallReturnType()->isReferenceType()) { 786 EmitAggLoadOfLValue(E); 787 return; 788 } 789 790 RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot()); 791 EmitMoveFromReturnSlot(E, RV); 792} 793 794void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 795 RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot()); 796 EmitMoveFromReturnSlot(E, RV); 797} 798 799void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 800 CGF.EmitIgnoredExpr(E->getLHS()); 801 Visit(E->getRHS()); 802} 803 804void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 805 CodeGenFunction::StmtExprEvaluation eval(CGF); 806 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 807} 808 809void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 810 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 811 VisitPointerToDataMemberBinaryOperator(E); 812 else 813 CGF.ErrorUnsupported(E, "aggregate binary expression"); 814} 815 816void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 817 const BinaryOperator *E) { 818 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 819 EmitFinalDestCopy(E->getType(), LV); 820} 821 822/// Is the value of the given expression possibly a reference to or 823/// into a __block variable? 824static bool isBlockVarRef(const Expr *E) { 825 // Make sure we look through parens. 826 E = E->IgnoreParens(); 827 828 // Check for a direct reference to a __block variable. 829 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 830 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 831 return (var && var->hasAttr<BlocksAttr>()); 832 } 833 834 // More complicated stuff. 835 836 // Binary operators. 837 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 838 // For an assignment or pointer-to-member operation, just care 839 // about the LHS. 840 if (op->isAssignmentOp() || op->isPtrMemOp()) 841 return isBlockVarRef(op->getLHS()); 842 843 // For a comma, just care about the RHS. 844 if (op->getOpcode() == BO_Comma) 845 return isBlockVarRef(op->getRHS()); 846 847 // FIXME: pointer arithmetic? 848 return false; 849 850 // Check both sides of a conditional operator. 851 } else if (const AbstractConditionalOperator *op 852 = dyn_cast<AbstractConditionalOperator>(E)) { 853 return isBlockVarRef(op->getTrueExpr()) 854 || isBlockVarRef(op->getFalseExpr()); 855 856 // OVEs are required to support BinaryConditionalOperators. 857 } else if (const OpaqueValueExpr *op 858 = dyn_cast<OpaqueValueExpr>(E)) { 859 if (const Expr *src = op->getSourceExpr()) 860 return isBlockVarRef(src); 861 862 // Casts are necessary to get things like (*(int*)&var) = foo(). 863 // We don't really care about the kind of cast here, except 864 // we don't want to look through l2r casts, because it's okay 865 // to get the *value* in a __block variable. 866 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 867 if (cast->getCastKind() == CK_LValueToRValue) 868 return false; 869 return isBlockVarRef(cast->getSubExpr()); 870 871 // Handle unary operators. Again, just aggressively look through 872 // it, ignoring the operation. 873 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 874 return isBlockVarRef(uop->getSubExpr()); 875 876 // Look into the base of a field access. 877 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 878 return isBlockVarRef(mem->getBase()); 879 880 // Look into the base of a subscript. 881 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 882 return isBlockVarRef(sub->getBase()); 883 } 884 885 return false; 886} 887 888void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 889 // For an assignment to work, the value on the right has 890 // to be compatible with the value on the left. 891 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 892 E->getRHS()->getType()) 893 && "Invalid assignment"); 894 895 // If the LHS might be a __block variable, and the RHS can 896 // potentially cause a block copy, we need to evaluate the RHS first 897 // so that the assignment goes the right place. 898 // This is pretty semantically fragile. 899 if (isBlockVarRef(E->getLHS()) && 900 E->getRHS()->HasSideEffects(CGF.getContext())) { 901 // Ensure that we have a destination, and evaluate the RHS into that. 902 EnsureDest(E->getRHS()->getType()); 903 Visit(E->getRHS()); 904 905 // Now emit the LHS and copy into it. 906 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 907 908 // That copy is an atomic copy if the LHS is atomic. 909 if (LHS.getType()->isAtomicType()) { 910 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 911 return; 912 } 913 914 EmitCopy(E->getLHS()->getType(), 915 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 916 needsGC(E->getLHS()->getType()), 917 AggValueSlot::IsAliased), 918 Dest); 919 return; 920 } 921 922 LValue LHS = CGF.EmitLValue(E->getLHS()); 923 924 // If we have an atomic type, evaluate into the destination and then 925 // do an atomic copy. 926 if (LHS.getType()->isAtomicType()) { 927 EnsureDest(E->getRHS()->getType()); 928 Visit(E->getRHS()); 929 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 930 return; 931 } 932 933 // Codegen the RHS so that it stores directly into the LHS. 934 AggValueSlot LHSSlot = 935 AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 936 needsGC(E->getLHS()->getType()), 937 AggValueSlot::IsAliased); 938 // A non-volatile aggregate destination might have volatile member. 939 if (!LHSSlot.isVolatile() && 940 CGF.hasVolatileMember(E->getLHS()->getType())) 941 LHSSlot.setVolatile(true); 942 943 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 944 945 // Copy into the destination if the assignment isn't ignored. 946 EmitFinalDestCopy(E->getType(), LHS); 947} 948 949void AggExprEmitter:: 950VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 951 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 952 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 953 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 954 955 // Bind the common expression if necessary. 956 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 957 958 CodeGenFunction::ConditionalEvaluation eval(CGF); 959 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock); 960 961 // Save whether the destination's lifetime is externally managed. 962 bool isExternallyDestructed = Dest.isExternallyDestructed(); 963 964 eval.begin(CGF); 965 CGF.EmitBlock(LHSBlock); 966 Visit(E->getTrueExpr()); 967 eval.end(CGF); 968 969 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 970 CGF.Builder.CreateBr(ContBlock); 971 972 // If the result of an agg expression is unused, then the emission 973 // of the LHS might need to create a destination slot. That's fine 974 // with us, and we can safely emit the RHS into the same slot, but 975 // we shouldn't claim that it's already being destructed. 976 Dest.setExternallyDestructed(isExternallyDestructed); 977 978 eval.begin(CGF); 979 CGF.EmitBlock(RHSBlock); 980 Visit(E->getFalseExpr()); 981 eval.end(CGF); 982 983 CGF.EmitBlock(ContBlock); 984} 985 986void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 987 Visit(CE->getChosenSubExpr(CGF.getContext())); 988} 989 990void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 991 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 992 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 993 994 if (!ArgPtr) { 995 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 996 return; 997 } 998 999 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1000} 1001 1002void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1003 // Ensure that we have a slot, but if we already do, remember 1004 // whether it was externally destructed. 1005 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1006 EnsureDest(E->getType()); 1007 1008 // We're going to push a destructor if there isn't already one. 1009 Dest.setExternallyDestructed(); 1010 1011 Visit(E->getSubExpr()); 1012 1013 // Push that destructor we promised. 1014 if (!wasExternallyDestructed) 1015 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr()); 1016} 1017 1018void 1019AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1020 AggValueSlot Slot = EnsureSlot(E->getType()); 1021 CGF.EmitCXXConstructExpr(E, Slot); 1022} 1023 1024void 1025AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1026 AggValueSlot Slot = EnsureSlot(E->getType()); 1027 CGF.EmitLambdaExpr(E, Slot); 1028} 1029 1030void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1031 CGF.enterFullExpression(E); 1032 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1033 Visit(E->getSubExpr()); 1034} 1035 1036void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1037 QualType T = E->getType(); 1038 AggValueSlot Slot = EnsureSlot(T); 1039 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1040} 1041 1042void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1043 QualType T = E->getType(); 1044 AggValueSlot Slot = EnsureSlot(T); 1045 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T)); 1046} 1047 1048/// isSimpleZero - If emitting this value will obviously just cause a store of 1049/// zero to memory, return true. This can return false if uncertain, so it just 1050/// handles simple cases. 1051static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1052 E = E->IgnoreParens(); 1053 1054 // 0 1055 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1056 return IL->getValue() == 0; 1057 // +0.0 1058 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1059 return FL->getValue().isPosZero(); 1060 // int() 1061 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1062 CGF.getTypes().isZeroInitializable(E->getType())) 1063 return true; 1064 // (int*)0 - Null pointer expressions. 1065 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1066 return ICE->getCastKind() == CK_NullToPointer; 1067 // '\0' 1068 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1069 return CL->getValue() == 0; 1070 1071 // Otherwise, hard case: conservatively return false. 1072 return false; 1073} 1074 1075 1076void 1077AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) { 1078 QualType type = LV.getType(); 1079 // FIXME: Ignore result? 1080 // FIXME: Are initializers affected by volatile? 1081 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1082 // Storing "i32 0" to a zero'd memory location is a noop. 1083 return; 1084 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1085 return EmitNullInitializationToLValue(LV); 1086 } else if (type->isReferenceType()) { 1087 RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 1088 return CGF.EmitStoreThroughLValue(RV, LV); 1089 } 1090 1091 switch (CGF.getEvaluationKind(type)) { 1092 case TEK_Complex: 1093 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1094 return; 1095 case TEK_Aggregate: 1096 CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV, 1097 AggValueSlot::IsDestructed, 1098 AggValueSlot::DoesNotNeedGCBarriers, 1099 AggValueSlot::IsNotAliased, 1100 Dest.isZeroed())); 1101 return; 1102 case TEK_Scalar: 1103 if (LV.isSimple()) { 1104 CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false); 1105 } else { 1106 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1107 } 1108 return; 1109 } 1110 llvm_unreachable("bad evaluation kind"); 1111} 1112 1113void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1114 QualType type = lv.getType(); 1115 1116 // If the destination slot is already zeroed out before the aggregate is 1117 // copied into it, we don't have to emit any zeros here. 1118 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1119 return; 1120 1121 if (CGF.hasScalarEvaluationKind(type)) { 1122 // For non-aggregates, we can store the appropriate null constant. 1123 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1124 // Note that the following is not equivalent to 1125 // EmitStoreThroughBitfieldLValue for ARC types. 1126 if (lv.isBitField()) { 1127 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1128 } else { 1129 assert(lv.isSimple()); 1130 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1131 } 1132 } else { 1133 // There's a potential optimization opportunity in combining 1134 // memsets; that would be easy for arrays, but relatively 1135 // difficult for structures with the current code. 1136 CGF.EmitNullInitialization(lv.getAddress(), lv.getType()); 1137 } 1138} 1139 1140void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1141#if 0 1142 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1143 // (Length of globals? Chunks of zeroed-out space?). 1144 // 1145 // If we can, prefer a copy from a global; this is a lot less code for long 1146 // globals, and it's easier for the current optimizers to analyze. 1147 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1148 llvm::GlobalVariable* GV = 1149 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1150 llvm::GlobalValue::InternalLinkage, C, ""); 1151 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1152 return; 1153 } 1154#endif 1155 if (E->hadArrayRangeDesignator()) 1156 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1157 1158 if (E->initializesStdInitializerList()) { 1159 EmitStdInitializerList(Dest.getAddr(), E); 1160 return; 1161 } 1162 1163 AggValueSlot Dest = EnsureSlot(E->getType()); 1164 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(), 1165 Dest.getAlignment()); 1166 1167 // Handle initialization of an array. 1168 if (E->getType()->isArrayType()) { 1169 if (E->isStringLiteralInit()) 1170 return Visit(E->getInit(0)); 1171 1172 QualType elementType = 1173 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1174 1175 llvm::PointerType *APType = 1176 cast<llvm::PointerType>(Dest.getAddr()->getType()); 1177 llvm::ArrayType *AType = 1178 cast<llvm::ArrayType>(APType->getElementType()); 1179 1180 EmitArrayInit(Dest.getAddr(), AType, elementType, E); 1181 return; 1182 } 1183 1184 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1185 1186 // Do struct initialization; this code just sets each individual member 1187 // to the approprate value. This makes bitfield support automatic; 1188 // the disadvantage is that the generated code is more difficult for 1189 // the optimizer, especially with bitfields. 1190 unsigned NumInitElements = E->getNumInits(); 1191 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1192 1193 if (record->isUnion()) { 1194 // Only initialize one field of a union. The field itself is 1195 // specified by the initializer list. 1196 if (!E->getInitializedFieldInUnion()) { 1197 // Empty union; we have nothing to do. 1198 1199#ifndef NDEBUG 1200 // Make sure that it's really an empty and not a failure of 1201 // semantic analysis. 1202 for (RecordDecl::field_iterator Field = record->field_begin(), 1203 FieldEnd = record->field_end(); 1204 Field != FieldEnd; ++Field) 1205 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1206#endif 1207 return; 1208 } 1209 1210 // FIXME: volatility 1211 FieldDecl *Field = E->getInitializedFieldInUnion(); 1212 1213 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1214 if (NumInitElements) { 1215 // Store the initializer into the field 1216 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1217 } else { 1218 // Default-initialize to null. 1219 EmitNullInitializationToLValue(FieldLoc); 1220 } 1221 1222 return; 1223 } 1224 1225 // We'll need to enter cleanup scopes in case any of the member 1226 // initializers throw an exception. 1227 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1228 llvm::Instruction *cleanupDominator = 0; 1229 1230 // Here we iterate over the fields; this makes it simpler to both 1231 // default-initialize fields and skip over unnamed fields. 1232 unsigned curInitIndex = 0; 1233 for (RecordDecl::field_iterator field = record->field_begin(), 1234 fieldEnd = record->field_end(); 1235 field != fieldEnd; ++field) { 1236 // We're done once we hit the flexible array member. 1237 if (field->getType()->isIncompleteArrayType()) 1238 break; 1239 1240 // Always skip anonymous bitfields. 1241 if (field->isUnnamedBitfield()) 1242 continue; 1243 1244 // We're done if we reach the end of the explicit initializers, we 1245 // have a zeroed object, and the rest of the fields are 1246 // zero-initializable. 1247 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1248 CGF.getTypes().isZeroInitializable(E->getType())) 1249 break; 1250 1251 1252 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field); 1253 // We never generate write-barries for initialized fields. 1254 LV.setNonGC(true); 1255 1256 if (curInitIndex < NumInitElements) { 1257 // Store the initializer into the field. 1258 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1259 } else { 1260 // We're out of initalizers; default-initialize to null 1261 EmitNullInitializationToLValue(LV); 1262 } 1263 1264 // Push a destructor if necessary. 1265 // FIXME: if we have an array of structures, all explicitly 1266 // initialized, we can end up pushing a linear number of cleanups. 1267 bool pushedCleanup = false; 1268 if (QualType::DestructionKind dtorKind 1269 = field->getType().isDestructedType()) { 1270 assert(LV.isSimple()); 1271 if (CGF.needsEHCleanup(dtorKind)) { 1272 if (!cleanupDominator) 1273 cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder 1274 1275 CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(), 1276 CGF.getDestroyer(dtorKind), false); 1277 cleanups.push_back(CGF.EHStack.stable_begin()); 1278 pushedCleanup = true; 1279 } 1280 } 1281 1282 // If the GEP didn't get used because of a dead zero init or something 1283 // else, clean it up for -O0 builds and general tidiness. 1284 if (!pushedCleanup && LV.isSimple()) 1285 if (llvm::GetElementPtrInst *GEP = 1286 dyn_cast<llvm::GetElementPtrInst>(LV.getAddress())) 1287 if (GEP->use_empty()) 1288 GEP->eraseFromParent(); 1289 } 1290 1291 // Deactivate all the partial cleanups in reverse order, which 1292 // generally means popping them. 1293 for (unsigned i = cleanups.size(); i != 0; --i) 1294 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1295 1296 // Destroy the placeholder if we made one. 1297 if (cleanupDominator) 1298 cleanupDominator->eraseFromParent(); 1299} 1300 1301//===----------------------------------------------------------------------===// 1302// Entry Points into this File 1303//===----------------------------------------------------------------------===// 1304 1305/// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1306/// non-zero bytes that will be stored when outputting the initializer for the 1307/// specified initializer expression. 1308static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1309 E = E->IgnoreParens(); 1310 1311 // 0 and 0.0 won't require any non-zero stores! 1312 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1313 1314 // If this is an initlist expr, sum up the size of sizes of the (present) 1315 // elements. If this is something weird, assume the whole thing is non-zero. 1316 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1317 if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1318 return CGF.getContext().getTypeSizeInChars(E->getType()); 1319 1320 // InitListExprs for structs have to be handled carefully. If there are 1321 // reference members, we need to consider the size of the reference, not the 1322 // referencee. InitListExprs for unions and arrays can't have references. 1323 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1324 if (!RT->isUnionType()) { 1325 RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl(); 1326 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1327 1328 unsigned ILEElement = 0; 1329 for (RecordDecl::field_iterator Field = SD->field_begin(), 1330 FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) { 1331 // We're done once we hit the flexible array member or run out of 1332 // InitListExpr elements. 1333 if (Field->getType()->isIncompleteArrayType() || 1334 ILEElement == ILE->getNumInits()) 1335 break; 1336 if (Field->isUnnamedBitfield()) 1337 continue; 1338 1339 const Expr *E = ILE->getInit(ILEElement++); 1340 1341 // Reference values are always non-null and have the width of a pointer. 1342 if (Field->getType()->isReferenceType()) 1343 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1344 CGF.getContext().getTargetInfo().getPointerWidth(0)); 1345 else 1346 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1347 } 1348 1349 return NumNonZeroBytes; 1350 } 1351 } 1352 1353 1354 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1355 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1356 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1357 return NumNonZeroBytes; 1358} 1359 1360/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1361/// zeros in it, emit a memset and avoid storing the individual zeros. 1362/// 1363static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1364 CodeGenFunction &CGF) { 1365 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1366 // volatile stores. 1367 if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return; 1368 1369 // C++ objects with a user-declared constructor don't need zero'ing. 1370 if (CGF.getLangOpts().CPlusPlus) 1371 if (const RecordType *RT = CGF.getContext() 1372 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1373 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1374 if (RD->hasUserDeclaredConstructor()) 1375 return; 1376 } 1377 1378 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1379 std::pair<CharUnits, CharUnits> TypeInfo = 1380 CGF.getContext().getTypeInfoInChars(E->getType()); 1381 if (TypeInfo.first <= CharUnits::fromQuantity(16)) 1382 return; 1383 1384 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1385 // we prefer to emit memset + individual stores for the rest. 1386 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1387 if (NumNonZeroBytes*4 > TypeInfo.first) 1388 return; 1389 1390 // Okay, it seems like a good idea to use an initial memset, emit the call. 1391 llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity()); 1392 CharUnits Align = TypeInfo.second; 1393 1394 llvm::Value *Loc = Slot.getAddr(); 1395 1396 Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy); 1397 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, 1398 Align.getQuantity(), false); 1399 1400 // Tell the AggExprEmitter that the slot is known zero. 1401 Slot.setZeroed(); 1402} 1403 1404 1405 1406 1407/// EmitAggExpr - Emit the computation of the specified expression of aggregate 1408/// type. The result is computed into DestPtr. Note that if DestPtr is null, 1409/// the value of the aggregate expression is not needed. If VolatileDest is 1410/// true, DestPtr cannot be 0. 1411void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1412 assert(E && hasAggregateEvaluationKind(E->getType()) && 1413 "Invalid aggregate expression to emit"); 1414 assert((Slot.getAddr() != 0 || Slot.isIgnored()) && 1415 "slot has bits but no address"); 1416 1417 // Optimize the slot if possible. 1418 CheckAggExprForMemSetUse(Slot, E, *this); 1419 1420 AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E)); 1421} 1422 1423LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1424 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1425 llvm::Value *Temp = CreateMemTemp(E->getType()); 1426 LValue LV = MakeAddrLValue(Temp, E->getType()); 1427 EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed, 1428 AggValueSlot::DoesNotNeedGCBarriers, 1429 AggValueSlot::IsNotAliased)); 1430 return LV; 1431} 1432 1433void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr, 1434 llvm::Value *SrcPtr, QualType Ty, 1435 bool isVolatile, 1436 CharUnits alignment, 1437 bool isAssignment) { 1438 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 1439 1440 if (getLangOpts().CPlusPlus) { 1441 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1442 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 1443 assert((Record->hasTrivialCopyConstructor() || 1444 Record->hasTrivialCopyAssignment() || 1445 Record->hasTrivialMoveConstructor() || 1446 Record->hasTrivialMoveAssignment()) && 1447 "Trying to aggregate-copy a type without a trivial copy/move " 1448 "constructor or assignment operator"); 1449 // Ignore empty classes in C++. 1450 if (Record->isEmpty()) 1451 return; 1452 } 1453 } 1454 1455 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 1456 // C99 6.5.16.1p3, which states "If the value being stored in an object is 1457 // read from another object that overlaps in anyway the storage of the first 1458 // object, then the overlap shall be exact and the two objects shall have 1459 // qualified or unqualified versions of a compatible type." 1460 // 1461 // memcpy is not defined if the source and destination pointers are exactly 1462 // equal, but other compilers do this optimization, and almost every memcpy 1463 // implementation handles this case safely. If there is a libc that does not 1464 // safely handle this, we can add a target hook. 1465 1466 // Get data size and alignment info for this aggregate. If this is an 1467 // assignment don't copy the tail padding. Otherwise copying it is fine. 1468 std::pair<CharUnits, CharUnits> TypeInfo; 1469 if (isAssignment) 1470 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 1471 else 1472 TypeInfo = getContext().getTypeInfoInChars(Ty); 1473 1474 if (alignment.isZero()) 1475 alignment = TypeInfo.second; 1476 1477 // FIXME: Handle variable sized types. 1478 1479 // FIXME: If we have a volatile struct, the optimizer can remove what might 1480 // appear to be `extra' memory ops: 1481 // 1482 // volatile struct { int i; } a, b; 1483 // 1484 // int main() { 1485 // a = b; 1486 // a = b; 1487 // } 1488 // 1489 // we need to use a different call here. We use isVolatile to indicate when 1490 // either the source or the destination is volatile. 1491 1492 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType()); 1493 llvm::Type *DBP = 1494 llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace()); 1495 DestPtr = Builder.CreateBitCast(DestPtr, DBP); 1496 1497 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType()); 1498 llvm::Type *SBP = 1499 llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace()); 1500 SrcPtr = Builder.CreateBitCast(SrcPtr, SBP); 1501 1502 // Don't do any of the memmove_collectable tests if GC isn't set. 1503 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 1504 // fall through 1505 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1506 RecordDecl *Record = RecordTy->getDecl(); 1507 if (Record->hasObjectMember()) { 1508 CharUnits size = TypeInfo.first; 1509 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1510 llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1511 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1512 SizeVal); 1513 return; 1514 } 1515 } else if (Ty->isArrayType()) { 1516 QualType BaseType = getContext().getBaseElementType(Ty); 1517 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 1518 if (RecordTy->getDecl()->hasObjectMember()) { 1519 CharUnits size = TypeInfo.first; 1520 llvm::Type *SizeTy = ConvertType(getContext().getSizeType()); 1521 llvm::Value *SizeVal = 1522 llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1523 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 1524 SizeVal); 1525 return; 1526 } 1527 } 1528 } 1529 1530 // Determine the metadata to describe the position of any padding in this 1531 // memcpy, as well as the TBAA tags for the members of the struct, in case 1532 // the optimizer wishes to expand it in to scalar memory operations. 1533 llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty); 1534 1535 Builder.CreateMemCpy(DestPtr, SrcPtr, 1536 llvm::ConstantInt::get(IntPtrTy, 1537 TypeInfo.first.getQuantity()), 1538 alignment.getQuantity(), isVolatile, 1539 /*TBAATag=*/0, TBAAStructTag); 1540} 1541 1542void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc, 1543 const Expr *init) { 1544 const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init); 1545 if (cleanups) 1546 init = cleanups->getSubExpr(); 1547 1548 if (isa<InitListExpr>(init) && 1549 cast<InitListExpr>(init)->initializesStdInitializerList()) { 1550 // We initialized this std::initializer_list with an initializer list. 1551 // A backing array was created. Push a cleanup for it. 1552 EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init)); 1553 } 1554} 1555 1556static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF, 1557 llvm::Value *arrayStart, 1558 const InitListExpr *init) { 1559 // Check if there are any recursive cleanups to do, i.e. if we have 1560 // std::initializer_list<std::initializer_list<obj>> list = {{obj()}}; 1561 // then we need to destroy the inner array as well. 1562 for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) { 1563 const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i)); 1564 if (!subInit || !subInit->initializesStdInitializerList()) 1565 continue; 1566 1567 // This one needs to be destroyed. Get the address of the std::init_list. 1568 llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i); 1569 llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset, 1570 "std.initlist"); 1571 CGF.EmitStdInitializerListCleanup(loc, subInit); 1572 } 1573} 1574 1575void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc, 1576 const InitListExpr *init) { 1577 ASTContext &ctx = getContext(); 1578 QualType element = GetStdInitializerListElementType(init->getType()); 1579 unsigned numInits = init->getNumInits(); 1580 llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits); 1581 QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0); 1582 QualType arrayPtr = ctx.getPointerType(array); 1583 llvm::Type *arrayPtrType = ConvertType(arrayPtr); 1584 1585 // lvalue is the location of a std::initializer_list, which as its first 1586 // element has a pointer to the array we want to destroy. 1587 llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer"); 1588 llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress"); 1589 1590 ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init); 1591 1592 llvm::Value *arrayAddress = 1593 Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress"); 1594 ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init); 1595} 1596