1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                          ASTContext &Context) {
37  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38    return 0;
39
40  // See if this is a string literal or @encode.
41  Init = Init->IgnoreParens();
42
43  // Handle @encode, which is a narrow string.
44  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45    return Init;
46
47  // Otherwise we can only handle string literals.
48  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49  if (SL == 0) return 0;
50
51  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52
53  switch (SL->getKind()) {
54  case StringLiteral::Ascii:
55  case StringLiteral::UTF8:
56    // char array can be initialized with a narrow string.
57    // Only allow char x[] = "foo";  not char x[] = L"foo";
58    return ElemTy->isCharType() ? Init : 0;
59  case StringLiteral::UTF16:
60    return ElemTy->isChar16Type() ? Init : 0;
61  case StringLiteral::UTF32:
62    return ElemTy->isChar32Type() ? Init : 0;
63  case StringLiteral::Wide:
64    // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65    // correction from DR343): "An array with element type compatible with a
66    // qualified or unqualified version of wchar_t may be initialized by a wide
67    // string literal, optionally enclosed in braces."
68    if (Context.typesAreCompatible(Context.getWCharType(),
69                                   ElemTy.getUnqualifiedType()))
70      return Init;
71
72    return 0;
73  }
74
75  llvm_unreachable("missed a StringLiteral kind?");
76}
77
78static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79  const ArrayType *arrayType = Context.getAsArrayType(declType);
80  if (!arrayType) return 0;
81
82  return IsStringInit(init, arrayType, Context);
83}
84
85static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                            Sema &S) {
87  // Get the length of the string as parsed.
88  uint64_t StrLength =
89    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90
91
92  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93    // C99 6.7.8p14. We have an array of character type with unknown size
94    // being initialized to a string literal.
95    llvm::APInt ConstVal(32, StrLength);
96    // Return a new array type (C99 6.7.8p22).
97    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98                                           ConstVal,
99                                           ArrayType::Normal, 0);
100    return;
101  }
102
103  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104
105  // We have an array of character type with known size.  However,
106  // the size may be smaller or larger than the string we are initializing.
107  // FIXME: Avoid truncation for 64-bit length strings.
108  if (S.getLangOpts().CPlusPlus) {
109    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
110      // For Pascal strings it's OK to strip off the terminating null character,
111      // so the example below is valid:
112      //
113      // unsigned char a[2] = "\pa";
114      if (SL->isPascal())
115        StrLength--;
116    }
117
118    // [dcl.init.string]p2
119    if (StrLength > CAT->getSize().getZExtValue())
120      S.Diag(Str->getLocStart(),
121             diag::err_initializer_string_for_char_array_too_long)
122        << Str->getSourceRange();
123  } else {
124    // C99 6.7.8p14.
125    if (StrLength-1 > CAT->getSize().getZExtValue())
126      S.Diag(Str->getLocStart(),
127             diag::warn_initializer_string_for_char_array_too_long)
128        << Str->getSourceRange();
129  }
130
131  // Set the type to the actual size that we are initializing.  If we have
132  // something like:
133  //   char x[1] = "foo";
134  // then this will set the string literal's type to char[1].
135  Str->setType(DeclT);
136}
137
138//===----------------------------------------------------------------------===//
139// Semantic checking for initializer lists.
140//===----------------------------------------------------------------------===//
141
142/// @brief Semantic checking for initializer lists.
143///
144/// The InitListChecker class contains a set of routines that each
145/// handle the initialization of a certain kind of entity, e.g.,
146/// arrays, vectors, struct/union types, scalars, etc. The
147/// InitListChecker itself performs a recursive walk of the subobject
148/// structure of the type to be initialized, while stepping through
149/// the initializer list one element at a time. The IList and Index
150/// parameters to each of the Check* routines contain the active
151/// (syntactic) initializer list and the index into that initializer
152/// list that represents the current initializer. Each routine is
153/// responsible for moving that Index forward as it consumes elements.
154///
155/// Each Check* routine also has a StructuredList/StructuredIndex
156/// arguments, which contains the current "structured" (semantic)
157/// initializer list and the index into that initializer list where we
158/// are copying initializers as we map them over to the semantic
159/// list. Once we have completed our recursive walk of the subobject
160/// structure, we will have constructed a full semantic initializer
161/// list.
162///
163/// C99 designators cause changes in the initializer list traversal,
164/// because they make the initialization "jump" into a specific
165/// subobject and then continue the initialization from that
166/// point. CheckDesignatedInitializer() recursively steps into the
167/// designated subobject and manages backing out the recursion to
168/// initialize the subobjects after the one designated.
169namespace {
170class InitListChecker {
171  Sema &SemaRef;
172  bool hadError;
173  bool VerifyOnly; // no diagnostics, no structure building
174  bool AllowBraceElision;
175  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
176  InitListExpr *FullyStructuredList;
177
178  void CheckImplicitInitList(const InitializedEntity &Entity,
179                             InitListExpr *ParentIList, QualType T,
180                             unsigned &Index, InitListExpr *StructuredList,
181                             unsigned &StructuredIndex);
182  void CheckExplicitInitList(const InitializedEntity &Entity,
183                             InitListExpr *IList, QualType &T,
184                             unsigned &Index, InitListExpr *StructuredList,
185                             unsigned &StructuredIndex,
186                             bool TopLevelObject = false);
187  void CheckListElementTypes(const InitializedEntity &Entity,
188                             InitListExpr *IList, QualType &DeclType,
189                             bool SubobjectIsDesignatorContext,
190                             unsigned &Index,
191                             InitListExpr *StructuredList,
192                             unsigned &StructuredIndex,
193                             bool TopLevelObject = false);
194  void CheckSubElementType(const InitializedEntity &Entity,
195                           InitListExpr *IList, QualType ElemType,
196                           unsigned &Index,
197                           InitListExpr *StructuredList,
198                           unsigned &StructuredIndex);
199  void CheckComplexType(const InitializedEntity &Entity,
200                        InitListExpr *IList, QualType DeclType,
201                        unsigned &Index,
202                        InitListExpr *StructuredList,
203                        unsigned &StructuredIndex);
204  void CheckScalarType(const InitializedEntity &Entity,
205                       InitListExpr *IList, QualType DeclType,
206                       unsigned &Index,
207                       InitListExpr *StructuredList,
208                       unsigned &StructuredIndex);
209  void CheckReferenceType(const InitializedEntity &Entity,
210                          InitListExpr *IList, QualType DeclType,
211                          unsigned &Index,
212                          InitListExpr *StructuredList,
213                          unsigned &StructuredIndex);
214  void CheckVectorType(const InitializedEntity &Entity,
215                       InitListExpr *IList, QualType DeclType, unsigned &Index,
216                       InitListExpr *StructuredList,
217                       unsigned &StructuredIndex);
218  void CheckStructUnionTypes(const InitializedEntity &Entity,
219                             InitListExpr *IList, QualType DeclType,
220                             RecordDecl::field_iterator Field,
221                             bool SubobjectIsDesignatorContext, unsigned &Index,
222                             InitListExpr *StructuredList,
223                             unsigned &StructuredIndex,
224                             bool TopLevelObject = false);
225  void CheckArrayType(const InitializedEntity &Entity,
226                      InitListExpr *IList, QualType &DeclType,
227                      llvm::APSInt elementIndex,
228                      bool SubobjectIsDesignatorContext, unsigned &Index,
229                      InitListExpr *StructuredList,
230                      unsigned &StructuredIndex);
231  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
232                                  InitListExpr *IList, DesignatedInitExpr *DIE,
233                                  unsigned DesigIdx,
234                                  QualType &CurrentObjectType,
235                                  RecordDecl::field_iterator *NextField,
236                                  llvm::APSInt *NextElementIndex,
237                                  unsigned &Index,
238                                  InitListExpr *StructuredList,
239                                  unsigned &StructuredIndex,
240                                  bool FinishSubobjectInit,
241                                  bool TopLevelObject);
242  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
243                                           QualType CurrentObjectType,
244                                           InitListExpr *StructuredList,
245                                           unsigned StructuredIndex,
246                                           SourceRange InitRange);
247  void UpdateStructuredListElement(InitListExpr *StructuredList,
248                                   unsigned &StructuredIndex,
249                                   Expr *expr);
250  int numArrayElements(QualType DeclType);
251  int numStructUnionElements(QualType DeclType);
252
253  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
254                               const InitializedEntity &ParentEntity,
255                               InitListExpr *ILE, bool &RequiresSecondPass);
256  void FillInValueInitializations(const InitializedEntity &Entity,
257                                  InitListExpr *ILE, bool &RequiresSecondPass);
258  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
259                              Expr *InitExpr, FieldDecl *Field,
260                              bool TopLevelObject);
261  void CheckValueInitializable(const InitializedEntity &Entity);
262
263public:
264  InitListChecker(Sema &S, const InitializedEntity &Entity,
265                  InitListExpr *IL, QualType &T, bool VerifyOnly,
266                  bool AllowBraceElision);
267  bool HadError() { return hadError; }
268
269  // @brief Retrieves the fully-structured initializer list used for
270  // semantic analysis and code generation.
271  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
272};
273} // end anonymous namespace
274
275void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
276  assert(VerifyOnly &&
277         "CheckValueInitializable is only inteded for verification mode.");
278
279  SourceLocation Loc;
280  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
281                                                            true);
282  InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
283  if (InitSeq.Failed())
284    hadError = true;
285}
286
287void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288                                        const InitializedEntity &ParentEntity,
289                                              InitListExpr *ILE,
290                                              bool &RequiresSecondPass) {
291  SourceLocation Loc = ILE->getLocStart();
292  unsigned NumInits = ILE->getNumInits();
293  InitializedEntity MemberEntity
294    = InitializedEntity::InitializeMember(Field, &ParentEntity);
295  if (Init >= NumInits || !ILE->getInit(Init)) {
296    // FIXME: We probably don't need to handle references
297    // specially here, since value-initialization of references is
298    // handled in InitializationSequence.
299    if (Field->getType()->isReferenceType()) {
300      // C++ [dcl.init.aggr]p9:
301      //   If an incomplete or empty initializer-list leaves a
302      //   member of reference type uninitialized, the program is
303      //   ill-formed.
304      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305        << Field->getType()
306        << ILE->getSyntacticForm()->getSourceRange();
307      SemaRef.Diag(Field->getLocation(),
308                   diag::note_uninit_reference_member);
309      hadError = true;
310      return;
311    }
312
313    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314                                                              true);
315    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316    if (!InitSeq) {
317      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318      hadError = true;
319      return;
320    }
321
322    ExprResult MemberInit
323      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
324    if (MemberInit.isInvalid()) {
325      hadError = true;
326      return;
327    }
328
329    if (hadError) {
330      // Do nothing
331    } else if (Init < NumInits) {
332      ILE->setInit(Init, MemberInit.takeAs<Expr>());
333    } else if (InitSeq.isConstructorInitialization()) {
334      // Value-initialization requires a constructor call, so
335      // extend the initializer list to include the constructor
336      // call and make a note that we'll need to take another pass
337      // through the initializer list.
338      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
339      RequiresSecondPass = true;
340    }
341  } else if (InitListExpr *InnerILE
342               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
343    FillInValueInitializations(MemberEntity, InnerILE,
344                               RequiresSecondPass);
345}
346
347/// Recursively replaces NULL values within the given initializer list
348/// with expressions that perform value-initialization of the
349/// appropriate type.
350void
351InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
352                                            InitListExpr *ILE,
353                                            bool &RequiresSecondPass) {
354  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
355         "Should not have void type");
356  SourceLocation Loc = ILE->getLocStart();
357  if (ILE->getSyntacticForm())
358    Loc = ILE->getSyntacticForm()->getLocStart();
359
360  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
361    if (RType->getDecl()->isUnion() &&
362        ILE->getInitializedFieldInUnion())
363      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
364                              Entity, ILE, RequiresSecondPass);
365    else {
366      unsigned Init = 0;
367      for (RecordDecl::field_iterator
368             Field = RType->getDecl()->field_begin(),
369             FieldEnd = RType->getDecl()->field_end();
370           Field != FieldEnd; ++Field) {
371        if (Field->isUnnamedBitfield())
372          continue;
373
374        if (hadError)
375          return;
376
377        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
378        if (hadError)
379          return;
380
381        ++Init;
382
383        // Only look at the first initialization of a union.
384        if (RType->getDecl()->isUnion())
385          break;
386      }
387    }
388
389    return;
390  }
391
392  QualType ElementType;
393
394  InitializedEntity ElementEntity = Entity;
395  unsigned NumInits = ILE->getNumInits();
396  unsigned NumElements = NumInits;
397  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
398    ElementType = AType->getElementType();
399    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
400      NumElements = CAType->getSize().getZExtValue();
401    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
402                                                         0, Entity);
403  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
404    ElementType = VType->getElementType();
405    NumElements = VType->getNumElements();
406    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
407                                                         0, Entity);
408  } else
409    ElementType = ILE->getType();
410
411
412  for (unsigned Init = 0; Init != NumElements; ++Init) {
413    if (hadError)
414      return;
415
416    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
417        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
418      ElementEntity.setElementIndex(Init);
419
420    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
421    if (!InitExpr && !ILE->hasArrayFiller()) {
422      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
423                                                                true);
424      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
425      if (!InitSeq) {
426        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
427        hadError = true;
428        return;
429      }
430
431      ExprResult ElementInit
432        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
433      if (ElementInit.isInvalid()) {
434        hadError = true;
435        return;
436      }
437
438      if (hadError) {
439        // Do nothing
440      } else if (Init < NumInits) {
441        // For arrays, just set the expression used for value-initialization
442        // of the "holes" in the array.
443        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
444          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
445        else
446          ILE->setInit(Init, ElementInit.takeAs<Expr>());
447      } else {
448        // For arrays, just set the expression used for value-initialization
449        // of the rest of elements and exit.
450        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
451          ILE->setArrayFiller(ElementInit.takeAs<Expr>());
452          return;
453        }
454
455        if (InitSeq.isConstructorInitialization()) {
456          // Value-initialization requires a constructor call, so
457          // extend the initializer list to include the constructor
458          // call and make a note that we'll need to take another pass
459          // through the initializer list.
460          ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
461          RequiresSecondPass = true;
462        }
463      }
464    } else if (InitListExpr *InnerILE
465                 = dyn_cast_or_null<InitListExpr>(InitExpr))
466      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
467  }
468}
469
470
471InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
472                                 InitListExpr *IL, QualType &T,
473                                 bool VerifyOnly, bool AllowBraceElision)
474  : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
475  hadError = false;
476
477  unsigned newIndex = 0;
478  unsigned newStructuredIndex = 0;
479  FullyStructuredList
480    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
481  CheckExplicitInitList(Entity, IL, T, newIndex,
482                        FullyStructuredList, newStructuredIndex,
483                        /*TopLevelObject=*/true);
484
485  if (!hadError && !VerifyOnly) {
486    bool RequiresSecondPass = false;
487    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
488    if (RequiresSecondPass && !hadError)
489      FillInValueInitializations(Entity, FullyStructuredList,
490                                 RequiresSecondPass);
491  }
492}
493
494int InitListChecker::numArrayElements(QualType DeclType) {
495  // FIXME: use a proper constant
496  int maxElements = 0x7FFFFFFF;
497  if (const ConstantArrayType *CAT =
498        SemaRef.Context.getAsConstantArrayType(DeclType)) {
499    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
500  }
501  return maxElements;
502}
503
504int InitListChecker::numStructUnionElements(QualType DeclType) {
505  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
506  int InitializableMembers = 0;
507  for (RecordDecl::field_iterator
508         Field = structDecl->field_begin(),
509         FieldEnd = structDecl->field_end();
510       Field != FieldEnd; ++Field) {
511    if (!Field->isUnnamedBitfield())
512      ++InitializableMembers;
513  }
514  if (structDecl->isUnion())
515    return std::min(InitializableMembers, 1);
516  return InitializableMembers - structDecl->hasFlexibleArrayMember();
517}
518
519void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
520                                            InitListExpr *ParentIList,
521                                            QualType T, unsigned &Index,
522                                            InitListExpr *StructuredList,
523                                            unsigned &StructuredIndex) {
524  int maxElements = 0;
525
526  if (T->isArrayType())
527    maxElements = numArrayElements(T);
528  else if (T->isRecordType())
529    maxElements = numStructUnionElements(T);
530  else if (T->isVectorType())
531    maxElements = T->getAs<VectorType>()->getNumElements();
532  else
533    llvm_unreachable("CheckImplicitInitList(): Illegal type");
534
535  if (maxElements == 0) {
536    if (!VerifyOnly)
537      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
538                   diag::err_implicit_empty_initializer);
539    ++Index;
540    hadError = true;
541    return;
542  }
543
544  // Build a structured initializer list corresponding to this subobject.
545  InitListExpr *StructuredSubobjectInitList
546    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
547                                 StructuredIndex,
548          SourceRange(ParentIList->getInit(Index)->getLocStart(),
549                      ParentIList->getSourceRange().getEnd()));
550  unsigned StructuredSubobjectInitIndex = 0;
551
552  // Check the element types and build the structural subobject.
553  unsigned StartIndex = Index;
554  CheckListElementTypes(Entity, ParentIList, T,
555                        /*SubobjectIsDesignatorContext=*/false, Index,
556                        StructuredSubobjectInitList,
557                        StructuredSubobjectInitIndex);
558
559  if (VerifyOnly) {
560    if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
561      hadError = true;
562  } else {
563    StructuredSubobjectInitList->setType(T);
564
565    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
566    // Update the structured sub-object initializer so that it's ending
567    // range corresponds with the end of the last initializer it used.
568    if (EndIndex < ParentIList->getNumInits()) {
569      SourceLocation EndLoc
570        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
571      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
572    }
573
574    // Complain about missing braces.
575    if (T->isArrayType() || T->isRecordType()) {
576      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
577                    AllowBraceElision ? diag::warn_missing_braces :
578                                        diag::err_missing_braces)
579        << StructuredSubobjectInitList->getSourceRange()
580        << FixItHint::CreateInsertion(
581              StructuredSubobjectInitList->getLocStart(), "{")
582        << FixItHint::CreateInsertion(
583              SemaRef.PP.getLocForEndOfToken(
584                                      StructuredSubobjectInitList->getLocEnd()),
585              "}");
586      if (!AllowBraceElision)
587        hadError = true;
588    }
589  }
590}
591
592void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
593                                            InitListExpr *IList, QualType &T,
594                                            unsigned &Index,
595                                            InitListExpr *StructuredList,
596                                            unsigned &StructuredIndex,
597                                            bool TopLevelObject) {
598  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
599  if (!VerifyOnly) {
600    SyntacticToSemantic[IList] = StructuredList;
601    StructuredList->setSyntacticForm(IList);
602  }
603  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
604                        Index, StructuredList, StructuredIndex, TopLevelObject);
605  if (!VerifyOnly) {
606    QualType ExprTy = T;
607    if (!ExprTy->isArrayType())
608      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
609    IList->setType(ExprTy);
610    StructuredList->setType(ExprTy);
611  }
612  if (hadError)
613    return;
614
615  if (Index < IList->getNumInits()) {
616    // We have leftover initializers
617    if (VerifyOnly) {
618      if (SemaRef.getLangOpts().CPlusPlus ||
619          (SemaRef.getLangOpts().OpenCL &&
620           IList->getType()->isVectorType())) {
621        hadError = true;
622      }
623      return;
624    }
625
626    if (StructuredIndex == 1 &&
627        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
628      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
629      if (SemaRef.getLangOpts().CPlusPlus) {
630        DK = diag::err_excess_initializers_in_char_array_initializer;
631        hadError = true;
632      }
633      // Special-case
634      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
635        << IList->getInit(Index)->getSourceRange();
636    } else if (!T->isIncompleteType()) {
637      // Don't complain for incomplete types, since we'll get an error
638      // elsewhere
639      QualType CurrentObjectType = StructuredList->getType();
640      int initKind =
641        CurrentObjectType->isArrayType()? 0 :
642        CurrentObjectType->isVectorType()? 1 :
643        CurrentObjectType->isScalarType()? 2 :
644        CurrentObjectType->isUnionType()? 3 :
645        4;
646
647      unsigned DK = diag::warn_excess_initializers;
648      if (SemaRef.getLangOpts().CPlusPlus) {
649        DK = diag::err_excess_initializers;
650        hadError = true;
651      }
652      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
653        DK = diag::err_excess_initializers;
654        hadError = true;
655      }
656
657      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
658        << initKind << IList->getInit(Index)->getSourceRange();
659    }
660  }
661
662  if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
663      !TopLevelObject)
664    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
665      << IList->getSourceRange()
666      << FixItHint::CreateRemoval(IList->getLocStart())
667      << FixItHint::CreateRemoval(IList->getLocEnd());
668}
669
670void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
671                                            InitListExpr *IList,
672                                            QualType &DeclType,
673                                            bool SubobjectIsDesignatorContext,
674                                            unsigned &Index,
675                                            InitListExpr *StructuredList,
676                                            unsigned &StructuredIndex,
677                                            bool TopLevelObject) {
678  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
679    // Explicitly braced initializer for complex type can be real+imaginary
680    // parts.
681    CheckComplexType(Entity, IList, DeclType, Index,
682                     StructuredList, StructuredIndex);
683  } else if (DeclType->isScalarType()) {
684    CheckScalarType(Entity, IList, DeclType, Index,
685                    StructuredList, StructuredIndex);
686  } else if (DeclType->isVectorType()) {
687    CheckVectorType(Entity, IList, DeclType, Index,
688                    StructuredList, StructuredIndex);
689  } else if (DeclType->isRecordType()) {
690    assert(DeclType->isAggregateType() &&
691           "non-aggregate records should be handed in CheckSubElementType");
692    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694                          SubobjectIsDesignatorContext, Index,
695                          StructuredList, StructuredIndex,
696                          TopLevelObject);
697  } else if (DeclType->isArrayType()) {
698    llvm::APSInt Zero(
699                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700                    false);
701    CheckArrayType(Entity, IList, DeclType, Zero,
702                   SubobjectIsDesignatorContext, Index,
703                   StructuredList, StructuredIndex);
704  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
705    // This type is invalid, issue a diagnostic.
706    ++Index;
707    if (!VerifyOnly)
708      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
709        << DeclType;
710    hadError = true;
711  } else if (DeclType->isReferenceType()) {
712    CheckReferenceType(Entity, IList, DeclType, Index,
713                       StructuredList, StructuredIndex);
714  } else if (DeclType->isObjCObjectType()) {
715    if (!VerifyOnly)
716      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
717        << DeclType;
718    hadError = true;
719  } else {
720    if (!VerifyOnly)
721      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
722        << DeclType;
723    hadError = true;
724  }
725}
726
727void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
728                                          InitListExpr *IList,
729                                          QualType ElemType,
730                                          unsigned &Index,
731                                          InitListExpr *StructuredList,
732                                          unsigned &StructuredIndex) {
733  Expr *expr = IList->getInit(Index);
734  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
735    if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
736      unsigned newIndex = 0;
737      unsigned newStructuredIndex = 0;
738      InitListExpr *newStructuredList
739        = getStructuredSubobjectInit(IList, Index, ElemType,
740                                     StructuredList, StructuredIndex,
741                                     SubInitList->getSourceRange());
742      CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
743                            newStructuredList, newStructuredIndex);
744      ++StructuredIndex;
745      ++Index;
746      return;
747    }
748    assert(SemaRef.getLangOpts().CPlusPlus &&
749           "non-aggregate records are only possible in C++");
750    // C++ initialization is handled later.
751  }
752
753  if (ElemType->isScalarType()) {
754    return CheckScalarType(Entity, IList, ElemType, Index,
755                           StructuredList, StructuredIndex);
756  } else if (ElemType->isReferenceType()) {
757    return CheckReferenceType(Entity, IList, ElemType, Index,
758                              StructuredList, StructuredIndex);
759  }
760
761  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
762    // arrayType can be incomplete if we're initializing a flexible
763    // array member.  There's nothing we can do with the completed
764    // type here, though.
765
766    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
767      if (!VerifyOnly) {
768        CheckStringInit(Str, ElemType, arrayType, SemaRef);
769        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
770      }
771      ++Index;
772      return;
773    }
774
775    // Fall through for subaggregate initialization.
776
777  } else if (SemaRef.getLangOpts().CPlusPlus) {
778    // C++ [dcl.init.aggr]p12:
779    //   All implicit type conversions (clause 4) are considered when
780    //   initializing the aggregate member with an initializer from
781    //   an initializer-list. If the initializer can initialize a
782    //   member, the member is initialized. [...]
783
784    // FIXME: Better EqualLoc?
785    InitializationKind Kind =
786      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
787    InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
788
789    if (Seq) {
790      if (!VerifyOnly) {
791        ExprResult Result =
792          Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
793        if (Result.isInvalid())
794          hadError = true;
795
796        UpdateStructuredListElement(StructuredList, StructuredIndex,
797                                    Result.takeAs<Expr>());
798      }
799      ++Index;
800      return;
801    }
802
803    // Fall through for subaggregate initialization
804  } else {
805    // C99 6.7.8p13:
806    //
807    //   The initializer for a structure or union object that has
808    //   automatic storage duration shall be either an initializer
809    //   list as described below, or a single expression that has
810    //   compatible structure or union type. In the latter case, the
811    //   initial value of the object, including unnamed members, is
812    //   that of the expression.
813    ExprResult ExprRes = SemaRef.Owned(expr);
814    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
815        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
816                                                 !VerifyOnly)
817          == Sema::Compatible) {
818      if (ExprRes.isInvalid())
819        hadError = true;
820      else {
821        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
822	      if (ExprRes.isInvalid())
823	        hadError = true;
824      }
825      UpdateStructuredListElement(StructuredList, StructuredIndex,
826                                  ExprRes.takeAs<Expr>());
827      ++Index;
828      return;
829    }
830    ExprRes.release();
831    // Fall through for subaggregate initialization
832  }
833
834  // C++ [dcl.init.aggr]p12:
835  //
836  //   [...] Otherwise, if the member is itself a non-empty
837  //   subaggregate, brace elision is assumed and the initializer is
838  //   considered for the initialization of the first member of
839  //   the subaggregate.
840  if (!SemaRef.getLangOpts().OpenCL &&
841      (ElemType->isAggregateType() || ElemType->isVectorType())) {
842    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
843                          StructuredIndex);
844    ++StructuredIndex;
845  } else {
846    if (!VerifyOnly) {
847      // We cannot initialize this element, so let
848      // PerformCopyInitialization produce the appropriate diagnostic.
849      SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
850                                        SemaRef.Owned(expr),
851                                        /*TopLevelOfInitList=*/true);
852    }
853    hadError = true;
854    ++Index;
855    ++StructuredIndex;
856  }
857}
858
859void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
860                                       InitListExpr *IList, QualType DeclType,
861                                       unsigned &Index,
862                                       InitListExpr *StructuredList,
863                                       unsigned &StructuredIndex) {
864  assert(Index == 0 && "Index in explicit init list must be zero");
865
866  // As an extension, clang supports complex initializers, which initialize
867  // a complex number component-wise.  When an explicit initializer list for
868  // a complex number contains two two initializers, this extension kicks in:
869  // it exepcts the initializer list to contain two elements convertible to
870  // the element type of the complex type. The first element initializes
871  // the real part, and the second element intitializes the imaginary part.
872
873  if (IList->getNumInits() != 2)
874    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
875                           StructuredIndex);
876
877  // This is an extension in C.  (The builtin _Complex type does not exist
878  // in the C++ standard.)
879  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
880    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
881      << IList->getSourceRange();
882
883  // Initialize the complex number.
884  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
885  InitializedEntity ElementEntity =
886    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
887
888  for (unsigned i = 0; i < 2; ++i) {
889    ElementEntity.setElementIndex(Index);
890    CheckSubElementType(ElementEntity, IList, elementType, Index,
891                        StructuredList, StructuredIndex);
892  }
893}
894
895
896void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
897                                      InitListExpr *IList, QualType DeclType,
898                                      unsigned &Index,
899                                      InitListExpr *StructuredList,
900                                      unsigned &StructuredIndex) {
901  if (Index >= IList->getNumInits()) {
902    if (!VerifyOnly)
903      SemaRef.Diag(IList->getLocStart(),
904                   SemaRef.getLangOpts().CPlusPlus11 ?
905                     diag::warn_cxx98_compat_empty_scalar_initializer :
906                     diag::err_empty_scalar_initializer)
907        << IList->getSourceRange();
908    hadError = !SemaRef.getLangOpts().CPlusPlus11;
909    ++Index;
910    ++StructuredIndex;
911    return;
912  }
913
914  Expr *expr = IList->getInit(Index);
915  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
916    if (!VerifyOnly)
917      SemaRef.Diag(SubIList->getLocStart(),
918                   diag::warn_many_braces_around_scalar_init)
919        << SubIList->getSourceRange();
920
921    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
922                    StructuredIndex);
923    return;
924  } else if (isa<DesignatedInitExpr>(expr)) {
925    if (!VerifyOnly)
926      SemaRef.Diag(expr->getLocStart(),
927                   diag::err_designator_for_scalar_init)
928        << DeclType << expr->getSourceRange();
929    hadError = true;
930    ++Index;
931    ++StructuredIndex;
932    return;
933  }
934
935  if (VerifyOnly) {
936    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
937      hadError = true;
938    ++Index;
939    return;
940  }
941
942  ExprResult Result =
943    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
944                                      SemaRef.Owned(expr),
945                                      /*TopLevelOfInitList=*/true);
946
947  Expr *ResultExpr = 0;
948
949  if (Result.isInvalid())
950    hadError = true; // types weren't compatible.
951  else {
952    ResultExpr = Result.takeAs<Expr>();
953
954    if (ResultExpr != expr) {
955      // The type was promoted, update initializer list.
956      IList->setInit(Index, ResultExpr);
957    }
958  }
959  if (hadError)
960    ++StructuredIndex;
961  else
962    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
963  ++Index;
964}
965
966void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
967                                         InitListExpr *IList, QualType DeclType,
968                                         unsigned &Index,
969                                         InitListExpr *StructuredList,
970                                         unsigned &StructuredIndex) {
971  if (Index >= IList->getNumInits()) {
972    // FIXME: It would be wonderful if we could point at the actual member. In
973    // general, it would be useful to pass location information down the stack,
974    // so that we know the location (or decl) of the "current object" being
975    // initialized.
976    if (!VerifyOnly)
977      SemaRef.Diag(IList->getLocStart(),
978                    diag::err_init_reference_member_uninitialized)
979        << DeclType
980        << IList->getSourceRange();
981    hadError = true;
982    ++Index;
983    ++StructuredIndex;
984    return;
985  }
986
987  Expr *expr = IList->getInit(Index);
988  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
989    if (!VerifyOnly)
990      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
991        << DeclType << IList->getSourceRange();
992    hadError = true;
993    ++Index;
994    ++StructuredIndex;
995    return;
996  }
997
998  if (VerifyOnly) {
999    if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1000      hadError = true;
1001    ++Index;
1002    return;
1003  }
1004
1005  ExprResult Result =
1006    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1007                                      SemaRef.Owned(expr),
1008                                      /*TopLevelOfInitList=*/true);
1009
1010  if (Result.isInvalid())
1011    hadError = true;
1012
1013  expr = Result.takeAs<Expr>();
1014  IList->setInit(Index, expr);
1015
1016  if (hadError)
1017    ++StructuredIndex;
1018  else
1019    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1020  ++Index;
1021}
1022
1023void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1024                                      InitListExpr *IList, QualType DeclType,
1025                                      unsigned &Index,
1026                                      InitListExpr *StructuredList,
1027                                      unsigned &StructuredIndex) {
1028  const VectorType *VT = DeclType->getAs<VectorType>();
1029  unsigned maxElements = VT->getNumElements();
1030  unsigned numEltsInit = 0;
1031  QualType elementType = VT->getElementType();
1032
1033  if (Index >= IList->getNumInits()) {
1034    // Make sure the element type can be value-initialized.
1035    if (VerifyOnly)
1036      CheckValueInitializable(
1037          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1038    return;
1039  }
1040
1041  if (!SemaRef.getLangOpts().OpenCL) {
1042    // If the initializing element is a vector, try to copy-initialize
1043    // instead of breaking it apart (which is doomed to failure anyway).
1044    Expr *Init = IList->getInit(Index);
1045    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1046      if (VerifyOnly) {
1047        if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1048          hadError = true;
1049        ++Index;
1050        return;
1051      }
1052
1053      ExprResult Result =
1054        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1055                                          SemaRef.Owned(Init),
1056                                          /*TopLevelOfInitList=*/true);
1057
1058      Expr *ResultExpr = 0;
1059      if (Result.isInvalid())
1060        hadError = true; // types weren't compatible.
1061      else {
1062        ResultExpr = Result.takeAs<Expr>();
1063
1064        if (ResultExpr != Init) {
1065          // The type was promoted, update initializer list.
1066          IList->setInit(Index, ResultExpr);
1067        }
1068      }
1069      if (hadError)
1070        ++StructuredIndex;
1071      else
1072        UpdateStructuredListElement(StructuredList, StructuredIndex,
1073                                    ResultExpr);
1074      ++Index;
1075      return;
1076    }
1077
1078    InitializedEntity ElementEntity =
1079      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1080
1081    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1082      // Don't attempt to go past the end of the init list
1083      if (Index >= IList->getNumInits()) {
1084        if (VerifyOnly)
1085          CheckValueInitializable(ElementEntity);
1086        break;
1087      }
1088
1089      ElementEntity.setElementIndex(Index);
1090      CheckSubElementType(ElementEntity, IList, elementType, Index,
1091                          StructuredList, StructuredIndex);
1092    }
1093    return;
1094  }
1095
1096  InitializedEntity ElementEntity =
1097    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1098
1099  // OpenCL initializers allows vectors to be constructed from vectors.
1100  for (unsigned i = 0; i < maxElements; ++i) {
1101    // Don't attempt to go past the end of the init list
1102    if (Index >= IList->getNumInits())
1103      break;
1104
1105    ElementEntity.setElementIndex(Index);
1106
1107    QualType IType = IList->getInit(Index)->getType();
1108    if (!IType->isVectorType()) {
1109      CheckSubElementType(ElementEntity, IList, elementType, Index,
1110                          StructuredList, StructuredIndex);
1111      ++numEltsInit;
1112    } else {
1113      QualType VecType;
1114      const VectorType *IVT = IType->getAs<VectorType>();
1115      unsigned numIElts = IVT->getNumElements();
1116
1117      if (IType->isExtVectorType())
1118        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1119      else
1120        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1121                                                IVT->getVectorKind());
1122      CheckSubElementType(ElementEntity, IList, VecType, Index,
1123                          StructuredList, StructuredIndex);
1124      numEltsInit += numIElts;
1125    }
1126  }
1127
1128  // OpenCL requires all elements to be initialized.
1129  if (numEltsInit != maxElements) {
1130    if (!VerifyOnly)
1131      SemaRef.Diag(IList->getLocStart(),
1132                   diag::err_vector_incorrect_num_initializers)
1133        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1134    hadError = true;
1135  }
1136}
1137
1138void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1139                                     InitListExpr *IList, QualType &DeclType,
1140                                     llvm::APSInt elementIndex,
1141                                     bool SubobjectIsDesignatorContext,
1142                                     unsigned &Index,
1143                                     InitListExpr *StructuredList,
1144                                     unsigned &StructuredIndex) {
1145  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1146
1147  // Check for the special-case of initializing an array with a string.
1148  if (Index < IList->getNumInits()) {
1149    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1150                                 SemaRef.Context)) {
1151      // We place the string literal directly into the resulting
1152      // initializer list. This is the only place where the structure
1153      // of the structured initializer list doesn't match exactly,
1154      // because doing so would involve allocating one character
1155      // constant for each string.
1156      if (!VerifyOnly) {
1157        CheckStringInit(Str, DeclType, arrayType, SemaRef);
1158        UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1159        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1160      }
1161      ++Index;
1162      return;
1163    }
1164  }
1165  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1166    // Check for VLAs; in standard C it would be possible to check this
1167    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1168    // them in all sorts of strange places).
1169    if (!VerifyOnly)
1170      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1171                    diag::err_variable_object_no_init)
1172        << VAT->getSizeExpr()->getSourceRange();
1173    hadError = true;
1174    ++Index;
1175    ++StructuredIndex;
1176    return;
1177  }
1178
1179  // We might know the maximum number of elements in advance.
1180  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1181                           elementIndex.isUnsigned());
1182  bool maxElementsKnown = false;
1183  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1184    maxElements = CAT->getSize();
1185    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1186    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1187    maxElementsKnown = true;
1188  }
1189
1190  QualType elementType = arrayType->getElementType();
1191  while (Index < IList->getNumInits()) {
1192    Expr *Init = IList->getInit(Index);
1193    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1194      // If we're not the subobject that matches up with the '{' for
1195      // the designator, we shouldn't be handling the
1196      // designator. Return immediately.
1197      if (!SubobjectIsDesignatorContext)
1198        return;
1199
1200      // Handle this designated initializer. elementIndex will be
1201      // updated to be the next array element we'll initialize.
1202      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1203                                     DeclType, 0, &elementIndex, Index,
1204                                     StructuredList, StructuredIndex, true,
1205                                     false)) {
1206        hadError = true;
1207        continue;
1208      }
1209
1210      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1211        maxElements = maxElements.extend(elementIndex.getBitWidth());
1212      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1213        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1214      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1215
1216      // If the array is of incomplete type, keep track of the number of
1217      // elements in the initializer.
1218      if (!maxElementsKnown && elementIndex > maxElements)
1219        maxElements = elementIndex;
1220
1221      continue;
1222    }
1223
1224    // If we know the maximum number of elements, and we've already
1225    // hit it, stop consuming elements in the initializer list.
1226    if (maxElementsKnown && elementIndex == maxElements)
1227      break;
1228
1229    InitializedEntity ElementEntity =
1230      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1231                                           Entity);
1232    // Check this element.
1233    CheckSubElementType(ElementEntity, IList, elementType, Index,
1234                        StructuredList, StructuredIndex);
1235    ++elementIndex;
1236
1237    // If the array is of incomplete type, keep track of the number of
1238    // elements in the initializer.
1239    if (!maxElementsKnown && elementIndex > maxElements)
1240      maxElements = elementIndex;
1241  }
1242  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1243    // If this is an incomplete array type, the actual type needs to
1244    // be calculated here.
1245    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1246    if (maxElements == Zero) {
1247      // Sizing an array implicitly to zero is not allowed by ISO C,
1248      // but is supported by GNU.
1249      SemaRef.Diag(IList->getLocStart(),
1250                    diag::ext_typecheck_zero_array_size);
1251    }
1252
1253    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1254                                                     ArrayType::Normal, 0);
1255  }
1256  if (!hadError && VerifyOnly) {
1257    // Check if there are any members of the array that get value-initialized.
1258    // If so, check if doing that is possible.
1259    // FIXME: This needs to detect holes left by designated initializers too.
1260    if (maxElementsKnown && elementIndex < maxElements)
1261      CheckValueInitializable(InitializedEntity::InitializeElement(
1262                                                  SemaRef.Context, 0, Entity));
1263  }
1264}
1265
1266bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1267                                             Expr *InitExpr,
1268                                             FieldDecl *Field,
1269                                             bool TopLevelObject) {
1270  // Handle GNU flexible array initializers.
1271  unsigned FlexArrayDiag;
1272  if (isa<InitListExpr>(InitExpr) &&
1273      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1274    // Empty flexible array init always allowed as an extension
1275    FlexArrayDiag = diag::ext_flexible_array_init;
1276  } else if (SemaRef.getLangOpts().CPlusPlus) {
1277    // Disallow flexible array init in C++; it is not required for gcc
1278    // compatibility, and it needs work to IRGen correctly in general.
1279    FlexArrayDiag = diag::err_flexible_array_init;
1280  } else if (!TopLevelObject) {
1281    // Disallow flexible array init on non-top-level object
1282    FlexArrayDiag = diag::err_flexible_array_init;
1283  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1284    // Disallow flexible array init on anything which is not a variable.
1285    FlexArrayDiag = diag::err_flexible_array_init;
1286  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1287    // Disallow flexible array init on local variables.
1288    FlexArrayDiag = diag::err_flexible_array_init;
1289  } else {
1290    // Allow other cases.
1291    FlexArrayDiag = diag::ext_flexible_array_init;
1292  }
1293
1294  if (!VerifyOnly) {
1295    SemaRef.Diag(InitExpr->getLocStart(),
1296                 FlexArrayDiag)
1297      << InitExpr->getLocStart();
1298    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299      << Field;
1300  }
1301
1302  return FlexArrayDiag != diag::ext_flexible_array_init;
1303}
1304
1305void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1306                                            InitListExpr *IList,
1307                                            QualType DeclType,
1308                                            RecordDecl::field_iterator Field,
1309                                            bool SubobjectIsDesignatorContext,
1310                                            unsigned &Index,
1311                                            InitListExpr *StructuredList,
1312                                            unsigned &StructuredIndex,
1313                                            bool TopLevelObject) {
1314  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1315
1316  // If the record is invalid, some of it's members are invalid. To avoid
1317  // confusion, we forgo checking the intializer for the entire record.
1318  if (structDecl->isInvalidDecl()) {
1319    // Assume it was supposed to consume a single initializer.
1320    ++Index;
1321    hadError = true;
1322    return;
1323  }
1324
1325  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1326    // Value-initialize the first named member of the union.
1327    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1328    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1329         Field != FieldEnd; ++Field) {
1330      if (Field->getDeclName()) {
1331        if (VerifyOnly)
1332          CheckValueInitializable(
1333              InitializedEntity::InitializeMember(*Field, &Entity));
1334        else
1335          StructuredList->setInitializedFieldInUnion(*Field);
1336        break;
1337      }
1338    }
1339    return;
1340  }
1341
1342  // If structDecl is a forward declaration, this loop won't do
1343  // anything except look at designated initializers; That's okay,
1344  // because an error should get printed out elsewhere. It might be
1345  // worthwhile to skip over the rest of the initializer, though.
1346  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1347  RecordDecl::field_iterator FieldEnd = RD->field_end();
1348  bool InitializedSomething = false;
1349  bool CheckForMissingFields = true;
1350  while (Index < IList->getNumInits()) {
1351    Expr *Init = IList->getInit(Index);
1352
1353    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1354      // If we're not the subobject that matches up with the '{' for
1355      // the designator, we shouldn't be handling the
1356      // designator. Return immediately.
1357      if (!SubobjectIsDesignatorContext)
1358        return;
1359
1360      // Handle this designated initializer. Field will be updated to
1361      // the next field that we'll be initializing.
1362      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1363                                     DeclType, &Field, 0, Index,
1364                                     StructuredList, StructuredIndex,
1365                                     true, TopLevelObject))
1366        hadError = true;
1367
1368      InitializedSomething = true;
1369
1370      // Disable check for missing fields when designators are used.
1371      // This matches gcc behaviour.
1372      CheckForMissingFields = false;
1373      continue;
1374    }
1375
1376    if (Field == FieldEnd) {
1377      // We've run out of fields. We're done.
1378      break;
1379    }
1380
1381    // We've already initialized a member of a union. We're done.
1382    if (InitializedSomething && DeclType->isUnionType())
1383      break;
1384
1385    // If we've hit the flexible array member at the end, we're done.
1386    if (Field->getType()->isIncompleteArrayType())
1387      break;
1388
1389    if (Field->isUnnamedBitfield()) {
1390      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1391      ++Field;
1392      continue;
1393    }
1394
1395    // Make sure we can use this declaration.
1396    bool InvalidUse;
1397    if (VerifyOnly)
1398      InvalidUse = !SemaRef.CanUseDecl(*Field);
1399    else
1400      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1401                                          IList->getInit(Index)->getLocStart());
1402    if (InvalidUse) {
1403      ++Index;
1404      ++Field;
1405      hadError = true;
1406      continue;
1407    }
1408
1409    InitializedEntity MemberEntity =
1410      InitializedEntity::InitializeMember(*Field, &Entity);
1411    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1412                        StructuredList, StructuredIndex);
1413    InitializedSomething = true;
1414
1415    if (DeclType->isUnionType() && !VerifyOnly) {
1416      // Initialize the first field within the union.
1417      StructuredList->setInitializedFieldInUnion(*Field);
1418    }
1419
1420    ++Field;
1421  }
1422
1423  // Emit warnings for missing struct field initializers.
1424  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1425      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1426      !DeclType->isUnionType()) {
1427    // It is possible we have one or more unnamed bitfields remaining.
1428    // Find first (if any) named field and emit warning.
1429    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1430         it != end; ++it) {
1431      if (!it->isUnnamedBitfield()) {
1432        SemaRef.Diag(IList->getSourceRange().getEnd(),
1433                     diag::warn_missing_field_initializers) << it->getName();
1434        break;
1435      }
1436    }
1437  }
1438
1439  // Check that any remaining fields can be value-initialized.
1440  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1441      !Field->getType()->isIncompleteArrayType()) {
1442    // FIXME: Should check for holes left by designated initializers too.
1443    for (; Field != FieldEnd && !hadError; ++Field) {
1444      if (!Field->isUnnamedBitfield())
1445        CheckValueInitializable(
1446            InitializedEntity::InitializeMember(*Field, &Entity));
1447    }
1448  }
1449
1450  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1451      Index >= IList->getNumInits())
1452    return;
1453
1454  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1455                             TopLevelObject)) {
1456    hadError = true;
1457    ++Index;
1458    return;
1459  }
1460
1461  InitializedEntity MemberEntity =
1462    InitializedEntity::InitializeMember(*Field, &Entity);
1463
1464  if (isa<InitListExpr>(IList->getInit(Index)))
1465    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1466                        StructuredList, StructuredIndex);
1467  else
1468    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1469                          StructuredList, StructuredIndex);
1470}
1471
1472/// \brief Expand a field designator that refers to a member of an
1473/// anonymous struct or union into a series of field designators that
1474/// refers to the field within the appropriate subobject.
1475///
1476static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1477                                           DesignatedInitExpr *DIE,
1478                                           unsigned DesigIdx,
1479                                           IndirectFieldDecl *IndirectField) {
1480  typedef DesignatedInitExpr::Designator Designator;
1481
1482  // Build the replacement designators.
1483  SmallVector<Designator, 4> Replacements;
1484  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1485       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1486    if (PI + 1 == PE)
1487      Replacements.push_back(Designator((IdentifierInfo *)0,
1488                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1489                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1490    else
1491      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1492                                        SourceLocation()));
1493    assert(isa<FieldDecl>(*PI));
1494    Replacements.back().setField(cast<FieldDecl>(*PI));
1495  }
1496
1497  // Expand the current designator into the set of replacement
1498  // designators, so we have a full subobject path down to where the
1499  // member of the anonymous struct/union is actually stored.
1500  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1501                        &Replacements[0] + Replacements.size());
1502}
1503
1504/// \brief Given an implicit anonymous field, search the IndirectField that
1505///  corresponds to FieldName.
1506static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1507                                                 IdentifierInfo *FieldName) {
1508  if (!FieldName)
1509    return 0;
1510
1511  assert(AnonField->isAnonymousStructOrUnion());
1512  Decl *NextDecl = AnonField->getNextDeclInContext();
1513  while (IndirectFieldDecl *IF =
1514          dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1515    if (FieldName == IF->getAnonField()->getIdentifier())
1516      return IF;
1517    NextDecl = NextDecl->getNextDeclInContext();
1518  }
1519  return 0;
1520}
1521
1522static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1523                                                   DesignatedInitExpr *DIE) {
1524  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1525  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1526  for (unsigned I = 0; I < NumIndexExprs; ++I)
1527    IndexExprs[I] = DIE->getSubExpr(I + 1);
1528  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1529                                    DIE->size(), IndexExprs,
1530                                    DIE->getEqualOrColonLoc(),
1531                                    DIE->usesGNUSyntax(), DIE->getInit());
1532}
1533
1534namespace {
1535
1536// Callback to only accept typo corrections that are for field members of
1537// the given struct or union.
1538class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1539 public:
1540  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1541      : Record(RD) {}
1542
1543  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1544    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1545    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1546  }
1547
1548 private:
1549  RecordDecl *Record;
1550};
1551
1552}
1553
1554/// @brief Check the well-formedness of a C99 designated initializer.
1555///
1556/// Determines whether the designated initializer @p DIE, which
1557/// resides at the given @p Index within the initializer list @p
1558/// IList, is well-formed for a current object of type @p DeclType
1559/// (C99 6.7.8). The actual subobject that this designator refers to
1560/// within the current subobject is returned in either
1561/// @p NextField or @p NextElementIndex (whichever is appropriate).
1562///
1563/// @param IList  The initializer list in which this designated
1564/// initializer occurs.
1565///
1566/// @param DIE The designated initializer expression.
1567///
1568/// @param DesigIdx  The index of the current designator.
1569///
1570/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1571/// into which the designation in @p DIE should refer.
1572///
1573/// @param NextField  If non-NULL and the first designator in @p DIE is
1574/// a field, this will be set to the field declaration corresponding
1575/// to the field named by the designator.
1576///
1577/// @param NextElementIndex  If non-NULL and the first designator in @p
1578/// DIE is an array designator or GNU array-range designator, this
1579/// will be set to the last index initialized by this designator.
1580///
1581/// @param Index  Index into @p IList where the designated initializer
1582/// @p DIE occurs.
1583///
1584/// @param StructuredList  The initializer list expression that
1585/// describes all of the subobject initializers in the order they'll
1586/// actually be initialized.
1587///
1588/// @returns true if there was an error, false otherwise.
1589bool
1590InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1591                                            InitListExpr *IList,
1592                                            DesignatedInitExpr *DIE,
1593                                            unsigned DesigIdx,
1594                                            QualType &CurrentObjectType,
1595                                          RecordDecl::field_iterator *NextField,
1596                                            llvm::APSInt *NextElementIndex,
1597                                            unsigned &Index,
1598                                            InitListExpr *StructuredList,
1599                                            unsigned &StructuredIndex,
1600                                            bool FinishSubobjectInit,
1601                                            bool TopLevelObject) {
1602  if (DesigIdx == DIE->size()) {
1603    // Check the actual initialization for the designated object type.
1604    bool prevHadError = hadError;
1605
1606    // Temporarily remove the designator expression from the
1607    // initializer list that the child calls see, so that we don't try
1608    // to re-process the designator.
1609    unsigned OldIndex = Index;
1610    IList->setInit(OldIndex, DIE->getInit());
1611
1612    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1613                        StructuredList, StructuredIndex);
1614
1615    // Restore the designated initializer expression in the syntactic
1616    // form of the initializer list.
1617    if (IList->getInit(OldIndex) != DIE->getInit())
1618      DIE->setInit(IList->getInit(OldIndex));
1619    IList->setInit(OldIndex, DIE);
1620
1621    return hadError && !prevHadError;
1622  }
1623
1624  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1625  bool IsFirstDesignator = (DesigIdx == 0);
1626  if (!VerifyOnly) {
1627    assert((IsFirstDesignator || StructuredList) &&
1628           "Need a non-designated initializer list to start from");
1629
1630    // Determine the structural initializer list that corresponds to the
1631    // current subobject.
1632    StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1633      : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1634                                   StructuredList, StructuredIndex,
1635                                   SourceRange(D->getLocStart(),
1636                                               DIE->getLocEnd()));
1637    assert(StructuredList && "Expected a structured initializer list");
1638  }
1639
1640  if (D->isFieldDesignator()) {
1641    // C99 6.7.8p7:
1642    //
1643    //   If a designator has the form
1644    //
1645    //      . identifier
1646    //
1647    //   then the current object (defined below) shall have
1648    //   structure or union type and the identifier shall be the
1649    //   name of a member of that type.
1650    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1651    if (!RT) {
1652      SourceLocation Loc = D->getDotLoc();
1653      if (Loc.isInvalid())
1654        Loc = D->getFieldLoc();
1655      if (!VerifyOnly)
1656        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1657          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1658      ++Index;
1659      return true;
1660    }
1661
1662    // Note: we perform a linear search of the fields here, despite
1663    // the fact that we have a faster lookup method, because we always
1664    // need to compute the field's index.
1665    FieldDecl *KnownField = D->getField();
1666    IdentifierInfo *FieldName = D->getFieldName();
1667    unsigned FieldIndex = 0;
1668    RecordDecl::field_iterator
1669      Field = RT->getDecl()->field_begin(),
1670      FieldEnd = RT->getDecl()->field_end();
1671    for (; Field != FieldEnd; ++Field) {
1672      if (Field->isUnnamedBitfield())
1673        continue;
1674
1675      // If we find a field representing an anonymous field, look in the
1676      // IndirectFieldDecl that follow for the designated initializer.
1677      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1678        if (IndirectFieldDecl *IF =
1679            FindIndirectFieldDesignator(*Field, FieldName)) {
1680          // In verify mode, don't modify the original.
1681          if (VerifyOnly)
1682            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1683          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1684          D = DIE->getDesignator(DesigIdx);
1685          break;
1686        }
1687      }
1688      if (KnownField && KnownField == *Field)
1689        break;
1690      if (FieldName && FieldName == Field->getIdentifier())
1691        break;
1692
1693      ++FieldIndex;
1694    }
1695
1696    if (Field == FieldEnd) {
1697      if (VerifyOnly) {
1698        ++Index;
1699        return true; // No typo correction when just trying this out.
1700      }
1701
1702      // There was no normal field in the struct with the designated
1703      // name. Perform another lookup for this name, which may find
1704      // something that we can't designate (e.g., a member function),
1705      // may find nothing, or may find a member of an anonymous
1706      // struct/union.
1707      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1708      FieldDecl *ReplacementField = 0;
1709      if (Lookup.empty()) {
1710        // Name lookup didn't find anything. Determine whether this
1711        // was a typo for another field name.
1712        FieldInitializerValidatorCCC Validator(RT->getDecl());
1713        TypoCorrection Corrected = SemaRef.CorrectTypo(
1714            DeclarationNameInfo(FieldName, D->getFieldLoc()),
1715            Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1716            RT->getDecl());
1717        if (Corrected) {
1718          std::string CorrectedStr(
1719              Corrected.getAsString(SemaRef.getLangOpts()));
1720          std::string CorrectedQuotedStr(
1721              Corrected.getQuoted(SemaRef.getLangOpts()));
1722          ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1723          SemaRef.Diag(D->getFieldLoc(),
1724                       diag::err_field_designator_unknown_suggest)
1725            << FieldName << CurrentObjectType << CorrectedQuotedStr
1726            << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1727          SemaRef.Diag(ReplacementField->getLocation(),
1728                       diag::note_previous_decl) << CorrectedQuotedStr;
1729          hadError = true;
1730        } else {
1731          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1732            << FieldName << CurrentObjectType;
1733          ++Index;
1734          return true;
1735        }
1736      }
1737
1738      if (!ReplacementField) {
1739        // Name lookup found something, but it wasn't a field.
1740        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1741          << FieldName;
1742        SemaRef.Diag(Lookup.front()->getLocation(),
1743                      diag::note_field_designator_found);
1744        ++Index;
1745        return true;
1746      }
1747
1748      if (!KnownField) {
1749        // The replacement field comes from typo correction; find it
1750        // in the list of fields.
1751        FieldIndex = 0;
1752        Field = RT->getDecl()->field_begin();
1753        for (; Field != FieldEnd; ++Field) {
1754          if (Field->isUnnamedBitfield())
1755            continue;
1756
1757          if (ReplacementField == *Field ||
1758              Field->getIdentifier() == ReplacementField->getIdentifier())
1759            break;
1760
1761          ++FieldIndex;
1762        }
1763      }
1764    }
1765
1766    // All of the fields of a union are located at the same place in
1767    // the initializer list.
1768    if (RT->getDecl()->isUnion()) {
1769      FieldIndex = 0;
1770      if (!VerifyOnly)
1771        StructuredList->setInitializedFieldInUnion(*Field);
1772    }
1773
1774    // Make sure we can use this declaration.
1775    bool InvalidUse;
1776    if (VerifyOnly)
1777      InvalidUse = !SemaRef.CanUseDecl(*Field);
1778    else
1779      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1780    if (InvalidUse) {
1781      ++Index;
1782      return true;
1783    }
1784
1785    if (!VerifyOnly) {
1786      // Update the designator with the field declaration.
1787      D->setField(*Field);
1788
1789      // Make sure that our non-designated initializer list has space
1790      // for a subobject corresponding to this field.
1791      if (FieldIndex >= StructuredList->getNumInits())
1792        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1793    }
1794
1795    // This designator names a flexible array member.
1796    if (Field->getType()->isIncompleteArrayType()) {
1797      bool Invalid = false;
1798      if ((DesigIdx + 1) != DIE->size()) {
1799        // We can't designate an object within the flexible array
1800        // member (because GCC doesn't allow it).
1801        if (!VerifyOnly) {
1802          DesignatedInitExpr::Designator *NextD
1803            = DIE->getDesignator(DesigIdx + 1);
1804          SemaRef.Diag(NextD->getLocStart(),
1805                        diag::err_designator_into_flexible_array_member)
1806            << SourceRange(NextD->getLocStart(),
1807                           DIE->getLocEnd());
1808          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1809            << *Field;
1810        }
1811        Invalid = true;
1812      }
1813
1814      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1815          !isa<StringLiteral>(DIE->getInit())) {
1816        // The initializer is not an initializer list.
1817        if (!VerifyOnly) {
1818          SemaRef.Diag(DIE->getInit()->getLocStart(),
1819                        diag::err_flexible_array_init_needs_braces)
1820            << DIE->getInit()->getSourceRange();
1821          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1822            << *Field;
1823        }
1824        Invalid = true;
1825      }
1826
1827      // Check GNU flexible array initializer.
1828      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1829                                             TopLevelObject))
1830        Invalid = true;
1831
1832      if (Invalid) {
1833        ++Index;
1834        return true;
1835      }
1836
1837      // Initialize the array.
1838      bool prevHadError = hadError;
1839      unsigned newStructuredIndex = FieldIndex;
1840      unsigned OldIndex = Index;
1841      IList->setInit(Index, DIE->getInit());
1842
1843      InitializedEntity MemberEntity =
1844        InitializedEntity::InitializeMember(*Field, &Entity);
1845      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1846                          StructuredList, newStructuredIndex);
1847
1848      IList->setInit(OldIndex, DIE);
1849      if (hadError && !prevHadError) {
1850        ++Field;
1851        ++FieldIndex;
1852        if (NextField)
1853          *NextField = Field;
1854        StructuredIndex = FieldIndex;
1855        return true;
1856      }
1857    } else {
1858      // Recurse to check later designated subobjects.
1859      QualType FieldType = Field->getType();
1860      unsigned newStructuredIndex = FieldIndex;
1861
1862      InitializedEntity MemberEntity =
1863        InitializedEntity::InitializeMember(*Field, &Entity);
1864      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1865                                     FieldType, 0, 0, Index,
1866                                     StructuredList, newStructuredIndex,
1867                                     true, false))
1868        return true;
1869    }
1870
1871    // Find the position of the next field to be initialized in this
1872    // subobject.
1873    ++Field;
1874    ++FieldIndex;
1875
1876    // If this the first designator, our caller will continue checking
1877    // the rest of this struct/class/union subobject.
1878    if (IsFirstDesignator) {
1879      if (NextField)
1880        *NextField = Field;
1881      StructuredIndex = FieldIndex;
1882      return false;
1883    }
1884
1885    if (!FinishSubobjectInit)
1886      return false;
1887
1888    // We've already initialized something in the union; we're done.
1889    if (RT->getDecl()->isUnion())
1890      return hadError;
1891
1892    // Check the remaining fields within this class/struct/union subobject.
1893    bool prevHadError = hadError;
1894
1895    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1896                          StructuredList, FieldIndex);
1897    return hadError && !prevHadError;
1898  }
1899
1900  // C99 6.7.8p6:
1901  //
1902  //   If a designator has the form
1903  //
1904  //      [ constant-expression ]
1905  //
1906  //   then the current object (defined below) shall have array
1907  //   type and the expression shall be an integer constant
1908  //   expression. If the array is of unknown size, any
1909  //   nonnegative value is valid.
1910  //
1911  // Additionally, cope with the GNU extension that permits
1912  // designators of the form
1913  //
1914  //      [ constant-expression ... constant-expression ]
1915  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1916  if (!AT) {
1917    if (!VerifyOnly)
1918      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1919        << CurrentObjectType;
1920    ++Index;
1921    return true;
1922  }
1923
1924  Expr *IndexExpr = 0;
1925  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1926  if (D->isArrayDesignator()) {
1927    IndexExpr = DIE->getArrayIndex(*D);
1928    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1929    DesignatedEndIndex = DesignatedStartIndex;
1930  } else {
1931    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1932
1933    DesignatedStartIndex =
1934      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935    DesignatedEndIndex =
1936      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1937    IndexExpr = DIE->getArrayRangeEnd(*D);
1938
1939    // Codegen can't handle evaluating array range designators that have side
1940    // effects, because we replicate the AST value for each initialized element.
1941    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1942    // elements with something that has a side effect, so codegen can emit an
1943    // "error unsupported" error instead of miscompiling the app.
1944    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1945        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1946      FullyStructuredList->sawArrayRangeDesignator();
1947  }
1948
1949  if (isa<ConstantArrayType>(AT)) {
1950    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1951    DesignatedStartIndex
1952      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1953    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1954    DesignatedEndIndex
1955      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1956    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1957    if (DesignatedEndIndex >= MaxElements) {
1958      if (!VerifyOnly)
1959        SemaRef.Diag(IndexExpr->getLocStart(),
1960                      diag::err_array_designator_too_large)
1961          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1962          << IndexExpr->getSourceRange();
1963      ++Index;
1964      return true;
1965    }
1966  } else {
1967    // Make sure the bit-widths and signedness match.
1968    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1969      DesignatedEndIndex
1970        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1971    else if (DesignatedStartIndex.getBitWidth() <
1972             DesignatedEndIndex.getBitWidth())
1973      DesignatedStartIndex
1974        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1975    DesignatedStartIndex.setIsUnsigned(true);
1976    DesignatedEndIndex.setIsUnsigned(true);
1977  }
1978
1979  // Make sure that our non-designated initializer list has space
1980  // for a subobject corresponding to this array element.
1981  if (!VerifyOnly &&
1982      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1983    StructuredList->resizeInits(SemaRef.Context,
1984                                DesignatedEndIndex.getZExtValue() + 1);
1985
1986  // Repeatedly perform subobject initializations in the range
1987  // [DesignatedStartIndex, DesignatedEndIndex].
1988
1989  // Move to the next designator
1990  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1991  unsigned OldIndex = Index;
1992
1993  InitializedEntity ElementEntity =
1994    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1995
1996  while (DesignatedStartIndex <= DesignatedEndIndex) {
1997    // Recurse to check later designated subobjects.
1998    QualType ElementType = AT->getElementType();
1999    Index = OldIndex;
2000
2001    ElementEntity.setElementIndex(ElementIndex);
2002    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2003                                   ElementType, 0, 0, Index,
2004                                   StructuredList, ElementIndex,
2005                                   (DesignatedStartIndex == DesignatedEndIndex),
2006                                   false))
2007      return true;
2008
2009    // Move to the next index in the array that we'll be initializing.
2010    ++DesignatedStartIndex;
2011    ElementIndex = DesignatedStartIndex.getZExtValue();
2012  }
2013
2014  // If this the first designator, our caller will continue checking
2015  // the rest of this array subobject.
2016  if (IsFirstDesignator) {
2017    if (NextElementIndex)
2018      *NextElementIndex = DesignatedStartIndex;
2019    StructuredIndex = ElementIndex;
2020    return false;
2021  }
2022
2023  if (!FinishSubobjectInit)
2024    return false;
2025
2026  // Check the remaining elements within this array subobject.
2027  bool prevHadError = hadError;
2028  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2029                 /*SubobjectIsDesignatorContext=*/false, Index,
2030                 StructuredList, ElementIndex);
2031  return hadError && !prevHadError;
2032}
2033
2034// Get the structured initializer list for a subobject of type
2035// @p CurrentObjectType.
2036InitListExpr *
2037InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2038                                            QualType CurrentObjectType,
2039                                            InitListExpr *StructuredList,
2040                                            unsigned StructuredIndex,
2041                                            SourceRange InitRange) {
2042  if (VerifyOnly)
2043    return 0; // No structured list in verification-only mode.
2044  Expr *ExistingInit = 0;
2045  if (!StructuredList)
2046    ExistingInit = SyntacticToSemantic.lookup(IList);
2047  else if (StructuredIndex < StructuredList->getNumInits())
2048    ExistingInit = StructuredList->getInit(StructuredIndex);
2049
2050  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2051    return Result;
2052
2053  if (ExistingInit) {
2054    // We are creating an initializer list that initializes the
2055    // subobjects of the current object, but there was already an
2056    // initialization that completely initialized the current
2057    // subobject, e.g., by a compound literal:
2058    //
2059    // struct X { int a, b; };
2060    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2061    //
2062    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2063    // designated initializer re-initializes the whole
2064    // subobject [0], overwriting previous initializers.
2065    SemaRef.Diag(InitRange.getBegin(),
2066                 diag::warn_subobject_initializer_overrides)
2067      << InitRange;
2068    SemaRef.Diag(ExistingInit->getLocStart(),
2069                  diag::note_previous_initializer)
2070      << /*FIXME:has side effects=*/0
2071      << ExistingInit->getSourceRange();
2072  }
2073
2074  InitListExpr *Result
2075    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2076                                         InitRange.getBegin(), MultiExprArg(),
2077                                         InitRange.getEnd());
2078
2079  QualType ResultType = CurrentObjectType;
2080  if (!ResultType->isArrayType())
2081    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2082  Result->setType(ResultType);
2083
2084  // Pre-allocate storage for the structured initializer list.
2085  unsigned NumElements = 0;
2086  unsigned NumInits = 0;
2087  bool GotNumInits = false;
2088  if (!StructuredList) {
2089    NumInits = IList->getNumInits();
2090    GotNumInits = true;
2091  } else if (Index < IList->getNumInits()) {
2092    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2093      NumInits = SubList->getNumInits();
2094      GotNumInits = true;
2095    }
2096  }
2097
2098  if (const ArrayType *AType
2099      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2100    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2101      NumElements = CAType->getSize().getZExtValue();
2102      // Simple heuristic so that we don't allocate a very large
2103      // initializer with many empty entries at the end.
2104      if (GotNumInits && NumElements > NumInits)
2105        NumElements = 0;
2106    }
2107  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2108    NumElements = VType->getNumElements();
2109  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2110    RecordDecl *RDecl = RType->getDecl();
2111    if (RDecl->isUnion())
2112      NumElements = 1;
2113    else
2114      NumElements = std::distance(RDecl->field_begin(),
2115                                  RDecl->field_end());
2116  }
2117
2118  Result->reserveInits(SemaRef.Context, NumElements);
2119
2120  // Link this new initializer list into the structured initializer
2121  // lists.
2122  if (StructuredList)
2123    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2124  else {
2125    Result->setSyntacticForm(IList);
2126    SyntacticToSemantic[IList] = Result;
2127  }
2128
2129  return Result;
2130}
2131
2132/// Update the initializer at index @p StructuredIndex within the
2133/// structured initializer list to the value @p expr.
2134void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2135                                                  unsigned &StructuredIndex,
2136                                                  Expr *expr) {
2137  // No structured initializer list to update
2138  if (!StructuredList)
2139    return;
2140
2141  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2142                                                  StructuredIndex, expr)) {
2143    // This initializer overwrites a previous initializer. Warn.
2144    SemaRef.Diag(expr->getLocStart(),
2145                  diag::warn_initializer_overrides)
2146      << expr->getSourceRange();
2147    SemaRef.Diag(PrevInit->getLocStart(),
2148                  diag::note_previous_initializer)
2149      << /*FIXME:has side effects=*/0
2150      << PrevInit->getSourceRange();
2151  }
2152
2153  ++StructuredIndex;
2154}
2155
2156/// Check that the given Index expression is a valid array designator
2157/// value. This is essentially just a wrapper around
2158/// VerifyIntegerConstantExpression that also checks for negative values
2159/// and produces a reasonable diagnostic if there is a
2160/// failure. Returns the index expression, possibly with an implicit cast
2161/// added, on success.  If everything went okay, Value will receive the
2162/// value of the constant expression.
2163static ExprResult
2164CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2165  SourceLocation Loc = Index->getLocStart();
2166
2167  // Make sure this is an integer constant expression.
2168  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2169  if (Result.isInvalid())
2170    return Result;
2171
2172  if (Value.isSigned() && Value.isNegative())
2173    return S.Diag(Loc, diag::err_array_designator_negative)
2174      << Value.toString(10) << Index->getSourceRange();
2175
2176  Value.setIsUnsigned(true);
2177  return Result;
2178}
2179
2180ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2181                                            SourceLocation Loc,
2182                                            bool GNUSyntax,
2183                                            ExprResult Init) {
2184  typedef DesignatedInitExpr::Designator ASTDesignator;
2185
2186  bool Invalid = false;
2187  SmallVector<ASTDesignator, 32> Designators;
2188  SmallVector<Expr *, 32> InitExpressions;
2189
2190  // Build designators and check array designator expressions.
2191  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2192    const Designator &D = Desig.getDesignator(Idx);
2193    switch (D.getKind()) {
2194    case Designator::FieldDesignator:
2195      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2196                                          D.getFieldLoc()));
2197      break;
2198
2199    case Designator::ArrayDesignator: {
2200      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2201      llvm::APSInt IndexValue;
2202      if (!Index->isTypeDependent() && !Index->isValueDependent())
2203        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2204      if (!Index)
2205        Invalid = true;
2206      else {
2207        Designators.push_back(ASTDesignator(InitExpressions.size(),
2208                                            D.getLBracketLoc(),
2209                                            D.getRBracketLoc()));
2210        InitExpressions.push_back(Index);
2211      }
2212      break;
2213    }
2214
2215    case Designator::ArrayRangeDesignator: {
2216      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2217      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2218      llvm::APSInt StartValue;
2219      llvm::APSInt EndValue;
2220      bool StartDependent = StartIndex->isTypeDependent() ||
2221                            StartIndex->isValueDependent();
2222      bool EndDependent = EndIndex->isTypeDependent() ||
2223                          EndIndex->isValueDependent();
2224      if (!StartDependent)
2225        StartIndex =
2226            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2227      if (!EndDependent)
2228        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2229
2230      if (!StartIndex || !EndIndex)
2231        Invalid = true;
2232      else {
2233        // Make sure we're comparing values with the same bit width.
2234        if (StartDependent || EndDependent) {
2235          // Nothing to compute.
2236        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2237          EndValue = EndValue.extend(StartValue.getBitWidth());
2238        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2239          StartValue = StartValue.extend(EndValue.getBitWidth());
2240
2241        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2242          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2243            << StartValue.toString(10) << EndValue.toString(10)
2244            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2245          Invalid = true;
2246        } else {
2247          Designators.push_back(ASTDesignator(InitExpressions.size(),
2248                                              D.getLBracketLoc(),
2249                                              D.getEllipsisLoc(),
2250                                              D.getRBracketLoc()));
2251          InitExpressions.push_back(StartIndex);
2252          InitExpressions.push_back(EndIndex);
2253        }
2254      }
2255      break;
2256    }
2257    }
2258  }
2259
2260  if (Invalid || Init.isInvalid())
2261    return ExprError();
2262
2263  // Clear out the expressions within the designation.
2264  Desig.ClearExprs(*this);
2265
2266  DesignatedInitExpr *DIE
2267    = DesignatedInitExpr::Create(Context,
2268                                 Designators.data(), Designators.size(),
2269                                 InitExpressions, Loc, GNUSyntax,
2270                                 Init.takeAs<Expr>());
2271
2272  if (!getLangOpts().C99)
2273    Diag(DIE->getLocStart(), diag::ext_designated_init)
2274      << DIE->getSourceRange();
2275
2276  return Owned(DIE);
2277}
2278
2279//===----------------------------------------------------------------------===//
2280// Initialization entity
2281//===----------------------------------------------------------------------===//
2282
2283InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2284                                     const InitializedEntity &Parent)
2285  : Parent(&Parent), Index(Index)
2286{
2287  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2288    Kind = EK_ArrayElement;
2289    Type = AT->getElementType();
2290  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2291    Kind = EK_VectorElement;
2292    Type = VT->getElementType();
2293  } else {
2294    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2295    assert(CT && "Unexpected type");
2296    Kind = EK_ComplexElement;
2297    Type = CT->getElementType();
2298  }
2299}
2300
2301InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2302                                                    CXXBaseSpecifier *Base,
2303                                                    bool IsInheritedVirtualBase)
2304{
2305  InitializedEntity Result;
2306  Result.Kind = EK_Base;
2307  Result.Base = reinterpret_cast<uintptr_t>(Base);
2308  if (IsInheritedVirtualBase)
2309    Result.Base |= 0x01;
2310
2311  Result.Type = Base->getType();
2312  return Result;
2313}
2314
2315DeclarationName InitializedEntity::getName() const {
2316  switch (getKind()) {
2317  case EK_Parameter: {
2318    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2319    return (D ? D->getDeclName() : DeclarationName());
2320  }
2321
2322  case EK_Variable:
2323  case EK_Member:
2324    return VariableOrMember->getDeclName();
2325
2326  case EK_LambdaCapture:
2327    return Capture.Var->getDeclName();
2328
2329  case EK_Result:
2330  case EK_Exception:
2331  case EK_New:
2332  case EK_Temporary:
2333  case EK_Base:
2334  case EK_Delegating:
2335  case EK_ArrayElement:
2336  case EK_VectorElement:
2337  case EK_ComplexElement:
2338  case EK_BlockElement:
2339    return DeclarationName();
2340  }
2341
2342  llvm_unreachable("Invalid EntityKind!");
2343}
2344
2345DeclaratorDecl *InitializedEntity::getDecl() const {
2346  switch (getKind()) {
2347  case EK_Variable:
2348  case EK_Member:
2349    return VariableOrMember;
2350
2351  case EK_Parameter:
2352    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2353
2354  case EK_Result:
2355  case EK_Exception:
2356  case EK_New:
2357  case EK_Temporary:
2358  case EK_Base:
2359  case EK_Delegating:
2360  case EK_ArrayElement:
2361  case EK_VectorElement:
2362  case EK_ComplexElement:
2363  case EK_BlockElement:
2364  case EK_LambdaCapture:
2365    return 0;
2366  }
2367
2368  llvm_unreachable("Invalid EntityKind!");
2369}
2370
2371bool InitializedEntity::allowsNRVO() const {
2372  switch (getKind()) {
2373  case EK_Result:
2374  case EK_Exception:
2375    return LocAndNRVO.NRVO;
2376
2377  case EK_Variable:
2378  case EK_Parameter:
2379  case EK_Member:
2380  case EK_New:
2381  case EK_Temporary:
2382  case EK_Base:
2383  case EK_Delegating:
2384  case EK_ArrayElement:
2385  case EK_VectorElement:
2386  case EK_ComplexElement:
2387  case EK_BlockElement:
2388  case EK_LambdaCapture:
2389    break;
2390  }
2391
2392  return false;
2393}
2394
2395//===----------------------------------------------------------------------===//
2396// Initialization sequence
2397//===----------------------------------------------------------------------===//
2398
2399void InitializationSequence::Step::Destroy() {
2400  switch (Kind) {
2401  case SK_ResolveAddressOfOverloadedFunction:
2402  case SK_CastDerivedToBaseRValue:
2403  case SK_CastDerivedToBaseXValue:
2404  case SK_CastDerivedToBaseLValue:
2405  case SK_BindReference:
2406  case SK_BindReferenceToTemporary:
2407  case SK_ExtraneousCopyToTemporary:
2408  case SK_UserConversion:
2409  case SK_QualificationConversionRValue:
2410  case SK_QualificationConversionXValue:
2411  case SK_QualificationConversionLValue:
2412  case SK_ListInitialization:
2413  case SK_ListConstructorCall:
2414  case SK_UnwrapInitList:
2415  case SK_RewrapInitList:
2416  case SK_ConstructorInitialization:
2417  case SK_ZeroInitialization:
2418  case SK_CAssignment:
2419  case SK_StringInit:
2420  case SK_ObjCObjectConversion:
2421  case SK_ArrayInit:
2422  case SK_ParenthesizedArrayInit:
2423  case SK_PassByIndirectCopyRestore:
2424  case SK_PassByIndirectRestore:
2425  case SK_ProduceObjCObject:
2426  case SK_StdInitializerList:
2427  case SK_OCLSamplerInit:
2428  case SK_OCLZeroEvent:
2429    break;
2430
2431  case SK_ConversionSequence:
2432    delete ICS;
2433  }
2434}
2435
2436bool InitializationSequence::isDirectReferenceBinding() const {
2437  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2438}
2439
2440bool InitializationSequence::isAmbiguous() const {
2441  if (!Failed())
2442    return false;
2443
2444  switch (getFailureKind()) {
2445  case FK_TooManyInitsForReference:
2446  case FK_ArrayNeedsInitList:
2447  case FK_ArrayNeedsInitListOrStringLiteral:
2448  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2449  case FK_NonConstLValueReferenceBindingToTemporary:
2450  case FK_NonConstLValueReferenceBindingToUnrelated:
2451  case FK_RValueReferenceBindingToLValue:
2452  case FK_ReferenceInitDropsQualifiers:
2453  case FK_ReferenceInitFailed:
2454  case FK_ConversionFailed:
2455  case FK_ConversionFromPropertyFailed:
2456  case FK_TooManyInitsForScalar:
2457  case FK_ReferenceBindingToInitList:
2458  case FK_InitListBadDestinationType:
2459  case FK_DefaultInitOfConst:
2460  case FK_Incomplete:
2461  case FK_ArrayTypeMismatch:
2462  case FK_NonConstantArrayInit:
2463  case FK_ListInitializationFailed:
2464  case FK_VariableLengthArrayHasInitializer:
2465  case FK_PlaceholderType:
2466  case FK_InitListElementCopyFailure:
2467  case FK_ExplicitConstructor:
2468    return false;
2469
2470  case FK_ReferenceInitOverloadFailed:
2471  case FK_UserConversionOverloadFailed:
2472  case FK_ConstructorOverloadFailed:
2473  case FK_ListConstructorOverloadFailed:
2474    return FailedOverloadResult == OR_Ambiguous;
2475  }
2476
2477  llvm_unreachable("Invalid EntityKind!");
2478}
2479
2480bool InitializationSequence::isConstructorInitialization() const {
2481  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2482}
2483
2484void
2485InitializationSequence
2486::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2487                                   DeclAccessPair Found,
2488                                   bool HadMultipleCandidates) {
2489  Step S;
2490  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2491  S.Type = Function->getType();
2492  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2493  S.Function.Function = Function;
2494  S.Function.FoundDecl = Found;
2495  Steps.push_back(S);
2496}
2497
2498void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2499                                                      ExprValueKind VK) {
2500  Step S;
2501  switch (VK) {
2502  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2503  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2504  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2505  }
2506  S.Type = BaseType;
2507  Steps.push_back(S);
2508}
2509
2510void InitializationSequence::AddReferenceBindingStep(QualType T,
2511                                                     bool BindingTemporary) {
2512  Step S;
2513  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2514  S.Type = T;
2515  Steps.push_back(S);
2516}
2517
2518void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2519  Step S;
2520  S.Kind = SK_ExtraneousCopyToTemporary;
2521  S.Type = T;
2522  Steps.push_back(S);
2523}
2524
2525void
2526InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2527                                              DeclAccessPair FoundDecl,
2528                                              QualType T,
2529                                              bool HadMultipleCandidates) {
2530  Step S;
2531  S.Kind = SK_UserConversion;
2532  S.Type = T;
2533  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2534  S.Function.Function = Function;
2535  S.Function.FoundDecl = FoundDecl;
2536  Steps.push_back(S);
2537}
2538
2539void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2540                                                            ExprValueKind VK) {
2541  Step S;
2542  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2543  switch (VK) {
2544  case VK_RValue:
2545    S.Kind = SK_QualificationConversionRValue;
2546    break;
2547  case VK_XValue:
2548    S.Kind = SK_QualificationConversionXValue;
2549    break;
2550  case VK_LValue:
2551    S.Kind = SK_QualificationConversionLValue;
2552    break;
2553  }
2554  S.Type = Ty;
2555  Steps.push_back(S);
2556}
2557
2558void InitializationSequence::AddConversionSequenceStep(
2559                                       const ImplicitConversionSequence &ICS,
2560                                                       QualType T) {
2561  Step S;
2562  S.Kind = SK_ConversionSequence;
2563  S.Type = T;
2564  S.ICS = new ImplicitConversionSequence(ICS);
2565  Steps.push_back(S);
2566}
2567
2568void InitializationSequence::AddListInitializationStep(QualType T) {
2569  Step S;
2570  S.Kind = SK_ListInitialization;
2571  S.Type = T;
2572  Steps.push_back(S);
2573}
2574
2575void
2576InitializationSequence
2577::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2578                                   AccessSpecifier Access,
2579                                   QualType T,
2580                                   bool HadMultipleCandidates,
2581                                   bool FromInitList, bool AsInitList) {
2582  Step S;
2583  S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2584                                       : SK_ConstructorInitialization;
2585  S.Type = T;
2586  S.Function.HadMultipleCandidates = HadMultipleCandidates;
2587  S.Function.Function = Constructor;
2588  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2589  Steps.push_back(S);
2590}
2591
2592void InitializationSequence::AddZeroInitializationStep(QualType T) {
2593  Step S;
2594  S.Kind = SK_ZeroInitialization;
2595  S.Type = T;
2596  Steps.push_back(S);
2597}
2598
2599void InitializationSequence::AddCAssignmentStep(QualType T) {
2600  Step S;
2601  S.Kind = SK_CAssignment;
2602  S.Type = T;
2603  Steps.push_back(S);
2604}
2605
2606void InitializationSequence::AddStringInitStep(QualType T) {
2607  Step S;
2608  S.Kind = SK_StringInit;
2609  S.Type = T;
2610  Steps.push_back(S);
2611}
2612
2613void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2614  Step S;
2615  S.Kind = SK_ObjCObjectConversion;
2616  S.Type = T;
2617  Steps.push_back(S);
2618}
2619
2620void InitializationSequence::AddArrayInitStep(QualType T) {
2621  Step S;
2622  S.Kind = SK_ArrayInit;
2623  S.Type = T;
2624  Steps.push_back(S);
2625}
2626
2627void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2628  Step S;
2629  S.Kind = SK_ParenthesizedArrayInit;
2630  S.Type = T;
2631  Steps.push_back(S);
2632}
2633
2634void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2635                                                              bool shouldCopy) {
2636  Step s;
2637  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2638                       : SK_PassByIndirectRestore);
2639  s.Type = type;
2640  Steps.push_back(s);
2641}
2642
2643void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2644  Step S;
2645  S.Kind = SK_ProduceObjCObject;
2646  S.Type = T;
2647  Steps.push_back(S);
2648}
2649
2650void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2651  Step S;
2652  S.Kind = SK_StdInitializerList;
2653  S.Type = T;
2654  Steps.push_back(S);
2655}
2656
2657void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
2658  Step S;
2659  S.Kind = SK_OCLSamplerInit;
2660  S.Type = T;
2661  Steps.push_back(S);
2662}
2663
2664void InitializationSequence::AddOCLZeroEventStep(QualType T) {
2665  Step S;
2666  S.Kind = SK_OCLZeroEvent;
2667  S.Type = T;
2668  Steps.push_back(S);
2669}
2670
2671void InitializationSequence::RewrapReferenceInitList(QualType T,
2672                                                     InitListExpr *Syntactic) {
2673  assert(Syntactic->getNumInits() == 1 &&
2674         "Can only rewrap trivial init lists.");
2675  Step S;
2676  S.Kind = SK_UnwrapInitList;
2677  S.Type = Syntactic->getInit(0)->getType();
2678  Steps.insert(Steps.begin(), S);
2679
2680  S.Kind = SK_RewrapInitList;
2681  S.Type = T;
2682  S.WrappingSyntacticList = Syntactic;
2683  Steps.push_back(S);
2684}
2685
2686void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2687                                                OverloadingResult Result) {
2688  setSequenceKind(FailedSequence);
2689  this->Failure = Failure;
2690  this->FailedOverloadResult = Result;
2691}
2692
2693//===----------------------------------------------------------------------===//
2694// Attempt initialization
2695//===----------------------------------------------------------------------===//
2696
2697static void MaybeProduceObjCObject(Sema &S,
2698                                   InitializationSequence &Sequence,
2699                                   const InitializedEntity &Entity) {
2700  if (!S.getLangOpts().ObjCAutoRefCount) return;
2701
2702  /// When initializing a parameter, produce the value if it's marked
2703  /// __attribute__((ns_consumed)).
2704  if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2705    if (!Entity.isParameterConsumed())
2706      return;
2707
2708    assert(Entity.getType()->isObjCRetainableType() &&
2709           "consuming an object of unretainable type?");
2710    Sequence.AddProduceObjCObjectStep(Entity.getType());
2711
2712  /// When initializing a return value, if the return type is a
2713  /// retainable type, then returns need to immediately retain the
2714  /// object.  If an autorelease is required, it will be done at the
2715  /// last instant.
2716  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2717    if (!Entity.getType()->isObjCRetainableType())
2718      return;
2719
2720    Sequence.AddProduceObjCObjectStep(Entity.getType());
2721  }
2722}
2723
2724/// \brief When initializing from init list via constructor, handle
2725/// initialization of an object of type std::initializer_list<T>.
2726///
2727/// \return true if we have handled initialization of an object of type
2728/// std::initializer_list<T>, false otherwise.
2729static bool TryInitializerListConstruction(Sema &S,
2730                                           InitListExpr *List,
2731                                           QualType DestType,
2732                                           InitializationSequence &Sequence) {
2733  QualType E;
2734  if (!S.isStdInitializerList(DestType, &E))
2735    return false;
2736
2737  // Check that each individual element can be copy-constructed. But since we
2738  // have no place to store further information, we'll recalculate everything
2739  // later.
2740  InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2741      S.Context.getConstantArrayType(E,
2742          llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2743                      List->getNumInits()),
2744          ArrayType::Normal, 0));
2745  InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2746      0, HiddenArray);
2747  for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2748    Element.setElementIndex(i);
2749    if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2750      Sequence.SetFailed(
2751          InitializationSequence::FK_InitListElementCopyFailure);
2752      return true;
2753    }
2754  }
2755  Sequence.AddStdInitializerListConstructionStep(DestType);
2756  return true;
2757}
2758
2759static OverloadingResult
2760ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2761                           Expr **Args, unsigned NumArgs,
2762                           OverloadCandidateSet &CandidateSet,
2763                           ArrayRef<NamedDecl *> Ctors,
2764                           OverloadCandidateSet::iterator &Best,
2765                           bool CopyInitializing, bool AllowExplicit,
2766                           bool OnlyListConstructors, bool InitListSyntax) {
2767  CandidateSet.clear();
2768
2769  for (ArrayRef<NamedDecl *>::iterator
2770         Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2771    NamedDecl *D = *Con;
2772    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2773    bool SuppressUserConversions = false;
2774
2775    // Find the constructor (which may be a template).
2776    CXXConstructorDecl *Constructor = 0;
2777    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2778    if (ConstructorTmpl)
2779      Constructor = cast<CXXConstructorDecl>(
2780                                           ConstructorTmpl->getTemplatedDecl());
2781    else {
2782      Constructor = cast<CXXConstructorDecl>(D);
2783
2784      // If we're performing copy initialization using a copy constructor, we
2785      // suppress user-defined conversions on the arguments. We do the same for
2786      // move constructors.
2787      if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2788          Constructor->isCopyOrMoveConstructor())
2789        SuppressUserConversions = true;
2790    }
2791
2792    if (!Constructor->isInvalidDecl() &&
2793        (AllowExplicit || !Constructor->isExplicit()) &&
2794        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2795      if (ConstructorTmpl)
2796        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2797                                       /*ExplicitArgs*/ 0,
2798                                       llvm::makeArrayRef(Args, NumArgs),
2799                                       CandidateSet, SuppressUserConversions);
2800      else {
2801        // C++ [over.match.copy]p1:
2802        //   - When initializing a temporary to be bound to the first parameter
2803        //     of a constructor that takes a reference to possibly cv-qualified
2804        //     T as its first argument, called with a single argument in the
2805        //     context of direct-initialization, explicit conversion functions
2806        //     are also considered.
2807        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2808                                 NumArgs == 1 &&
2809                                 Constructor->isCopyOrMoveConstructor();
2810        S.AddOverloadCandidate(Constructor, FoundDecl,
2811                               llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2812                               SuppressUserConversions,
2813                               /*PartialOverloading=*/false,
2814                               /*AllowExplicit=*/AllowExplicitConv);
2815      }
2816    }
2817  }
2818
2819  // Perform overload resolution and return the result.
2820  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2821}
2822
2823/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2824/// enumerates the constructors of the initialized entity and performs overload
2825/// resolution to select the best.
2826/// If InitListSyntax is true, this is list-initialization of a non-aggregate
2827/// class type.
2828static void TryConstructorInitialization(Sema &S,
2829                                         const InitializedEntity &Entity,
2830                                         const InitializationKind &Kind,
2831                                         Expr **Args, unsigned NumArgs,
2832                                         QualType DestType,
2833                                         InitializationSequence &Sequence,
2834                                         bool InitListSyntax = false) {
2835  assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2836         "InitListSyntax must come with a single initializer list argument.");
2837
2838  // The type we're constructing needs to be complete.
2839  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2840    Sequence.setIncompleteTypeFailure(DestType);
2841    return;
2842  }
2843
2844  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2845  assert(DestRecordType && "Constructor initialization requires record type");
2846  CXXRecordDecl *DestRecordDecl
2847    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2848
2849  // Build the candidate set directly in the initialization sequence
2850  // structure, so that it will persist if we fail.
2851  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2852
2853  // Determine whether we are allowed to call explicit constructors or
2854  // explicit conversion operators.
2855  bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2856  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2857
2858  //   - Otherwise, if T is a class type, constructors are considered. The
2859  //     applicable constructors are enumerated, and the best one is chosen
2860  //     through overload resolution.
2861  DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
2862  // The container holding the constructors can under certain conditions
2863  // be changed while iterating (e.g. because of deserialization).
2864  // To be safe we copy the lookup results to a new container.
2865  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
2866
2867  OverloadingResult Result = OR_No_Viable_Function;
2868  OverloadCandidateSet::iterator Best;
2869  bool AsInitializerList = false;
2870
2871  // C++11 [over.match.list]p1:
2872  //   When objects of non-aggregate type T are list-initialized, overload
2873  //   resolution selects the constructor in two phases:
2874  //   - Initially, the candidate functions are the initializer-list
2875  //     constructors of the class T and the argument list consists of the
2876  //     initializer list as a single argument.
2877  if (InitListSyntax) {
2878    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2879    AsInitializerList = true;
2880
2881    // If the initializer list has no elements and T has a default constructor,
2882    // the first phase is omitted.
2883    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
2884      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2885                                          CandidateSet, Ctors, Best,
2886                                          CopyInitialization, AllowExplicit,
2887                                          /*OnlyListConstructor=*/true,
2888                                          InitListSyntax);
2889
2890    // Time to unwrap the init list.
2891    Args = ILE->getInits();
2892    NumArgs = ILE->getNumInits();
2893  }
2894
2895  // C++11 [over.match.list]p1:
2896  //   - If no viable initializer-list constructor is found, overload resolution
2897  //     is performed again, where the candidate functions are all the
2898  //     constructors of the class T and the argument list consists of the
2899  //     elements of the initializer list.
2900  if (Result == OR_No_Viable_Function) {
2901    AsInitializerList = false;
2902    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2903                                        CandidateSet, Ctors, Best,
2904                                        CopyInitialization, AllowExplicit,
2905                                        /*OnlyListConstructors=*/false,
2906                                        InitListSyntax);
2907  }
2908  if (Result) {
2909    Sequence.SetOverloadFailure(InitListSyntax ?
2910                      InitializationSequence::FK_ListConstructorOverloadFailed :
2911                      InitializationSequence::FK_ConstructorOverloadFailed,
2912                                Result);
2913    return;
2914  }
2915
2916  // C++11 [dcl.init]p6:
2917  //   If a program calls for the default initialization of an object
2918  //   of a const-qualified type T, T shall be a class type with a
2919  //   user-provided default constructor.
2920  if (Kind.getKind() == InitializationKind::IK_Default &&
2921      Entity.getType().isConstQualified() &&
2922      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2923    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2924    return;
2925  }
2926
2927  // C++11 [over.match.list]p1:
2928  //   In copy-list-initialization, if an explicit constructor is chosen, the
2929  //   initializer is ill-formed.
2930  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2931  if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2932    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2933    return;
2934  }
2935
2936  // Add the constructor initialization step. Any cv-qualification conversion is
2937  // subsumed by the initialization.
2938  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2939  Sequence.AddConstructorInitializationStep(CtorDecl,
2940                                            Best->FoundDecl.getAccess(),
2941                                            DestType, HadMultipleCandidates,
2942                                            InitListSyntax, AsInitializerList);
2943}
2944
2945static bool
2946ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2947                                             Expr *Initializer,
2948                                             QualType &SourceType,
2949                                             QualType &UnqualifiedSourceType,
2950                                             QualType UnqualifiedTargetType,
2951                                             InitializationSequence &Sequence) {
2952  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2953        S.Context.OverloadTy) {
2954    DeclAccessPair Found;
2955    bool HadMultipleCandidates = false;
2956    if (FunctionDecl *Fn
2957        = S.ResolveAddressOfOverloadedFunction(Initializer,
2958                                               UnqualifiedTargetType,
2959                                               false, Found,
2960                                               &HadMultipleCandidates)) {
2961      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2962                                                HadMultipleCandidates);
2963      SourceType = Fn->getType();
2964      UnqualifiedSourceType = SourceType.getUnqualifiedType();
2965    } else if (!UnqualifiedTargetType->isRecordType()) {
2966      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2967      return true;
2968    }
2969  }
2970  return false;
2971}
2972
2973static void TryReferenceInitializationCore(Sema &S,
2974                                           const InitializedEntity &Entity,
2975                                           const InitializationKind &Kind,
2976                                           Expr *Initializer,
2977                                           QualType cv1T1, QualType T1,
2978                                           Qualifiers T1Quals,
2979                                           QualType cv2T2, QualType T2,
2980                                           Qualifiers T2Quals,
2981                                           InitializationSequence &Sequence);
2982
2983static void TryValueInitialization(Sema &S,
2984                                   const InitializedEntity &Entity,
2985                                   const InitializationKind &Kind,
2986                                   InitializationSequence &Sequence,
2987                                   InitListExpr *InitList = 0);
2988
2989static void TryListInitialization(Sema &S,
2990                                  const InitializedEntity &Entity,
2991                                  const InitializationKind &Kind,
2992                                  InitListExpr *InitList,
2993                                  InitializationSequence &Sequence);
2994
2995/// \brief Attempt list initialization of a reference.
2996static void TryReferenceListInitialization(Sema &S,
2997                                           const InitializedEntity &Entity,
2998                                           const InitializationKind &Kind,
2999                                           InitListExpr *InitList,
3000                                           InitializationSequence &Sequence)
3001{
3002  // First, catch C++03 where this isn't possible.
3003  if (!S.getLangOpts().CPlusPlus11) {
3004    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3005    return;
3006  }
3007
3008  QualType DestType = Entity.getType();
3009  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3010  Qualifiers T1Quals;
3011  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3012
3013  // Reference initialization via an initializer list works thus:
3014  // If the initializer list consists of a single element that is
3015  // reference-related to the referenced type, bind directly to that element
3016  // (possibly creating temporaries).
3017  // Otherwise, initialize a temporary with the initializer list and
3018  // bind to that.
3019  if (InitList->getNumInits() == 1) {
3020    Expr *Initializer = InitList->getInit(0);
3021    QualType cv2T2 = Initializer->getType();
3022    Qualifiers T2Quals;
3023    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3024
3025    // If this fails, creating a temporary wouldn't work either.
3026    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3027                                                     T1, Sequence))
3028      return;
3029
3030    SourceLocation DeclLoc = Initializer->getLocStart();
3031    bool dummy1, dummy2, dummy3;
3032    Sema::ReferenceCompareResult RefRelationship
3033      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3034                                       dummy2, dummy3);
3035    if (RefRelationship >= Sema::Ref_Related) {
3036      // Try to bind the reference here.
3037      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3038                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3039      if (Sequence)
3040        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3041      return;
3042    }
3043
3044    // Update the initializer if we've resolved an overloaded function.
3045    if (Sequence.step_begin() != Sequence.step_end())
3046      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3047  }
3048
3049  // Not reference-related. Create a temporary and bind to that.
3050  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3051
3052  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3053  if (Sequence) {
3054    if (DestType->isRValueReferenceType() ||
3055        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3056      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3057    else
3058      Sequence.SetFailed(
3059          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3060  }
3061}
3062
3063/// \brief Attempt list initialization (C++0x [dcl.init.list])
3064static void TryListInitialization(Sema &S,
3065                                  const InitializedEntity &Entity,
3066                                  const InitializationKind &Kind,
3067                                  InitListExpr *InitList,
3068                                  InitializationSequence &Sequence) {
3069  QualType DestType = Entity.getType();
3070
3071  // C++ doesn't allow scalar initialization with more than one argument.
3072  // But C99 complex numbers are scalars and it makes sense there.
3073  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3074      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3075    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3076    return;
3077  }
3078  if (DestType->isReferenceType()) {
3079    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3080    return;
3081  }
3082  if (DestType->isRecordType()) {
3083    if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3084      Sequence.setIncompleteTypeFailure(DestType);
3085      return;
3086    }
3087
3088    // C++11 [dcl.init.list]p3:
3089    //   - If T is an aggregate, aggregate initialization is performed.
3090    if (!DestType->isAggregateType()) {
3091      if (S.getLangOpts().CPlusPlus11) {
3092        //   - Otherwise, if the initializer list has no elements and T is a
3093        //     class type with a default constructor, the object is
3094        //     value-initialized.
3095        if (InitList->getNumInits() == 0) {
3096          CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3097          if (RD->hasDefaultConstructor()) {
3098            TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3099            return;
3100          }
3101        }
3102
3103        //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3104        //     an initializer_list object constructed [...]
3105        if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3106          return;
3107
3108        //   - Otherwise, if T is a class type, constructors are considered.
3109        Expr *Arg = InitList;
3110        TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3111                                     Sequence, /*InitListSyntax*/true);
3112      } else
3113        Sequence.SetFailed(
3114            InitializationSequence::FK_InitListBadDestinationType);
3115      return;
3116    }
3117  }
3118
3119  InitListChecker CheckInitList(S, Entity, InitList,
3120          DestType, /*VerifyOnly=*/true,
3121          Kind.getKind() != InitializationKind::IK_DirectList ||
3122            !S.getLangOpts().CPlusPlus11);
3123  if (CheckInitList.HadError()) {
3124    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3125    return;
3126  }
3127
3128  // Add the list initialization step with the built init list.
3129  Sequence.AddListInitializationStep(DestType);
3130}
3131
3132/// \brief Try a reference initialization that involves calling a conversion
3133/// function.
3134static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3135                                             const InitializedEntity &Entity,
3136                                             const InitializationKind &Kind,
3137                                             Expr *Initializer,
3138                                             bool AllowRValues,
3139                                             InitializationSequence &Sequence) {
3140  QualType DestType = Entity.getType();
3141  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3142  QualType T1 = cv1T1.getUnqualifiedType();
3143  QualType cv2T2 = Initializer->getType();
3144  QualType T2 = cv2T2.getUnqualifiedType();
3145
3146  bool DerivedToBase;
3147  bool ObjCConversion;
3148  bool ObjCLifetimeConversion;
3149  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3150                                         T1, T2, DerivedToBase,
3151                                         ObjCConversion,
3152                                         ObjCLifetimeConversion) &&
3153         "Must have incompatible references when binding via conversion");
3154  (void)DerivedToBase;
3155  (void)ObjCConversion;
3156  (void)ObjCLifetimeConversion;
3157
3158  // Build the candidate set directly in the initialization sequence
3159  // structure, so that it will persist if we fail.
3160  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3161  CandidateSet.clear();
3162
3163  // Determine whether we are allowed to call explicit constructors or
3164  // explicit conversion operators.
3165  bool AllowExplicit = Kind.AllowExplicit();
3166  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3167
3168  const RecordType *T1RecordType = 0;
3169  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3170      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3171    // The type we're converting to is a class type. Enumerate its constructors
3172    // to see if there is a suitable conversion.
3173    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3174
3175    DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3176    // The container holding the constructors can under certain conditions
3177    // be changed while iterating (e.g. because of deserialization).
3178    // To be safe we copy the lookup results to a new container.
3179    SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3180    for (SmallVector<NamedDecl*, 16>::iterator
3181           CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3182      NamedDecl *D = *CI;
3183      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3184
3185      // Find the constructor (which may be a template).
3186      CXXConstructorDecl *Constructor = 0;
3187      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3188      if (ConstructorTmpl)
3189        Constructor = cast<CXXConstructorDecl>(
3190                                         ConstructorTmpl->getTemplatedDecl());
3191      else
3192        Constructor = cast<CXXConstructorDecl>(D);
3193
3194      if (!Constructor->isInvalidDecl() &&
3195          Constructor->isConvertingConstructor(AllowExplicit)) {
3196        if (ConstructorTmpl)
3197          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3198                                         /*ExplicitArgs*/ 0,
3199                                         Initializer, CandidateSet,
3200                                         /*SuppressUserConversions=*/true);
3201        else
3202          S.AddOverloadCandidate(Constructor, FoundDecl,
3203                                 Initializer, CandidateSet,
3204                                 /*SuppressUserConversions=*/true);
3205      }
3206    }
3207  }
3208  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3209    return OR_No_Viable_Function;
3210
3211  const RecordType *T2RecordType = 0;
3212  if ((T2RecordType = T2->getAs<RecordType>()) &&
3213      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3214    // The type we're converting from is a class type, enumerate its conversion
3215    // functions.
3216    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3217
3218    std::pair<CXXRecordDecl::conversion_iterator,
3219              CXXRecordDecl::conversion_iterator>
3220      Conversions = T2RecordDecl->getVisibleConversionFunctions();
3221    for (CXXRecordDecl::conversion_iterator
3222           I = Conversions.first, E = Conversions.second; I != E; ++I) {
3223      NamedDecl *D = *I;
3224      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3225      if (isa<UsingShadowDecl>(D))
3226        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3227
3228      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3229      CXXConversionDecl *Conv;
3230      if (ConvTemplate)
3231        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3232      else
3233        Conv = cast<CXXConversionDecl>(D);
3234
3235      // If the conversion function doesn't return a reference type,
3236      // it can't be considered for this conversion unless we're allowed to
3237      // consider rvalues.
3238      // FIXME: Do we need to make sure that we only consider conversion
3239      // candidates with reference-compatible results? That might be needed to
3240      // break recursion.
3241      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3242          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3243        if (ConvTemplate)
3244          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3245                                           ActingDC, Initializer,
3246                                           DestType, CandidateSet);
3247        else
3248          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3249                                   Initializer, DestType, CandidateSet);
3250      }
3251    }
3252  }
3253  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3254    return OR_No_Viable_Function;
3255
3256  SourceLocation DeclLoc = Initializer->getLocStart();
3257
3258  // Perform overload resolution. If it fails, return the failed result.
3259  OverloadCandidateSet::iterator Best;
3260  if (OverloadingResult Result
3261        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3262    return Result;
3263
3264  FunctionDecl *Function = Best->Function;
3265  // This is the overload that will be used for this initialization step if we
3266  // use this initialization. Mark it as referenced.
3267  Function->setReferenced();
3268
3269  // Compute the returned type of the conversion.
3270  if (isa<CXXConversionDecl>(Function))
3271    T2 = Function->getResultType();
3272  else
3273    T2 = cv1T1;
3274
3275  // Add the user-defined conversion step.
3276  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3277  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3278                                 T2.getNonLValueExprType(S.Context),
3279                                 HadMultipleCandidates);
3280
3281  // Determine whether we need to perform derived-to-base or
3282  // cv-qualification adjustments.
3283  ExprValueKind VK = VK_RValue;
3284  if (T2->isLValueReferenceType())
3285    VK = VK_LValue;
3286  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3287    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3288
3289  bool NewDerivedToBase = false;
3290  bool NewObjCConversion = false;
3291  bool NewObjCLifetimeConversion = false;
3292  Sema::ReferenceCompareResult NewRefRelationship
3293    = S.CompareReferenceRelationship(DeclLoc, T1,
3294                                     T2.getNonLValueExprType(S.Context),
3295                                     NewDerivedToBase, NewObjCConversion,
3296                                     NewObjCLifetimeConversion);
3297  if (NewRefRelationship == Sema::Ref_Incompatible) {
3298    // If the type we've converted to is not reference-related to the
3299    // type we're looking for, then there is another conversion step
3300    // we need to perform to produce a temporary of the right type
3301    // that we'll be binding to.
3302    ImplicitConversionSequence ICS;
3303    ICS.setStandard();
3304    ICS.Standard = Best->FinalConversion;
3305    T2 = ICS.Standard.getToType(2);
3306    Sequence.AddConversionSequenceStep(ICS, T2);
3307  } else if (NewDerivedToBase)
3308    Sequence.AddDerivedToBaseCastStep(
3309                                S.Context.getQualifiedType(T1,
3310                                  T2.getNonReferenceType().getQualifiers()),
3311                                      VK);
3312  else if (NewObjCConversion)
3313    Sequence.AddObjCObjectConversionStep(
3314                                S.Context.getQualifiedType(T1,
3315                                  T2.getNonReferenceType().getQualifiers()));
3316
3317  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3318    Sequence.AddQualificationConversionStep(cv1T1, VK);
3319
3320  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3321  return OR_Success;
3322}
3323
3324static void CheckCXX98CompatAccessibleCopy(Sema &S,
3325                                           const InitializedEntity &Entity,
3326                                           Expr *CurInitExpr);
3327
3328/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3329static void TryReferenceInitialization(Sema &S,
3330                                       const InitializedEntity &Entity,
3331                                       const InitializationKind &Kind,
3332                                       Expr *Initializer,
3333                                       InitializationSequence &Sequence) {
3334  QualType DestType = Entity.getType();
3335  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3336  Qualifiers T1Quals;
3337  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3338  QualType cv2T2 = Initializer->getType();
3339  Qualifiers T2Quals;
3340  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3341
3342  // If the initializer is the address of an overloaded function, try
3343  // to resolve the overloaded function. If all goes well, T2 is the
3344  // type of the resulting function.
3345  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3346                                                   T1, Sequence))
3347    return;
3348
3349  // Delegate everything else to a subfunction.
3350  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3351                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
3352}
3353
3354/// \brief Reference initialization without resolving overloaded functions.
3355static void TryReferenceInitializationCore(Sema &S,
3356                                           const InitializedEntity &Entity,
3357                                           const InitializationKind &Kind,
3358                                           Expr *Initializer,
3359                                           QualType cv1T1, QualType T1,
3360                                           Qualifiers T1Quals,
3361                                           QualType cv2T2, QualType T2,
3362                                           Qualifiers T2Quals,
3363                                           InitializationSequence &Sequence) {
3364  QualType DestType = Entity.getType();
3365  SourceLocation DeclLoc = Initializer->getLocStart();
3366  // Compute some basic properties of the types and the initializer.
3367  bool isLValueRef = DestType->isLValueReferenceType();
3368  bool isRValueRef = !isLValueRef;
3369  bool DerivedToBase = false;
3370  bool ObjCConversion = false;
3371  bool ObjCLifetimeConversion = false;
3372  Expr::Classification InitCategory = Initializer->Classify(S.Context);
3373  Sema::ReferenceCompareResult RefRelationship
3374    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3375                                     ObjCConversion, ObjCLifetimeConversion);
3376
3377  // C++0x [dcl.init.ref]p5:
3378  //   A reference to type "cv1 T1" is initialized by an expression of type
3379  //   "cv2 T2" as follows:
3380  //
3381  //     - If the reference is an lvalue reference and the initializer
3382  //       expression
3383  // Note the analogous bullet points for rvlaue refs to functions. Because
3384  // there are no function rvalues in C++, rvalue refs to functions are treated
3385  // like lvalue refs.
3386  OverloadingResult ConvOvlResult = OR_Success;
3387  bool T1Function = T1->isFunctionType();
3388  if (isLValueRef || T1Function) {
3389    if (InitCategory.isLValue() &&
3390        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3391         (Kind.isCStyleOrFunctionalCast() &&
3392          RefRelationship == Sema::Ref_Related))) {
3393      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3394      //     reference-compatible with "cv2 T2," or
3395      //
3396      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3397      // bit-field when we're determining whether the reference initialization
3398      // can occur. However, we do pay attention to whether it is a bit-field
3399      // to decide whether we're actually binding to a temporary created from
3400      // the bit-field.
3401      if (DerivedToBase)
3402        Sequence.AddDerivedToBaseCastStep(
3403                         S.Context.getQualifiedType(T1, T2Quals),
3404                         VK_LValue);
3405      else if (ObjCConversion)
3406        Sequence.AddObjCObjectConversionStep(
3407                                     S.Context.getQualifiedType(T1, T2Quals));
3408
3409      if (T1Quals != T2Quals)
3410        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3411      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3412        (Initializer->getBitField() || Initializer->refersToVectorElement());
3413      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3414      return;
3415    }
3416
3417    //     - has a class type (i.e., T2 is a class type), where T1 is not
3418    //       reference-related to T2, and can be implicitly converted to an
3419    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3420    //       with "cv3 T3" (this conversion is selected by enumerating the
3421    //       applicable conversion functions (13.3.1.6) and choosing the best
3422    //       one through overload resolution (13.3)),
3423    // If we have an rvalue ref to function type here, the rhs must be
3424    // an rvalue.
3425    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3426        (isLValueRef || InitCategory.isRValue())) {
3427      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3428                                                       Initializer,
3429                                                   /*AllowRValues=*/isRValueRef,
3430                                                       Sequence);
3431      if (ConvOvlResult == OR_Success)
3432        return;
3433      if (ConvOvlResult != OR_No_Viable_Function) {
3434        Sequence.SetOverloadFailure(
3435                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3436                                    ConvOvlResult);
3437      }
3438    }
3439  }
3440
3441  //     - Otherwise, the reference shall be an lvalue reference to a
3442  //       non-volatile const type (i.e., cv1 shall be const), or the reference
3443  //       shall be an rvalue reference.
3444  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3445    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3446      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3447    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3448      Sequence.SetOverloadFailure(
3449                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3450                                  ConvOvlResult);
3451    else
3452      Sequence.SetFailed(InitCategory.isLValue()
3453        ? (RefRelationship == Sema::Ref_Related
3454             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3455             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3456        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3457
3458    return;
3459  }
3460
3461  //    - If the initializer expression
3462  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3463  //        "cv1 T1" is reference-compatible with "cv2 T2"
3464  // Note: functions are handled below.
3465  if (!T1Function &&
3466      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3467       (Kind.isCStyleOrFunctionalCast() &&
3468        RefRelationship == Sema::Ref_Related)) &&
3469      (InitCategory.isXValue() ||
3470       (InitCategory.isPRValue() && T2->isRecordType()) ||
3471       (InitCategory.isPRValue() && T2->isArrayType()))) {
3472    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3473    if (InitCategory.isPRValue() && T2->isRecordType()) {
3474      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3475      // compiler the freedom to perform a copy here or bind to the
3476      // object, while C++0x requires that we bind directly to the
3477      // object. Hence, we always bind to the object without making an
3478      // extra copy. However, in C++03 requires that we check for the
3479      // presence of a suitable copy constructor:
3480      //
3481      //   The constructor that would be used to make the copy shall
3482      //   be callable whether or not the copy is actually done.
3483      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3484        Sequence.AddExtraneousCopyToTemporary(cv2T2);
3485      else if (S.getLangOpts().CPlusPlus11)
3486        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3487    }
3488
3489    if (DerivedToBase)
3490      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3491                                        ValueKind);
3492    else if (ObjCConversion)
3493      Sequence.AddObjCObjectConversionStep(
3494                                       S.Context.getQualifiedType(T1, T2Quals));
3495
3496    if (T1Quals != T2Quals)
3497      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3498    Sequence.AddReferenceBindingStep(cv1T1,
3499                                 /*bindingTemporary=*/InitCategory.isPRValue());
3500    return;
3501  }
3502
3503  //       - has a class type (i.e., T2 is a class type), where T1 is not
3504  //         reference-related to T2, and can be implicitly converted to an
3505  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3506  //         where "cv1 T1" is reference-compatible with "cv3 T3",
3507  if (T2->isRecordType()) {
3508    if (RefRelationship == Sema::Ref_Incompatible) {
3509      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3510                                                       Kind, Initializer,
3511                                                       /*AllowRValues=*/true,
3512                                                       Sequence);
3513      if (ConvOvlResult)
3514        Sequence.SetOverloadFailure(
3515                      InitializationSequence::FK_ReferenceInitOverloadFailed,
3516                                    ConvOvlResult);
3517
3518      return;
3519    }
3520
3521    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3522    return;
3523  }
3524
3525  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3526  //        from the initializer expression using the rules for a non-reference
3527  //        copy initialization (8.5). The reference is then bound to the
3528  //        temporary. [...]
3529
3530  // Determine whether we are allowed to call explicit constructors or
3531  // explicit conversion operators.
3532  bool AllowExplicit = Kind.AllowExplicit();
3533
3534  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3535
3536  ImplicitConversionSequence ICS
3537    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3538                              /*SuppressUserConversions*/ false,
3539                              AllowExplicit,
3540                              /*FIXME:InOverloadResolution=*/false,
3541                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3542                              /*AllowObjCWritebackConversion=*/false);
3543
3544  if (ICS.isBad()) {
3545    // FIXME: Use the conversion function set stored in ICS to turn
3546    // this into an overloading ambiguity diagnostic. However, we need
3547    // to keep that set as an OverloadCandidateSet rather than as some
3548    // other kind of set.
3549    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3550      Sequence.SetOverloadFailure(
3551                        InitializationSequence::FK_ReferenceInitOverloadFailed,
3552                                  ConvOvlResult);
3553    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3554      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3555    else
3556      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3557    return;
3558  } else {
3559    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3560  }
3561
3562  //        [...] If T1 is reference-related to T2, cv1 must be the
3563  //        same cv-qualification as, or greater cv-qualification
3564  //        than, cv2; otherwise, the program is ill-formed.
3565  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3566  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3567  if (RefRelationship == Sema::Ref_Related &&
3568      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3569    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3570    return;
3571  }
3572
3573  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3574  //   reference, the initializer expression shall not be an lvalue.
3575  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3576      InitCategory.isLValue()) {
3577    Sequence.SetFailed(
3578                    InitializationSequence::FK_RValueReferenceBindingToLValue);
3579    return;
3580  }
3581
3582  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3583  return;
3584}
3585
3586/// \brief Attempt character array initialization from a string literal
3587/// (C++ [dcl.init.string], C99 6.7.8).
3588static void TryStringLiteralInitialization(Sema &S,
3589                                           const InitializedEntity &Entity,
3590                                           const InitializationKind &Kind,
3591                                           Expr *Initializer,
3592                                       InitializationSequence &Sequence) {
3593  Sequence.AddStringInitStep(Entity.getType());
3594}
3595
3596/// \brief Attempt value initialization (C++ [dcl.init]p7).
3597static void TryValueInitialization(Sema &S,
3598                                   const InitializedEntity &Entity,
3599                                   const InitializationKind &Kind,
3600                                   InitializationSequence &Sequence,
3601                                   InitListExpr *InitList) {
3602  assert((!InitList || InitList->getNumInits() == 0) &&
3603         "Shouldn't use value-init for non-empty init lists");
3604
3605  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3606  //
3607  //   To value-initialize an object of type T means:
3608  QualType T = Entity.getType();
3609
3610  //     -- if T is an array type, then each element is value-initialized;
3611  T = S.Context.getBaseElementType(T);
3612
3613  if (const RecordType *RT = T->getAs<RecordType>()) {
3614    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3615      bool NeedZeroInitialization = true;
3616      if (!S.getLangOpts().CPlusPlus11) {
3617        // C++98:
3618        // -- if T is a class type (clause 9) with a user-declared constructor
3619        //    (12.1), then the default constructor for T is called (and the
3620        //    initialization is ill-formed if T has no accessible default
3621        //    constructor);
3622        if (ClassDecl->hasUserDeclaredConstructor())
3623          NeedZeroInitialization = false;
3624      } else {
3625        // C++11:
3626        // -- if T is a class type (clause 9) with either no default constructor
3627        //    (12.1 [class.ctor]) or a default constructor that is user-provided
3628        //    or deleted, then the object is default-initialized;
3629        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3630        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3631          NeedZeroInitialization = false;
3632      }
3633
3634      // -- if T is a (possibly cv-qualified) non-union class type without a
3635      //    user-provided or deleted default constructor, then the object is
3636      //    zero-initialized and, if T has a non-trivial default constructor,
3637      //    default-initialized;
3638      // The 'non-union' here was removed by DR1502. The 'non-trivial default
3639      // constructor' part was removed by DR1507.
3640      if (NeedZeroInitialization)
3641        Sequence.AddZeroInitializationStep(Entity.getType());
3642
3643      // C++03:
3644      // -- if T is a non-union class type without a user-declared constructor,
3645      //    then every non-static data member and base class component of T is
3646      //    value-initialized;
3647      // [...] A program that calls for [...] value-initialization of an
3648      // entity of reference type is ill-formed.
3649      //
3650      // C++11 doesn't need this handling, because value-initialization does not
3651      // occur recursively there, and the implicit default constructor is
3652      // defined as deleted in the problematic cases.
3653      if (!S.getLangOpts().CPlusPlus11 &&
3654          ClassDecl->hasUninitializedReferenceMember()) {
3655        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
3656        return;
3657      }
3658
3659      // If this is list-value-initialization, pass the empty init list on when
3660      // building the constructor call. This affects the semantics of a few
3661      // things (such as whether an explicit default constructor can be called).
3662      Expr *InitListAsExpr = InitList;
3663      Expr **Args = InitList ? &InitListAsExpr : 0;
3664      unsigned NumArgs = InitList ? 1 : 0;
3665      bool InitListSyntax = InitList;
3666
3667      return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3668                                          Sequence, InitListSyntax);
3669    }
3670  }
3671
3672  Sequence.AddZeroInitializationStep(Entity.getType());
3673}
3674
3675/// \brief Attempt default initialization (C++ [dcl.init]p6).
3676static void TryDefaultInitialization(Sema &S,
3677                                     const InitializedEntity &Entity,
3678                                     const InitializationKind &Kind,
3679                                     InitializationSequence &Sequence) {
3680  assert(Kind.getKind() == InitializationKind::IK_Default);
3681
3682  // C++ [dcl.init]p6:
3683  //   To default-initialize an object of type T means:
3684  //     - if T is an array type, each element is default-initialized;
3685  QualType DestType = S.Context.getBaseElementType(Entity.getType());
3686
3687  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3688  //       constructor for T is called (and the initialization is ill-formed if
3689  //       T has no accessible default constructor);
3690  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3691    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3692    return;
3693  }
3694
3695  //     - otherwise, no initialization is performed.
3696
3697  //   If a program calls for the default initialization of an object of
3698  //   a const-qualified type T, T shall be a class type with a user-provided
3699  //   default constructor.
3700  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3701    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3702    return;
3703  }
3704
3705  // If the destination type has a lifetime property, zero-initialize it.
3706  if (DestType.getQualifiers().hasObjCLifetime()) {
3707    Sequence.AddZeroInitializationStep(Entity.getType());
3708    return;
3709  }
3710}
3711
3712/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3713/// which enumerates all conversion functions and performs overload resolution
3714/// to select the best.
3715static void TryUserDefinedConversion(Sema &S,
3716                                     const InitializedEntity &Entity,
3717                                     const InitializationKind &Kind,
3718                                     Expr *Initializer,
3719                                     InitializationSequence &Sequence) {
3720  QualType DestType = Entity.getType();
3721  assert(!DestType->isReferenceType() && "References are handled elsewhere");
3722  QualType SourceType = Initializer->getType();
3723  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3724         "Must have a class type to perform a user-defined conversion");
3725
3726  // Build the candidate set directly in the initialization sequence
3727  // structure, so that it will persist if we fail.
3728  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3729  CandidateSet.clear();
3730
3731  // Determine whether we are allowed to call explicit constructors or
3732  // explicit conversion operators.
3733  bool AllowExplicit = Kind.AllowExplicit();
3734
3735  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3736    // The type we're converting to is a class type. Enumerate its constructors
3737    // to see if there is a suitable conversion.
3738    CXXRecordDecl *DestRecordDecl
3739      = cast<CXXRecordDecl>(DestRecordType->getDecl());
3740
3741    // Try to complete the type we're converting to.
3742    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3743      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3744      // The container holding the constructors can under certain conditions
3745      // be changed while iterating. To be safe we copy the lookup results
3746      // to a new container.
3747      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
3748      for (SmallVector<NamedDecl*, 8>::iterator
3749             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
3750           Con != ConEnd; ++Con) {
3751        NamedDecl *D = *Con;
3752        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3753
3754        // Find the constructor (which may be a template).
3755        CXXConstructorDecl *Constructor = 0;
3756        FunctionTemplateDecl *ConstructorTmpl
3757          = dyn_cast<FunctionTemplateDecl>(D);
3758        if (ConstructorTmpl)
3759          Constructor = cast<CXXConstructorDecl>(
3760                                           ConstructorTmpl->getTemplatedDecl());
3761        else
3762          Constructor = cast<CXXConstructorDecl>(D);
3763
3764        if (!Constructor->isInvalidDecl() &&
3765            Constructor->isConvertingConstructor(AllowExplicit)) {
3766          if (ConstructorTmpl)
3767            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3768                                           /*ExplicitArgs*/ 0,
3769                                           Initializer, CandidateSet,
3770                                           /*SuppressUserConversions=*/true);
3771          else
3772            S.AddOverloadCandidate(Constructor, FoundDecl,
3773                                   Initializer, CandidateSet,
3774                                   /*SuppressUserConversions=*/true);
3775        }
3776      }
3777    }
3778  }
3779
3780  SourceLocation DeclLoc = Initializer->getLocStart();
3781
3782  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3783    // The type we're converting from is a class type, enumerate its conversion
3784    // functions.
3785
3786    // We can only enumerate the conversion functions for a complete type; if
3787    // the type isn't complete, simply skip this step.
3788    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3789      CXXRecordDecl *SourceRecordDecl
3790        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3791
3792      std::pair<CXXRecordDecl::conversion_iterator,
3793                CXXRecordDecl::conversion_iterator>
3794        Conversions = SourceRecordDecl->getVisibleConversionFunctions();
3795      for (CXXRecordDecl::conversion_iterator
3796             I = Conversions.first, E = Conversions.second; I != E; ++I) {
3797        NamedDecl *D = *I;
3798        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3799        if (isa<UsingShadowDecl>(D))
3800          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3801
3802        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3803        CXXConversionDecl *Conv;
3804        if (ConvTemplate)
3805          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3806        else
3807          Conv = cast<CXXConversionDecl>(D);
3808
3809        if (AllowExplicit || !Conv->isExplicit()) {
3810          if (ConvTemplate)
3811            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3812                                             ActingDC, Initializer, DestType,
3813                                             CandidateSet);
3814          else
3815            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3816                                     Initializer, DestType, CandidateSet);
3817        }
3818      }
3819    }
3820  }
3821
3822  // Perform overload resolution. If it fails, return the failed result.
3823  OverloadCandidateSet::iterator Best;
3824  if (OverloadingResult Result
3825        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3826    Sequence.SetOverloadFailure(
3827                        InitializationSequence::FK_UserConversionOverloadFailed,
3828                                Result);
3829    return;
3830  }
3831
3832  FunctionDecl *Function = Best->Function;
3833  Function->setReferenced();
3834  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3835
3836  if (isa<CXXConstructorDecl>(Function)) {
3837    // Add the user-defined conversion step. Any cv-qualification conversion is
3838    // subsumed by the initialization. Per DR5, the created temporary is of the
3839    // cv-unqualified type of the destination.
3840    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3841                                   DestType.getUnqualifiedType(),
3842                                   HadMultipleCandidates);
3843    return;
3844  }
3845
3846  // Add the user-defined conversion step that calls the conversion function.
3847  QualType ConvType = Function->getCallResultType();
3848  if (ConvType->getAs<RecordType>()) {
3849    // If we're converting to a class type, there may be an copy of
3850    // the resulting temporary object (possible to create an object of
3851    // a base class type). That copy is not a separate conversion, so
3852    // we just make a note of the actual destination type (possibly a
3853    // base class of the type returned by the conversion function) and
3854    // let the user-defined conversion step handle the conversion.
3855    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3856                                   HadMultipleCandidates);
3857    return;
3858  }
3859
3860  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3861                                 HadMultipleCandidates);
3862
3863  // If the conversion following the call to the conversion function
3864  // is interesting, add it as a separate step.
3865  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3866      Best->FinalConversion.Third) {
3867    ImplicitConversionSequence ICS;
3868    ICS.setStandard();
3869    ICS.Standard = Best->FinalConversion;
3870    Sequence.AddConversionSequenceStep(ICS, DestType);
3871  }
3872}
3873
3874/// The non-zero enum values here are indexes into diagnostic alternatives.
3875enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3876
3877/// Determines whether this expression is an acceptable ICR source.
3878static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3879                                         bool isAddressOf, bool &isWeakAccess) {
3880  // Skip parens.
3881  e = e->IgnoreParens();
3882
3883  // Skip address-of nodes.
3884  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3885    if (op->getOpcode() == UO_AddrOf)
3886      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
3887                                isWeakAccess);
3888
3889  // Skip certain casts.
3890  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3891    switch (ce->getCastKind()) {
3892    case CK_Dependent:
3893    case CK_BitCast:
3894    case CK_LValueBitCast:
3895    case CK_NoOp:
3896      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
3897
3898    case CK_ArrayToPointerDecay:
3899      return IIK_nonscalar;
3900
3901    case CK_NullToPointer:
3902      return IIK_okay;
3903
3904    default:
3905      break;
3906    }
3907
3908  // If we have a declaration reference, it had better be a local variable.
3909  } else if (isa<DeclRefExpr>(e)) {
3910    // set isWeakAccess to true, to mean that there will be an implicit
3911    // load which requires a cleanup.
3912    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
3913      isWeakAccess = true;
3914
3915    if (!isAddressOf) return IIK_nonlocal;
3916
3917    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3918    if (!var) return IIK_nonlocal;
3919
3920    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3921
3922  // If we have a conditional operator, check both sides.
3923  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3924    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
3925                                                isWeakAccess))
3926      return iik;
3927
3928    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
3929
3930  // These are never scalar.
3931  } else if (isa<ArraySubscriptExpr>(e)) {
3932    return IIK_nonscalar;
3933
3934  // Otherwise, it needs to be a null pointer constant.
3935  } else {
3936    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3937            ? IIK_okay : IIK_nonlocal);
3938  }
3939
3940  return IIK_nonlocal;
3941}
3942
3943/// Check whether the given expression is a valid operand for an
3944/// indirect copy/restore.
3945static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3946  assert(src->isRValue());
3947  bool isWeakAccess = false;
3948  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
3949  // If isWeakAccess to true, there will be an implicit
3950  // load which requires a cleanup.
3951  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
3952    S.ExprNeedsCleanups = true;
3953
3954  if (iik == IIK_okay) return;
3955
3956  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3957    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3958    << src->getSourceRange();
3959}
3960
3961/// \brief Determine whether we have compatible array types for the
3962/// purposes of GNU by-copy array initialization.
3963static bool hasCompatibleArrayTypes(ASTContext &Context,
3964                                    const ArrayType *Dest,
3965                                    const ArrayType *Source) {
3966  // If the source and destination array types are equivalent, we're
3967  // done.
3968  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3969    return true;
3970
3971  // Make sure that the element types are the same.
3972  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3973    return false;
3974
3975  // The only mismatch we allow is when the destination is an
3976  // incomplete array type and the source is a constant array type.
3977  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3978}
3979
3980static bool tryObjCWritebackConversion(Sema &S,
3981                                       InitializationSequence &Sequence,
3982                                       const InitializedEntity &Entity,
3983                                       Expr *Initializer) {
3984  bool ArrayDecay = false;
3985  QualType ArgType = Initializer->getType();
3986  QualType ArgPointee;
3987  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3988    ArrayDecay = true;
3989    ArgPointee = ArgArrayType->getElementType();
3990    ArgType = S.Context.getPointerType(ArgPointee);
3991  }
3992
3993  // Handle write-back conversion.
3994  QualType ConvertedArgType;
3995  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3996                                   ConvertedArgType))
3997    return false;
3998
3999  // We should copy unless we're passing to an argument explicitly
4000  // marked 'out'.
4001  bool ShouldCopy = true;
4002  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4003    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4004
4005  // Do we need an lvalue conversion?
4006  if (ArrayDecay || Initializer->isGLValue()) {
4007    ImplicitConversionSequence ICS;
4008    ICS.setStandard();
4009    ICS.Standard.setAsIdentityConversion();
4010
4011    QualType ResultType;
4012    if (ArrayDecay) {
4013      ICS.Standard.First = ICK_Array_To_Pointer;
4014      ResultType = S.Context.getPointerType(ArgPointee);
4015    } else {
4016      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4017      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4018    }
4019
4020    Sequence.AddConversionSequenceStep(ICS, ResultType);
4021  }
4022
4023  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4024  return true;
4025}
4026
4027static bool TryOCLSamplerInitialization(Sema &S,
4028                                        InitializationSequence &Sequence,
4029                                        QualType DestType,
4030                                        Expr *Initializer) {
4031  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4032    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4033    return false;
4034
4035  Sequence.AddOCLSamplerInitStep(DestType);
4036  return true;
4037}
4038
4039//
4040// OpenCL 1.2 spec, s6.12.10
4041//
4042// The event argument can also be used to associate the
4043// async_work_group_copy with a previous async copy allowing
4044// an event to be shared by multiple async copies; otherwise
4045// event should be zero.
4046//
4047static bool TryOCLZeroEventInitialization(Sema &S,
4048                                          InitializationSequence &Sequence,
4049                                          QualType DestType,
4050                                          Expr *Initializer) {
4051  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4052      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4053      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4054    return false;
4055
4056  Sequence.AddOCLZeroEventStep(DestType);
4057  return true;
4058}
4059
4060InitializationSequence::InitializationSequence(Sema &S,
4061                                               const InitializedEntity &Entity,
4062                                               const InitializationKind &Kind,
4063                                               Expr **Args,
4064                                               unsigned NumArgs)
4065    : FailedCandidateSet(Kind.getLocation()) {
4066  ASTContext &Context = S.Context;
4067
4068  // C++0x [dcl.init]p16:
4069  //   The semantics of initializers are as follows. The destination type is
4070  //   the type of the object or reference being initialized and the source
4071  //   type is the type of the initializer expression. The source type is not
4072  //   defined when the initializer is a braced-init-list or when it is a
4073  //   parenthesized list of expressions.
4074  QualType DestType = Entity.getType();
4075
4076  if (DestType->isDependentType() ||
4077      Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
4078    SequenceKind = DependentSequence;
4079    return;
4080  }
4081
4082  // Almost everything is a normal sequence.
4083  setSequenceKind(NormalSequence);
4084
4085  for (unsigned I = 0; I != NumArgs; ++I)
4086    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4087      // FIXME: should we be doing this here?
4088      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4089      if (result.isInvalid()) {
4090        SetFailed(FK_PlaceholderType);
4091        return;
4092      }
4093      Args[I] = result.take();
4094    }
4095
4096
4097  QualType SourceType;
4098  Expr *Initializer = 0;
4099  if (NumArgs == 1) {
4100    Initializer = Args[0];
4101    if (!isa<InitListExpr>(Initializer))
4102      SourceType = Initializer->getType();
4103  }
4104
4105  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4106  //       object is list-initialized (8.5.4).
4107  if (Kind.getKind() != InitializationKind::IK_Direct) {
4108    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4109      TryListInitialization(S, Entity, Kind, InitList, *this);
4110      return;
4111    }
4112  }
4113
4114  //     - If the destination type is a reference type, see 8.5.3.
4115  if (DestType->isReferenceType()) {
4116    // C++0x [dcl.init.ref]p1:
4117    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4118    //   (8.3.2), shall be initialized by an object, or function, of type T or
4119    //   by an object that can be converted into a T.
4120    // (Therefore, multiple arguments are not permitted.)
4121    if (NumArgs != 1)
4122      SetFailed(FK_TooManyInitsForReference);
4123    else
4124      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4125    return;
4126  }
4127
4128  //     - If the initializer is (), the object is value-initialized.
4129  if (Kind.getKind() == InitializationKind::IK_Value ||
4130      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4131    TryValueInitialization(S, Entity, Kind, *this);
4132    return;
4133  }
4134
4135  // Handle default initialization.
4136  if (Kind.getKind() == InitializationKind::IK_Default) {
4137    TryDefaultInitialization(S, Entity, Kind, *this);
4138    return;
4139  }
4140
4141  //     - If the destination type is an array of characters, an array of
4142  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4143  //       initializer is a string literal, see 8.5.2.
4144  //     - Otherwise, if the destination type is an array, the program is
4145  //       ill-formed.
4146  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4147    if (Initializer && isa<VariableArrayType>(DestAT)) {
4148      SetFailed(FK_VariableLengthArrayHasInitializer);
4149      return;
4150    }
4151
4152    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4153      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4154      return;
4155    }
4156
4157    // Note: as an GNU C extension, we allow initialization of an
4158    // array from a compound literal that creates an array of the same
4159    // type, so long as the initializer has no side effects.
4160    if (!S.getLangOpts().CPlusPlus && Initializer &&
4161        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4162        Initializer->getType()->isArrayType()) {
4163      const ArrayType *SourceAT
4164        = Context.getAsArrayType(Initializer->getType());
4165      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4166        SetFailed(FK_ArrayTypeMismatch);
4167      else if (Initializer->HasSideEffects(S.Context))
4168        SetFailed(FK_NonConstantArrayInit);
4169      else {
4170        AddArrayInitStep(DestType);
4171      }
4172    }
4173    // Note: as a GNU C++ extension, we allow list-initialization of a
4174    // class member of array type from a parenthesized initializer list.
4175    else if (S.getLangOpts().CPlusPlus &&
4176             Entity.getKind() == InitializedEntity::EK_Member &&
4177             Initializer && isa<InitListExpr>(Initializer)) {
4178      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4179                            *this);
4180      AddParenthesizedArrayInitStep(DestType);
4181    } else if (DestAT->getElementType()->isAnyCharacterType())
4182      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4183    else
4184      SetFailed(FK_ArrayNeedsInitList);
4185
4186    return;
4187  }
4188
4189  // Determine whether we should consider writeback conversions for
4190  // Objective-C ARC.
4191  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4192    Entity.getKind() == InitializedEntity::EK_Parameter;
4193
4194  // We're at the end of the line for C: it's either a write-back conversion
4195  // or it's a C assignment. There's no need to check anything else.
4196  if (!S.getLangOpts().CPlusPlus) {
4197    // If allowed, check whether this is an Objective-C writeback conversion.
4198    if (allowObjCWritebackConversion &&
4199        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4200      return;
4201    }
4202
4203    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4204      return;
4205
4206    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4207      return;
4208
4209    // Handle initialization in C
4210    AddCAssignmentStep(DestType);
4211    MaybeProduceObjCObject(S, *this, Entity);
4212    return;
4213  }
4214
4215  assert(S.getLangOpts().CPlusPlus);
4216
4217  //     - If the destination type is a (possibly cv-qualified) class type:
4218  if (DestType->isRecordType()) {
4219    //     - If the initialization is direct-initialization, or if it is
4220    //       copy-initialization where the cv-unqualified version of the
4221    //       source type is the same class as, or a derived class of, the
4222    //       class of the destination, constructors are considered. [...]
4223    if (Kind.getKind() == InitializationKind::IK_Direct ||
4224        (Kind.getKind() == InitializationKind::IK_Copy &&
4225         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4226          S.IsDerivedFrom(SourceType, DestType))))
4227      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4228                                   Entity.getType(), *this);
4229    //     - Otherwise (i.e., for the remaining copy-initialization cases),
4230    //       user-defined conversion sequences that can convert from the source
4231    //       type to the destination type or (when a conversion function is
4232    //       used) to a derived class thereof are enumerated as described in
4233    //       13.3.1.4, and the best one is chosen through overload resolution
4234    //       (13.3).
4235    else
4236      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4237    return;
4238  }
4239
4240  if (NumArgs > 1) {
4241    SetFailed(FK_TooManyInitsForScalar);
4242    return;
4243  }
4244  assert(NumArgs == 1 && "Zero-argument case handled above");
4245
4246  //    - Otherwise, if the source type is a (possibly cv-qualified) class
4247  //      type, conversion functions are considered.
4248  if (!SourceType.isNull() && SourceType->isRecordType()) {
4249    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4250    MaybeProduceObjCObject(S, *this, Entity);
4251    return;
4252  }
4253
4254  //    - Otherwise, the initial value of the object being initialized is the
4255  //      (possibly converted) value of the initializer expression. Standard
4256  //      conversions (Clause 4) will be used, if necessary, to convert the
4257  //      initializer expression to the cv-unqualified version of the
4258  //      destination type; no user-defined conversions are considered.
4259
4260  ImplicitConversionSequence ICS
4261    = S.TryImplicitConversion(Initializer, Entity.getType(),
4262                              /*SuppressUserConversions*/true,
4263                              /*AllowExplicitConversions*/ false,
4264                              /*InOverloadResolution*/ false,
4265                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4266                              allowObjCWritebackConversion);
4267
4268  if (ICS.isStandard() &&
4269      ICS.Standard.Second == ICK_Writeback_Conversion) {
4270    // Objective-C ARC writeback conversion.
4271
4272    // We should copy unless we're passing to an argument explicitly
4273    // marked 'out'.
4274    bool ShouldCopy = true;
4275    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4276      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4277
4278    // If there was an lvalue adjustment, add it as a separate conversion.
4279    if (ICS.Standard.First == ICK_Array_To_Pointer ||
4280        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4281      ImplicitConversionSequence LvalueICS;
4282      LvalueICS.setStandard();
4283      LvalueICS.Standard.setAsIdentityConversion();
4284      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4285      LvalueICS.Standard.First = ICS.Standard.First;
4286      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4287    }
4288
4289    AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4290  } else if (ICS.isBad()) {
4291    DeclAccessPair dap;
4292    if (Initializer->getType() == Context.OverloadTy &&
4293          !S.ResolveAddressOfOverloadedFunction(Initializer
4294                      , DestType, false, dap))
4295      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4296    else
4297      SetFailed(InitializationSequence::FK_ConversionFailed);
4298  } else {
4299    AddConversionSequenceStep(ICS, Entity.getType());
4300
4301    MaybeProduceObjCObject(S, *this, Entity);
4302  }
4303}
4304
4305InitializationSequence::~InitializationSequence() {
4306  for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4307                                          StepEnd = Steps.end();
4308       Step != StepEnd; ++Step)
4309    Step->Destroy();
4310}
4311
4312//===----------------------------------------------------------------------===//
4313// Perform initialization
4314//===----------------------------------------------------------------------===//
4315static Sema::AssignmentAction
4316getAssignmentAction(const InitializedEntity &Entity) {
4317  switch(Entity.getKind()) {
4318  case InitializedEntity::EK_Variable:
4319  case InitializedEntity::EK_New:
4320  case InitializedEntity::EK_Exception:
4321  case InitializedEntity::EK_Base:
4322  case InitializedEntity::EK_Delegating:
4323    return Sema::AA_Initializing;
4324
4325  case InitializedEntity::EK_Parameter:
4326    if (Entity.getDecl() &&
4327        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4328      return Sema::AA_Sending;
4329
4330    return Sema::AA_Passing;
4331
4332  case InitializedEntity::EK_Result:
4333    return Sema::AA_Returning;
4334
4335  case InitializedEntity::EK_Temporary:
4336    // FIXME: Can we tell apart casting vs. converting?
4337    return Sema::AA_Casting;
4338
4339  case InitializedEntity::EK_Member:
4340  case InitializedEntity::EK_ArrayElement:
4341  case InitializedEntity::EK_VectorElement:
4342  case InitializedEntity::EK_ComplexElement:
4343  case InitializedEntity::EK_BlockElement:
4344  case InitializedEntity::EK_LambdaCapture:
4345    return Sema::AA_Initializing;
4346  }
4347
4348  llvm_unreachable("Invalid EntityKind!");
4349}
4350
4351/// \brief Whether we should bind a created object as a temporary when
4352/// initializing the given entity.
4353static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4354  switch (Entity.getKind()) {
4355  case InitializedEntity::EK_ArrayElement:
4356  case InitializedEntity::EK_Member:
4357  case InitializedEntity::EK_Result:
4358  case InitializedEntity::EK_New:
4359  case InitializedEntity::EK_Variable:
4360  case InitializedEntity::EK_Base:
4361  case InitializedEntity::EK_Delegating:
4362  case InitializedEntity::EK_VectorElement:
4363  case InitializedEntity::EK_ComplexElement:
4364  case InitializedEntity::EK_Exception:
4365  case InitializedEntity::EK_BlockElement:
4366  case InitializedEntity::EK_LambdaCapture:
4367    return false;
4368
4369  case InitializedEntity::EK_Parameter:
4370  case InitializedEntity::EK_Temporary:
4371    return true;
4372  }
4373
4374  llvm_unreachable("missed an InitializedEntity kind?");
4375}
4376
4377/// \brief Whether the given entity, when initialized with an object
4378/// created for that initialization, requires destruction.
4379static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4380  switch (Entity.getKind()) {
4381    case InitializedEntity::EK_Result:
4382    case InitializedEntity::EK_New:
4383    case InitializedEntity::EK_Base:
4384    case InitializedEntity::EK_Delegating:
4385    case InitializedEntity::EK_VectorElement:
4386    case InitializedEntity::EK_ComplexElement:
4387    case InitializedEntity::EK_BlockElement:
4388    case InitializedEntity::EK_LambdaCapture:
4389      return false;
4390
4391    case InitializedEntity::EK_Member:
4392    case InitializedEntity::EK_Variable:
4393    case InitializedEntity::EK_Parameter:
4394    case InitializedEntity::EK_Temporary:
4395    case InitializedEntity::EK_ArrayElement:
4396    case InitializedEntity::EK_Exception:
4397      return true;
4398  }
4399
4400  llvm_unreachable("missed an InitializedEntity kind?");
4401}
4402
4403/// \brief Look for copy and move constructors and constructor templates, for
4404/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4405static void LookupCopyAndMoveConstructors(Sema &S,
4406                                          OverloadCandidateSet &CandidateSet,
4407                                          CXXRecordDecl *Class,
4408                                          Expr *CurInitExpr) {
4409  DeclContext::lookup_result R = S.LookupConstructors(Class);
4410  // The container holding the constructors can under certain conditions
4411  // be changed while iterating (e.g. because of deserialization).
4412  // To be safe we copy the lookup results to a new container.
4413  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4414  for (SmallVector<NamedDecl*, 16>::iterator
4415         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4416    NamedDecl *D = *CI;
4417    CXXConstructorDecl *Constructor = 0;
4418
4419    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4420      // Handle copy/moveconstructors, only.
4421      if (!Constructor || Constructor->isInvalidDecl() ||
4422          !Constructor->isCopyOrMoveConstructor() ||
4423          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4424        continue;
4425
4426      DeclAccessPair FoundDecl
4427        = DeclAccessPair::make(Constructor, Constructor->getAccess());
4428      S.AddOverloadCandidate(Constructor, FoundDecl,
4429                             CurInitExpr, CandidateSet);
4430      continue;
4431    }
4432
4433    // Handle constructor templates.
4434    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4435    if (ConstructorTmpl->isInvalidDecl())
4436      continue;
4437
4438    Constructor = cast<CXXConstructorDecl>(
4439                                         ConstructorTmpl->getTemplatedDecl());
4440    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4441      continue;
4442
4443    // FIXME: Do we need to limit this to copy-constructor-like
4444    // candidates?
4445    DeclAccessPair FoundDecl
4446      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4447    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4448                                   CurInitExpr, CandidateSet, true);
4449  }
4450}
4451
4452/// \brief Get the location at which initialization diagnostics should appear.
4453static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4454                                           Expr *Initializer) {
4455  switch (Entity.getKind()) {
4456  case InitializedEntity::EK_Result:
4457    return Entity.getReturnLoc();
4458
4459  case InitializedEntity::EK_Exception:
4460    return Entity.getThrowLoc();
4461
4462  case InitializedEntity::EK_Variable:
4463    return Entity.getDecl()->getLocation();
4464
4465  case InitializedEntity::EK_LambdaCapture:
4466    return Entity.getCaptureLoc();
4467
4468  case InitializedEntity::EK_ArrayElement:
4469  case InitializedEntity::EK_Member:
4470  case InitializedEntity::EK_Parameter:
4471  case InitializedEntity::EK_Temporary:
4472  case InitializedEntity::EK_New:
4473  case InitializedEntity::EK_Base:
4474  case InitializedEntity::EK_Delegating:
4475  case InitializedEntity::EK_VectorElement:
4476  case InitializedEntity::EK_ComplexElement:
4477  case InitializedEntity::EK_BlockElement:
4478    return Initializer->getLocStart();
4479  }
4480  llvm_unreachable("missed an InitializedEntity kind?");
4481}
4482
4483/// \brief Make a (potentially elidable) temporary copy of the object
4484/// provided by the given initializer by calling the appropriate copy
4485/// constructor.
4486///
4487/// \param S The Sema object used for type-checking.
4488///
4489/// \param T The type of the temporary object, which must either be
4490/// the type of the initializer expression or a superclass thereof.
4491///
4492/// \param Entity The entity being initialized.
4493///
4494/// \param CurInit The initializer expression.
4495///
4496/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4497/// is permitted in C++03 (but not C++0x) when binding a reference to
4498/// an rvalue.
4499///
4500/// \returns An expression that copies the initializer expression into
4501/// a temporary object, or an error expression if a copy could not be
4502/// created.
4503static ExprResult CopyObject(Sema &S,
4504                             QualType T,
4505                             const InitializedEntity &Entity,
4506                             ExprResult CurInit,
4507                             bool IsExtraneousCopy) {
4508  // Determine which class type we're copying to.
4509  Expr *CurInitExpr = (Expr *)CurInit.get();
4510  CXXRecordDecl *Class = 0;
4511  if (const RecordType *Record = T->getAs<RecordType>())
4512    Class = cast<CXXRecordDecl>(Record->getDecl());
4513  if (!Class)
4514    return CurInit;
4515
4516  // C++0x [class.copy]p32:
4517  //   When certain criteria are met, an implementation is allowed to
4518  //   omit the copy/move construction of a class object, even if the
4519  //   copy/move constructor and/or destructor for the object have
4520  //   side effects. [...]
4521  //     - when a temporary class object that has not been bound to a
4522  //       reference (12.2) would be copied/moved to a class object
4523  //       with the same cv-unqualified type, the copy/move operation
4524  //       can be omitted by constructing the temporary object
4525  //       directly into the target of the omitted copy/move
4526  //
4527  // Note that the other three bullets are handled elsewhere. Copy
4528  // elision for return statements and throw expressions are handled as part
4529  // of constructor initialization, while copy elision for exception handlers
4530  // is handled by the run-time.
4531  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4532  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4533
4534  // Make sure that the type we are copying is complete.
4535  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4536    return CurInit;
4537
4538  // Perform overload resolution using the class's copy/move constructors.
4539  // Only consider constructors and constructor templates. Per
4540  // C++0x [dcl.init]p16, second bullet to class types, this initialization
4541  // is direct-initialization.
4542  OverloadCandidateSet CandidateSet(Loc);
4543  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4544
4545  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4546
4547  OverloadCandidateSet::iterator Best;
4548  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4549  case OR_Success:
4550    break;
4551
4552  case OR_No_Viable_Function:
4553    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4554           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4555           : diag::err_temp_copy_no_viable)
4556      << (int)Entity.getKind() << CurInitExpr->getType()
4557      << CurInitExpr->getSourceRange();
4558    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4559    if (!IsExtraneousCopy || S.isSFINAEContext())
4560      return ExprError();
4561    return CurInit;
4562
4563  case OR_Ambiguous:
4564    S.Diag(Loc, diag::err_temp_copy_ambiguous)
4565      << (int)Entity.getKind() << CurInitExpr->getType()
4566      << CurInitExpr->getSourceRange();
4567    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4568    return ExprError();
4569
4570  case OR_Deleted:
4571    S.Diag(Loc, diag::err_temp_copy_deleted)
4572      << (int)Entity.getKind() << CurInitExpr->getType()
4573      << CurInitExpr->getSourceRange();
4574    S.NoteDeletedFunction(Best->Function);
4575    return ExprError();
4576  }
4577
4578  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4579  SmallVector<Expr*, 8> ConstructorArgs;
4580  CurInit.release(); // Ownership transferred into MultiExprArg, below.
4581
4582  S.CheckConstructorAccess(Loc, Constructor, Entity,
4583                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
4584
4585  if (IsExtraneousCopy) {
4586    // If this is a totally extraneous copy for C++03 reference
4587    // binding purposes, just return the original initialization
4588    // expression. We don't generate an (elided) copy operation here
4589    // because doing so would require us to pass down a flag to avoid
4590    // infinite recursion, where each step adds another extraneous,
4591    // elidable copy.
4592
4593    // Instantiate the default arguments of any extra parameters in
4594    // the selected copy constructor, as if we were going to create a
4595    // proper call to the copy constructor.
4596    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4597      ParmVarDecl *Parm = Constructor->getParamDecl(I);
4598      if (S.RequireCompleteType(Loc, Parm->getType(),
4599                                diag::err_call_incomplete_argument))
4600        break;
4601
4602      // Build the default argument expression; we don't actually care
4603      // if this succeeds or not, because this routine will complain
4604      // if there was a problem.
4605      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4606    }
4607
4608    return S.Owned(CurInitExpr);
4609  }
4610
4611  // Determine the arguments required to actually perform the
4612  // constructor call (we might have derived-to-base conversions, or
4613  // the copy constructor may have default arguments).
4614  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4615                                Loc, ConstructorArgs))
4616    return ExprError();
4617
4618  // Actually perform the constructor call.
4619  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4620                                    ConstructorArgs,
4621                                    HadMultipleCandidates,
4622                                    /*ListInit*/ false,
4623                                    /*ZeroInit*/ false,
4624                                    CXXConstructExpr::CK_Complete,
4625                                    SourceRange());
4626
4627  // If we're supposed to bind temporaries, do so.
4628  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4629    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4630  return CurInit;
4631}
4632
4633/// \brief Check whether elidable copy construction for binding a reference to
4634/// a temporary would have succeeded if we were building in C++98 mode, for
4635/// -Wc++98-compat.
4636static void CheckCXX98CompatAccessibleCopy(Sema &S,
4637                                           const InitializedEntity &Entity,
4638                                           Expr *CurInitExpr) {
4639  assert(S.getLangOpts().CPlusPlus11);
4640
4641  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4642  if (!Record)
4643    return;
4644
4645  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4646  if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4647        == DiagnosticsEngine::Ignored)
4648    return;
4649
4650  // Find constructors which would have been considered.
4651  OverloadCandidateSet CandidateSet(Loc);
4652  LookupCopyAndMoveConstructors(
4653      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4654
4655  // Perform overload resolution.
4656  OverloadCandidateSet::iterator Best;
4657  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4658
4659  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4660    << OR << (int)Entity.getKind() << CurInitExpr->getType()
4661    << CurInitExpr->getSourceRange();
4662
4663  switch (OR) {
4664  case OR_Success:
4665    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4666                             Entity, Best->FoundDecl.getAccess(), Diag);
4667    // FIXME: Check default arguments as far as that's possible.
4668    break;
4669
4670  case OR_No_Viable_Function:
4671    S.Diag(Loc, Diag);
4672    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4673    break;
4674
4675  case OR_Ambiguous:
4676    S.Diag(Loc, Diag);
4677    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4678    break;
4679
4680  case OR_Deleted:
4681    S.Diag(Loc, Diag);
4682    S.NoteDeletedFunction(Best->Function);
4683    break;
4684  }
4685}
4686
4687void InitializationSequence::PrintInitLocationNote(Sema &S,
4688                                              const InitializedEntity &Entity) {
4689  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4690    if (Entity.getDecl()->getLocation().isInvalid())
4691      return;
4692
4693    if (Entity.getDecl()->getDeclName())
4694      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4695        << Entity.getDecl()->getDeclName();
4696    else
4697      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4698  }
4699}
4700
4701static bool isReferenceBinding(const InitializationSequence::Step &s) {
4702  return s.Kind == InitializationSequence::SK_BindReference ||
4703         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4704}
4705
4706static ExprResult
4707PerformConstructorInitialization(Sema &S,
4708                                 const InitializedEntity &Entity,
4709                                 const InitializationKind &Kind,
4710                                 MultiExprArg Args,
4711                                 const InitializationSequence::Step& Step,
4712                                 bool &ConstructorInitRequiresZeroInit,
4713                                 bool IsListInitialization) {
4714  unsigned NumArgs = Args.size();
4715  CXXConstructorDecl *Constructor
4716    = cast<CXXConstructorDecl>(Step.Function.Function);
4717  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4718
4719  // Build a call to the selected constructor.
4720  SmallVector<Expr*, 8> ConstructorArgs;
4721  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4722                         ? Kind.getEqualLoc()
4723                         : Kind.getLocation();
4724
4725  if (Kind.getKind() == InitializationKind::IK_Default) {
4726    // Force even a trivial, implicit default constructor to be
4727    // semantically checked. We do this explicitly because we don't build
4728    // the definition for completely trivial constructors.
4729    assert(Constructor->getParent() && "No parent class for constructor.");
4730    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4731        Constructor->isTrivial() && !Constructor->isUsed(false))
4732      S.DefineImplicitDefaultConstructor(Loc, Constructor);
4733  }
4734
4735  ExprResult CurInit = S.Owned((Expr *)0);
4736
4737  // C++ [over.match.copy]p1:
4738  //   - When initializing a temporary to be bound to the first parameter
4739  //     of a constructor that takes a reference to possibly cv-qualified
4740  //     T as its first argument, called with a single argument in the
4741  //     context of direct-initialization, explicit conversion functions
4742  //     are also considered.
4743  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4744                           Args.size() == 1 &&
4745                           Constructor->isCopyOrMoveConstructor();
4746
4747  // Determine the arguments required to actually perform the constructor
4748  // call.
4749  if (S.CompleteConstructorCall(Constructor, Args,
4750                                Loc, ConstructorArgs,
4751                                AllowExplicitConv,
4752                                IsListInitialization))
4753    return ExprError();
4754
4755
4756  if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4757      (Kind.getKind() == InitializationKind::IK_DirectList ||
4758       (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4759        (Kind.getKind() == InitializationKind::IK_Direct ||
4760         Kind.getKind() == InitializationKind::IK_Value)))) {
4761    // An explicitly-constructed temporary, e.g., X(1, 2).
4762    S.MarkFunctionReferenced(Loc, Constructor);
4763    S.DiagnoseUseOfDecl(Constructor, Loc);
4764
4765    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4766    if (!TSInfo)
4767      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4768    SourceRange ParenRange;
4769    if (Kind.getKind() != InitializationKind::IK_DirectList)
4770      ParenRange = Kind.getParenRange();
4771
4772    CurInit = S.Owned(
4773      new (S.Context) CXXTemporaryObjectExpr(S.Context, Constructor,
4774                                             TSInfo, ConstructorArgs,
4775                                             ParenRange, IsListInitialization,
4776                                             HadMultipleCandidates,
4777                                             ConstructorInitRequiresZeroInit));
4778  } else {
4779    CXXConstructExpr::ConstructionKind ConstructKind =
4780      CXXConstructExpr::CK_Complete;
4781
4782    if (Entity.getKind() == InitializedEntity::EK_Base) {
4783      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4784        CXXConstructExpr::CK_VirtualBase :
4785        CXXConstructExpr::CK_NonVirtualBase;
4786    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4787      ConstructKind = CXXConstructExpr::CK_Delegating;
4788    }
4789
4790    // Only get the parenthesis range if it is a direct construction.
4791    SourceRange parenRange =
4792        Kind.getKind() == InitializationKind::IK_Direct ?
4793        Kind.getParenRange() : SourceRange();
4794
4795    // If the entity allows NRVO, mark the construction as elidable
4796    // unconditionally.
4797    if (Entity.allowsNRVO())
4798      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4799                                        Constructor, /*Elidable=*/true,
4800                                        ConstructorArgs,
4801                                        HadMultipleCandidates,
4802                                        IsListInitialization,
4803                                        ConstructorInitRequiresZeroInit,
4804                                        ConstructKind,
4805                                        parenRange);
4806    else
4807      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4808                                        Constructor,
4809                                        ConstructorArgs,
4810                                        HadMultipleCandidates,
4811                                        IsListInitialization,
4812                                        ConstructorInitRequiresZeroInit,
4813                                        ConstructKind,
4814                                        parenRange);
4815  }
4816  if (CurInit.isInvalid())
4817    return ExprError();
4818
4819  // Only check access if all of that succeeded.
4820  S.CheckConstructorAccess(Loc, Constructor, Entity,
4821                           Step.Function.FoundDecl.getAccess());
4822  S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4823
4824  if (shouldBindAsTemporary(Entity))
4825    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4826
4827  return CurInit;
4828}
4829
4830/// Determine whether the specified InitializedEntity definitely has a lifetime
4831/// longer than the current full-expression. Conservatively returns false if
4832/// it's unclear.
4833static bool
4834InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4835  const InitializedEntity *Top = &Entity;
4836  while (Top->getParent())
4837    Top = Top->getParent();
4838
4839  switch (Top->getKind()) {
4840  case InitializedEntity::EK_Variable:
4841  case InitializedEntity::EK_Result:
4842  case InitializedEntity::EK_Exception:
4843  case InitializedEntity::EK_Member:
4844  case InitializedEntity::EK_New:
4845  case InitializedEntity::EK_Base:
4846  case InitializedEntity::EK_Delegating:
4847    return true;
4848
4849  case InitializedEntity::EK_ArrayElement:
4850  case InitializedEntity::EK_VectorElement:
4851  case InitializedEntity::EK_BlockElement:
4852  case InitializedEntity::EK_ComplexElement:
4853    // Could not determine what the full initialization is. Assume it might not
4854    // outlive the full-expression.
4855    return false;
4856
4857  case InitializedEntity::EK_Parameter:
4858  case InitializedEntity::EK_Temporary:
4859  case InitializedEntity::EK_LambdaCapture:
4860    // The entity being initialized might not outlive the full-expression.
4861    return false;
4862  }
4863
4864  llvm_unreachable("unknown entity kind");
4865}
4866
4867ExprResult
4868InitializationSequence::Perform(Sema &S,
4869                                const InitializedEntity &Entity,
4870                                const InitializationKind &Kind,
4871                                MultiExprArg Args,
4872                                QualType *ResultType) {
4873  if (Failed()) {
4874    unsigned NumArgs = Args.size();
4875    Diagnose(S, Entity, Kind, Args.data(), NumArgs);
4876    return ExprError();
4877  }
4878
4879  if (getKind() == DependentSequence) {
4880    // If the declaration is a non-dependent, incomplete array type
4881    // that has an initializer, then its type will be completed once
4882    // the initializer is instantiated.
4883    if (ResultType && !Entity.getType()->isDependentType() &&
4884        Args.size() == 1) {
4885      QualType DeclType = Entity.getType();
4886      if (const IncompleteArrayType *ArrayT
4887                           = S.Context.getAsIncompleteArrayType(DeclType)) {
4888        // FIXME: We don't currently have the ability to accurately
4889        // compute the length of an initializer list without
4890        // performing full type-checking of the initializer list
4891        // (since we have to determine where braces are implicitly
4892        // introduced and such).  So, we fall back to making the array
4893        // type a dependently-sized array type with no specified
4894        // bound.
4895        if (isa<InitListExpr>((Expr *)Args[0])) {
4896          SourceRange Brackets;
4897
4898          // Scavange the location of the brackets from the entity, if we can.
4899          if (DeclaratorDecl *DD = Entity.getDecl()) {
4900            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4901              TypeLoc TL = TInfo->getTypeLoc();
4902              if (IncompleteArrayTypeLoc ArrayLoc =
4903                      TL.getAs<IncompleteArrayTypeLoc>())
4904                Brackets = ArrayLoc.getBracketsRange();
4905            }
4906          }
4907
4908          *ResultType
4909            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4910                                                   /*NumElts=*/0,
4911                                                   ArrayT->getSizeModifier(),
4912                                       ArrayT->getIndexTypeCVRQualifiers(),
4913                                                   Brackets);
4914        }
4915
4916      }
4917    }
4918    if (Kind.getKind() == InitializationKind::IK_Direct &&
4919        !Kind.isExplicitCast()) {
4920      // Rebuild the ParenListExpr.
4921      SourceRange ParenRange = Kind.getParenRange();
4922      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4923                                  Args);
4924    }
4925    assert(Kind.getKind() == InitializationKind::IK_Copy ||
4926           Kind.isExplicitCast() ||
4927           Kind.getKind() == InitializationKind::IK_DirectList);
4928    return ExprResult(Args[0]);
4929  }
4930
4931  // No steps means no initialization.
4932  if (Steps.empty())
4933    return S.Owned((Expr *)0);
4934
4935  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
4936      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4937      Entity.getKind() != InitializedEntity::EK_Parameter) {
4938    // Produce a C++98 compatibility warning if we are initializing a reference
4939    // from an initializer list. For parameters, we produce a better warning
4940    // elsewhere.
4941    Expr *Init = Args[0];
4942    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4943      << Init->getSourceRange();
4944  }
4945
4946  // Diagnose cases where we initialize a pointer to an array temporary, and the
4947  // pointer obviously outlives the temporary.
4948  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
4949      Entity.getType()->isPointerType() &&
4950      InitializedEntityOutlivesFullExpression(Entity)) {
4951    Expr *Init = Args[0];
4952    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4953    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4954      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4955        << Init->getSourceRange();
4956  }
4957
4958  QualType DestType = Entity.getType().getNonReferenceType();
4959  // FIXME: Ugly hack around the fact that Entity.getType() is not
4960  // the same as Entity.getDecl()->getType() in cases involving type merging,
4961  //  and we want latter when it makes sense.
4962  if (ResultType)
4963    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4964                                     Entity.getType();
4965
4966  ExprResult CurInit = S.Owned((Expr *)0);
4967
4968  // For initialization steps that start with a single initializer,
4969  // grab the only argument out the Args and place it into the "current"
4970  // initializer.
4971  switch (Steps.front().Kind) {
4972  case SK_ResolveAddressOfOverloadedFunction:
4973  case SK_CastDerivedToBaseRValue:
4974  case SK_CastDerivedToBaseXValue:
4975  case SK_CastDerivedToBaseLValue:
4976  case SK_BindReference:
4977  case SK_BindReferenceToTemporary:
4978  case SK_ExtraneousCopyToTemporary:
4979  case SK_UserConversion:
4980  case SK_QualificationConversionLValue:
4981  case SK_QualificationConversionXValue:
4982  case SK_QualificationConversionRValue:
4983  case SK_ConversionSequence:
4984  case SK_ListInitialization:
4985  case SK_UnwrapInitList:
4986  case SK_RewrapInitList:
4987  case SK_CAssignment:
4988  case SK_StringInit:
4989  case SK_ObjCObjectConversion:
4990  case SK_ArrayInit:
4991  case SK_ParenthesizedArrayInit:
4992  case SK_PassByIndirectCopyRestore:
4993  case SK_PassByIndirectRestore:
4994  case SK_ProduceObjCObject:
4995  case SK_StdInitializerList:
4996  case SK_OCLSamplerInit:
4997  case SK_OCLZeroEvent: {
4998    assert(Args.size() == 1);
4999    CurInit = Args[0];
5000    if (!CurInit.get()) return ExprError();
5001    break;
5002  }
5003
5004  case SK_ConstructorInitialization:
5005  case SK_ListConstructorCall:
5006  case SK_ZeroInitialization:
5007    break;
5008  }
5009
5010  // Walk through the computed steps for the initialization sequence,
5011  // performing the specified conversions along the way.
5012  bool ConstructorInitRequiresZeroInit = false;
5013  for (step_iterator Step = step_begin(), StepEnd = step_end();
5014       Step != StepEnd; ++Step) {
5015    if (CurInit.isInvalid())
5016      return ExprError();
5017
5018    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5019
5020    switch (Step->Kind) {
5021    case SK_ResolveAddressOfOverloadedFunction:
5022      // Overload resolution determined which function invoke; update the
5023      // initializer to reflect that choice.
5024      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5025      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
5026      CurInit = S.FixOverloadedFunctionReference(CurInit,
5027                                                 Step->Function.FoundDecl,
5028                                                 Step->Function.Function);
5029      break;
5030
5031    case SK_CastDerivedToBaseRValue:
5032    case SK_CastDerivedToBaseXValue:
5033    case SK_CastDerivedToBaseLValue: {
5034      // We have a derived-to-base cast that produces either an rvalue or an
5035      // lvalue. Perform that cast.
5036
5037      CXXCastPath BasePath;
5038
5039      // Casts to inaccessible base classes are allowed with C-style casts.
5040      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5041      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5042                                         CurInit.get()->getLocStart(),
5043                                         CurInit.get()->getSourceRange(),
5044                                         &BasePath, IgnoreBaseAccess))
5045        return ExprError();
5046
5047      if (S.BasePathInvolvesVirtualBase(BasePath)) {
5048        QualType T = SourceType;
5049        if (const PointerType *Pointer = T->getAs<PointerType>())
5050          T = Pointer->getPointeeType();
5051        if (const RecordType *RecordTy = T->getAs<RecordType>())
5052          S.MarkVTableUsed(CurInit.get()->getLocStart(),
5053                           cast<CXXRecordDecl>(RecordTy->getDecl()));
5054      }
5055
5056      ExprValueKind VK =
5057          Step->Kind == SK_CastDerivedToBaseLValue ?
5058              VK_LValue :
5059              (Step->Kind == SK_CastDerivedToBaseXValue ?
5060                   VK_XValue :
5061                   VK_RValue);
5062      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5063                                                 Step->Type,
5064                                                 CK_DerivedToBase,
5065                                                 CurInit.get(),
5066                                                 &BasePath, VK));
5067      break;
5068    }
5069
5070    case SK_BindReference:
5071      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
5072        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
5073        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5074          << Entity.getType().isVolatileQualified()
5075          << BitField->getDeclName()
5076          << CurInit.get()->getSourceRange();
5077        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5078        return ExprError();
5079      }
5080
5081      if (CurInit.get()->refersToVectorElement()) {
5082        // References cannot bind to vector elements.
5083        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5084          << Entity.getType().isVolatileQualified()
5085          << CurInit.get()->getSourceRange();
5086        PrintInitLocationNote(S, Entity);
5087        return ExprError();
5088      }
5089
5090      // Reference binding does not have any corresponding ASTs.
5091
5092      // Check exception specifications
5093      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5094        return ExprError();
5095
5096      break;
5097
5098    case SK_BindReferenceToTemporary:
5099      // Check exception specifications
5100      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5101        return ExprError();
5102
5103      // Materialize the temporary into memory.
5104      CurInit = new (S.Context) MaterializeTemporaryExpr(
5105                                         Entity.getType().getNonReferenceType(),
5106                                                         CurInit.get(),
5107                                     Entity.getType()->isLValueReferenceType());
5108
5109      // If we're binding to an Objective-C object that has lifetime, we
5110      // need cleanups.
5111      if (S.getLangOpts().ObjCAutoRefCount &&
5112          CurInit.get()->getType()->isObjCLifetimeType())
5113        S.ExprNeedsCleanups = true;
5114
5115      break;
5116
5117    case SK_ExtraneousCopyToTemporary:
5118      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5119                           /*IsExtraneousCopy=*/true);
5120      break;
5121
5122    case SK_UserConversion: {
5123      // We have a user-defined conversion that invokes either a constructor
5124      // or a conversion function.
5125      CastKind CastKind;
5126      bool IsCopy = false;
5127      FunctionDecl *Fn = Step->Function.Function;
5128      DeclAccessPair FoundFn = Step->Function.FoundDecl;
5129      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5130      bool CreatedObject = false;
5131      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5132        // Build a call to the selected constructor.
5133        SmallVector<Expr*, 8> ConstructorArgs;
5134        SourceLocation Loc = CurInit.get()->getLocStart();
5135        CurInit.release(); // Ownership transferred into MultiExprArg, below.
5136
5137        // Determine the arguments required to actually perform the constructor
5138        // call.
5139        Expr *Arg = CurInit.get();
5140        if (S.CompleteConstructorCall(Constructor,
5141                                      MultiExprArg(&Arg, 1),
5142                                      Loc, ConstructorArgs))
5143          return ExprError();
5144
5145        // Build an expression that constructs a temporary.
5146        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5147                                          ConstructorArgs,
5148                                          HadMultipleCandidates,
5149                                          /*ListInit*/ false,
5150                                          /*ZeroInit*/ false,
5151                                          CXXConstructExpr::CK_Complete,
5152                                          SourceRange());
5153        if (CurInit.isInvalid())
5154          return ExprError();
5155
5156        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5157                                 FoundFn.getAccess());
5158        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5159
5160        CastKind = CK_ConstructorConversion;
5161        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5162        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5163            S.IsDerivedFrom(SourceType, Class))
5164          IsCopy = true;
5165
5166        CreatedObject = true;
5167      } else {
5168        // Build a call to the conversion function.
5169        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5170        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5171                                    FoundFn);
5172        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5173
5174        // FIXME: Should we move this initialization into a separate
5175        // derived-to-base conversion? I believe the answer is "no", because
5176        // we don't want to turn off access control here for c-style casts.
5177        ExprResult CurInitExprRes =
5178          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5179                                                FoundFn, Conversion);
5180        if(CurInitExprRes.isInvalid())
5181          return ExprError();
5182        CurInit = CurInitExprRes;
5183
5184        // Build the actual call to the conversion function.
5185        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5186                                           HadMultipleCandidates);
5187        if (CurInit.isInvalid() || !CurInit.get())
5188          return ExprError();
5189
5190        CastKind = CK_UserDefinedConversion;
5191
5192        CreatedObject = Conversion->getResultType()->isRecordType();
5193      }
5194
5195      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5196      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5197
5198      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5199        QualType T = CurInit.get()->getType();
5200        if (const RecordType *Record = T->getAs<RecordType>()) {
5201          CXXDestructorDecl *Destructor
5202            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5203          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5204                                  S.PDiag(diag::err_access_dtor_temp) << T);
5205          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5206          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5207        }
5208      }
5209
5210      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5211                                                 CurInit.get()->getType(),
5212                                                 CastKind, CurInit.get(), 0,
5213                                                CurInit.get()->getValueKind()));
5214      if (MaybeBindToTemp)
5215        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5216      if (RequiresCopy)
5217        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5218                             CurInit, /*IsExtraneousCopy=*/false);
5219      break;
5220    }
5221
5222    case SK_QualificationConversionLValue:
5223    case SK_QualificationConversionXValue:
5224    case SK_QualificationConversionRValue: {
5225      // Perform a qualification conversion; these can never go wrong.
5226      ExprValueKind VK =
5227          Step->Kind == SK_QualificationConversionLValue ?
5228              VK_LValue :
5229              (Step->Kind == SK_QualificationConversionXValue ?
5230                   VK_XValue :
5231                   VK_RValue);
5232      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5233      break;
5234    }
5235
5236    case SK_ConversionSequence: {
5237      Sema::CheckedConversionKind CCK
5238        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5239        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5240        : Kind.isExplicitCast()? Sema::CCK_OtherCast
5241        : Sema::CCK_ImplicitConversion;
5242      ExprResult CurInitExprRes =
5243        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5244                                    getAssignmentAction(Entity), CCK);
5245      if (CurInitExprRes.isInvalid())
5246        return ExprError();
5247      CurInit = CurInitExprRes;
5248      break;
5249    }
5250
5251    case SK_ListInitialization: {
5252      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5253      // Hack: We must pass *ResultType if available in order to set the type
5254      // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5255      // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5256      // temporary, not a reference, so we should pass Ty.
5257      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5258      // Since this step is never used for a reference directly, we explicitly
5259      // unwrap references here and rewrap them afterwards.
5260      // We also need to create a InitializeTemporary entity for this.
5261      QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5262      bool IsTemporary = Entity.getType()->isReferenceType();
5263      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5264      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
5265      InitListChecker PerformInitList(S, InitEntity,
5266          InitList, Ty, /*VerifyOnly=*/false,
5267          Kind.getKind() != InitializationKind::IK_DirectList ||
5268            !S.getLangOpts().CPlusPlus11);
5269      if (PerformInitList.HadError())
5270        return ExprError();
5271
5272      if (ResultType) {
5273        if ((*ResultType)->isRValueReferenceType())
5274          Ty = S.Context.getRValueReferenceType(Ty);
5275        else if ((*ResultType)->isLValueReferenceType())
5276          Ty = S.Context.getLValueReferenceType(Ty,
5277            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5278        *ResultType = Ty;
5279      }
5280
5281      InitListExpr *StructuredInitList =
5282          PerformInitList.getFullyStructuredList();
5283      CurInit.release();
5284      CurInit = shouldBindAsTemporary(InitEntity)
5285          ? S.MaybeBindToTemporary(StructuredInitList)
5286          : S.Owned(StructuredInitList);
5287      break;
5288    }
5289
5290    case SK_ListConstructorCall: {
5291      // When an initializer list is passed for a parameter of type "reference
5292      // to object", we don't get an EK_Temporary entity, but instead an
5293      // EK_Parameter entity with reference type.
5294      // FIXME: This is a hack. What we really should do is create a user
5295      // conversion step for this case, but this makes it considerably more
5296      // complicated. For now, this will do.
5297      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5298                                        Entity.getType().getNonReferenceType());
5299      bool UseTemporary = Entity.getType()->isReferenceType();
5300      assert(Args.size() == 1 && "expected a single argument for list init");
5301      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5302      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5303        << InitList->getSourceRange();
5304      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5305      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5306                                                                   Entity,
5307                                                 Kind, Arg, *Step,
5308                                               ConstructorInitRequiresZeroInit,
5309                                               /*IsListInitialization*/ true);
5310      break;
5311    }
5312
5313    case SK_UnwrapInitList:
5314      CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5315      break;
5316
5317    case SK_RewrapInitList: {
5318      Expr *E = CurInit.take();
5319      InitListExpr *Syntactic = Step->WrappingSyntacticList;
5320      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5321          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5322      ILE->setSyntacticForm(Syntactic);
5323      ILE->setType(E->getType());
5324      ILE->setValueKind(E->getValueKind());
5325      CurInit = S.Owned(ILE);
5326      break;
5327    }
5328
5329    case SK_ConstructorInitialization: {
5330      // When an initializer list is passed for a parameter of type "reference
5331      // to object", we don't get an EK_Temporary entity, but instead an
5332      // EK_Parameter entity with reference type.
5333      // FIXME: This is a hack. What we really should do is create a user
5334      // conversion step for this case, but this makes it considerably more
5335      // complicated. For now, this will do.
5336      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5337                                        Entity.getType().getNonReferenceType());
5338      bool UseTemporary = Entity.getType()->isReferenceType();
5339      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5340                                                                 : Entity,
5341                                                 Kind, Args, *Step,
5342                                               ConstructorInitRequiresZeroInit,
5343                                               /*IsListInitialization*/ false);
5344      break;
5345    }
5346
5347    case SK_ZeroInitialization: {
5348      step_iterator NextStep = Step;
5349      ++NextStep;
5350      if (NextStep != StepEnd &&
5351          (NextStep->Kind == SK_ConstructorInitialization ||
5352           NextStep->Kind == SK_ListConstructorCall)) {
5353        // The need for zero-initialization is recorded directly into
5354        // the call to the object's constructor within the next step.
5355        ConstructorInitRequiresZeroInit = true;
5356      } else if (Kind.getKind() == InitializationKind::IK_Value &&
5357                 S.getLangOpts().CPlusPlus &&
5358                 !Kind.isImplicitValueInit()) {
5359        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5360        if (!TSInfo)
5361          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5362                                                    Kind.getRange().getBegin());
5363
5364        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5365                              TSInfo->getType().getNonLValueExprType(S.Context),
5366                                                                 TSInfo,
5367                                                    Kind.getRange().getEnd()));
5368      } else {
5369        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5370      }
5371      break;
5372    }
5373
5374    case SK_CAssignment: {
5375      QualType SourceType = CurInit.get()->getType();
5376      ExprResult Result = CurInit;
5377      Sema::AssignConvertType ConvTy =
5378        S.CheckSingleAssignmentConstraints(Step->Type, Result);
5379      if (Result.isInvalid())
5380        return ExprError();
5381      CurInit = Result;
5382
5383      // If this is a call, allow conversion to a transparent union.
5384      ExprResult CurInitExprRes = CurInit;
5385      if (ConvTy != Sema::Compatible &&
5386          Entity.getKind() == InitializedEntity::EK_Parameter &&
5387          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5388            == Sema::Compatible)
5389        ConvTy = Sema::Compatible;
5390      if (CurInitExprRes.isInvalid())
5391        return ExprError();
5392      CurInit = CurInitExprRes;
5393
5394      bool Complained;
5395      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5396                                     Step->Type, SourceType,
5397                                     CurInit.get(),
5398                                     getAssignmentAction(Entity),
5399                                     &Complained)) {
5400        PrintInitLocationNote(S, Entity);
5401        return ExprError();
5402      } else if (Complained)
5403        PrintInitLocationNote(S, Entity);
5404      break;
5405    }
5406
5407    case SK_StringInit: {
5408      QualType Ty = Step->Type;
5409      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5410                      S.Context.getAsArrayType(Ty), S);
5411      break;
5412    }
5413
5414    case SK_ObjCObjectConversion:
5415      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5416                          CK_ObjCObjectLValueCast,
5417                          CurInit.get()->getValueKind());
5418      break;
5419
5420    case SK_ArrayInit:
5421      // Okay: we checked everything before creating this step. Note that
5422      // this is a GNU extension.
5423      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5424        << Step->Type << CurInit.get()->getType()
5425        << CurInit.get()->getSourceRange();
5426
5427      // If the destination type is an incomplete array type, update the
5428      // type accordingly.
5429      if (ResultType) {
5430        if (const IncompleteArrayType *IncompleteDest
5431                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
5432          if (const ConstantArrayType *ConstantSource
5433                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5434            *ResultType = S.Context.getConstantArrayType(
5435                                             IncompleteDest->getElementType(),
5436                                             ConstantSource->getSize(),
5437                                             ArrayType::Normal, 0);
5438          }
5439        }
5440      }
5441      break;
5442
5443    case SK_ParenthesizedArrayInit:
5444      // Okay: we checked everything before creating this step. Note that
5445      // this is a GNU extension.
5446      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5447        << CurInit.get()->getSourceRange();
5448      break;
5449
5450    case SK_PassByIndirectCopyRestore:
5451    case SK_PassByIndirectRestore:
5452      checkIndirectCopyRestoreSource(S, CurInit.get());
5453      CurInit = S.Owned(new (S.Context)
5454                        ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5455                                Step->Kind == SK_PassByIndirectCopyRestore));
5456      break;
5457
5458    case SK_ProduceObjCObject:
5459      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5460                                                 CK_ARCProduceObject,
5461                                                 CurInit.take(), 0, VK_RValue));
5462      break;
5463
5464    case SK_StdInitializerList: {
5465      QualType Dest = Step->Type;
5466      QualType E;
5467      bool Success = S.isStdInitializerList(Dest, &E);
5468      (void)Success;
5469      assert(Success && "Destination type changed?");
5470
5471      // If the element type has a destructor, check it.
5472      if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5473        if (!RD->hasIrrelevantDestructor()) {
5474          if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5475            S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5476            S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5477                                    S.PDiag(diag::err_access_dtor_temp) << E);
5478            S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5479          }
5480        }
5481      }
5482
5483      InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5484      S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5485        << ILE->getSourceRange();
5486      unsigned NumInits = ILE->getNumInits();
5487      SmallVector<Expr*, 16> Converted(NumInits);
5488      InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5489          S.Context.getConstantArrayType(E,
5490              llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5491                          NumInits),
5492              ArrayType::Normal, 0));
5493      InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5494          0, HiddenArray);
5495      for (unsigned i = 0; i < NumInits; ++i) {
5496        Element.setElementIndex(i);
5497        ExprResult Init = S.Owned(ILE->getInit(i));
5498        ExprResult Res = S.PerformCopyInitialization(
5499                             Element, Init.get()->getExprLoc(), Init,
5500                             /*TopLevelOfInitList=*/ true);
5501        assert(!Res.isInvalid() && "Result changed since try phase.");
5502        Converted[i] = Res.take();
5503      }
5504      InitListExpr *Semantic = new (S.Context)
5505          InitListExpr(S.Context, ILE->getLBraceLoc(),
5506                       Converted, ILE->getRBraceLoc());
5507      Semantic->setSyntacticForm(ILE);
5508      Semantic->setType(Dest);
5509      Semantic->setInitializesStdInitializerList();
5510      CurInit = S.Owned(Semantic);
5511      break;
5512    }
5513    case SK_OCLSamplerInit: {
5514      assert(Step->Type->isSamplerT() &&
5515             "Sampler initialization on non sampler type.");
5516
5517      QualType SourceType = CurInit.get()->getType();
5518      InitializedEntity::EntityKind EntityKind = Entity.getKind();
5519
5520      if (EntityKind == InitializedEntity::EK_Parameter) {
5521        if (!SourceType->isSamplerT())
5522          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
5523            << SourceType;
5524      } else if (EntityKind != InitializedEntity::EK_Variable) {
5525        llvm_unreachable("Invalid EntityKind!");
5526      }
5527
5528      break;
5529    }
5530    case SK_OCLZeroEvent: {
5531      assert(Step->Type->isEventT() &&
5532             "Event initialization on non event type.");
5533
5534      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5535                                    CK_ZeroToOCLEvent,
5536                                    CurInit.get()->getValueKind());
5537      break;
5538    }
5539    }
5540  }
5541
5542  // Diagnose non-fatal problems with the completed initialization.
5543  if (Entity.getKind() == InitializedEntity::EK_Member &&
5544      cast<FieldDecl>(Entity.getDecl())->isBitField())
5545    S.CheckBitFieldInitialization(Kind.getLocation(),
5546                                  cast<FieldDecl>(Entity.getDecl()),
5547                                  CurInit.get());
5548
5549  return CurInit;
5550}
5551
5552/// Somewhere within T there is an uninitialized reference subobject.
5553/// Dig it out and diagnose it.
5554static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
5555                                           QualType T) {
5556  if (T->isReferenceType()) {
5557    S.Diag(Loc, diag::err_reference_without_init)
5558      << T.getNonReferenceType();
5559    return true;
5560  }
5561
5562  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5563  if (!RD || !RD->hasUninitializedReferenceMember())
5564    return false;
5565
5566  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5567                                     FE = RD->field_end(); FI != FE; ++FI) {
5568    if (FI->isUnnamedBitfield())
5569      continue;
5570
5571    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
5572      S.Diag(Loc, diag::note_value_initialization_here) << RD;
5573      return true;
5574    }
5575  }
5576
5577  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5578                                          BE = RD->bases_end();
5579       BI != BE; ++BI) {
5580    if (DiagnoseUninitializedReference(S, BI->getLocStart(), BI->getType())) {
5581      S.Diag(Loc, diag::note_value_initialization_here) << RD;
5582      return true;
5583    }
5584  }
5585
5586  return false;
5587}
5588
5589
5590//===----------------------------------------------------------------------===//
5591// Diagnose initialization failures
5592//===----------------------------------------------------------------------===//
5593bool InitializationSequence::Diagnose(Sema &S,
5594                                      const InitializedEntity &Entity,
5595                                      const InitializationKind &Kind,
5596                                      Expr **Args, unsigned NumArgs) {
5597  if (!Failed())
5598    return false;
5599
5600  QualType DestType = Entity.getType();
5601  switch (Failure) {
5602  case FK_TooManyInitsForReference:
5603    // FIXME: Customize for the initialized entity?
5604    if (NumArgs == 0) {
5605      // Dig out the reference subobject which is uninitialized and diagnose it.
5606      // If this is value-initialization, this could be nested some way within
5607      // the target type.
5608      assert(Kind.getKind() == InitializationKind::IK_Value ||
5609             DestType->isReferenceType());
5610      bool Diagnosed =
5611        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
5612      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
5613      (void)Diagnosed;
5614    } else  // FIXME: diagnostic below could be better!
5615      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5616        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5617    break;
5618
5619  case FK_ArrayNeedsInitList:
5620  case FK_ArrayNeedsInitListOrStringLiteral:
5621    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5622      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5623    break;
5624
5625  case FK_ArrayTypeMismatch:
5626  case FK_NonConstantArrayInit:
5627    S.Diag(Kind.getLocation(),
5628           (Failure == FK_ArrayTypeMismatch
5629              ? diag::err_array_init_different_type
5630              : diag::err_array_init_non_constant_array))
5631      << DestType.getNonReferenceType()
5632      << Args[0]->getType()
5633      << Args[0]->getSourceRange();
5634    break;
5635
5636  case FK_VariableLengthArrayHasInitializer:
5637    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5638      << Args[0]->getSourceRange();
5639    break;
5640
5641  case FK_AddressOfOverloadFailed: {
5642    DeclAccessPair Found;
5643    S.ResolveAddressOfOverloadedFunction(Args[0],
5644                                         DestType.getNonReferenceType(),
5645                                         true,
5646                                         Found);
5647    break;
5648  }
5649
5650  case FK_ReferenceInitOverloadFailed:
5651  case FK_UserConversionOverloadFailed:
5652    switch (FailedOverloadResult) {
5653    case OR_Ambiguous:
5654      if (Failure == FK_UserConversionOverloadFailed)
5655        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5656          << Args[0]->getType() << DestType
5657          << Args[0]->getSourceRange();
5658      else
5659        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5660          << DestType << Args[0]->getType()
5661          << Args[0]->getSourceRange();
5662
5663      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5664                                        llvm::makeArrayRef(Args, NumArgs));
5665      break;
5666
5667    case OR_No_Viable_Function:
5668      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5669        << Args[0]->getType() << DestType.getNonReferenceType()
5670        << Args[0]->getSourceRange();
5671      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5672                                        llvm::makeArrayRef(Args, NumArgs));
5673      break;
5674
5675    case OR_Deleted: {
5676      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5677        << Args[0]->getType() << DestType.getNonReferenceType()
5678        << Args[0]->getSourceRange();
5679      OverloadCandidateSet::iterator Best;
5680      OverloadingResult Ovl
5681        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5682                                                true);
5683      if (Ovl == OR_Deleted) {
5684        S.NoteDeletedFunction(Best->Function);
5685      } else {
5686        llvm_unreachable("Inconsistent overload resolution?");
5687      }
5688      break;
5689    }
5690
5691    case OR_Success:
5692      llvm_unreachable("Conversion did not fail!");
5693    }
5694    break;
5695
5696  case FK_NonConstLValueReferenceBindingToTemporary:
5697    if (isa<InitListExpr>(Args[0])) {
5698      S.Diag(Kind.getLocation(),
5699             diag::err_lvalue_reference_bind_to_initlist)
5700      << DestType.getNonReferenceType().isVolatileQualified()
5701      << DestType.getNonReferenceType()
5702      << Args[0]->getSourceRange();
5703      break;
5704    }
5705    // Intentional fallthrough
5706
5707  case FK_NonConstLValueReferenceBindingToUnrelated:
5708    S.Diag(Kind.getLocation(),
5709           Failure == FK_NonConstLValueReferenceBindingToTemporary
5710             ? diag::err_lvalue_reference_bind_to_temporary
5711             : diag::err_lvalue_reference_bind_to_unrelated)
5712      << DestType.getNonReferenceType().isVolatileQualified()
5713      << DestType.getNonReferenceType()
5714      << Args[0]->getType()
5715      << Args[0]->getSourceRange();
5716    break;
5717
5718  case FK_RValueReferenceBindingToLValue:
5719    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5720      << DestType.getNonReferenceType() << Args[0]->getType()
5721      << Args[0]->getSourceRange();
5722    break;
5723
5724  case FK_ReferenceInitDropsQualifiers:
5725    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5726      << DestType.getNonReferenceType()
5727      << Args[0]->getType()
5728      << Args[0]->getSourceRange();
5729    break;
5730
5731  case FK_ReferenceInitFailed:
5732    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5733      << DestType.getNonReferenceType()
5734      << Args[0]->isLValue()
5735      << Args[0]->getType()
5736      << Args[0]->getSourceRange();
5737    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5738        Args[0]->getType()->isObjCObjectPointerType())
5739      S.EmitRelatedResultTypeNote(Args[0]);
5740    break;
5741
5742  case FK_ConversionFailed: {
5743    QualType FromType = Args[0]->getType();
5744    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5745      << (int)Entity.getKind()
5746      << DestType
5747      << Args[0]->isLValue()
5748      << FromType
5749      << Args[0]->getSourceRange();
5750    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5751    S.Diag(Kind.getLocation(), PDiag);
5752    if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5753        Args[0]->getType()->isObjCObjectPointerType())
5754      S.EmitRelatedResultTypeNote(Args[0]);
5755    break;
5756  }
5757
5758  case FK_ConversionFromPropertyFailed:
5759    // No-op. This error has already been reported.
5760    break;
5761
5762  case FK_TooManyInitsForScalar: {
5763    SourceRange R;
5764
5765    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5766      R = SourceRange(InitList->getInit(0)->getLocEnd(),
5767                      InitList->getLocEnd());
5768    else
5769      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5770
5771    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5772    if (Kind.isCStyleOrFunctionalCast())
5773      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5774        << R;
5775    else
5776      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5777        << /*scalar=*/2 << R;
5778    break;
5779  }
5780
5781  case FK_ReferenceBindingToInitList:
5782    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5783      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5784    break;
5785
5786  case FK_InitListBadDestinationType:
5787    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5788      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5789    break;
5790
5791  case FK_ListConstructorOverloadFailed:
5792  case FK_ConstructorOverloadFailed: {
5793    SourceRange ArgsRange;
5794    if (NumArgs)
5795      ArgsRange = SourceRange(Args[0]->getLocStart(),
5796                              Args[NumArgs - 1]->getLocEnd());
5797
5798    if (Failure == FK_ListConstructorOverloadFailed) {
5799      assert(NumArgs == 1 && "List construction from other than 1 argument.");
5800      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5801      Args = InitList->getInits();
5802      NumArgs = InitList->getNumInits();
5803    }
5804
5805    // FIXME: Using "DestType" for the entity we're printing is probably
5806    // bad.
5807    switch (FailedOverloadResult) {
5808      case OR_Ambiguous:
5809        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5810          << DestType << ArgsRange;
5811        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5812                                          llvm::makeArrayRef(Args, NumArgs));
5813        break;
5814
5815      case OR_No_Viable_Function:
5816        if (Kind.getKind() == InitializationKind::IK_Default &&
5817            (Entity.getKind() == InitializedEntity::EK_Base ||
5818             Entity.getKind() == InitializedEntity::EK_Member) &&
5819            isa<CXXConstructorDecl>(S.CurContext)) {
5820          // This is implicit default initialization of a member or
5821          // base within a constructor. If no viable function was
5822          // found, notify the user that she needs to explicitly
5823          // initialize this base/member.
5824          CXXConstructorDecl *Constructor
5825            = cast<CXXConstructorDecl>(S.CurContext);
5826          if (Entity.getKind() == InitializedEntity::EK_Base) {
5827            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5828              << (Constructor->getInheritedConstructor() ? 2 :
5829                  Constructor->isImplicit() ? 1 : 0)
5830              << S.Context.getTypeDeclType(Constructor->getParent())
5831              << /*base=*/0
5832              << Entity.getType();
5833
5834            RecordDecl *BaseDecl
5835              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5836                                                                  ->getDecl();
5837            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5838              << S.Context.getTagDeclType(BaseDecl);
5839          } else {
5840            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5841              << (Constructor->getInheritedConstructor() ? 2 :
5842                  Constructor->isImplicit() ? 1 : 0)
5843              << S.Context.getTypeDeclType(Constructor->getParent())
5844              << /*member=*/1
5845              << Entity.getName();
5846            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5847
5848            if (const RecordType *Record
5849                                 = Entity.getType()->getAs<RecordType>())
5850              S.Diag(Record->getDecl()->getLocation(),
5851                     diag::note_previous_decl)
5852                << S.Context.getTagDeclType(Record->getDecl());
5853          }
5854          break;
5855        }
5856
5857        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5858          << DestType << ArgsRange;
5859        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5860                                          llvm::makeArrayRef(Args, NumArgs));
5861        break;
5862
5863      case OR_Deleted: {
5864        OverloadCandidateSet::iterator Best;
5865        OverloadingResult Ovl
5866          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5867        if (Ovl != OR_Deleted) {
5868          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5869            << true << DestType << ArgsRange;
5870          llvm_unreachable("Inconsistent overload resolution?");
5871          break;
5872        }
5873
5874        // If this is a defaulted or implicitly-declared function, then
5875        // it was implicitly deleted. Make it clear that the deletion was
5876        // implicit.
5877        if (S.isImplicitlyDeleted(Best->Function))
5878          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5879            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5880            << DestType << ArgsRange;
5881        else
5882          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5883            << true << DestType << ArgsRange;
5884
5885        S.NoteDeletedFunction(Best->Function);
5886        break;
5887      }
5888
5889      case OR_Success:
5890        llvm_unreachable("Conversion did not fail!");
5891    }
5892  }
5893  break;
5894
5895  case FK_DefaultInitOfConst:
5896    if (Entity.getKind() == InitializedEntity::EK_Member &&
5897        isa<CXXConstructorDecl>(S.CurContext)) {
5898      // This is implicit default-initialization of a const member in
5899      // a constructor. Complain that it needs to be explicitly
5900      // initialized.
5901      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5902      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5903        << (Constructor->getInheritedConstructor() ? 2 :
5904            Constructor->isImplicit() ? 1 : 0)
5905        << S.Context.getTypeDeclType(Constructor->getParent())
5906        << /*const=*/1
5907        << Entity.getName();
5908      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5909        << Entity.getName();
5910    } else {
5911      S.Diag(Kind.getLocation(), diag::err_default_init_const)
5912        << DestType << (bool)DestType->getAs<RecordType>();
5913    }
5914    break;
5915
5916  case FK_Incomplete:
5917    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5918                          diag::err_init_incomplete_type);
5919    break;
5920
5921  case FK_ListInitializationFailed: {
5922    // Run the init list checker again to emit diagnostics.
5923    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5924    QualType DestType = Entity.getType();
5925    InitListChecker DiagnoseInitList(S, Entity, InitList,
5926            DestType, /*VerifyOnly=*/false,
5927            Kind.getKind() != InitializationKind::IK_DirectList ||
5928              !S.getLangOpts().CPlusPlus11);
5929    assert(DiagnoseInitList.HadError() &&
5930           "Inconsistent init list check result.");
5931    break;
5932  }
5933
5934  case FK_PlaceholderType: {
5935    // FIXME: Already diagnosed!
5936    break;
5937  }
5938
5939  case FK_InitListElementCopyFailure: {
5940    // Try to perform all copies again.
5941    InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5942    unsigned NumInits = InitList->getNumInits();
5943    QualType DestType = Entity.getType();
5944    QualType E;
5945    bool Success = S.isStdInitializerList(DestType, &E);
5946    (void)Success;
5947    assert(Success && "Where did the std::initializer_list go?");
5948    InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5949        S.Context.getConstantArrayType(E,
5950            llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5951                        NumInits),
5952            ArrayType::Normal, 0));
5953    InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5954        0, HiddenArray);
5955    // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5956    // where the init list type is wrong, e.g.
5957    //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5958    // FIXME: Emit a note if we hit the limit?
5959    int ErrorCount = 0;
5960    for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5961      Element.setElementIndex(i);
5962      ExprResult Init = S.Owned(InitList->getInit(i));
5963      if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5964           .isInvalid())
5965        ++ErrorCount;
5966    }
5967    break;
5968  }
5969
5970  case FK_ExplicitConstructor: {
5971    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5972      << Args[0]->getSourceRange();
5973    OverloadCandidateSet::iterator Best;
5974    OverloadingResult Ovl
5975      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5976    (void)Ovl;
5977    assert(Ovl == OR_Success && "Inconsistent overload resolution");
5978    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5979    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5980    break;
5981  }
5982  }
5983
5984  PrintInitLocationNote(S, Entity);
5985  return true;
5986}
5987
5988void InitializationSequence::dump(raw_ostream &OS) const {
5989  switch (SequenceKind) {
5990  case FailedSequence: {
5991    OS << "Failed sequence: ";
5992    switch (Failure) {
5993    case FK_TooManyInitsForReference:
5994      OS << "too many initializers for reference";
5995      break;
5996
5997    case FK_ArrayNeedsInitList:
5998      OS << "array requires initializer list";
5999      break;
6000
6001    case FK_ArrayNeedsInitListOrStringLiteral:
6002      OS << "array requires initializer list or string literal";
6003      break;
6004
6005    case FK_ArrayTypeMismatch:
6006      OS << "array type mismatch";
6007      break;
6008
6009    case FK_NonConstantArrayInit:
6010      OS << "non-constant array initializer";
6011      break;
6012
6013    case FK_AddressOfOverloadFailed:
6014      OS << "address of overloaded function failed";
6015      break;
6016
6017    case FK_ReferenceInitOverloadFailed:
6018      OS << "overload resolution for reference initialization failed";
6019      break;
6020
6021    case FK_NonConstLValueReferenceBindingToTemporary:
6022      OS << "non-const lvalue reference bound to temporary";
6023      break;
6024
6025    case FK_NonConstLValueReferenceBindingToUnrelated:
6026      OS << "non-const lvalue reference bound to unrelated type";
6027      break;
6028
6029    case FK_RValueReferenceBindingToLValue:
6030      OS << "rvalue reference bound to an lvalue";
6031      break;
6032
6033    case FK_ReferenceInitDropsQualifiers:
6034      OS << "reference initialization drops qualifiers";
6035      break;
6036
6037    case FK_ReferenceInitFailed:
6038      OS << "reference initialization failed";
6039      break;
6040
6041    case FK_ConversionFailed:
6042      OS << "conversion failed";
6043      break;
6044
6045    case FK_ConversionFromPropertyFailed:
6046      OS << "conversion from property failed";
6047      break;
6048
6049    case FK_TooManyInitsForScalar:
6050      OS << "too many initializers for scalar";
6051      break;
6052
6053    case FK_ReferenceBindingToInitList:
6054      OS << "referencing binding to initializer list";
6055      break;
6056
6057    case FK_InitListBadDestinationType:
6058      OS << "initializer list for non-aggregate, non-scalar type";
6059      break;
6060
6061    case FK_UserConversionOverloadFailed:
6062      OS << "overloading failed for user-defined conversion";
6063      break;
6064
6065    case FK_ConstructorOverloadFailed:
6066      OS << "constructor overloading failed";
6067      break;
6068
6069    case FK_DefaultInitOfConst:
6070      OS << "default initialization of a const variable";
6071      break;
6072
6073    case FK_Incomplete:
6074      OS << "initialization of incomplete type";
6075      break;
6076
6077    case FK_ListInitializationFailed:
6078      OS << "list initialization checker failure";
6079      break;
6080
6081    case FK_VariableLengthArrayHasInitializer:
6082      OS << "variable length array has an initializer";
6083      break;
6084
6085    case FK_PlaceholderType:
6086      OS << "initializer expression isn't contextually valid";
6087      break;
6088
6089    case FK_ListConstructorOverloadFailed:
6090      OS << "list constructor overloading failed";
6091      break;
6092
6093    case FK_InitListElementCopyFailure:
6094      OS << "copy construction of initializer list element failed";
6095      break;
6096
6097    case FK_ExplicitConstructor:
6098      OS << "list copy initialization chose explicit constructor";
6099      break;
6100    }
6101    OS << '\n';
6102    return;
6103  }
6104
6105  case DependentSequence:
6106    OS << "Dependent sequence\n";
6107    return;
6108
6109  case NormalSequence:
6110    OS << "Normal sequence: ";
6111    break;
6112  }
6113
6114  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6115    if (S != step_begin()) {
6116      OS << " -> ";
6117    }
6118
6119    switch (S->Kind) {
6120    case SK_ResolveAddressOfOverloadedFunction:
6121      OS << "resolve address of overloaded function";
6122      break;
6123
6124    case SK_CastDerivedToBaseRValue:
6125      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6126      break;
6127
6128    case SK_CastDerivedToBaseXValue:
6129      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6130      break;
6131
6132    case SK_CastDerivedToBaseLValue:
6133      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6134      break;
6135
6136    case SK_BindReference:
6137      OS << "bind reference to lvalue";
6138      break;
6139
6140    case SK_BindReferenceToTemporary:
6141      OS << "bind reference to a temporary";
6142      break;
6143
6144    case SK_ExtraneousCopyToTemporary:
6145      OS << "extraneous C++03 copy to temporary";
6146      break;
6147
6148    case SK_UserConversion:
6149      OS << "user-defined conversion via " << *S->Function.Function;
6150      break;
6151
6152    case SK_QualificationConversionRValue:
6153      OS << "qualification conversion (rvalue)";
6154      break;
6155
6156    case SK_QualificationConversionXValue:
6157      OS << "qualification conversion (xvalue)";
6158      break;
6159
6160    case SK_QualificationConversionLValue:
6161      OS << "qualification conversion (lvalue)";
6162      break;
6163
6164    case SK_ConversionSequence:
6165      OS << "implicit conversion sequence (";
6166      S->ICS->DebugPrint(); // FIXME: use OS
6167      OS << ")";
6168      break;
6169
6170    case SK_ListInitialization:
6171      OS << "list aggregate initialization";
6172      break;
6173
6174    case SK_ListConstructorCall:
6175      OS << "list initialization via constructor";
6176      break;
6177
6178    case SK_UnwrapInitList:
6179      OS << "unwrap reference initializer list";
6180      break;
6181
6182    case SK_RewrapInitList:
6183      OS << "rewrap reference initializer list";
6184      break;
6185
6186    case SK_ConstructorInitialization:
6187      OS << "constructor initialization";
6188      break;
6189
6190    case SK_ZeroInitialization:
6191      OS << "zero initialization";
6192      break;
6193
6194    case SK_CAssignment:
6195      OS << "C assignment";
6196      break;
6197
6198    case SK_StringInit:
6199      OS << "string initialization";
6200      break;
6201
6202    case SK_ObjCObjectConversion:
6203      OS << "Objective-C object conversion";
6204      break;
6205
6206    case SK_ArrayInit:
6207      OS << "array initialization";
6208      break;
6209
6210    case SK_ParenthesizedArrayInit:
6211      OS << "parenthesized array initialization";
6212      break;
6213
6214    case SK_PassByIndirectCopyRestore:
6215      OS << "pass by indirect copy and restore";
6216      break;
6217
6218    case SK_PassByIndirectRestore:
6219      OS << "pass by indirect restore";
6220      break;
6221
6222    case SK_ProduceObjCObject:
6223      OS << "Objective-C object retension";
6224      break;
6225
6226    case SK_StdInitializerList:
6227      OS << "std::initializer_list from initializer list";
6228      break;
6229
6230    case SK_OCLSamplerInit:
6231      OS << "OpenCL sampler_t from integer constant";
6232      break;
6233
6234    case SK_OCLZeroEvent:
6235      OS << "OpenCL event_t from zero";
6236      break;
6237    }
6238
6239    OS << " [" << S->Type.getAsString() << ']';
6240  }
6241
6242  OS << '\n';
6243}
6244
6245void InitializationSequence::dump() const {
6246  dump(llvm::errs());
6247}
6248
6249static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6250                                        QualType EntityType,
6251                                        const Expr *PreInit,
6252                                        const Expr *PostInit) {
6253  if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6254    return;
6255
6256  // A narrowing conversion can only appear as the final implicit conversion in
6257  // an initialization sequence.
6258  const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6259  if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6260    return;
6261
6262  const ImplicitConversionSequence &ICS = *LastStep.ICS;
6263  const StandardConversionSequence *SCS = 0;
6264  switch (ICS.getKind()) {
6265  case ImplicitConversionSequence::StandardConversion:
6266    SCS = &ICS.Standard;
6267    break;
6268  case ImplicitConversionSequence::UserDefinedConversion:
6269    SCS = &ICS.UserDefined.After;
6270    break;
6271  case ImplicitConversionSequence::AmbiguousConversion:
6272  case ImplicitConversionSequence::EllipsisConversion:
6273  case ImplicitConversionSequence::BadConversion:
6274    return;
6275  }
6276
6277  // Determine the type prior to the narrowing conversion. If a conversion
6278  // operator was used, this may be different from both the type of the entity
6279  // and of the pre-initialization expression.
6280  QualType PreNarrowingType = PreInit->getType();
6281  if (Seq.step_begin() + 1 != Seq.step_end())
6282    PreNarrowingType = Seq.step_end()[-2].Type;
6283
6284  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6285  APValue ConstantValue;
6286  QualType ConstantType;
6287  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6288                                ConstantType)) {
6289  case NK_Not_Narrowing:
6290    // No narrowing occurred.
6291    return;
6292
6293  case NK_Type_Narrowing:
6294    // This was a floating-to-integer conversion, which is always considered a
6295    // narrowing conversion even if the value is a constant and can be
6296    // represented exactly as an integer.
6297    S.Diag(PostInit->getLocStart(),
6298           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6299             diag::warn_init_list_type_narrowing
6300           : S.isSFINAEContext()?
6301             diag::err_init_list_type_narrowing_sfinae
6302           : diag::err_init_list_type_narrowing)
6303      << PostInit->getSourceRange()
6304      << PreNarrowingType.getLocalUnqualifiedType()
6305      << EntityType.getLocalUnqualifiedType();
6306    break;
6307
6308  case NK_Constant_Narrowing:
6309    // A constant value was narrowed.
6310    S.Diag(PostInit->getLocStart(),
6311           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6312             diag::warn_init_list_constant_narrowing
6313           : S.isSFINAEContext()?
6314             diag::err_init_list_constant_narrowing_sfinae
6315           : diag::err_init_list_constant_narrowing)
6316      << PostInit->getSourceRange()
6317      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6318      << EntityType.getLocalUnqualifiedType();
6319    break;
6320
6321  case NK_Variable_Narrowing:
6322    // A variable's value may have been narrowed.
6323    S.Diag(PostInit->getLocStart(),
6324           S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11?
6325             diag::warn_init_list_variable_narrowing
6326           : S.isSFINAEContext()?
6327             diag::err_init_list_variable_narrowing_sfinae
6328           : diag::err_init_list_variable_narrowing)
6329      << PostInit->getSourceRange()
6330      << PreNarrowingType.getLocalUnqualifiedType()
6331      << EntityType.getLocalUnqualifiedType();
6332    break;
6333  }
6334
6335  SmallString<128> StaticCast;
6336  llvm::raw_svector_ostream OS(StaticCast);
6337  OS << "static_cast<";
6338  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6339    // It's important to use the typedef's name if there is one so that the
6340    // fixit doesn't break code using types like int64_t.
6341    //
6342    // FIXME: This will break if the typedef requires qualification.  But
6343    // getQualifiedNameAsString() includes non-machine-parsable components.
6344    OS << *TT->getDecl();
6345  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6346    OS << BT->getName(S.getLangOpts());
6347  else {
6348    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6349    // with a broken cast.
6350    return;
6351  }
6352  OS << ">(";
6353  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6354    << PostInit->getSourceRange()
6355    << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6356    << FixItHint::CreateInsertion(
6357      S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6358}
6359
6360//===----------------------------------------------------------------------===//
6361// Initialization helper functions
6362//===----------------------------------------------------------------------===//
6363bool
6364Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6365                                   ExprResult Init) {
6366  if (Init.isInvalid())
6367    return false;
6368
6369  Expr *InitE = Init.get();
6370  assert(InitE && "No initialization expression");
6371
6372  InitializationKind Kind
6373    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6374  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6375  return !Seq.Failed();
6376}
6377
6378ExprResult
6379Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6380                                SourceLocation EqualLoc,
6381                                ExprResult Init,
6382                                bool TopLevelOfInitList,
6383                                bool AllowExplicit) {
6384  if (Init.isInvalid())
6385    return ExprError();
6386
6387  Expr *InitE = Init.get();
6388  assert(InitE && "No initialization expression?");
6389
6390  if (EqualLoc.isInvalid())
6391    EqualLoc = InitE->getLocStart();
6392
6393  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6394                                                           EqualLoc,
6395                                                           AllowExplicit);
6396  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6397  Init.release();
6398
6399  ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6400
6401  if (!Result.isInvalid() && TopLevelOfInitList)
6402    DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6403                                InitE, Result.get());
6404
6405  return Result;
6406}
6407