SemaInit.cpp revision 429bb276991ff2dbc7c5b438828b9b7737cb15eb
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers. The main entry
11// point is Sema::CheckInitList(), but all of the work is performed
12// within the InitListChecker class.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/Designator.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/SemaInternal.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "llvm/Support/ErrorHandling.h"
27#include <map>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Sema Initialization Checking
32//===----------------------------------------------------------------------===//
33
34static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
35                          ASTContext &Context) {
36  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
37    return 0;
38
39  // See if this is a string literal or @encode.
40  Init = Init->IgnoreParens();
41
42  // Handle @encode, which is a narrow string.
43  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
44    return Init;
45
46  // Otherwise we can only handle string literals.
47  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
48  if (SL == 0) return 0;
49
50  QualType ElemTy = Context.getCanonicalType(AT->getElementType());
51  // char array can be initialized with a narrow string.
52  // Only allow char x[] = "foo";  not char x[] = L"foo";
53  if (!SL->isWide())
54    return ElemTy->isCharType() ? Init : 0;
55
56  // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
57  // correction from DR343): "An array with element type compatible with a
58  // qualified or unqualified version of wchar_t may be initialized by a wide
59  // string literal, optionally enclosed in braces."
60  if (Context.typesAreCompatible(Context.getWCharType(),
61                                 ElemTy.getUnqualifiedType()))
62    return Init;
63
64  return 0;
65}
66
67static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
68  const ArrayType *arrayType = Context.getAsArrayType(declType);
69  if (!arrayType) return 0;
70
71  return IsStringInit(init, arrayType, Context);
72}
73
74static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
75                            Sema &S) {
76  // Get the length of the string as parsed.
77  uint64_t StrLength =
78    cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
79
80
81  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
82    // C99 6.7.8p14. We have an array of character type with unknown size
83    // being initialized to a string literal.
84    llvm::APSInt ConstVal(32);
85    ConstVal = StrLength;
86    // Return a new array type (C99 6.7.8p22).
87    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
88                                           ConstVal,
89                                           ArrayType::Normal, 0);
90    return;
91  }
92
93  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
94
95  // C99 6.7.8p14. We have an array of character type with known size.  However,
96  // the size may be smaller or larger than the string we are initializing.
97  // FIXME: Avoid truncation for 64-bit length strings.
98  if (StrLength-1 > CAT->getSize().getZExtValue())
99    S.Diag(Str->getSourceRange().getBegin(),
100           diag::warn_initializer_string_for_char_array_too_long)
101      << Str->getSourceRange();
102
103  // Set the type to the actual size that we are initializing.  If we have
104  // something like:
105  //   char x[1] = "foo";
106  // then this will set the string literal's type to char[1].
107  Str->setType(DeclT);
108}
109
110//===----------------------------------------------------------------------===//
111// Semantic checking for initializer lists.
112//===----------------------------------------------------------------------===//
113
114/// @brief Semantic checking for initializer lists.
115///
116/// The InitListChecker class contains a set of routines that each
117/// handle the initialization of a certain kind of entity, e.g.,
118/// arrays, vectors, struct/union types, scalars, etc. The
119/// InitListChecker itself performs a recursive walk of the subobject
120/// structure of the type to be initialized, while stepping through
121/// the initializer list one element at a time. The IList and Index
122/// parameters to each of the Check* routines contain the active
123/// (syntactic) initializer list and the index into that initializer
124/// list that represents the current initializer. Each routine is
125/// responsible for moving that Index forward as it consumes elements.
126///
127/// Each Check* routine also has a StructuredList/StructuredIndex
128/// arguments, which contains the current "structured" (semantic)
129/// initializer list and the index into that initializer list where we
130/// are copying initializers as we map them over to the semantic
131/// list. Once we have completed our recursive walk of the subobject
132/// structure, we will have constructed a full semantic initializer
133/// list.
134///
135/// C99 designators cause changes in the initializer list traversal,
136/// because they make the initialization "jump" into a specific
137/// subobject and then continue the initialization from that
138/// point. CheckDesignatedInitializer() recursively steps into the
139/// designated subobject and manages backing out the recursion to
140/// initialize the subobjects after the one designated.
141namespace {
142class InitListChecker {
143  Sema &SemaRef;
144  bool hadError;
145  std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
146  InitListExpr *FullyStructuredList;
147
148  void CheckImplicitInitList(const InitializedEntity &Entity,
149                             InitListExpr *ParentIList, QualType T,
150                             unsigned &Index, InitListExpr *StructuredList,
151                             unsigned &StructuredIndex,
152                             bool TopLevelObject = false);
153  void CheckExplicitInitList(const InitializedEntity &Entity,
154                             InitListExpr *IList, QualType &T,
155                             unsigned &Index, InitListExpr *StructuredList,
156                             unsigned &StructuredIndex,
157                             bool TopLevelObject = false);
158  void CheckListElementTypes(const InitializedEntity &Entity,
159                             InitListExpr *IList, QualType &DeclType,
160                             bool SubobjectIsDesignatorContext,
161                             unsigned &Index,
162                             InitListExpr *StructuredList,
163                             unsigned &StructuredIndex,
164                             bool TopLevelObject = false);
165  void CheckSubElementType(const InitializedEntity &Entity,
166                           InitListExpr *IList, QualType ElemType,
167                           unsigned &Index,
168                           InitListExpr *StructuredList,
169                           unsigned &StructuredIndex);
170  void CheckScalarType(const InitializedEntity &Entity,
171                       InitListExpr *IList, QualType DeclType,
172                       unsigned &Index,
173                       InitListExpr *StructuredList,
174                       unsigned &StructuredIndex);
175  void CheckReferenceType(const InitializedEntity &Entity,
176                          InitListExpr *IList, QualType DeclType,
177                          unsigned &Index,
178                          InitListExpr *StructuredList,
179                          unsigned &StructuredIndex);
180  void CheckVectorType(const InitializedEntity &Entity,
181                       InitListExpr *IList, QualType DeclType, unsigned &Index,
182                       InitListExpr *StructuredList,
183                       unsigned &StructuredIndex);
184  void CheckStructUnionTypes(const InitializedEntity &Entity,
185                             InitListExpr *IList, QualType DeclType,
186                             RecordDecl::field_iterator Field,
187                             bool SubobjectIsDesignatorContext, unsigned &Index,
188                             InitListExpr *StructuredList,
189                             unsigned &StructuredIndex,
190                             bool TopLevelObject = false);
191  void CheckArrayType(const InitializedEntity &Entity,
192                      InitListExpr *IList, QualType &DeclType,
193                      llvm::APSInt elementIndex,
194                      bool SubobjectIsDesignatorContext, unsigned &Index,
195                      InitListExpr *StructuredList,
196                      unsigned &StructuredIndex);
197  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
198                                  InitListExpr *IList, DesignatedInitExpr *DIE,
199                                  unsigned DesigIdx,
200                                  QualType &CurrentObjectType,
201                                  RecordDecl::field_iterator *NextField,
202                                  llvm::APSInt *NextElementIndex,
203                                  unsigned &Index,
204                                  InitListExpr *StructuredList,
205                                  unsigned &StructuredIndex,
206                                  bool FinishSubobjectInit,
207                                  bool TopLevelObject);
208  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
209                                           QualType CurrentObjectType,
210                                           InitListExpr *StructuredList,
211                                           unsigned StructuredIndex,
212                                           SourceRange InitRange);
213  void UpdateStructuredListElement(InitListExpr *StructuredList,
214                                   unsigned &StructuredIndex,
215                                   Expr *expr);
216  int numArrayElements(QualType DeclType);
217  int numStructUnionElements(QualType DeclType);
218
219  void FillInValueInitForField(unsigned Init, FieldDecl *Field,
220                               const InitializedEntity &ParentEntity,
221                               InitListExpr *ILE, bool &RequiresSecondPass);
222  void FillInValueInitializations(const InitializedEntity &Entity,
223                                  InitListExpr *ILE, bool &RequiresSecondPass);
224public:
225  InitListChecker(Sema &S, const InitializedEntity &Entity,
226                  InitListExpr *IL, QualType &T);
227  bool HadError() { return hadError; }
228
229  // @brief Retrieves the fully-structured initializer list used for
230  // semantic analysis and code generation.
231  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
232};
233} // end anonymous namespace
234
235void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
236                                        const InitializedEntity &ParentEntity,
237                                              InitListExpr *ILE,
238                                              bool &RequiresSecondPass) {
239  SourceLocation Loc = ILE->getSourceRange().getBegin();
240  unsigned NumInits = ILE->getNumInits();
241  InitializedEntity MemberEntity
242    = InitializedEntity::InitializeMember(Field, &ParentEntity);
243  if (Init >= NumInits || !ILE->getInit(Init)) {
244    // FIXME: We probably don't need to handle references
245    // specially here, since value-initialization of references is
246    // handled in InitializationSequence.
247    if (Field->getType()->isReferenceType()) {
248      // C++ [dcl.init.aggr]p9:
249      //   If an incomplete or empty initializer-list leaves a
250      //   member of reference type uninitialized, the program is
251      //   ill-formed.
252      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
253        << Field->getType()
254        << ILE->getSyntacticForm()->getSourceRange();
255      SemaRef.Diag(Field->getLocation(),
256                   diag::note_uninit_reference_member);
257      hadError = true;
258      return;
259    }
260
261    InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
262                                                              true);
263    InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
264    if (!InitSeq) {
265      InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
266      hadError = true;
267      return;
268    }
269
270    ExprResult MemberInit
271      = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
272    if (MemberInit.isInvalid()) {
273      hadError = true;
274      return;
275    }
276
277    if (hadError) {
278      // Do nothing
279    } else if (Init < NumInits) {
280      ILE->setInit(Init, MemberInit.takeAs<Expr>());
281    } else if (InitSeq.getKind()
282                 == InitializationSequence::ConstructorInitialization) {
283      // Value-initialization requires a constructor call, so
284      // extend the initializer list to include the constructor
285      // call and make a note that we'll need to take another pass
286      // through the initializer list.
287      ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
288      RequiresSecondPass = true;
289    }
290  } else if (InitListExpr *InnerILE
291               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
292    FillInValueInitializations(MemberEntity, InnerILE,
293                               RequiresSecondPass);
294}
295
296/// Recursively replaces NULL values within the given initializer list
297/// with expressions that perform value-initialization of the
298/// appropriate type.
299void
300InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
301                                            InitListExpr *ILE,
302                                            bool &RequiresSecondPass) {
303  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
304         "Should not have void type");
305  SourceLocation Loc = ILE->getSourceRange().getBegin();
306  if (ILE->getSyntacticForm())
307    Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
308
309  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
310    if (RType->getDecl()->isUnion() &&
311        ILE->getInitializedFieldInUnion())
312      FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
313                              Entity, ILE, RequiresSecondPass);
314    else {
315      unsigned Init = 0;
316      for (RecordDecl::field_iterator
317             Field = RType->getDecl()->field_begin(),
318             FieldEnd = RType->getDecl()->field_end();
319           Field != FieldEnd; ++Field) {
320        if (Field->isUnnamedBitfield())
321          continue;
322
323        if (hadError)
324          return;
325
326        FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
327        if (hadError)
328          return;
329
330        ++Init;
331
332        // Only look at the first initialization of a union.
333        if (RType->getDecl()->isUnion())
334          break;
335      }
336    }
337
338    return;
339  }
340
341  QualType ElementType;
342
343  InitializedEntity ElementEntity = Entity;
344  unsigned NumInits = ILE->getNumInits();
345  unsigned NumElements = NumInits;
346  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
347    ElementType = AType->getElementType();
348    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
349      NumElements = CAType->getSize().getZExtValue();
350    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
351                                                         0, Entity);
352  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
353    ElementType = VType->getElementType();
354    NumElements = VType->getNumElements();
355    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
356                                                         0, Entity);
357  } else
358    ElementType = ILE->getType();
359
360
361  for (unsigned Init = 0; Init != NumElements; ++Init) {
362    if (hadError)
363      return;
364
365    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
366        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
367      ElementEntity.setElementIndex(Init);
368
369    if (Init >= NumInits || !ILE->getInit(Init)) {
370      InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
371                                                                true);
372      InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
373      if (!InitSeq) {
374        InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
375        hadError = true;
376        return;
377      }
378
379      ExprResult ElementInit
380        = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
381      if (ElementInit.isInvalid()) {
382        hadError = true;
383        return;
384      }
385
386      if (hadError) {
387        // Do nothing
388      } else if (Init < NumInits) {
389        ILE->setInit(Init, ElementInit.takeAs<Expr>());
390      } else if (InitSeq.getKind()
391                   == InitializationSequence::ConstructorInitialization) {
392        // Value-initialization requires a constructor call, so
393        // extend the initializer list to include the constructor
394        // call and make a note that we'll need to take another pass
395        // through the initializer list.
396        ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
397        RequiresSecondPass = true;
398      }
399    } else if (InitListExpr *InnerILE
400                 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
401      FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
402  }
403}
404
405
406InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
407                                 InitListExpr *IL, QualType &T)
408  : SemaRef(S) {
409  hadError = false;
410
411  unsigned newIndex = 0;
412  unsigned newStructuredIndex = 0;
413  FullyStructuredList
414    = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
415  CheckExplicitInitList(Entity, IL, T, newIndex,
416                        FullyStructuredList, newStructuredIndex,
417                        /*TopLevelObject=*/true);
418
419  if (!hadError) {
420    bool RequiresSecondPass = false;
421    FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
422    if (RequiresSecondPass && !hadError)
423      FillInValueInitializations(Entity, FullyStructuredList,
424                                 RequiresSecondPass);
425  }
426}
427
428int InitListChecker::numArrayElements(QualType DeclType) {
429  // FIXME: use a proper constant
430  int maxElements = 0x7FFFFFFF;
431  if (const ConstantArrayType *CAT =
432        SemaRef.Context.getAsConstantArrayType(DeclType)) {
433    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
434  }
435  return maxElements;
436}
437
438int InitListChecker::numStructUnionElements(QualType DeclType) {
439  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
440  int InitializableMembers = 0;
441  for (RecordDecl::field_iterator
442         Field = structDecl->field_begin(),
443         FieldEnd = structDecl->field_end();
444       Field != FieldEnd; ++Field) {
445    if ((*Field)->getIdentifier() || !(*Field)->isBitField())
446      ++InitializableMembers;
447  }
448  if (structDecl->isUnion())
449    return std::min(InitializableMembers, 1);
450  return InitializableMembers - structDecl->hasFlexibleArrayMember();
451}
452
453void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
454                                            InitListExpr *ParentIList,
455                                            QualType T, unsigned &Index,
456                                            InitListExpr *StructuredList,
457                                            unsigned &StructuredIndex,
458                                            bool TopLevelObject) {
459  int maxElements = 0;
460
461  if (T->isArrayType())
462    maxElements = numArrayElements(T);
463  else if (T->isRecordType())
464    maxElements = numStructUnionElements(T);
465  else if (T->isVectorType())
466    maxElements = T->getAs<VectorType>()->getNumElements();
467  else
468    assert(0 && "CheckImplicitInitList(): Illegal type");
469
470  if (maxElements == 0) {
471    SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
472                  diag::err_implicit_empty_initializer);
473    ++Index;
474    hadError = true;
475    return;
476  }
477
478  // Build a structured initializer list corresponding to this subobject.
479  InitListExpr *StructuredSubobjectInitList
480    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
481                                 StructuredIndex,
482          SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
483                      ParentIList->getSourceRange().getEnd()));
484  unsigned StructuredSubobjectInitIndex = 0;
485
486  // Check the element types and build the structural subobject.
487  unsigned StartIndex = Index;
488  CheckListElementTypes(Entity, ParentIList, T,
489                        /*SubobjectIsDesignatorContext=*/false, Index,
490                        StructuredSubobjectInitList,
491                        StructuredSubobjectInitIndex,
492                        TopLevelObject);
493  unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
494  StructuredSubobjectInitList->setType(T);
495
496  // Update the structured sub-object initializer so that it's ending
497  // range corresponds with the end of the last initializer it used.
498  if (EndIndex < ParentIList->getNumInits()) {
499    SourceLocation EndLoc
500      = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
501    StructuredSubobjectInitList->setRBraceLoc(EndLoc);
502  }
503
504  // Warn about missing braces.
505  if (T->isArrayType() || T->isRecordType()) {
506    SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
507                 diag::warn_missing_braces)
508    << StructuredSubobjectInitList->getSourceRange()
509    << FixItHint::CreateInsertion(StructuredSubobjectInitList->getLocStart(),
510                                  "{")
511    << FixItHint::CreateInsertion(SemaRef.PP.getLocForEndOfToken(
512                                      StructuredSubobjectInitList->getLocEnd()),
513                                  "}");
514  }
515}
516
517void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
518                                            InitListExpr *IList, QualType &T,
519                                            unsigned &Index,
520                                            InitListExpr *StructuredList,
521                                            unsigned &StructuredIndex,
522                                            bool TopLevelObject) {
523  assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
524  SyntacticToSemantic[IList] = StructuredList;
525  StructuredList->setSyntacticForm(IList);
526  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
527                        Index, StructuredList, StructuredIndex, TopLevelObject);
528  QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
529  IList->setType(ExprTy);
530  StructuredList->setType(ExprTy);
531  if (hadError)
532    return;
533
534  if (Index < IList->getNumInits()) {
535    // We have leftover initializers
536    if (StructuredIndex == 1 &&
537        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
538      unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
539      if (SemaRef.getLangOptions().CPlusPlus) {
540        DK = diag::err_excess_initializers_in_char_array_initializer;
541        hadError = true;
542      }
543      // Special-case
544      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
545        << IList->getInit(Index)->getSourceRange();
546    } else if (!T->isIncompleteType()) {
547      // Don't complain for incomplete types, since we'll get an error
548      // elsewhere
549      QualType CurrentObjectType = StructuredList->getType();
550      int initKind =
551        CurrentObjectType->isArrayType()? 0 :
552        CurrentObjectType->isVectorType()? 1 :
553        CurrentObjectType->isScalarType()? 2 :
554        CurrentObjectType->isUnionType()? 3 :
555        4;
556
557      unsigned DK = diag::warn_excess_initializers;
558      if (SemaRef.getLangOptions().CPlusPlus) {
559        DK = diag::err_excess_initializers;
560        hadError = true;
561      }
562      if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
563        DK = diag::err_excess_initializers;
564        hadError = true;
565      }
566
567      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
568        << initKind << IList->getInit(Index)->getSourceRange();
569    }
570  }
571
572  if (T->isScalarType() && !TopLevelObject)
573    SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
574      << IList->getSourceRange()
575      << FixItHint::CreateRemoval(IList->getLocStart())
576      << FixItHint::CreateRemoval(IList->getLocEnd());
577}
578
579void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
580                                            InitListExpr *IList,
581                                            QualType &DeclType,
582                                            bool SubobjectIsDesignatorContext,
583                                            unsigned &Index,
584                                            InitListExpr *StructuredList,
585                                            unsigned &StructuredIndex,
586                                            bool TopLevelObject) {
587  if (DeclType->isScalarType()) {
588    CheckScalarType(Entity, IList, DeclType, Index,
589                    StructuredList, StructuredIndex);
590  } else if (DeclType->isVectorType()) {
591    CheckVectorType(Entity, IList, DeclType, Index,
592                    StructuredList, StructuredIndex);
593  } else if (DeclType->isAggregateType()) {
594    if (DeclType->isRecordType()) {
595      RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
596      CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
597                            SubobjectIsDesignatorContext, Index,
598                            StructuredList, StructuredIndex,
599                            TopLevelObject);
600    } else if (DeclType->isArrayType()) {
601      llvm::APSInt Zero(
602                      SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
603                      false);
604      CheckArrayType(Entity, IList, DeclType, Zero,
605                     SubobjectIsDesignatorContext, Index,
606                     StructuredList, StructuredIndex);
607    } else
608      assert(0 && "Aggregate that isn't a structure or array?!");
609  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
610    // This type is invalid, issue a diagnostic.
611    ++Index;
612    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
613      << DeclType;
614    hadError = true;
615  } else if (DeclType->isRecordType()) {
616    // C++ [dcl.init]p14:
617    //   [...] If the class is an aggregate (8.5.1), and the initializer
618    //   is a brace-enclosed list, see 8.5.1.
619    //
620    // Note: 8.5.1 is handled below; here, we diagnose the case where
621    // we have an initializer list and a destination type that is not
622    // an aggregate.
623    // FIXME: In C++0x, this is yet another form of initialization.
624    SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
625      << DeclType << IList->getSourceRange();
626    hadError = true;
627  } else if (DeclType->isReferenceType()) {
628    CheckReferenceType(Entity, IList, DeclType, Index,
629                       StructuredList, StructuredIndex);
630  } else if (DeclType->isObjCObjectType()) {
631    SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
632      << DeclType;
633    hadError = true;
634  } else {
635    SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
636      << DeclType;
637    hadError = true;
638  }
639}
640
641void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
642                                          InitListExpr *IList,
643                                          QualType ElemType,
644                                          unsigned &Index,
645                                          InitListExpr *StructuredList,
646                                          unsigned &StructuredIndex) {
647  Expr *expr = IList->getInit(Index);
648  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
649    unsigned newIndex = 0;
650    unsigned newStructuredIndex = 0;
651    InitListExpr *newStructuredList
652      = getStructuredSubobjectInit(IList, Index, ElemType,
653                                   StructuredList, StructuredIndex,
654                                   SubInitList->getSourceRange());
655    CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
656                          newStructuredList, newStructuredIndex);
657    ++StructuredIndex;
658    ++Index;
659    return;
660  } else if (ElemType->isScalarType()) {
661    return CheckScalarType(Entity, IList, ElemType, Index,
662                           StructuredList, StructuredIndex);
663  } else if (ElemType->isReferenceType()) {
664    return CheckReferenceType(Entity, IList, ElemType, Index,
665                              StructuredList, StructuredIndex);
666  }
667
668  if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
669    // arrayType can be incomplete if we're initializing a flexible
670    // array member.  There's nothing we can do with the completed
671    // type here, though.
672
673    if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
674      CheckStringInit(Str, ElemType, arrayType, SemaRef);
675      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
676      ++Index;
677      return;
678    }
679
680    // Fall through for subaggregate initialization.
681
682  } else if (SemaRef.getLangOptions().CPlusPlus) {
683    // C++ [dcl.init.aggr]p12:
684    //   All implicit type conversions (clause 4) are considered when
685    //   initializing the aggregate member with an ini- tializer from
686    //   an initializer-list. If the initializer can initialize a
687    //   member, the member is initialized. [...]
688
689    // FIXME: Better EqualLoc?
690    InitializationKind Kind =
691      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
692    InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
693
694    if (Seq) {
695      ExprResult Result =
696        Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
697      if (Result.isInvalid())
698        hadError = true;
699
700      UpdateStructuredListElement(StructuredList, StructuredIndex,
701                                  Result.takeAs<Expr>());
702      ++Index;
703      return;
704    }
705
706    // Fall through for subaggregate initialization
707  } else {
708    // C99 6.7.8p13:
709    //
710    //   The initializer for a structure or union object that has
711    //   automatic storage duration shall be either an initializer
712    //   list as described below, or a single expression that has
713    //   compatible structure or union type. In the latter case, the
714    //   initial value of the object, including unnamed members, is
715    //   that of the expression.
716    ExprResult ExprRes = SemaRef.Owned(expr);
717    if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
718        SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes)
719          == Sema::Compatible) {
720      if (ExprRes.isInvalid())
721        hadError = true;
722      else {
723        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
724	      if (ExprRes.isInvalid())
725	        hadError = true;
726      }
727      UpdateStructuredListElement(StructuredList, StructuredIndex,
728                                  ExprRes.takeAs<Expr>());
729      ++Index;
730      return;
731    }
732    ExprRes.release();
733    // Fall through for subaggregate initialization
734  }
735
736  // C++ [dcl.init.aggr]p12:
737  //
738  //   [...] Otherwise, if the member is itself a non-empty
739  //   subaggregate, brace elision is assumed and the initializer is
740  //   considered for the initialization of the first member of
741  //   the subaggregate.
742  if (ElemType->isAggregateType() || ElemType->isVectorType()) {
743    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
744                          StructuredIndex);
745    ++StructuredIndex;
746  } else {
747    // We cannot initialize this element, so let
748    // PerformCopyInitialization produce the appropriate diagnostic.
749    SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
750                                      SemaRef.Owned(expr));
751    hadError = true;
752    ++Index;
753    ++StructuredIndex;
754  }
755}
756
757void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
758                                      InitListExpr *IList, QualType DeclType,
759                                      unsigned &Index,
760                                      InitListExpr *StructuredList,
761                                      unsigned &StructuredIndex) {
762  if (Index >= IList->getNumInits()) {
763    SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
764      << IList->getSourceRange();
765    hadError = true;
766    ++Index;
767    ++StructuredIndex;
768    return;
769  }
770
771  Expr *expr = IList->getInit(Index);
772  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
773    SemaRef.Diag(SubIList->getLocStart(),
774                 diag::warn_many_braces_around_scalar_init)
775      << SubIList->getSourceRange();
776
777    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
778                    StructuredIndex);
779    return;
780  } else if (isa<DesignatedInitExpr>(expr)) {
781    SemaRef.Diag(expr->getSourceRange().getBegin(),
782                 diag::err_designator_for_scalar_init)
783      << DeclType << expr->getSourceRange();
784    hadError = true;
785    ++Index;
786    ++StructuredIndex;
787    return;
788  }
789
790  ExprResult Result =
791    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
792                                      SemaRef.Owned(expr));
793
794  Expr *ResultExpr = 0;
795
796  if (Result.isInvalid())
797    hadError = true; // types weren't compatible.
798  else {
799    ResultExpr = Result.takeAs<Expr>();
800
801    if (ResultExpr != expr) {
802      // The type was promoted, update initializer list.
803      IList->setInit(Index, ResultExpr);
804    }
805  }
806  if (hadError)
807    ++StructuredIndex;
808  else
809    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
810  ++Index;
811}
812
813void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
814                                         InitListExpr *IList, QualType DeclType,
815                                         unsigned &Index,
816                                         InitListExpr *StructuredList,
817                                         unsigned &StructuredIndex) {
818  if (Index < IList->getNumInits()) {
819    Expr *expr = IList->getInit(Index);
820    if (isa<InitListExpr>(expr)) {
821      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
822        << DeclType << IList->getSourceRange();
823      hadError = true;
824      ++Index;
825      ++StructuredIndex;
826      return;
827    }
828
829    ExprResult Result =
830      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
831                                        SemaRef.Owned(expr));
832
833    if (Result.isInvalid())
834      hadError = true;
835
836    expr = Result.takeAs<Expr>();
837    IList->setInit(Index, expr);
838
839    if (hadError)
840      ++StructuredIndex;
841    else
842      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
843    ++Index;
844  } else {
845    // FIXME: It would be wonderful if we could point at the actual member. In
846    // general, it would be useful to pass location information down the stack,
847    // so that we know the location (or decl) of the "current object" being
848    // initialized.
849    SemaRef.Diag(IList->getLocStart(),
850                  diag::err_init_reference_member_uninitialized)
851      << DeclType
852      << IList->getSourceRange();
853    hadError = true;
854    ++Index;
855    ++StructuredIndex;
856    return;
857  }
858}
859
860void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
861                                      InitListExpr *IList, QualType DeclType,
862                                      unsigned &Index,
863                                      InitListExpr *StructuredList,
864                                      unsigned &StructuredIndex) {
865  if (Index >= IList->getNumInits())
866    return;
867
868  const VectorType *VT = DeclType->getAs<VectorType>();
869  unsigned maxElements = VT->getNumElements();
870  unsigned numEltsInit = 0;
871  QualType elementType = VT->getElementType();
872
873  if (!SemaRef.getLangOptions().OpenCL) {
874    // If the initializing element is a vector, try to copy-initialize
875    // instead of breaking it apart (which is doomed to failure anyway).
876    Expr *Init = IList->getInit(Index);
877    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
878      ExprResult Result =
879        SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
880                                          SemaRef.Owned(Init));
881
882      Expr *ResultExpr = 0;
883      if (Result.isInvalid())
884        hadError = true; // types weren't compatible.
885      else {
886        ResultExpr = Result.takeAs<Expr>();
887
888        if (ResultExpr != Init) {
889          // The type was promoted, update initializer list.
890          IList->setInit(Index, ResultExpr);
891        }
892      }
893      if (hadError)
894        ++StructuredIndex;
895      else
896        UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
897      ++Index;
898      return;
899    }
900
901    InitializedEntity ElementEntity =
902      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
903
904    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
905      // Don't attempt to go past the end of the init list
906      if (Index >= IList->getNumInits())
907        break;
908
909      ElementEntity.setElementIndex(Index);
910      CheckSubElementType(ElementEntity, IList, elementType, Index,
911                          StructuredList, StructuredIndex);
912    }
913    return;
914  }
915
916  InitializedEntity ElementEntity =
917    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
918
919  // OpenCL initializers allows vectors to be constructed from vectors.
920  for (unsigned i = 0; i < maxElements; ++i) {
921    // Don't attempt to go past the end of the init list
922    if (Index >= IList->getNumInits())
923      break;
924
925    ElementEntity.setElementIndex(Index);
926
927    QualType IType = IList->getInit(Index)->getType();
928    if (!IType->isVectorType()) {
929      CheckSubElementType(ElementEntity, IList, elementType, Index,
930                          StructuredList, StructuredIndex);
931      ++numEltsInit;
932    } else {
933      QualType VecType;
934      const VectorType *IVT = IType->getAs<VectorType>();
935      unsigned numIElts = IVT->getNumElements();
936
937      if (IType->isExtVectorType())
938        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
939      else
940        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
941                                                IVT->getVectorKind());
942      CheckSubElementType(ElementEntity, IList, VecType, Index,
943                          StructuredList, StructuredIndex);
944      numEltsInit += numIElts;
945    }
946  }
947
948  // OpenCL requires all elements to be initialized.
949  if (numEltsInit != maxElements)
950    if (SemaRef.getLangOptions().OpenCL)
951      SemaRef.Diag(IList->getSourceRange().getBegin(),
952                   diag::err_vector_incorrect_num_initializers)
953        << (numEltsInit < maxElements) << maxElements << numEltsInit;
954}
955
956void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
957                                     InitListExpr *IList, QualType &DeclType,
958                                     llvm::APSInt elementIndex,
959                                     bool SubobjectIsDesignatorContext,
960                                     unsigned &Index,
961                                     InitListExpr *StructuredList,
962                                     unsigned &StructuredIndex) {
963  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
964
965  // Check for the special-case of initializing an array with a string.
966  if (Index < IList->getNumInits()) {
967    if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
968                                 SemaRef.Context)) {
969      CheckStringInit(Str, DeclType, arrayType, SemaRef);
970      // We place the string literal directly into the resulting
971      // initializer list. This is the only place where the structure
972      // of the structured initializer list doesn't match exactly,
973      // because doing so would involve allocating one character
974      // constant for each string.
975      UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
976      StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
977      ++Index;
978      return;
979    }
980  }
981  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
982    // Check for VLAs; in standard C it would be possible to check this
983    // earlier, but I don't know where clang accepts VLAs (gcc accepts
984    // them in all sorts of strange places).
985    SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
986                  diag::err_variable_object_no_init)
987      << VAT->getSizeExpr()->getSourceRange();
988    hadError = true;
989    ++Index;
990    ++StructuredIndex;
991    return;
992  }
993
994  // We might know the maximum number of elements in advance.
995  llvm::APSInt maxElements(elementIndex.getBitWidth(),
996                           elementIndex.isUnsigned());
997  bool maxElementsKnown = false;
998  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
999    maxElements = CAT->getSize();
1000    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1001    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1002    maxElementsKnown = true;
1003  }
1004
1005  QualType elementType = arrayType->getElementType();
1006  while (Index < IList->getNumInits()) {
1007    Expr *Init = IList->getInit(Index);
1008    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1009      // If we're not the subobject that matches up with the '{' for
1010      // the designator, we shouldn't be handling the
1011      // designator. Return immediately.
1012      if (!SubobjectIsDesignatorContext)
1013        return;
1014
1015      // Handle this designated initializer. elementIndex will be
1016      // updated to be the next array element we'll initialize.
1017      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1018                                     DeclType, 0, &elementIndex, Index,
1019                                     StructuredList, StructuredIndex, true,
1020                                     false)) {
1021        hadError = true;
1022        continue;
1023      }
1024
1025      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1026        maxElements = maxElements.extend(elementIndex.getBitWidth());
1027      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1028        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1029      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1030
1031      // If the array is of incomplete type, keep track of the number of
1032      // elements in the initializer.
1033      if (!maxElementsKnown && elementIndex > maxElements)
1034        maxElements = elementIndex;
1035
1036      continue;
1037    }
1038
1039    // If we know the maximum number of elements, and we've already
1040    // hit it, stop consuming elements in the initializer list.
1041    if (maxElementsKnown && elementIndex == maxElements)
1042      break;
1043
1044    InitializedEntity ElementEntity =
1045      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1046                                           Entity);
1047    // Check this element.
1048    CheckSubElementType(ElementEntity, IList, elementType, Index,
1049                        StructuredList, StructuredIndex);
1050    ++elementIndex;
1051
1052    // If the array is of incomplete type, keep track of the number of
1053    // elements in the initializer.
1054    if (!maxElementsKnown && elementIndex > maxElements)
1055      maxElements = elementIndex;
1056  }
1057  if (!hadError && DeclType->isIncompleteArrayType()) {
1058    // If this is an incomplete array type, the actual type needs to
1059    // be calculated here.
1060    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1061    if (maxElements == Zero) {
1062      // Sizing an array implicitly to zero is not allowed by ISO C,
1063      // but is supported by GNU.
1064      SemaRef.Diag(IList->getLocStart(),
1065                    diag::ext_typecheck_zero_array_size);
1066    }
1067
1068    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1069                                                     ArrayType::Normal, 0);
1070  }
1071}
1072
1073void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1074                                            InitListExpr *IList,
1075                                            QualType DeclType,
1076                                            RecordDecl::field_iterator Field,
1077                                            bool SubobjectIsDesignatorContext,
1078                                            unsigned &Index,
1079                                            InitListExpr *StructuredList,
1080                                            unsigned &StructuredIndex,
1081                                            bool TopLevelObject) {
1082  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1083
1084  // If the record is invalid, some of it's members are invalid. To avoid
1085  // confusion, we forgo checking the intializer for the entire record.
1086  if (structDecl->isInvalidDecl()) {
1087    hadError = true;
1088    return;
1089  }
1090
1091  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1092    // Value-initialize the first named member of the union.
1093    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1094    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1095         Field != FieldEnd; ++Field) {
1096      if (Field->getDeclName()) {
1097        StructuredList->setInitializedFieldInUnion(*Field);
1098        break;
1099      }
1100    }
1101    return;
1102  }
1103
1104  // If structDecl is a forward declaration, this loop won't do
1105  // anything except look at designated initializers; That's okay,
1106  // because an error should get printed out elsewhere. It might be
1107  // worthwhile to skip over the rest of the initializer, though.
1108  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1109  RecordDecl::field_iterator FieldEnd = RD->field_end();
1110  bool InitializedSomething = false;
1111  bool CheckForMissingFields = true;
1112  while (Index < IList->getNumInits()) {
1113    Expr *Init = IList->getInit(Index);
1114
1115    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1116      // If we're not the subobject that matches up with the '{' for
1117      // the designator, we shouldn't be handling the
1118      // designator. Return immediately.
1119      if (!SubobjectIsDesignatorContext)
1120        return;
1121
1122      // Handle this designated initializer. Field will be updated to
1123      // the next field that we'll be initializing.
1124      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1125                                     DeclType, &Field, 0, Index,
1126                                     StructuredList, StructuredIndex,
1127                                     true, TopLevelObject))
1128        hadError = true;
1129
1130      InitializedSomething = true;
1131
1132      // Disable check for missing fields when designators are used.
1133      // This matches gcc behaviour.
1134      CheckForMissingFields = false;
1135      continue;
1136    }
1137
1138    if (Field == FieldEnd) {
1139      // We've run out of fields. We're done.
1140      break;
1141    }
1142
1143    // We've already initialized a member of a union. We're done.
1144    if (InitializedSomething && DeclType->isUnionType())
1145      break;
1146
1147    // If we've hit the flexible array member at the end, we're done.
1148    if (Field->getType()->isIncompleteArrayType())
1149      break;
1150
1151    if (Field->isUnnamedBitfield()) {
1152      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1153      ++Field;
1154      continue;
1155    }
1156
1157    InitializedEntity MemberEntity =
1158      InitializedEntity::InitializeMember(*Field, &Entity);
1159    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1160                        StructuredList, StructuredIndex);
1161    InitializedSomething = true;
1162
1163    if (DeclType->isUnionType()) {
1164      // Initialize the first field within the union.
1165      StructuredList->setInitializedFieldInUnion(*Field);
1166    }
1167
1168    ++Field;
1169  }
1170
1171  // Emit warnings for missing struct field initializers.
1172  if (InitializedSomething && CheckForMissingFields && Field != FieldEnd &&
1173      !Field->getType()->isIncompleteArrayType() && !DeclType->isUnionType()) {
1174    // It is possible we have one or more unnamed bitfields remaining.
1175    // Find first (if any) named field and emit warning.
1176    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1177         it != end; ++it) {
1178      if (!it->isUnnamedBitfield()) {
1179        SemaRef.Diag(IList->getSourceRange().getEnd(),
1180                     diag::warn_missing_field_initializers) << it->getName();
1181        break;
1182      }
1183    }
1184  }
1185
1186  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1187      Index >= IList->getNumInits())
1188    return;
1189
1190  // Handle GNU flexible array initializers.
1191  if (!TopLevelObject &&
1192      (!isa<InitListExpr>(IList->getInit(Index)) ||
1193       cast<InitListExpr>(IList->getInit(Index))->getNumInits() > 0)) {
1194    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1195                  diag::err_flexible_array_init_nonempty)
1196      << IList->getInit(Index)->getSourceRange().getBegin();
1197    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1198      << *Field;
1199    hadError = true;
1200    ++Index;
1201    return;
1202  } else {
1203    SemaRef.Diag(IList->getInit(Index)->getSourceRange().getBegin(),
1204                 diag::ext_flexible_array_init)
1205      << IList->getInit(Index)->getSourceRange().getBegin();
1206    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1207      << *Field;
1208  }
1209
1210  InitializedEntity MemberEntity =
1211    InitializedEntity::InitializeMember(*Field, &Entity);
1212
1213  if (isa<InitListExpr>(IList->getInit(Index)))
1214    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1215                        StructuredList, StructuredIndex);
1216  else
1217    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1218                          StructuredList, StructuredIndex);
1219}
1220
1221/// \brief Expand a field designator that refers to a member of an
1222/// anonymous struct or union into a series of field designators that
1223/// refers to the field within the appropriate subobject.
1224///
1225static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1226                                           DesignatedInitExpr *DIE,
1227                                           unsigned DesigIdx,
1228                                           IndirectFieldDecl *IndirectField) {
1229  typedef DesignatedInitExpr::Designator Designator;
1230
1231  // Build the replacement designators.
1232  llvm::SmallVector<Designator, 4> Replacements;
1233  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1234       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1235    if (PI + 1 == PE)
1236      Replacements.push_back(Designator((IdentifierInfo *)0,
1237                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1238                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1239    else
1240      Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1241                                        SourceLocation()));
1242    assert(isa<FieldDecl>(*PI));
1243    Replacements.back().setField(cast<FieldDecl>(*PI));
1244  }
1245
1246  // Expand the current designator into the set of replacement
1247  // designators, so we have a full subobject path down to where the
1248  // member of the anonymous struct/union is actually stored.
1249  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1250                        &Replacements[0] + Replacements.size());
1251}
1252
1253/// \brief Given an implicit anonymous field, search the IndirectField that
1254///  corresponds to FieldName.
1255static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1256                                                 IdentifierInfo *FieldName) {
1257  assert(AnonField->isAnonymousStructOrUnion());
1258  Decl *NextDecl = AnonField->getNextDeclInContext();
1259  while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1260    if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1261      return IF;
1262    NextDecl = NextDecl->getNextDeclInContext();
1263  }
1264  return 0;
1265}
1266
1267/// @brief Check the well-formedness of a C99 designated initializer.
1268///
1269/// Determines whether the designated initializer @p DIE, which
1270/// resides at the given @p Index within the initializer list @p
1271/// IList, is well-formed for a current object of type @p DeclType
1272/// (C99 6.7.8). The actual subobject that this designator refers to
1273/// within the current subobject is returned in either
1274/// @p NextField or @p NextElementIndex (whichever is appropriate).
1275///
1276/// @param IList  The initializer list in which this designated
1277/// initializer occurs.
1278///
1279/// @param DIE The designated initializer expression.
1280///
1281/// @param DesigIdx  The index of the current designator.
1282///
1283/// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1284/// into which the designation in @p DIE should refer.
1285///
1286/// @param NextField  If non-NULL and the first designator in @p DIE is
1287/// a field, this will be set to the field declaration corresponding
1288/// to the field named by the designator.
1289///
1290/// @param NextElementIndex  If non-NULL and the first designator in @p
1291/// DIE is an array designator or GNU array-range designator, this
1292/// will be set to the last index initialized by this designator.
1293///
1294/// @param Index  Index into @p IList where the designated initializer
1295/// @p DIE occurs.
1296///
1297/// @param StructuredList  The initializer list expression that
1298/// describes all of the subobject initializers in the order they'll
1299/// actually be initialized.
1300///
1301/// @returns true if there was an error, false otherwise.
1302bool
1303InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1304                                            InitListExpr *IList,
1305                                      DesignatedInitExpr *DIE,
1306                                      unsigned DesigIdx,
1307                                      QualType &CurrentObjectType,
1308                                      RecordDecl::field_iterator *NextField,
1309                                      llvm::APSInt *NextElementIndex,
1310                                      unsigned &Index,
1311                                      InitListExpr *StructuredList,
1312                                      unsigned &StructuredIndex,
1313                                            bool FinishSubobjectInit,
1314                                            bool TopLevelObject) {
1315  if (DesigIdx == DIE->size()) {
1316    // Check the actual initialization for the designated object type.
1317    bool prevHadError = hadError;
1318
1319    // Temporarily remove the designator expression from the
1320    // initializer list that the child calls see, so that we don't try
1321    // to re-process the designator.
1322    unsigned OldIndex = Index;
1323    IList->setInit(OldIndex, DIE->getInit());
1324
1325    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1326                        StructuredList, StructuredIndex);
1327
1328    // Restore the designated initializer expression in the syntactic
1329    // form of the initializer list.
1330    if (IList->getInit(OldIndex) != DIE->getInit())
1331      DIE->setInit(IList->getInit(OldIndex));
1332    IList->setInit(OldIndex, DIE);
1333
1334    return hadError && !prevHadError;
1335  }
1336
1337  bool IsFirstDesignator = (DesigIdx == 0);
1338  assert((IsFirstDesignator || StructuredList) &&
1339         "Need a non-designated initializer list to start from");
1340
1341  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1342  // Determine the structural initializer list that corresponds to the
1343  // current subobject.
1344  StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1345    : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1346                                 StructuredList, StructuredIndex,
1347                                 SourceRange(D->getStartLocation(),
1348                                             DIE->getSourceRange().getEnd()));
1349  assert(StructuredList && "Expected a structured initializer list");
1350
1351  if (D->isFieldDesignator()) {
1352    // C99 6.7.8p7:
1353    //
1354    //   If a designator has the form
1355    //
1356    //      . identifier
1357    //
1358    //   then the current object (defined below) shall have
1359    //   structure or union type and the identifier shall be the
1360    //   name of a member of that type.
1361    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1362    if (!RT) {
1363      SourceLocation Loc = D->getDotLoc();
1364      if (Loc.isInvalid())
1365        Loc = D->getFieldLoc();
1366      SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1367        << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1368      ++Index;
1369      return true;
1370    }
1371
1372    // Note: we perform a linear search of the fields here, despite
1373    // the fact that we have a faster lookup method, because we always
1374    // need to compute the field's index.
1375    FieldDecl *KnownField = D->getField();
1376    IdentifierInfo *FieldName = D->getFieldName();
1377    unsigned FieldIndex = 0;
1378    RecordDecl::field_iterator
1379      Field = RT->getDecl()->field_begin(),
1380      FieldEnd = RT->getDecl()->field_end();
1381    for (; Field != FieldEnd; ++Field) {
1382      if (Field->isUnnamedBitfield())
1383        continue;
1384
1385      // If we find a field representing an anonymous field, look in the
1386      // IndirectFieldDecl that follow for the designated initializer.
1387      if (!KnownField && Field->isAnonymousStructOrUnion()) {
1388        if (IndirectFieldDecl *IF =
1389            FindIndirectFieldDesignator(*Field, FieldName)) {
1390          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1391          D = DIE->getDesignator(DesigIdx);
1392          break;
1393        }
1394      }
1395      if (KnownField && KnownField == *Field)
1396        break;
1397      if (FieldName && FieldName == Field->getIdentifier())
1398        break;
1399
1400      ++FieldIndex;
1401    }
1402
1403    if (Field == FieldEnd) {
1404      // There was no normal field in the struct with the designated
1405      // name. Perform another lookup for this name, which may find
1406      // something that we can't designate (e.g., a member function),
1407      // may find nothing, or may find a member of an anonymous
1408      // struct/union.
1409      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1410      FieldDecl *ReplacementField = 0;
1411      if (Lookup.first == Lookup.second) {
1412        // Name lookup didn't find anything. Determine whether this
1413        // was a typo for another field name.
1414        LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1415                       Sema::LookupMemberName);
1416        if (SemaRef.CorrectTypo(R, /*Scope=*/0, /*SS=*/0, RT->getDecl(), false,
1417                                Sema::CTC_NoKeywords) &&
1418            (ReplacementField = R.getAsSingle<FieldDecl>()) &&
1419            ReplacementField->getDeclContext()->getRedeclContext()
1420                                                      ->Equals(RT->getDecl())) {
1421          SemaRef.Diag(D->getFieldLoc(),
1422                       diag::err_field_designator_unknown_suggest)
1423            << FieldName << CurrentObjectType << R.getLookupName()
1424            << FixItHint::CreateReplacement(D->getFieldLoc(),
1425                                            R.getLookupName().getAsString());
1426          SemaRef.Diag(ReplacementField->getLocation(),
1427                       diag::note_previous_decl)
1428            << ReplacementField->getDeclName();
1429        } else {
1430          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1431            << FieldName << CurrentObjectType;
1432          ++Index;
1433          return true;
1434        }
1435      }
1436
1437      if (!ReplacementField) {
1438        // Name lookup found something, but it wasn't a field.
1439        SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1440          << FieldName;
1441        SemaRef.Diag((*Lookup.first)->getLocation(),
1442                      diag::note_field_designator_found);
1443        ++Index;
1444        return true;
1445      }
1446
1447      if (!KnownField) {
1448        // The replacement field comes from typo correction; find it
1449        // in the list of fields.
1450        FieldIndex = 0;
1451        Field = RT->getDecl()->field_begin();
1452        for (; Field != FieldEnd; ++Field) {
1453          if (Field->isUnnamedBitfield())
1454            continue;
1455
1456          if (ReplacementField == *Field ||
1457              Field->getIdentifier() == ReplacementField->getIdentifier())
1458            break;
1459
1460          ++FieldIndex;
1461        }
1462      }
1463    }
1464
1465    // All of the fields of a union are located at the same place in
1466    // the initializer list.
1467    if (RT->getDecl()->isUnion()) {
1468      FieldIndex = 0;
1469      StructuredList->setInitializedFieldInUnion(*Field);
1470    }
1471
1472    // Update the designator with the field declaration.
1473    D->setField(*Field);
1474
1475    // Make sure that our non-designated initializer list has space
1476    // for a subobject corresponding to this field.
1477    if (FieldIndex >= StructuredList->getNumInits())
1478      StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1479
1480    // This designator names a flexible array member.
1481    if (Field->getType()->isIncompleteArrayType()) {
1482      bool Invalid = false;
1483      if ((DesigIdx + 1) != DIE->size()) {
1484        // We can't designate an object within the flexible array
1485        // member (because GCC doesn't allow it).
1486        DesignatedInitExpr::Designator *NextD
1487          = DIE->getDesignator(DesigIdx + 1);
1488        SemaRef.Diag(NextD->getStartLocation(),
1489                      diag::err_designator_into_flexible_array_member)
1490          << SourceRange(NextD->getStartLocation(),
1491                         DIE->getSourceRange().getEnd());
1492        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1493          << *Field;
1494        Invalid = true;
1495      }
1496
1497      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1498          !isa<StringLiteral>(DIE->getInit())) {
1499        // The initializer is not an initializer list.
1500        SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1501                      diag::err_flexible_array_init_needs_braces)
1502          << DIE->getInit()->getSourceRange();
1503        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1504          << *Field;
1505        Invalid = true;
1506      }
1507
1508      // Handle GNU flexible array initializers.
1509      if (!Invalid && !TopLevelObject &&
1510          cast<InitListExpr>(DIE->getInit())->getNumInits() > 0) {
1511        SemaRef.Diag(DIE->getSourceRange().getBegin(),
1512                      diag::err_flexible_array_init_nonempty)
1513          << DIE->getSourceRange().getBegin();
1514        SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1515          << *Field;
1516        Invalid = true;
1517      }
1518
1519      if (Invalid) {
1520        ++Index;
1521        return true;
1522      }
1523
1524      // Initialize the array.
1525      bool prevHadError = hadError;
1526      unsigned newStructuredIndex = FieldIndex;
1527      unsigned OldIndex = Index;
1528      IList->setInit(Index, DIE->getInit());
1529
1530      InitializedEntity MemberEntity =
1531        InitializedEntity::InitializeMember(*Field, &Entity);
1532      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1533                          StructuredList, newStructuredIndex);
1534
1535      IList->setInit(OldIndex, DIE);
1536      if (hadError && !prevHadError) {
1537        ++Field;
1538        ++FieldIndex;
1539        if (NextField)
1540          *NextField = Field;
1541        StructuredIndex = FieldIndex;
1542        return true;
1543      }
1544    } else {
1545      // Recurse to check later designated subobjects.
1546      QualType FieldType = (*Field)->getType();
1547      unsigned newStructuredIndex = FieldIndex;
1548
1549      InitializedEntity MemberEntity =
1550        InitializedEntity::InitializeMember(*Field, &Entity);
1551      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1552                                     FieldType, 0, 0, Index,
1553                                     StructuredList, newStructuredIndex,
1554                                     true, false))
1555        return true;
1556    }
1557
1558    // Find the position of the next field to be initialized in this
1559    // subobject.
1560    ++Field;
1561    ++FieldIndex;
1562
1563    // If this the first designator, our caller will continue checking
1564    // the rest of this struct/class/union subobject.
1565    if (IsFirstDesignator) {
1566      if (NextField)
1567        *NextField = Field;
1568      StructuredIndex = FieldIndex;
1569      return false;
1570    }
1571
1572    if (!FinishSubobjectInit)
1573      return false;
1574
1575    // We've already initialized something in the union; we're done.
1576    if (RT->getDecl()->isUnion())
1577      return hadError;
1578
1579    // Check the remaining fields within this class/struct/union subobject.
1580    bool prevHadError = hadError;
1581
1582    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1583                          StructuredList, FieldIndex);
1584    return hadError && !prevHadError;
1585  }
1586
1587  // C99 6.7.8p6:
1588  //
1589  //   If a designator has the form
1590  //
1591  //      [ constant-expression ]
1592  //
1593  //   then the current object (defined below) shall have array
1594  //   type and the expression shall be an integer constant
1595  //   expression. If the array is of unknown size, any
1596  //   nonnegative value is valid.
1597  //
1598  // Additionally, cope with the GNU extension that permits
1599  // designators of the form
1600  //
1601  //      [ constant-expression ... constant-expression ]
1602  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1603  if (!AT) {
1604    SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1605      << CurrentObjectType;
1606    ++Index;
1607    return true;
1608  }
1609
1610  Expr *IndexExpr = 0;
1611  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1612  if (D->isArrayDesignator()) {
1613    IndexExpr = DIE->getArrayIndex(*D);
1614    DesignatedStartIndex = IndexExpr->EvaluateAsInt(SemaRef.Context);
1615    DesignatedEndIndex = DesignatedStartIndex;
1616  } else {
1617    assert(D->isArrayRangeDesignator() && "Need array-range designator");
1618
1619    DesignatedStartIndex =
1620      DIE->getArrayRangeStart(*D)->EvaluateAsInt(SemaRef.Context);
1621    DesignatedEndIndex =
1622      DIE->getArrayRangeEnd(*D)->EvaluateAsInt(SemaRef.Context);
1623    IndexExpr = DIE->getArrayRangeEnd(*D);
1624
1625    // Codegen can't handle evaluating array range designators that have side
1626    // effects, because we replicate the AST value for each initialized element.
1627    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1628    // elements with something that has a side effect, so codegen can emit an
1629    // "error unsupported" error instead of miscompiling the app.
1630    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1631        DIE->getInit()->HasSideEffects(SemaRef.Context))
1632      FullyStructuredList->sawArrayRangeDesignator();
1633  }
1634
1635  if (isa<ConstantArrayType>(AT)) {
1636    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1637    DesignatedStartIndex
1638      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1639    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1640    DesignatedEndIndex
1641      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1642    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1643    if (DesignatedEndIndex >= MaxElements) {
1644      SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1645                    diag::err_array_designator_too_large)
1646        << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1647        << IndexExpr->getSourceRange();
1648      ++Index;
1649      return true;
1650    }
1651  } else {
1652    // Make sure the bit-widths and signedness match.
1653    if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1654      DesignatedEndIndex
1655        = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1656    else if (DesignatedStartIndex.getBitWidth() <
1657             DesignatedEndIndex.getBitWidth())
1658      DesignatedStartIndex
1659        = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1660    DesignatedStartIndex.setIsUnsigned(true);
1661    DesignatedEndIndex.setIsUnsigned(true);
1662  }
1663
1664  // Make sure that our non-designated initializer list has space
1665  // for a subobject corresponding to this array element.
1666  if (DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1667    StructuredList->resizeInits(SemaRef.Context,
1668                                DesignatedEndIndex.getZExtValue() + 1);
1669
1670  // Repeatedly perform subobject initializations in the range
1671  // [DesignatedStartIndex, DesignatedEndIndex].
1672
1673  // Move to the next designator
1674  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1675  unsigned OldIndex = Index;
1676
1677  InitializedEntity ElementEntity =
1678    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1679
1680  while (DesignatedStartIndex <= DesignatedEndIndex) {
1681    // Recurse to check later designated subobjects.
1682    QualType ElementType = AT->getElementType();
1683    Index = OldIndex;
1684
1685    ElementEntity.setElementIndex(ElementIndex);
1686    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1687                                   ElementType, 0, 0, Index,
1688                                   StructuredList, ElementIndex,
1689                                   (DesignatedStartIndex == DesignatedEndIndex),
1690                                   false))
1691      return true;
1692
1693    // Move to the next index in the array that we'll be initializing.
1694    ++DesignatedStartIndex;
1695    ElementIndex = DesignatedStartIndex.getZExtValue();
1696  }
1697
1698  // If this the first designator, our caller will continue checking
1699  // the rest of this array subobject.
1700  if (IsFirstDesignator) {
1701    if (NextElementIndex)
1702      *NextElementIndex = DesignatedStartIndex;
1703    StructuredIndex = ElementIndex;
1704    return false;
1705  }
1706
1707  if (!FinishSubobjectInit)
1708    return false;
1709
1710  // Check the remaining elements within this array subobject.
1711  bool prevHadError = hadError;
1712  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
1713                 /*SubobjectIsDesignatorContext=*/false, Index,
1714                 StructuredList, ElementIndex);
1715  return hadError && !prevHadError;
1716}
1717
1718// Get the structured initializer list for a subobject of type
1719// @p CurrentObjectType.
1720InitListExpr *
1721InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
1722                                            QualType CurrentObjectType,
1723                                            InitListExpr *StructuredList,
1724                                            unsigned StructuredIndex,
1725                                            SourceRange InitRange) {
1726  Expr *ExistingInit = 0;
1727  if (!StructuredList)
1728    ExistingInit = SyntacticToSemantic[IList];
1729  else if (StructuredIndex < StructuredList->getNumInits())
1730    ExistingInit = StructuredList->getInit(StructuredIndex);
1731
1732  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
1733    return Result;
1734
1735  if (ExistingInit) {
1736    // We are creating an initializer list that initializes the
1737    // subobjects of the current object, but there was already an
1738    // initialization that completely initialized the current
1739    // subobject, e.g., by a compound literal:
1740    //
1741    // struct X { int a, b; };
1742    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
1743    //
1744    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
1745    // designated initializer re-initializes the whole
1746    // subobject [0], overwriting previous initializers.
1747    SemaRef.Diag(InitRange.getBegin(),
1748                 diag::warn_subobject_initializer_overrides)
1749      << InitRange;
1750    SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
1751                  diag::note_previous_initializer)
1752      << /*FIXME:has side effects=*/0
1753      << ExistingInit->getSourceRange();
1754  }
1755
1756  InitListExpr *Result
1757    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
1758                                         InitRange.getBegin(), 0, 0,
1759                                         InitRange.getEnd());
1760
1761  Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
1762
1763  // Pre-allocate storage for the structured initializer list.
1764  unsigned NumElements = 0;
1765  unsigned NumInits = 0;
1766  if (!StructuredList)
1767    NumInits = IList->getNumInits();
1768  else if (Index < IList->getNumInits()) {
1769    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index)))
1770      NumInits = SubList->getNumInits();
1771  }
1772
1773  if (const ArrayType *AType
1774      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
1775    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
1776      NumElements = CAType->getSize().getZExtValue();
1777      // Simple heuristic so that we don't allocate a very large
1778      // initializer with many empty entries at the end.
1779      if (NumInits && NumElements > NumInits)
1780        NumElements = 0;
1781    }
1782  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
1783    NumElements = VType->getNumElements();
1784  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
1785    RecordDecl *RDecl = RType->getDecl();
1786    if (RDecl->isUnion())
1787      NumElements = 1;
1788    else
1789      NumElements = std::distance(RDecl->field_begin(),
1790                                  RDecl->field_end());
1791  }
1792
1793  if (NumElements < NumInits)
1794    NumElements = IList->getNumInits();
1795
1796  Result->reserveInits(SemaRef.Context, NumElements);
1797
1798  // Link this new initializer list into the structured initializer
1799  // lists.
1800  if (StructuredList)
1801    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
1802  else {
1803    Result->setSyntacticForm(IList);
1804    SyntacticToSemantic[IList] = Result;
1805  }
1806
1807  return Result;
1808}
1809
1810/// Update the initializer at index @p StructuredIndex within the
1811/// structured initializer list to the value @p expr.
1812void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
1813                                                  unsigned &StructuredIndex,
1814                                                  Expr *expr) {
1815  // No structured initializer list to update
1816  if (!StructuredList)
1817    return;
1818
1819  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
1820                                                  StructuredIndex, expr)) {
1821    // This initializer overwrites a previous initializer. Warn.
1822    SemaRef.Diag(expr->getSourceRange().getBegin(),
1823                  diag::warn_initializer_overrides)
1824      << expr->getSourceRange();
1825    SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
1826                  diag::note_previous_initializer)
1827      << /*FIXME:has side effects=*/0
1828      << PrevInit->getSourceRange();
1829  }
1830
1831  ++StructuredIndex;
1832}
1833
1834/// Check that the given Index expression is a valid array designator
1835/// value. This is essentailly just a wrapper around
1836/// VerifyIntegerConstantExpression that also checks for negative values
1837/// and produces a reasonable diagnostic if there is a
1838/// failure. Returns true if there was an error, false otherwise.  If
1839/// everything went okay, Value will receive the value of the constant
1840/// expression.
1841static bool
1842CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
1843  SourceLocation Loc = Index->getSourceRange().getBegin();
1844
1845  // Make sure this is an integer constant expression.
1846  if (S.VerifyIntegerConstantExpression(Index, &Value))
1847    return true;
1848
1849  if (Value.isSigned() && Value.isNegative())
1850    return S.Diag(Loc, diag::err_array_designator_negative)
1851      << Value.toString(10) << Index->getSourceRange();
1852
1853  Value.setIsUnsigned(true);
1854  return false;
1855}
1856
1857ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
1858                                            SourceLocation Loc,
1859                                            bool GNUSyntax,
1860                                            ExprResult Init) {
1861  typedef DesignatedInitExpr::Designator ASTDesignator;
1862
1863  bool Invalid = false;
1864  llvm::SmallVector<ASTDesignator, 32> Designators;
1865  llvm::SmallVector<Expr *, 32> InitExpressions;
1866
1867  // Build designators and check array designator expressions.
1868  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
1869    const Designator &D = Desig.getDesignator(Idx);
1870    switch (D.getKind()) {
1871    case Designator::FieldDesignator:
1872      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
1873                                          D.getFieldLoc()));
1874      break;
1875
1876    case Designator::ArrayDesignator: {
1877      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
1878      llvm::APSInt IndexValue;
1879      if (!Index->isTypeDependent() &&
1880          !Index->isValueDependent() &&
1881          CheckArrayDesignatorExpr(*this, Index, IndexValue))
1882        Invalid = true;
1883      else {
1884        Designators.push_back(ASTDesignator(InitExpressions.size(),
1885                                            D.getLBracketLoc(),
1886                                            D.getRBracketLoc()));
1887        InitExpressions.push_back(Index);
1888      }
1889      break;
1890    }
1891
1892    case Designator::ArrayRangeDesignator: {
1893      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
1894      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
1895      llvm::APSInt StartValue;
1896      llvm::APSInt EndValue;
1897      bool StartDependent = StartIndex->isTypeDependent() ||
1898                            StartIndex->isValueDependent();
1899      bool EndDependent = EndIndex->isTypeDependent() ||
1900                          EndIndex->isValueDependent();
1901      if ((!StartDependent &&
1902           CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
1903          (!EndDependent &&
1904           CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
1905        Invalid = true;
1906      else {
1907        // Make sure we're comparing values with the same bit width.
1908        if (StartDependent || EndDependent) {
1909          // Nothing to compute.
1910        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
1911          EndValue = EndValue.extend(StartValue.getBitWidth());
1912        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
1913          StartValue = StartValue.extend(EndValue.getBitWidth());
1914
1915        if (!StartDependent && !EndDependent && EndValue < StartValue) {
1916          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
1917            << StartValue.toString(10) << EndValue.toString(10)
1918            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
1919          Invalid = true;
1920        } else {
1921          Designators.push_back(ASTDesignator(InitExpressions.size(),
1922                                              D.getLBracketLoc(),
1923                                              D.getEllipsisLoc(),
1924                                              D.getRBracketLoc()));
1925          InitExpressions.push_back(StartIndex);
1926          InitExpressions.push_back(EndIndex);
1927        }
1928      }
1929      break;
1930    }
1931    }
1932  }
1933
1934  if (Invalid || Init.isInvalid())
1935    return ExprError();
1936
1937  // Clear out the expressions within the designation.
1938  Desig.ClearExprs(*this);
1939
1940  DesignatedInitExpr *DIE
1941    = DesignatedInitExpr::Create(Context,
1942                                 Designators.data(), Designators.size(),
1943                                 InitExpressions.data(), InitExpressions.size(),
1944                                 Loc, GNUSyntax, Init.takeAs<Expr>());
1945
1946  if (getLangOptions().CPlusPlus)
1947    Diag(DIE->getLocStart(), diag::ext_designated_init)
1948      << DIE->getSourceRange();
1949
1950  return Owned(DIE);
1951}
1952
1953bool Sema::CheckInitList(const InitializedEntity &Entity,
1954                         InitListExpr *&InitList, QualType &DeclType) {
1955  InitListChecker CheckInitList(*this, Entity, InitList, DeclType);
1956  if (!CheckInitList.HadError())
1957    InitList = CheckInitList.getFullyStructuredList();
1958
1959  return CheckInitList.HadError();
1960}
1961
1962//===----------------------------------------------------------------------===//
1963// Initialization entity
1964//===----------------------------------------------------------------------===//
1965
1966InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
1967                                     const InitializedEntity &Parent)
1968  : Parent(&Parent), Index(Index)
1969{
1970  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
1971    Kind = EK_ArrayElement;
1972    Type = AT->getElementType();
1973  } else {
1974    Kind = EK_VectorElement;
1975    Type = Parent.getType()->getAs<VectorType>()->getElementType();
1976  }
1977}
1978
1979InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
1980                                                    CXXBaseSpecifier *Base,
1981                                                    bool IsInheritedVirtualBase)
1982{
1983  InitializedEntity Result;
1984  Result.Kind = EK_Base;
1985  Result.Base = reinterpret_cast<uintptr_t>(Base);
1986  if (IsInheritedVirtualBase)
1987    Result.Base |= 0x01;
1988
1989  Result.Type = Base->getType();
1990  return Result;
1991}
1992
1993DeclarationName InitializedEntity::getName() const {
1994  switch (getKind()) {
1995  case EK_Parameter:
1996    if (!VariableOrMember)
1997      return DeclarationName();
1998    // Fall through
1999
2000  case EK_Variable:
2001  case EK_Member:
2002    return VariableOrMember->getDeclName();
2003
2004  case EK_Result:
2005  case EK_Exception:
2006  case EK_New:
2007  case EK_Temporary:
2008  case EK_Base:
2009  case EK_Delegation:
2010  case EK_ArrayElement:
2011  case EK_VectorElement:
2012  case EK_BlockElement:
2013    return DeclarationName();
2014  }
2015
2016  // Silence GCC warning
2017  return DeclarationName();
2018}
2019
2020DeclaratorDecl *InitializedEntity::getDecl() const {
2021  switch (getKind()) {
2022  case EK_Variable:
2023  case EK_Parameter:
2024  case EK_Member:
2025    return VariableOrMember;
2026
2027  case EK_Result:
2028  case EK_Exception:
2029  case EK_New:
2030  case EK_Temporary:
2031  case EK_Base:
2032  case EK_Delegation:
2033  case EK_ArrayElement:
2034  case EK_VectorElement:
2035  case EK_BlockElement:
2036    return 0;
2037  }
2038
2039  // Silence GCC warning
2040  return 0;
2041}
2042
2043bool InitializedEntity::allowsNRVO() const {
2044  switch (getKind()) {
2045  case EK_Result:
2046  case EK_Exception:
2047    return LocAndNRVO.NRVO;
2048
2049  case EK_Variable:
2050  case EK_Parameter:
2051  case EK_Member:
2052  case EK_New:
2053  case EK_Temporary:
2054  case EK_Base:
2055  case EK_Delegation:
2056  case EK_ArrayElement:
2057  case EK_VectorElement:
2058  case EK_BlockElement:
2059    break;
2060  }
2061
2062  return false;
2063}
2064
2065//===----------------------------------------------------------------------===//
2066// Initialization sequence
2067//===----------------------------------------------------------------------===//
2068
2069void InitializationSequence::Step::Destroy() {
2070  switch (Kind) {
2071  case SK_ResolveAddressOfOverloadedFunction:
2072  case SK_CastDerivedToBaseRValue:
2073  case SK_CastDerivedToBaseXValue:
2074  case SK_CastDerivedToBaseLValue:
2075  case SK_BindReference:
2076  case SK_BindReferenceToTemporary:
2077  case SK_ExtraneousCopyToTemporary:
2078  case SK_UserConversion:
2079  case SK_QualificationConversionRValue:
2080  case SK_QualificationConversionXValue:
2081  case SK_QualificationConversionLValue:
2082  case SK_ListInitialization:
2083  case SK_ConstructorInitialization:
2084  case SK_ZeroInitialization:
2085  case SK_CAssignment:
2086  case SK_StringInit:
2087  case SK_ObjCObjectConversion:
2088  case SK_ArrayInit:
2089    break;
2090
2091  case SK_ConversionSequence:
2092    delete ICS;
2093  }
2094}
2095
2096bool InitializationSequence::isDirectReferenceBinding() const {
2097  return getKind() == ReferenceBinding && Steps.back().Kind == SK_BindReference;
2098}
2099
2100bool InitializationSequence::isAmbiguous() const {
2101  if (getKind() != FailedSequence)
2102    return false;
2103
2104  switch (getFailureKind()) {
2105  case FK_TooManyInitsForReference:
2106  case FK_ArrayNeedsInitList:
2107  case FK_ArrayNeedsInitListOrStringLiteral:
2108  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2109  case FK_NonConstLValueReferenceBindingToTemporary:
2110  case FK_NonConstLValueReferenceBindingToUnrelated:
2111  case FK_RValueReferenceBindingToLValue:
2112  case FK_ReferenceInitDropsQualifiers:
2113  case FK_ReferenceInitFailed:
2114  case FK_ConversionFailed:
2115  case FK_ConversionFromPropertyFailed:
2116  case FK_TooManyInitsForScalar:
2117  case FK_ReferenceBindingToInitList:
2118  case FK_InitListBadDestinationType:
2119  case FK_DefaultInitOfConst:
2120  case FK_Incomplete:
2121  case FK_ArrayTypeMismatch:
2122  case FK_NonConstantArrayInit:
2123    return false;
2124
2125  case FK_ReferenceInitOverloadFailed:
2126  case FK_UserConversionOverloadFailed:
2127  case FK_ConstructorOverloadFailed:
2128    return FailedOverloadResult == OR_Ambiguous;
2129  }
2130
2131  return false;
2132}
2133
2134bool InitializationSequence::isConstructorInitialization() const {
2135  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2136}
2137
2138void InitializationSequence::AddAddressOverloadResolutionStep(
2139                                                      FunctionDecl *Function,
2140                                                      DeclAccessPair Found) {
2141  Step S;
2142  S.Kind = SK_ResolveAddressOfOverloadedFunction;
2143  S.Type = Function->getType();
2144  S.Function.Function = Function;
2145  S.Function.FoundDecl = Found;
2146  Steps.push_back(S);
2147}
2148
2149void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2150                                                      ExprValueKind VK) {
2151  Step S;
2152  switch (VK) {
2153  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2154  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2155  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2156  default: llvm_unreachable("No such category");
2157  }
2158  S.Type = BaseType;
2159  Steps.push_back(S);
2160}
2161
2162void InitializationSequence::AddReferenceBindingStep(QualType T,
2163                                                     bool BindingTemporary) {
2164  Step S;
2165  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2166  S.Type = T;
2167  Steps.push_back(S);
2168}
2169
2170void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2171  Step S;
2172  S.Kind = SK_ExtraneousCopyToTemporary;
2173  S.Type = T;
2174  Steps.push_back(S);
2175}
2176
2177void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2178                                                   DeclAccessPair FoundDecl,
2179                                                   QualType T) {
2180  Step S;
2181  S.Kind = SK_UserConversion;
2182  S.Type = T;
2183  S.Function.Function = Function;
2184  S.Function.FoundDecl = FoundDecl;
2185  Steps.push_back(S);
2186}
2187
2188void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2189                                                            ExprValueKind VK) {
2190  Step S;
2191  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2192  switch (VK) {
2193  case VK_RValue:
2194    S.Kind = SK_QualificationConversionRValue;
2195    break;
2196  case VK_XValue:
2197    S.Kind = SK_QualificationConversionXValue;
2198    break;
2199  case VK_LValue:
2200    S.Kind = SK_QualificationConversionLValue;
2201    break;
2202  }
2203  S.Type = Ty;
2204  Steps.push_back(S);
2205}
2206
2207void InitializationSequence::AddConversionSequenceStep(
2208                                       const ImplicitConversionSequence &ICS,
2209                                                       QualType T) {
2210  Step S;
2211  S.Kind = SK_ConversionSequence;
2212  S.Type = T;
2213  S.ICS = new ImplicitConversionSequence(ICS);
2214  Steps.push_back(S);
2215}
2216
2217void InitializationSequence::AddListInitializationStep(QualType T) {
2218  Step S;
2219  S.Kind = SK_ListInitialization;
2220  S.Type = T;
2221  Steps.push_back(S);
2222}
2223
2224void
2225InitializationSequence::AddConstructorInitializationStep(
2226                                              CXXConstructorDecl *Constructor,
2227                                                       AccessSpecifier Access,
2228                                                         QualType T) {
2229  Step S;
2230  S.Kind = SK_ConstructorInitialization;
2231  S.Type = T;
2232  S.Function.Function = Constructor;
2233  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2234  Steps.push_back(S);
2235}
2236
2237void InitializationSequence::AddZeroInitializationStep(QualType T) {
2238  Step S;
2239  S.Kind = SK_ZeroInitialization;
2240  S.Type = T;
2241  Steps.push_back(S);
2242}
2243
2244void InitializationSequence::AddCAssignmentStep(QualType T) {
2245  Step S;
2246  S.Kind = SK_CAssignment;
2247  S.Type = T;
2248  Steps.push_back(S);
2249}
2250
2251void InitializationSequence::AddStringInitStep(QualType T) {
2252  Step S;
2253  S.Kind = SK_StringInit;
2254  S.Type = T;
2255  Steps.push_back(S);
2256}
2257
2258void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2259  Step S;
2260  S.Kind = SK_ObjCObjectConversion;
2261  S.Type = T;
2262  Steps.push_back(S);
2263}
2264
2265void InitializationSequence::AddArrayInitStep(QualType T) {
2266  Step S;
2267  S.Kind = SK_ArrayInit;
2268  S.Type = T;
2269  Steps.push_back(S);
2270}
2271
2272void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2273                                                OverloadingResult Result) {
2274  SequenceKind = FailedSequence;
2275  this->Failure = Failure;
2276  this->FailedOverloadResult = Result;
2277}
2278
2279//===----------------------------------------------------------------------===//
2280// Attempt initialization
2281//===----------------------------------------------------------------------===//
2282
2283/// \brief Attempt list initialization (C++0x [dcl.init.list])
2284static void TryListInitialization(Sema &S,
2285                                  const InitializedEntity &Entity,
2286                                  const InitializationKind &Kind,
2287                                  InitListExpr *InitList,
2288                                  InitializationSequence &Sequence) {
2289  // FIXME: We only perform rudimentary checking of list
2290  // initializations at this point, then assume that any list
2291  // initialization of an array, aggregate, or scalar will be
2292  // well-formed. When we actually "perform" list initialization, we'll
2293  // do all of the necessary checking.  C++0x initializer lists will
2294  // force us to perform more checking here.
2295  Sequence.setSequenceKind(InitializationSequence::ListInitialization);
2296
2297  QualType DestType = Entity.getType();
2298
2299  // C++ [dcl.init]p13:
2300  //   If T is a scalar type, then a declaration of the form
2301  //
2302  //     T x = { a };
2303  //
2304  //   is equivalent to
2305  //
2306  //     T x = a;
2307  if (DestType->isScalarType()) {
2308    if (InitList->getNumInits() > 1 && S.getLangOptions().CPlusPlus) {
2309      Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2310      return;
2311    }
2312
2313    // Assume scalar initialization from a single value works.
2314  } else if (DestType->isAggregateType()) {
2315    // Assume aggregate initialization works.
2316  } else if (DestType->isVectorType()) {
2317    // Assume vector initialization works.
2318  } else if (DestType->isReferenceType()) {
2319    // FIXME: C++0x defines behavior for this.
2320    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2321    return;
2322  } else if (DestType->isRecordType()) {
2323    // FIXME: C++0x defines behavior for this
2324    Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2325  }
2326
2327  // Add a general "list initialization" step.
2328  Sequence.AddListInitializationStep(DestType);
2329}
2330
2331/// \brief Try a reference initialization that involves calling a conversion
2332/// function.
2333static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2334                                             const InitializedEntity &Entity,
2335                                             const InitializationKind &Kind,
2336                                                          Expr *Initializer,
2337                                                          bool AllowRValues,
2338                                             InitializationSequence &Sequence) {
2339  QualType DestType = Entity.getType();
2340  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2341  QualType T1 = cv1T1.getUnqualifiedType();
2342  QualType cv2T2 = Initializer->getType();
2343  QualType T2 = cv2T2.getUnqualifiedType();
2344
2345  bool DerivedToBase;
2346  bool ObjCConversion;
2347  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2348                                         T1, T2, DerivedToBase,
2349                                         ObjCConversion) &&
2350         "Must have incompatible references when binding via conversion");
2351  (void)DerivedToBase;
2352  (void)ObjCConversion;
2353
2354  // Build the candidate set directly in the initialization sequence
2355  // structure, so that it will persist if we fail.
2356  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2357  CandidateSet.clear();
2358
2359  // Determine whether we are allowed to call explicit constructors or
2360  // explicit conversion operators.
2361  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2362
2363  const RecordType *T1RecordType = 0;
2364  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2365      !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2366    // The type we're converting to is a class type. Enumerate its constructors
2367    // to see if there is a suitable conversion.
2368    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2369
2370    DeclContext::lookup_iterator Con, ConEnd;
2371    for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2372         Con != ConEnd; ++Con) {
2373      NamedDecl *D = *Con;
2374      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2375
2376      // Find the constructor (which may be a template).
2377      CXXConstructorDecl *Constructor = 0;
2378      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2379      if (ConstructorTmpl)
2380        Constructor = cast<CXXConstructorDecl>(
2381                                         ConstructorTmpl->getTemplatedDecl());
2382      else
2383        Constructor = cast<CXXConstructorDecl>(D);
2384
2385      if (!Constructor->isInvalidDecl() &&
2386          Constructor->isConvertingConstructor(AllowExplicit)) {
2387        if (ConstructorTmpl)
2388          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2389                                         /*ExplicitArgs*/ 0,
2390                                         &Initializer, 1, CandidateSet,
2391                                         /*SuppressUserConversions=*/true);
2392        else
2393          S.AddOverloadCandidate(Constructor, FoundDecl,
2394                                 &Initializer, 1, CandidateSet,
2395                                 /*SuppressUserConversions=*/true);
2396      }
2397    }
2398  }
2399  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2400    return OR_No_Viable_Function;
2401
2402  const RecordType *T2RecordType = 0;
2403  if ((T2RecordType = T2->getAs<RecordType>()) &&
2404      !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2405    // The type we're converting from is a class type, enumerate its conversion
2406    // functions.
2407    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2408
2409    const UnresolvedSetImpl *Conversions
2410      = T2RecordDecl->getVisibleConversionFunctions();
2411    for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2412           E = Conversions->end(); I != E; ++I) {
2413      NamedDecl *D = *I;
2414      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2415      if (isa<UsingShadowDecl>(D))
2416        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2417
2418      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2419      CXXConversionDecl *Conv;
2420      if (ConvTemplate)
2421        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2422      else
2423        Conv = cast<CXXConversionDecl>(D);
2424
2425      // If the conversion function doesn't return a reference type,
2426      // it can't be considered for this conversion unless we're allowed to
2427      // consider rvalues.
2428      // FIXME: Do we need to make sure that we only consider conversion
2429      // candidates with reference-compatible results? That might be needed to
2430      // break recursion.
2431      if ((AllowExplicit || !Conv->isExplicit()) &&
2432          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2433        if (ConvTemplate)
2434          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2435                                           ActingDC, Initializer,
2436                                           DestType, CandidateSet);
2437        else
2438          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2439                                   Initializer, DestType, CandidateSet);
2440      }
2441    }
2442  }
2443  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2444    return OR_No_Viable_Function;
2445
2446  SourceLocation DeclLoc = Initializer->getLocStart();
2447
2448  // Perform overload resolution. If it fails, return the failed result.
2449  OverloadCandidateSet::iterator Best;
2450  if (OverloadingResult Result
2451        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2452    return Result;
2453
2454  FunctionDecl *Function = Best->Function;
2455
2456  // This is the overload that will actually be used for the initialization, so
2457  // mark it as used.
2458  S.MarkDeclarationReferenced(DeclLoc, Function);
2459
2460  // Compute the returned type of the conversion.
2461  if (isa<CXXConversionDecl>(Function))
2462    T2 = Function->getResultType();
2463  else
2464    T2 = cv1T1;
2465
2466  // Add the user-defined conversion step.
2467  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2468                                 T2.getNonLValueExprType(S.Context));
2469
2470  // Determine whether we need to perform derived-to-base or
2471  // cv-qualification adjustments.
2472  ExprValueKind VK = VK_RValue;
2473  if (T2->isLValueReferenceType())
2474    VK = VK_LValue;
2475  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2476    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2477
2478  bool NewDerivedToBase = false;
2479  bool NewObjCConversion = false;
2480  Sema::ReferenceCompareResult NewRefRelationship
2481    = S.CompareReferenceRelationship(DeclLoc, T1,
2482                                     T2.getNonLValueExprType(S.Context),
2483                                     NewDerivedToBase, NewObjCConversion);
2484  if (NewRefRelationship == Sema::Ref_Incompatible) {
2485    // If the type we've converted to is not reference-related to the
2486    // type we're looking for, then there is another conversion step
2487    // we need to perform to produce a temporary of the right type
2488    // that we'll be binding to.
2489    ImplicitConversionSequence ICS;
2490    ICS.setStandard();
2491    ICS.Standard = Best->FinalConversion;
2492    T2 = ICS.Standard.getToType(2);
2493    Sequence.AddConversionSequenceStep(ICS, T2);
2494  } else if (NewDerivedToBase)
2495    Sequence.AddDerivedToBaseCastStep(
2496                                S.Context.getQualifiedType(T1,
2497                                  T2.getNonReferenceType().getQualifiers()),
2498                                      VK);
2499  else if (NewObjCConversion)
2500    Sequence.AddObjCObjectConversionStep(
2501                                S.Context.getQualifiedType(T1,
2502                                  T2.getNonReferenceType().getQualifiers()));
2503
2504  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
2505    Sequence.AddQualificationConversionStep(cv1T1, VK);
2506
2507  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
2508  return OR_Success;
2509}
2510
2511/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
2512static void TryReferenceInitialization(Sema &S,
2513                                       const InitializedEntity &Entity,
2514                                       const InitializationKind &Kind,
2515                                       Expr *Initializer,
2516                                       InitializationSequence &Sequence) {
2517  Sequence.setSequenceKind(InitializationSequence::ReferenceBinding);
2518
2519  QualType DestType = Entity.getType();
2520  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2521  Qualifiers T1Quals;
2522  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2523  QualType cv2T2 = Initializer->getType();
2524  Qualifiers T2Quals;
2525  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
2526  SourceLocation DeclLoc = Initializer->getLocStart();
2527
2528  // If the initializer is the address of an overloaded function, try
2529  // to resolve the overloaded function. If all goes well, T2 is the
2530  // type of the resulting function.
2531  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2532    DeclAccessPair Found;
2533    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
2534                                                                T1,
2535                                                                false,
2536                                                                Found)) {
2537      Sequence.AddAddressOverloadResolutionStep(Fn, Found);
2538      cv2T2 = Fn->getType();
2539      T2 = cv2T2.getUnqualifiedType();
2540    } else if (!T1->isRecordType()) {
2541      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2542      return;
2543    }
2544  }
2545
2546  // Compute some basic properties of the types and the initializer.
2547  bool isLValueRef = DestType->isLValueReferenceType();
2548  bool isRValueRef = !isLValueRef;
2549  bool DerivedToBase = false;
2550  bool ObjCConversion = false;
2551  Expr::Classification InitCategory = Initializer->Classify(S.Context);
2552  Sema::ReferenceCompareResult RefRelationship
2553    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
2554                                     ObjCConversion);
2555
2556  // C++0x [dcl.init.ref]p5:
2557  //   A reference to type "cv1 T1" is initialized by an expression of type
2558  //   "cv2 T2" as follows:
2559  //
2560  //     - If the reference is an lvalue reference and the initializer
2561  //       expression
2562  // Note the analogous bullet points for rvlaue refs to functions. Because
2563  // there are no function rvalues in C++, rvalue refs to functions are treated
2564  // like lvalue refs.
2565  OverloadingResult ConvOvlResult = OR_Success;
2566  bool T1Function = T1->isFunctionType();
2567  if (isLValueRef || T1Function) {
2568    if (InitCategory.isLValue() &&
2569        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2570         (Kind.isCStyleOrFunctionalCast() &&
2571          RefRelationship == Sema::Ref_Related))) {
2572      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
2573      //     reference-compatible with "cv2 T2," or
2574      //
2575      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
2576      // bit-field when we're determining whether the reference initialization
2577      // can occur. However, we do pay attention to whether it is a bit-field
2578      // to decide whether we're actually binding to a temporary created from
2579      // the bit-field.
2580      if (DerivedToBase)
2581        Sequence.AddDerivedToBaseCastStep(
2582                         S.Context.getQualifiedType(T1, T2Quals),
2583                         VK_LValue);
2584      else if (ObjCConversion)
2585        Sequence.AddObjCObjectConversionStep(
2586                                     S.Context.getQualifiedType(T1, T2Quals));
2587
2588      if (T1Quals != T2Quals)
2589        Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
2590      bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
2591        (Initializer->getBitField() || Initializer->refersToVectorElement());
2592      Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
2593      return;
2594    }
2595
2596    //     - has a class type (i.e., T2 is a class type), where T1 is not
2597    //       reference-related to T2, and can be implicitly converted to an
2598    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
2599    //       with "cv3 T3" (this conversion is selected by enumerating the
2600    //       applicable conversion functions (13.3.1.6) and choosing the best
2601    //       one through overload resolution (13.3)),
2602    // If we have an rvalue ref to function type here, the rhs must be
2603    // an rvalue.
2604    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
2605        (isLValueRef || InitCategory.isRValue())) {
2606      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
2607                                                       Initializer,
2608                                                   /*AllowRValues=*/isRValueRef,
2609                                                       Sequence);
2610      if (ConvOvlResult == OR_Success)
2611        return;
2612      if (ConvOvlResult != OR_No_Viable_Function) {
2613        Sequence.SetOverloadFailure(
2614                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2615                                    ConvOvlResult);
2616      }
2617    }
2618  }
2619
2620  //     - Otherwise, the reference shall be an lvalue reference to a
2621  //       non-volatile const type (i.e., cv1 shall be const), or the reference
2622  //       shall be an rvalue reference.
2623  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
2624    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2625      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2626    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2627      Sequence.SetOverloadFailure(
2628                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2629                                  ConvOvlResult);
2630    else
2631      Sequence.SetFailed(InitCategory.isLValue()
2632        ? (RefRelationship == Sema::Ref_Related
2633             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
2634             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
2635        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
2636
2637    return;
2638  }
2639
2640  //    - If the initializer expression
2641  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
2642  //        "cv1 T1" is reference-compatible with "cv2 T2"
2643  // Note: functions are handled below.
2644  if (!T1Function &&
2645      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
2646       (Kind.isCStyleOrFunctionalCast() &&
2647        RefRelationship == Sema::Ref_Related)) &&
2648      (InitCategory.isXValue() ||
2649       (InitCategory.isPRValue() && T2->isRecordType()) ||
2650       (InitCategory.isPRValue() && T2->isArrayType()))) {
2651    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
2652    if (InitCategory.isPRValue() && T2->isRecordType()) {
2653      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
2654      // compiler the freedom to perform a copy here or bind to the
2655      // object, while C++0x requires that we bind directly to the
2656      // object. Hence, we always bind to the object without making an
2657      // extra copy. However, in C++03 requires that we check for the
2658      // presence of a suitable copy constructor:
2659      //
2660      //   The constructor that would be used to make the copy shall
2661      //   be callable whether or not the copy is actually done.
2662      if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().Microsoft)
2663        Sequence.AddExtraneousCopyToTemporary(cv2T2);
2664    }
2665
2666    if (DerivedToBase)
2667      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
2668                                        ValueKind);
2669    else if (ObjCConversion)
2670      Sequence.AddObjCObjectConversionStep(
2671                                       S.Context.getQualifiedType(T1, T2Quals));
2672
2673    if (T1Quals != T2Quals)
2674      Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
2675    Sequence.AddReferenceBindingStep(cv1T1,
2676         /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
2677    return;
2678  }
2679
2680  //       - has a class type (i.e., T2 is a class type), where T1 is not
2681  //         reference-related to T2, and can be implicitly converted to an
2682  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
2683  //         where "cv1 T1" is reference-compatible with "cv3 T3",
2684  if (T2->isRecordType()) {
2685    if (RefRelationship == Sema::Ref_Incompatible) {
2686      ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
2687                                                       Kind, Initializer,
2688                                                       /*AllowRValues=*/true,
2689                                                       Sequence);
2690      if (ConvOvlResult)
2691        Sequence.SetOverloadFailure(
2692                      InitializationSequence::FK_ReferenceInitOverloadFailed,
2693                                    ConvOvlResult);
2694
2695      return;
2696    }
2697
2698    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2699    return;
2700  }
2701
2702  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
2703  //        from the initializer expression using the rules for a non-reference
2704  //        copy initialization (8.5). The reference is then bound to the
2705  //        temporary. [...]
2706
2707  // Determine whether we are allowed to call explicit constructors or
2708  // explicit conversion operators.
2709  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
2710
2711  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
2712
2713  if (S.TryImplicitConversion(Sequence, TempEntity, Initializer,
2714                              /*SuppressUserConversions*/ false,
2715                              AllowExplicit,
2716                              /*FIXME:InOverloadResolution=*/false,
2717                              /*CStyle=*/Kind.isCStyleOrFunctionalCast())) {
2718    // FIXME: Use the conversion function set stored in ICS to turn
2719    // this into an overloading ambiguity diagnostic. However, we need
2720    // to keep that set as an OverloadCandidateSet rather than as some
2721    // other kind of set.
2722    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
2723      Sequence.SetOverloadFailure(
2724                        InitializationSequence::FK_ReferenceInitOverloadFailed,
2725                                  ConvOvlResult);
2726    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
2727      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2728    else
2729      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
2730    return;
2731  }
2732
2733  //        [...] If T1 is reference-related to T2, cv1 must be the
2734  //        same cv-qualification as, or greater cv-qualification
2735  //        than, cv2; otherwise, the program is ill-formed.
2736  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
2737  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
2738  if (RefRelationship == Sema::Ref_Related &&
2739      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
2740    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
2741    return;
2742  }
2743
2744  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
2745  //   reference, the initializer expression shall not be an lvalue.
2746  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
2747      InitCategory.isLValue()) {
2748    Sequence.SetFailed(
2749                    InitializationSequence::FK_RValueReferenceBindingToLValue);
2750    return;
2751  }
2752
2753  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
2754  return;
2755}
2756
2757/// \brief Attempt character array initialization from a string literal
2758/// (C++ [dcl.init.string], C99 6.7.8).
2759static void TryStringLiteralInitialization(Sema &S,
2760                                           const InitializedEntity &Entity,
2761                                           const InitializationKind &Kind,
2762                                           Expr *Initializer,
2763                                       InitializationSequence &Sequence) {
2764  Sequence.setSequenceKind(InitializationSequence::StringInit);
2765  Sequence.AddStringInitStep(Entity.getType());
2766}
2767
2768/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2769/// enumerates the constructors of the initialized entity and performs overload
2770/// resolution to select the best.
2771static void TryConstructorInitialization(Sema &S,
2772                                         const InitializedEntity &Entity,
2773                                         const InitializationKind &Kind,
2774                                         Expr **Args, unsigned NumArgs,
2775                                         QualType DestType,
2776                                         InitializationSequence &Sequence) {
2777  Sequence.setSequenceKind(InitializationSequence::ConstructorInitialization);
2778
2779  // Build the candidate set directly in the initialization sequence
2780  // structure, so that it will persist if we fail.
2781  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2782  CandidateSet.clear();
2783
2784  // Determine whether we are allowed to call explicit constructors or
2785  // explicit conversion operators.
2786  bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
2787                        Kind.getKind() == InitializationKind::IK_Value ||
2788                        Kind.getKind() == InitializationKind::IK_Default);
2789
2790  // The type we're constructing needs to be complete.
2791  if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2792    Sequence.SetFailed(InitializationSequence::FK_Incomplete);
2793    return;
2794  }
2795
2796  // The type we're converting to is a class type. Enumerate its constructors
2797  // to see if one is suitable.
2798  const RecordType *DestRecordType = DestType->getAs<RecordType>();
2799  assert(DestRecordType && "Constructor initialization requires record type");
2800  CXXRecordDecl *DestRecordDecl
2801    = cast<CXXRecordDecl>(DestRecordType->getDecl());
2802
2803  DeclContext::lookup_iterator Con, ConEnd;
2804  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2805       Con != ConEnd; ++Con) {
2806    NamedDecl *D = *Con;
2807    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2808    bool SuppressUserConversions = false;
2809
2810    // Find the constructor (which may be a template).
2811    CXXConstructorDecl *Constructor = 0;
2812    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2813    if (ConstructorTmpl)
2814      Constructor = cast<CXXConstructorDecl>(
2815                                           ConstructorTmpl->getTemplatedDecl());
2816    else {
2817      Constructor = cast<CXXConstructorDecl>(D);
2818
2819      // If we're performing copy initialization using a copy constructor, we
2820      // suppress user-defined conversions on the arguments.
2821      // FIXME: Move constructors?
2822      if (Kind.getKind() == InitializationKind::IK_Copy &&
2823          Constructor->isCopyConstructor())
2824        SuppressUserConversions = true;
2825    }
2826
2827    if (!Constructor->isInvalidDecl() &&
2828        (AllowExplicit || !Constructor->isExplicit())) {
2829      if (ConstructorTmpl)
2830        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2831                                       /*ExplicitArgs*/ 0,
2832                                       Args, NumArgs, CandidateSet,
2833                                       SuppressUserConversions);
2834      else
2835        S.AddOverloadCandidate(Constructor, FoundDecl,
2836                               Args, NumArgs, CandidateSet,
2837                               SuppressUserConversions);
2838    }
2839  }
2840
2841  SourceLocation DeclLoc = Kind.getLocation();
2842
2843  // Perform overload resolution. If it fails, return the failed result.
2844  OverloadCandidateSet::iterator Best;
2845  if (OverloadingResult Result
2846        = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
2847    Sequence.SetOverloadFailure(
2848                          InitializationSequence::FK_ConstructorOverloadFailed,
2849                                Result);
2850    return;
2851  }
2852
2853  // C++0x [dcl.init]p6:
2854  //   If a program calls for the default initialization of an object
2855  //   of a const-qualified type T, T shall be a class type with a
2856  //   user-provided default constructor.
2857  if (Kind.getKind() == InitializationKind::IK_Default &&
2858      Entity.getType().isConstQualified() &&
2859      cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2860    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2861    return;
2862  }
2863
2864  // Add the constructor initialization step. Any cv-qualification conversion is
2865  // subsumed by the initialization.
2866  Sequence.AddConstructorInitializationStep(
2867                                      cast<CXXConstructorDecl>(Best->Function),
2868                                      Best->FoundDecl.getAccess(),
2869                                      DestType);
2870}
2871
2872/// \brief Attempt value initialization (C++ [dcl.init]p7).
2873static void TryValueInitialization(Sema &S,
2874                                   const InitializedEntity &Entity,
2875                                   const InitializationKind &Kind,
2876                                   InitializationSequence &Sequence) {
2877  // C++ [dcl.init]p5:
2878  //
2879  //   To value-initialize an object of type T means:
2880  QualType T = Entity.getType();
2881
2882  //     -- if T is an array type, then each element is value-initialized;
2883  while (const ArrayType *AT = S.Context.getAsArrayType(T))
2884    T = AT->getElementType();
2885
2886  if (const RecordType *RT = T->getAs<RecordType>()) {
2887    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2888      // -- if T is a class type (clause 9) with a user-declared
2889      //    constructor (12.1), then the default constructor for T is
2890      //    called (and the initialization is ill-formed if T has no
2891      //    accessible default constructor);
2892      //
2893      // FIXME: we really want to refer to a single subobject of the array,
2894      // but Entity doesn't have a way to capture that (yet).
2895      if (ClassDecl->hasUserDeclaredConstructor())
2896        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2897
2898      // -- if T is a (possibly cv-qualified) non-union class type
2899      //    without a user-provided constructor, then the object is
2900      //    zero-initialized and, if T's implicitly-declared default
2901      //    constructor is non-trivial, that constructor is called.
2902      if ((ClassDecl->getTagKind() == TTK_Class ||
2903           ClassDecl->getTagKind() == TTK_Struct)) {
2904        Sequence.AddZeroInitializationStep(Entity.getType());
2905        return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
2906      }
2907    }
2908  }
2909
2910  Sequence.AddZeroInitializationStep(Entity.getType());
2911  Sequence.setSequenceKind(InitializationSequence::ZeroInitialization);
2912}
2913
2914/// \brief Attempt default initialization (C++ [dcl.init]p6).
2915static void TryDefaultInitialization(Sema &S,
2916                                     const InitializedEntity &Entity,
2917                                     const InitializationKind &Kind,
2918                                     InitializationSequence &Sequence) {
2919  assert(Kind.getKind() == InitializationKind::IK_Default);
2920
2921  // C++ [dcl.init]p6:
2922  //   To default-initialize an object of type T means:
2923  //     - if T is an array type, each element is default-initialized;
2924  QualType DestType = Entity.getType();
2925  while (const ArrayType *Array = S.Context.getAsArrayType(DestType))
2926    DestType = Array->getElementType();
2927
2928  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
2929  //       constructor for T is called (and the initialization is ill-formed if
2930  //       T has no accessible default constructor);
2931  if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
2932    TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
2933    return;
2934  }
2935
2936  //     - otherwise, no initialization is performed.
2937  Sequence.setSequenceKind(InitializationSequence::NoInitialization);
2938
2939  //   If a program calls for the default initialization of an object of
2940  //   a const-qualified type T, T shall be a class type with a user-provided
2941  //   default constructor.
2942  if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus)
2943    Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2944}
2945
2946/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
2947/// which enumerates all conversion functions and performs overload resolution
2948/// to select the best.
2949static void TryUserDefinedConversion(Sema &S,
2950                                     const InitializedEntity &Entity,
2951                                     const InitializationKind &Kind,
2952                                     Expr *Initializer,
2953                                     InitializationSequence &Sequence) {
2954  Sequence.setSequenceKind(InitializationSequence::UserDefinedConversion);
2955
2956  QualType DestType = Entity.getType();
2957  assert(!DestType->isReferenceType() && "References are handled elsewhere");
2958  QualType SourceType = Initializer->getType();
2959  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
2960         "Must have a class type to perform a user-defined conversion");
2961
2962  // Build the candidate set directly in the initialization sequence
2963  // structure, so that it will persist if we fail.
2964  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2965  CandidateSet.clear();
2966
2967  // Determine whether we are allowed to call explicit constructors or
2968  // explicit conversion operators.
2969  bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2970
2971  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
2972    // The type we're converting to is a class type. Enumerate its constructors
2973    // to see if there is a suitable conversion.
2974    CXXRecordDecl *DestRecordDecl
2975      = cast<CXXRecordDecl>(DestRecordType->getDecl());
2976
2977    // Try to complete the type we're converting to.
2978    if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2979      DeclContext::lookup_iterator Con, ConEnd;
2980      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
2981           Con != ConEnd; ++Con) {
2982        NamedDecl *D = *Con;
2983        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2984
2985        // Find the constructor (which may be a template).
2986        CXXConstructorDecl *Constructor = 0;
2987        FunctionTemplateDecl *ConstructorTmpl
2988          = dyn_cast<FunctionTemplateDecl>(D);
2989        if (ConstructorTmpl)
2990          Constructor = cast<CXXConstructorDecl>(
2991                                           ConstructorTmpl->getTemplatedDecl());
2992        else
2993          Constructor = cast<CXXConstructorDecl>(D);
2994
2995        if (!Constructor->isInvalidDecl() &&
2996            Constructor->isConvertingConstructor(AllowExplicit)) {
2997          if (ConstructorTmpl)
2998            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2999                                           /*ExplicitArgs*/ 0,
3000                                           &Initializer, 1, CandidateSet,
3001                                           /*SuppressUserConversions=*/true);
3002          else
3003            S.AddOverloadCandidate(Constructor, FoundDecl,
3004                                   &Initializer, 1, CandidateSet,
3005                                   /*SuppressUserConversions=*/true);
3006        }
3007      }
3008    }
3009  }
3010
3011  SourceLocation DeclLoc = Initializer->getLocStart();
3012
3013  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3014    // The type we're converting from is a class type, enumerate its conversion
3015    // functions.
3016
3017    // We can only enumerate the conversion functions for a complete type; if
3018    // the type isn't complete, simply skip this step.
3019    if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3020      CXXRecordDecl *SourceRecordDecl
3021        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3022
3023      const UnresolvedSetImpl *Conversions
3024        = SourceRecordDecl->getVisibleConversionFunctions();
3025      for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3026           E = Conversions->end();
3027           I != E; ++I) {
3028        NamedDecl *D = *I;
3029        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3030        if (isa<UsingShadowDecl>(D))
3031          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3032
3033        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3034        CXXConversionDecl *Conv;
3035        if (ConvTemplate)
3036          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3037        else
3038          Conv = cast<CXXConversionDecl>(D);
3039
3040        if (AllowExplicit || !Conv->isExplicit()) {
3041          if (ConvTemplate)
3042            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3043                                             ActingDC, Initializer, DestType,
3044                                             CandidateSet);
3045          else
3046            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3047                                     Initializer, DestType, CandidateSet);
3048        }
3049      }
3050    }
3051  }
3052
3053  // Perform overload resolution. If it fails, return the failed result.
3054  OverloadCandidateSet::iterator Best;
3055  if (OverloadingResult Result
3056        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3057    Sequence.SetOverloadFailure(
3058                        InitializationSequence::FK_UserConversionOverloadFailed,
3059                                Result);
3060    return;
3061  }
3062
3063  FunctionDecl *Function = Best->Function;
3064  S.MarkDeclarationReferenced(DeclLoc, Function);
3065
3066  if (isa<CXXConstructorDecl>(Function)) {
3067    // Add the user-defined conversion step. Any cv-qualification conversion is
3068    // subsumed by the initialization.
3069    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3070    return;
3071  }
3072
3073  // Add the user-defined conversion step that calls the conversion function.
3074  QualType ConvType = Function->getCallResultType();
3075  if (ConvType->getAs<RecordType>()) {
3076    // If we're converting to a class type, there may be an copy if
3077    // the resulting temporary object (possible to create an object of
3078    // a base class type). That copy is not a separate conversion, so
3079    // we just make a note of the actual destination type (possibly a
3080    // base class of the type returned by the conversion function) and
3081    // let the user-defined conversion step handle the conversion.
3082    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3083    return;
3084  }
3085
3086  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3087
3088  // If the conversion following the call to the conversion function
3089  // is interesting, add it as a separate step.
3090  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3091      Best->FinalConversion.Third) {
3092    ImplicitConversionSequence ICS;
3093    ICS.setStandard();
3094    ICS.Standard = Best->FinalConversion;
3095    Sequence.AddConversionSequenceStep(ICS, DestType);
3096  }
3097}
3098
3099/// \brief Determine whether we have compatible array types for the
3100/// purposes of GNU by-copy array initialization.
3101static bool hasCompatibleArrayTypes(ASTContext &Context,
3102                                    const ArrayType *Dest,
3103                                    const ArrayType *Source) {
3104  // If the source and destination array types are equivalent, we're
3105  // done.
3106  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3107    return true;
3108
3109  // Make sure that the element types are the same.
3110  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3111    return false;
3112
3113  // The only mismatch we allow is when the destination is an
3114  // incomplete array type and the source is a constant array type.
3115  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3116}
3117
3118InitializationSequence::InitializationSequence(Sema &S,
3119                                               const InitializedEntity &Entity,
3120                                               const InitializationKind &Kind,
3121                                               Expr **Args,
3122                                               unsigned NumArgs)
3123    : FailedCandidateSet(Kind.getLocation()) {
3124  ASTContext &Context = S.Context;
3125
3126  // C++0x [dcl.init]p16:
3127  //   The semantics of initializers are as follows. The destination type is
3128  //   the type of the object or reference being initialized and the source
3129  //   type is the type of the initializer expression. The source type is not
3130  //   defined when the initializer is a braced-init-list or when it is a
3131  //   parenthesized list of expressions.
3132  QualType DestType = Entity.getType();
3133
3134  if (DestType->isDependentType() ||
3135      Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3136    SequenceKind = DependentSequence;
3137    return;
3138  }
3139
3140  for (unsigned I = 0; I != NumArgs; ++I)
3141    if (Args[I]->getObjectKind() == OK_ObjCProperty) {
3142      ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
3143      if (Result.isInvalid()) {
3144        SetFailed(FK_ConversionFromPropertyFailed);
3145        return;
3146      }
3147      Args[I] = Result.take();
3148    }
3149
3150  QualType SourceType;
3151  Expr *Initializer = 0;
3152  if (NumArgs == 1) {
3153    Initializer = Args[0];
3154    if (!isa<InitListExpr>(Initializer))
3155      SourceType = Initializer->getType();
3156  }
3157
3158  //     - If the initializer is a braced-init-list, the object is
3159  //       list-initialized (8.5.4).
3160  if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3161    TryListInitialization(S, Entity, Kind, InitList, *this);
3162    return;
3163  }
3164
3165  //     - If the destination type is a reference type, see 8.5.3.
3166  if (DestType->isReferenceType()) {
3167    // C++0x [dcl.init.ref]p1:
3168    //   A variable declared to be a T& or T&&, that is, "reference to type T"
3169    //   (8.3.2), shall be initialized by an object, or function, of type T or
3170    //   by an object that can be converted into a T.
3171    // (Therefore, multiple arguments are not permitted.)
3172    if (NumArgs != 1)
3173      SetFailed(FK_TooManyInitsForReference);
3174    else
3175      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3176    return;
3177  }
3178
3179  //     - If the initializer is (), the object is value-initialized.
3180  if (Kind.getKind() == InitializationKind::IK_Value ||
3181      (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3182    TryValueInitialization(S, Entity, Kind, *this);
3183    return;
3184  }
3185
3186  // Handle default initialization.
3187  if (Kind.getKind() == InitializationKind::IK_Default) {
3188    TryDefaultInitialization(S, Entity, Kind, *this);
3189    return;
3190  }
3191
3192  //     - If the destination type is an array of characters, an array of
3193  //       char16_t, an array of char32_t, or an array of wchar_t, and the
3194  //       initializer is a string literal, see 8.5.2.
3195  //     - Otherwise, if the destination type is an array, the program is
3196  //       ill-formed.
3197  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
3198    if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
3199      TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3200      return;
3201    }
3202
3203    // Note: as an GNU C extension, we allow initialization of an
3204    // array from a compound literal that creates an array of the same
3205    // type, so long as the initializer has no side effects.
3206    if (!S.getLangOptions().CPlusPlus && Initializer &&
3207        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
3208        Initializer->getType()->isArrayType()) {
3209      const ArrayType *SourceAT
3210        = Context.getAsArrayType(Initializer->getType());
3211      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
3212        SetFailed(FK_ArrayTypeMismatch);
3213      else if (Initializer->HasSideEffects(S.Context))
3214        SetFailed(FK_NonConstantArrayInit);
3215      else {
3216        setSequenceKind(ArrayInit);
3217        AddArrayInitStep(DestType);
3218      }
3219    } else if (DestAT->getElementType()->isAnyCharacterType())
3220      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3221    else
3222      SetFailed(FK_ArrayNeedsInitList);
3223
3224    return;
3225  }
3226
3227  // Handle initialization in C
3228  if (!S.getLangOptions().CPlusPlus) {
3229    setSequenceKind(CAssignment);
3230    AddCAssignmentStep(DestType);
3231    return;
3232  }
3233
3234  //     - If the destination type is a (possibly cv-qualified) class type:
3235  if (DestType->isRecordType()) {
3236    //     - If the initialization is direct-initialization, or if it is
3237    //       copy-initialization where the cv-unqualified version of the
3238    //       source type is the same class as, or a derived class of, the
3239    //       class of the destination, constructors are considered. [...]
3240    if (Kind.getKind() == InitializationKind::IK_Direct ||
3241        (Kind.getKind() == InitializationKind::IK_Copy &&
3242         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3243          S.IsDerivedFrom(SourceType, DestType))))
3244      TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3245                                   Entity.getType(), *this);
3246    //     - Otherwise (i.e., for the remaining copy-initialization cases),
3247    //       user-defined conversion sequences that can convert from the source
3248    //       type to the destination type or (when a conversion function is
3249    //       used) to a derived class thereof are enumerated as described in
3250    //       13.3.1.4, and the best one is chosen through overload resolution
3251    //       (13.3).
3252    else
3253      TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3254    return;
3255  }
3256
3257  if (NumArgs > 1) {
3258    SetFailed(FK_TooManyInitsForScalar);
3259    return;
3260  }
3261  assert(NumArgs == 1 && "Zero-argument case handled above");
3262
3263  //    - Otherwise, if the source type is a (possibly cv-qualified) class
3264  //      type, conversion functions are considered.
3265  if (!SourceType.isNull() && SourceType->isRecordType()) {
3266    TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3267    return;
3268  }
3269
3270  //    - Otherwise, the initial value of the object being initialized is the
3271  //      (possibly converted) value of the initializer expression. Standard
3272  //      conversions (Clause 4) will be used, if necessary, to convert the
3273  //      initializer expression to the cv-unqualified version of the
3274  //      destination type; no user-defined conversions are considered.
3275  if (S.TryImplicitConversion(*this, Entity, Initializer,
3276                              /*SuppressUserConversions*/ true,
3277                              /*AllowExplicitConversions*/ false,
3278                              /*InOverloadResolution*/ false,
3279                              /*CStyle=*/Kind.isCStyleOrFunctionalCast()))
3280  {
3281    DeclAccessPair dap;
3282    if (Initializer->getType() == Context.OverloadTy &&
3283          !S.ResolveAddressOfOverloadedFunction(Initializer
3284                      , DestType, false, dap))
3285      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3286    else
3287      SetFailed(InitializationSequence::FK_ConversionFailed);
3288  }
3289  else
3290    setSequenceKind(StandardConversion);
3291}
3292
3293InitializationSequence::~InitializationSequence() {
3294  for (llvm::SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3295                                          StepEnd = Steps.end();
3296       Step != StepEnd; ++Step)
3297    Step->Destroy();
3298}
3299
3300//===----------------------------------------------------------------------===//
3301// Perform initialization
3302//===----------------------------------------------------------------------===//
3303static Sema::AssignmentAction
3304getAssignmentAction(const InitializedEntity &Entity) {
3305  switch(Entity.getKind()) {
3306  case InitializedEntity::EK_Variable:
3307  case InitializedEntity::EK_New:
3308  case InitializedEntity::EK_Exception:
3309  case InitializedEntity::EK_Base:
3310  case InitializedEntity::EK_Delegation:
3311    return Sema::AA_Initializing;
3312
3313  case InitializedEntity::EK_Parameter:
3314    if (Entity.getDecl() &&
3315        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
3316      return Sema::AA_Sending;
3317
3318    return Sema::AA_Passing;
3319
3320  case InitializedEntity::EK_Result:
3321    return Sema::AA_Returning;
3322
3323  case InitializedEntity::EK_Temporary:
3324    // FIXME: Can we tell apart casting vs. converting?
3325    return Sema::AA_Casting;
3326
3327  case InitializedEntity::EK_Member:
3328  case InitializedEntity::EK_ArrayElement:
3329  case InitializedEntity::EK_VectorElement:
3330  case InitializedEntity::EK_BlockElement:
3331    return Sema::AA_Initializing;
3332  }
3333
3334  return Sema::AA_Converting;
3335}
3336
3337/// \brief Whether we should binding a created object as a temporary when
3338/// initializing the given entity.
3339static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
3340  switch (Entity.getKind()) {
3341  case InitializedEntity::EK_ArrayElement:
3342  case InitializedEntity::EK_Member:
3343  case InitializedEntity::EK_Result:
3344  case InitializedEntity::EK_New:
3345  case InitializedEntity::EK_Variable:
3346  case InitializedEntity::EK_Base:
3347  case InitializedEntity::EK_Delegation:
3348  case InitializedEntity::EK_VectorElement:
3349  case InitializedEntity::EK_Exception:
3350  case InitializedEntity::EK_BlockElement:
3351    return false;
3352
3353  case InitializedEntity::EK_Parameter:
3354  case InitializedEntity::EK_Temporary:
3355    return true;
3356  }
3357
3358  llvm_unreachable("missed an InitializedEntity kind?");
3359}
3360
3361/// \brief Whether the given entity, when initialized with an object
3362/// created for that initialization, requires destruction.
3363static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
3364  switch (Entity.getKind()) {
3365    case InitializedEntity::EK_Member:
3366    case InitializedEntity::EK_Result:
3367    case InitializedEntity::EK_New:
3368    case InitializedEntity::EK_Base:
3369    case InitializedEntity::EK_Delegation:
3370    case InitializedEntity::EK_VectorElement:
3371    case InitializedEntity::EK_BlockElement:
3372      return false;
3373
3374    case InitializedEntity::EK_Variable:
3375    case InitializedEntity::EK_Parameter:
3376    case InitializedEntity::EK_Temporary:
3377    case InitializedEntity::EK_ArrayElement:
3378    case InitializedEntity::EK_Exception:
3379      return true;
3380  }
3381
3382  llvm_unreachable("missed an InitializedEntity kind?");
3383}
3384
3385/// \brief Make a (potentially elidable) temporary copy of the object
3386/// provided by the given initializer by calling the appropriate copy
3387/// constructor.
3388///
3389/// \param S The Sema object used for type-checking.
3390///
3391/// \param T The type of the temporary object, which must either be
3392/// the type of the initializer expression or a superclass thereof.
3393///
3394/// \param Enter The entity being initialized.
3395///
3396/// \param CurInit The initializer expression.
3397///
3398/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
3399/// is permitted in C++03 (but not C++0x) when binding a reference to
3400/// an rvalue.
3401///
3402/// \returns An expression that copies the initializer expression into
3403/// a temporary object, or an error expression if a copy could not be
3404/// created.
3405static ExprResult CopyObject(Sema &S,
3406                             QualType T,
3407                             const InitializedEntity &Entity,
3408                             ExprResult CurInit,
3409                             bool IsExtraneousCopy) {
3410  // Determine which class type we're copying to.
3411  Expr *CurInitExpr = (Expr *)CurInit.get();
3412  CXXRecordDecl *Class = 0;
3413  if (const RecordType *Record = T->getAs<RecordType>())
3414    Class = cast<CXXRecordDecl>(Record->getDecl());
3415  if (!Class)
3416    return move(CurInit);
3417
3418  // C++0x [class.copy]p32:
3419  //   When certain criteria are met, an implementation is allowed to
3420  //   omit the copy/move construction of a class object, even if the
3421  //   copy/move constructor and/or destructor for the object have
3422  //   side effects. [...]
3423  //     - when a temporary class object that has not been bound to a
3424  //       reference (12.2) would be copied/moved to a class object
3425  //       with the same cv-unqualified type, the copy/move operation
3426  //       can be omitted by constructing the temporary object
3427  //       directly into the target of the omitted copy/move
3428  //
3429  // Note that the other three bullets are handled elsewhere. Copy
3430  // elision for return statements and throw expressions are handled as part
3431  // of constructor initialization, while copy elision for exception handlers
3432  // is handled by the run-time.
3433  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
3434  SourceLocation Loc;
3435  switch (Entity.getKind()) {
3436  case InitializedEntity::EK_Result:
3437    Loc = Entity.getReturnLoc();
3438    break;
3439
3440  case InitializedEntity::EK_Exception:
3441    Loc = Entity.getThrowLoc();
3442    break;
3443
3444  case InitializedEntity::EK_Variable:
3445    Loc = Entity.getDecl()->getLocation();
3446    break;
3447
3448  case InitializedEntity::EK_ArrayElement:
3449  case InitializedEntity::EK_Member:
3450  case InitializedEntity::EK_Parameter:
3451  case InitializedEntity::EK_Temporary:
3452  case InitializedEntity::EK_New:
3453  case InitializedEntity::EK_Base:
3454  case InitializedEntity::EK_Delegation:
3455  case InitializedEntity::EK_VectorElement:
3456  case InitializedEntity::EK_BlockElement:
3457    Loc = CurInitExpr->getLocStart();
3458    break;
3459  }
3460
3461  // Make sure that the type we are copying is complete.
3462  if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
3463    return move(CurInit);
3464
3465  // Perform overload resolution using the class's copy/move constructors.
3466  DeclContext::lookup_iterator Con, ConEnd;
3467  OverloadCandidateSet CandidateSet(Loc);
3468  for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
3469       Con != ConEnd; ++Con) {
3470    // Only consider copy/move constructors and constructor templates. Per
3471    // C++0x [dcl.init]p16, second bullet to class types, this
3472    // initialization is direct-initialization.
3473    CXXConstructorDecl *Constructor = 0;
3474
3475    if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
3476      // Handle copy/moveconstructors, only.
3477      if (!Constructor || Constructor->isInvalidDecl() ||
3478          !Constructor->isCopyOrMoveConstructor() ||
3479          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3480        continue;
3481
3482      DeclAccessPair FoundDecl
3483        = DeclAccessPair::make(Constructor, Constructor->getAccess());
3484      S.AddOverloadCandidate(Constructor, FoundDecl,
3485                             &CurInitExpr, 1, CandidateSet);
3486      continue;
3487    }
3488
3489    // Handle constructor templates.
3490    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
3491    if (ConstructorTmpl->isInvalidDecl())
3492      continue;
3493
3494    Constructor = cast<CXXConstructorDecl>(
3495                                         ConstructorTmpl->getTemplatedDecl());
3496    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
3497      continue;
3498
3499    // FIXME: Do we need to limit this to copy-constructor-like
3500    // candidates?
3501    DeclAccessPair FoundDecl
3502      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
3503    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
3504                                   &CurInitExpr, 1, CandidateSet, true);
3505  }
3506
3507  OverloadCandidateSet::iterator Best;
3508  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
3509  case OR_Success:
3510    break;
3511
3512  case OR_No_Viable_Function:
3513    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
3514           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
3515           : diag::err_temp_copy_no_viable)
3516      << (int)Entity.getKind() << CurInitExpr->getType()
3517      << CurInitExpr->getSourceRange();
3518    CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
3519    if (!IsExtraneousCopy || S.isSFINAEContext())
3520      return ExprError();
3521    return move(CurInit);
3522
3523  case OR_Ambiguous:
3524    S.Diag(Loc, diag::err_temp_copy_ambiguous)
3525      << (int)Entity.getKind() << CurInitExpr->getType()
3526      << CurInitExpr->getSourceRange();
3527    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
3528    return ExprError();
3529
3530  case OR_Deleted:
3531    S.Diag(Loc, diag::err_temp_copy_deleted)
3532      << (int)Entity.getKind() << CurInitExpr->getType()
3533      << CurInitExpr->getSourceRange();
3534    S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
3535      << Best->Function->isDeleted();
3536    return ExprError();
3537  }
3538
3539  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3540  ASTOwningVector<Expr*> ConstructorArgs(S);
3541  CurInit.release(); // Ownership transferred into MultiExprArg, below.
3542
3543  S.CheckConstructorAccess(Loc, Constructor, Entity,
3544                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
3545
3546  if (IsExtraneousCopy) {
3547    // If this is a totally extraneous copy for C++03 reference
3548    // binding purposes, just return the original initialization
3549    // expression. We don't generate an (elided) copy operation here
3550    // because doing so would require us to pass down a flag to avoid
3551    // infinite recursion, where each step adds another extraneous,
3552    // elidable copy.
3553
3554    // Instantiate the default arguments of any extra parameters in
3555    // the selected copy constructor, as if we were going to create a
3556    // proper call to the copy constructor.
3557    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
3558      ParmVarDecl *Parm = Constructor->getParamDecl(I);
3559      if (S.RequireCompleteType(Loc, Parm->getType(),
3560                                S.PDiag(diag::err_call_incomplete_argument)))
3561        break;
3562
3563      // Build the default argument expression; we don't actually care
3564      // if this succeeds or not, because this routine will complain
3565      // if there was a problem.
3566      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
3567    }
3568
3569    return S.Owned(CurInitExpr);
3570  }
3571
3572  S.MarkDeclarationReferenced(Loc, Constructor);
3573
3574  // Determine the arguments required to actually perform the
3575  // constructor call (we might have derived-to-base conversions, or
3576  // the copy constructor may have default arguments).
3577  if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
3578                                Loc, ConstructorArgs))
3579    return ExprError();
3580
3581  // Actually perform the constructor call.
3582  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
3583                                    move_arg(ConstructorArgs),
3584                                    /*ZeroInit*/ false,
3585                                    CXXConstructExpr::CK_Complete,
3586                                    SourceRange());
3587
3588  // If we're supposed to bind temporaries, do so.
3589  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
3590    CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3591  return move(CurInit);
3592}
3593
3594void InitializationSequence::PrintInitLocationNote(Sema &S,
3595                                              const InitializedEntity &Entity) {
3596  if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
3597    if (Entity.getDecl()->getLocation().isInvalid())
3598      return;
3599
3600    if (Entity.getDecl()->getDeclName())
3601      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
3602        << Entity.getDecl()->getDeclName();
3603    else
3604      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
3605  }
3606}
3607
3608ExprResult
3609InitializationSequence::Perform(Sema &S,
3610                                const InitializedEntity &Entity,
3611                                const InitializationKind &Kind,
3612                                MultiExprArg Args,
3613                                QualType *ResultType) {
3614  if (SequenceKind == FailedSequence) {
3615    unsigned NumArgs = Args.size();
3616    Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
3617    return ExprError();
3618  }
3619
3620  if (SequenceKind == DependentSequence) {
3621    // If the declaration is a non-dependent, incomplete array type
3622    // that has an initializer, then its type will be completed once
3623    // the initializer is instantiated.
3624    if (ResultType && !Entity.getType()->isDependentType() &&
3625        Args.size() == 1) {
3626      QualType DeclType = Entity.getType();
3627      if (const IncompleteArrayType *ArrayT
3628                           = S.Context.getAsIncompleteArrayType(DeclType)) {
3629        // FIXME: We don't currently have the ability to accurately
3630        // compute the length of an initializer list without
3631        // performing full type-checking of the initializer list
3632        // (since we have to determine where braces are implicitly
3633        // introduced and such).  So, we fall back to making the array
3634        // type a dependently-sized array type with no specified
3635        // bound.
3636        if (isa<InitListExpr>((Expr *)Args.get()[0])) {
3637          SourceRange Brackets;
3638
3639          // Scavange the location of the brackets from the entity, if we can.
3640          if (DeclaratorDecl *DD = Entity.getDecl()) {
3641            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
3642              TypeLoc TL = TInfo->getTypeLoc();
3643              if (IncompleteArrayTypeLoc *ArrayLoc
3644                                      = dyn_cast<IncompleteArrayTypeLoc>(&TL))
3645              Brackets = ArrayLoc->getBracketsRange();
3646            }
3647          }
3648
3649          *ResultType
3650            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
3651                                                   /*NumElts=*/0,
3652                                                   ArrayT->getSizeModifier(),
3653                                       ArrayT->getIndexTypeCVRQualifiers(),
3654                                                   Brackets);
3655        }
3656
3657      }
3658    }
3659
3660    if (Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast())
3661      return ExprResult(Args.release()[0]);
3662
3663    if (Args.size() == 0)
3664      return S.Owned((Expr *)0);
3665
3666    unsigned NumArgs = Args.size();
3667    return S.Owned(new (S.Context) ParenListExpr(S.Context,
3668                                                 SourceLocation(),
3669                                                 (Expr **)Args.release(),
3670                                                 NumArgs,
3671                                                 SourceLocation()));
3672  }
3673
3674  if (SequenceKind == NoInitialization)
3675    return S.Owned((Expr *)0);
3676
3677  QualType DestType = Entity.getType().getNonReferenceType();
3678  // FIXME: Ugly hack around the fact that Entity.getType() is not
3679  // the same as Entity.getDecl()->getType() in cases involving type merging,
3680  //  and we want latter when it makes sense.
3681  if (ResultType)
3682    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
3683                                     Entity.getType();
3684
3685  ExprResult CurInit = S.Owned((Expr *)0);
3686
3687  assert(!Steps.empty() && "Cannot have an empty initialization sequence");
3688
3689  // For initialization steps that start with a single initializer,
3690  // grab the only argument out the Args and place it into the "current"
3691  // initializer.
3692  switch (Steps.front().Kind) {
3693  case SK_ResolveAddressOfOverloadedFunction:
3694  case SK_CastDerivedToBaseRValue:
3695  case SK_CastDerivedToBaseXValue:
3696  case SK_CastDerivedToBaseLValue:
3697  case SK_BindReference:
3698  case SK_BindReferenceToTemporary:
3699  case SK_ExtraneousCopyToTemporary:
3700  case SK_UserConversion:
3701  case SK_QualificationConversionLValue:
3702  case SK_QualificationConversionXValue:
3703  case SK_QualificationConversionRValue:
3704  case SK_ConversionSequence:
3705  case SK_ListInitialization:
3706  case SK_CAssignment:
3707  case SK_StringInit:
3708  case SK_ObjCObjectConversion:
3709  case SK_ArrayInit: {
3710    assert(Args.size() == 1);
3711    CurInit = Args.get()[0];
3712    if (!CurInit.get()) return ExprError();
3713
3714    // Read from a property when initializing something with it.
3715    if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
3716      CurInit = S.ConvertPropertyForRValue(CurInit.take());
3717      if (CurInit.isInvalid())
3718        return ExprError();
3719    }
3720    break;
3721  }
3722
3723  case SK_ConstructorInitialization:
3724  case SK_ZeroInitialization:
3725    break;
3726  }
3727
3728  // Walk through the computed steps for the initialization sequence,
3729  // performing the specified conversions along the way.
3730  bool ConstructorInitRequiresZeroInit = false;
3731  for (step_iterator Step = step_begin(), StepEnd = step_end();
3732       Step != StepEnd; ++Step) {
3733    if (CurInit.isInvalid())
3734      return ExprError();
3735
3736    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
3737
3738    switch (Step->Kind) {
3739    case SK_ResolveAddressOfOverloadedFunction:
3740      // Overload resolution determined which function invoke; update the
3741      // initializer to reflect that choice.
3742      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
3743      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
3744      CurInit = S.FixOverloadedFunctionReference(move(CurInit),
3745                                                 Step->Function.FoundDecl,
3746                                                 Step->Function.Function);
3747      break;
3748
3749    case SK_CastDerivedToBaseRValue:
3750    case SK_CastDerivedToBaseXValue:
3751    case SK_CastDerivedToBaseLValue: {
3752      // We have a derived-to-base cast that produces either an rvalue or an
3753      // lvalue. Perform that cast.
3754
3755      CXXCastPath BasePath;
3756
3757      // Casts to inaccessible base classes are allowed with C-style casts.
3758      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
3759      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
3760                                         CurInit.get()->getLocStart(),
3761                                         CurInit.get()->getSourceRange(),
3762                                         &BasePath, IgnoreBaseAccess))
3763        return ExprError();
3764
3765      if (S.BasePathInvolvesVirtualBase(BasePath)) {
3766        QualType T = SourceType;
3767        if (const PointerType *Pointer = T->getAs<PointerType>())
3768          T = Pointer->getPointeeType();
3769        if (const RecordType *RecordTy = T->getAs<RecordType>())
3770          S.MarkVTableUsed(CurInit.get()->getLocStart(),
3771                           cast<CXXRecordDecl>(RecordTy->getDecl()));
3772      }
3773
3774      ExprValueKind VK =
3775          Step->Kind == SK_CastDerivedToBaseLValue ?
3776              VK_LValue :
3777              (Step->Kind == SK_CastDerivedToBaseXValue ?
3778                   VK_XValue :
3779                   VK_RValue);
3780      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3781                                                 Step->Type,
3782                                                 CK_DerivedToBase,
3783                                                 CurInit.get(),
3784                                                 &BasePath, VK));
3785      break;
3786    }
3787
3788    case SK_BindReference:
3789      if (FieldDecl *BitField = CurInit.get()->getBitField()) {
3790        // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
3791        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
3792          << Entity.getType().isVolatileQualified()
3793          << BitField->getDeclName()
3794          << CurInit.get()->getSourceRange();
3795        S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
3796        return ExprError();
3797      }
3798
3799      if (CurInit.get()->refersToVectorElement()) {
3800        // References cannot bind to vector elements.
3801        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
3802          << Entity.getType().isVolatileQualified()
3803          << CurInit.get()->getSourceRange();
3804        PrintInitLocationNote(S, Entity);
3805        return ExprError();
3806      }
3807
3808      // Reference binding does not have any corresponding ASTs.
3809
3810      // Check exception specifications
3811      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
3812        return ExprError();
3813
3814      break;
3815
3816    case SK_BindReferenceToTemporary:
3817      // Reference binding does not have any corresponding ASTs.
3818
3819      // Check exception specifications
3820      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
3821        return ExprError();
3822
3823      break;
3824
3825    case SK_ExtraneousCopyToTemporary:
3826      CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
3827                           /*IsExtraneousCopy=*/true);
3828      break;
3829
3830    case SK_UserConversion: {
3831      // We have a user-defined conversion that invokes either a constructor
3832      // or a conversion function.
3833      CastKind CastKind;
3834      bool IsCopy = false;
3835      FunctionDecl *Fn = Step->Function.Function;
3836      DeclAccessPair FoundFn = Step->Function.FoundDecl;
3837      bool CreatedObject = false;
3838      bool IsLvalue = false;
3839      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
3840        // Build a call to the selected constructor.
3841        ASTOwningVector<Expr*> ConstructorArgs(S);
3842        SourceLocation Loc = CurInit.get()->getLocStart();
3843        CurInit.release(); // Ownership transferred into MultiExprArg, below.
3844
3845        // Determine the arguments required to actually perform the constructor
3846        // call.
3847        Expr *Arg = CurInit.get();
3848        if (S.CompleteConstructorCall(Constructor,
3849                                      MultiExprArg(&Arg, 1),
3850                                      Loc, ConstructorArgs))
3851          return ExprError();
3852
3853        // Build the an expression that constructs a temporary.
3854        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
3855                                          move_arg(ConstructorArgs),
3856                                          /*ZeroInit*/ false,
3857                                          CXXConstructExpr::CK_Complete,
3858                                          SourceRange());
3859        if (CurInit.isInvalid())
3860          return ExprError();
3861
3862        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
3863                                 FoundFn.getAccess());
3864        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3865
3866        CastKind = CK_ConstructorConversion;
3867        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
3868        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
3869            S.IsDerivedFrom(SourceType, Class))
3870          IsCopy = true;
3871
3872        CreatedObject = true;
3873      } else {
3874        // Build a call to the conversion function.
3875        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
3876        IsLvalue = Conversion->getResultType()->isLValueReferenceType();
3877        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
3878                                    FoundFn);
3879        S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
3880
3881        // FIXME: Should we move this initialization into a separate
3882        // derived-to-base conversion? I believe the answer is "no", because
3883        // we don't want to turn off access control here for c-style casts.
3884        ExprResult CurInitExprRes =
3885          S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
3886                                                FoundFn, Conversion);
3887        if(CurInitExprRes.isInvalid())
3888          return ExprError();
3889        CurInit = move(CurInitExprRes);
3890
3891        // Build the actual call to the conversion function.
3892        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion);
3893        if (CurInit.isInvalid() || !CurInit.get())
3894          return ExprError();
3895
3896        CastKind = CK_UserDefinedConversion;
3897
3898        CreatedObject = Conversion->getResultType()->isRecordType();
3899      }
3900
3901      bool RequiresCopy = !IsCopy &&
3902        getKind() != InitializationSequence::ReferenceBinding;
3903      if (RequiresCopy || shouldBindAsTemporary(Entity))
3904        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
3905      else if (CreatedObject && shouldDestroyTemporary(Entity)) {
3906        QualType T = CurInit.get()->getType();
3907        if (const RecordType *Record = T->getAs<RecordType>()) {
3908          CXXDestructorDecl *Destructor
3909            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
3910          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
3911                                  S.PDiag(diag::err_access_dtor_temp) << T);
3912          S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
3913          S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
3914        }
3915      }
3916
3917      // FIXME: xvalues
3918      CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
3919                                                 CurInit.get()->getType(),
3920                                                 CastKind, CurInit.get(), 0,
3921                                           IsLvalue ? VK_LValue : VK_RValue));
3922
3923      if (RequiresCopy)
3924        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
3925                             move(CurInit), /*IsExtraneousCopy=*/false);
3926
3927      break;
3928    }
3929
3930    case SK_QualificationConversionLValue:
3931    case SK_QualificationConversionXValue:
3932    case SK_QualificationConversionRValue: {
3933      // Perform a qualification conversion; these can never go wrong.
3934      ExprValueKind VK =
3935          Step->Kind == SK_QualificationConversionLValue ?
3936              VK_LValue :
3937              (Step->Kind == SK_QualificationConversionXValue ?
3938                   VK_XValue :
3939                   VK_RValue);
3940      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
3941      break;
3942    }
3943
3944    case SK_ConversionSequence: {
3945      ExprResult CurInitExprRes =
3946        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
3947                                    getAssignmentAction(Entity),
3948                                    Kind.isCStyleOrFunctionalCast());
3949      if (CurInitExprRes.isInvalid())
3950        return ExprError();
3951      CurInit = move(CurInitExprRes);
3952      break;
3953    }
3954
3955    case SK_ListInitialization: {
3956      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
3957      QualType Ty = Step->Type;
3958      if (S.CheckInitList(Entity, InitList, ResultType? *ResultType : Ty))
3959        return ExprError();
3960
3961      CurInit.release();
3962      CurInit = S.Owned(InitList);
3963      break;
3964    }
3965
3966    case SK_ConstructorInitialization: {
3967      unsigned NumArgs = Args.size();
3968      CXXConstructorDecl *Constructor
3969        = cast<CXXConstructorDecl>(Step->Function.Function);
3970
3971      // Build a call to the selected constructor.
3972      ASTOwningVector<Expr*> ConstructorArgs(S);
3973      SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
3974                             ? Kind.getEqualLoc()
3975                             : Kind.getLocation();
3976
3977      if (Kind.getKind() == InitializationKind::IK_Default) {
3978        // Force even a trivial, implicit default constructor to be
3979        // semantically checked. We do this explicitly because we don't build
3980        // the definition for completely trivial constructors.
3981        CXXRecordDecl *ClassDecl = Constructor->getParent();
3982        assert(ClassDecl && "No parent class for constructor.");
3983        if (Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3984            ClassDecl->hasTrivialConstructor() && !Constructor->isUsed(false))
3985          S.DefineImplicitDefaultConstructor(Loc, Constructor);
3986      }
3987
3988      // Determine the arguments required to actually perform the constructor
3989      // call.
3990      if (S.CompleteConstructorCall(Constructor, move(Args),
3991                                    Loc, ConstructorArgs))
3992        return ExprError();
3993
3994
3995      if (Entity.getKind() == InitializedEntity::EK_Temporary &&
3996          NumArgs != 1 && // FIXME: Hack to work around cast weirdness
3997          (Kind.getKind() == InitializationKind::IK_Direct ||
3998           Kind.getKind() == InitializationKind::IK_Value)) {
3999        // An explicitly-constructed temporary, e.g., X(1, 2).
4000        unsigned NumExprs = ConstructorArgs.size();
4001        Expr **Exprs = (Expr **)ConstructorArgs.take();
4002        S.MarkDeclarationReferenced(Loc, Constructor);
4003        S.DiagnoseUseOfDecl(Constructor, Loc);
4004
4005        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4006        if (!TSInfo)
4007          TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4008
4009        CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4010                                                                 Constructor,
4011                                                                 TSInfo,
4012                                                                 Exprs,
4013                                                                 NumExprs,
4014                                                         Kind.getParenRange(),
4015                                             ConstructorInitRequiresZeroInit));
4016      } else {
4017        CXXConstructExpr::ConstructionKind ConstructKind =
4018          CXXConstructExpr::CK_Complete;
4019
4020        if (Entity.getKind() == InitializedEntity::EK_Base) {
4021          ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4022            CXXConstructExpr::CK_VirtualBase :
4023            CXXConstructExpr::CK_NonVirtualBase;
4024        }
4025
4026        // Only get the parenthesis range if it is a direct construction.
4027        SourceRange parenRange =
4028            Kind.getKind() == InitializationKind::IK_Direct ?
4029            Kind.getParenRange() : SourceRange();
4030
4031        // If the entity allows NRVO, mark the construction as elidable
4032        // unconditionally.
4033        if (Entity.allowsNRVO())
4034          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4035                                            Constructor, /*Elidable=*/true,
4036                                            move_arg(ConstructorArgs),
4037                                            ConstructorInitRequiresZeroInit,
4038                                            ConstructKind,
4039                                            parenRange);
4040        else
4041          CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4042                                            Constructor,
4043                                            move_arg(ConstructorArgs),
4044                                            ConstructorInitRequiresZeroInit,
4045                                            ConstructKind,
4046                                            parenRange);
4047      }
4048      if (CurInit.isInvalid())
4049        return ExprError();
4050
4051      // Only check access if all of that succeeded.
4052      S.CheckConstructorAccess(Loc, Constructor, Entity,
4053                               Step->Function.FoundDecl.getAccess());
4054      S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
4055
4056      if (shouldBindAsTemporary(Entity))
4057        CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4058
4059      break;
4060    }
4061
4062    case SK_ZeroInitialization: {
4063      step_iterator NextStep = Step;
4064      ++NextStep;
4065      if (NextStep != StepEnd &&
4066          NextStep->Kind == SK_ConstructorInitialization) {
4067        // The need for zero-initialization is recorded directly into
4068        // the call to the object's constructor within the next step.
4069        ConstructorInitRequiresZeroInit = true;
4070      } else if (Kind.getKind() == InitializationKind::IK_Value &&
4071                 S.getLangOptions().CPlusPlus &&
4072                 !Kind.isImplicitValueInit()) {
4073        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4074        if (!TSInfo)
4075          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
4076                                                    Kind.getRange().getBegin());
4077
4078        CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
4079                              TSInfo->getType().getNonLValueExprType(S.Context),
4080                                                                 TSInfo,
4081                                                    Kind.getRange().getEnd()));
4082      } else {
4083        CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
4084      }
4085      break;
4086    }
4087
4088    case SK_CAssignment: {
4089      QualType SourceType = CurInit.get()->getType();
4090      ExprResult Result = move(CurInit);
4091      Sema::AssignConvertType ConvTy =
4092        S.CheckSingleAssignmentConstraints(Step->Type, Result);
4093      if (Result.isInvalid())
4094        return ExprError();
4095      CurInit = move(Result);
4096
4097      // If this is a call, allow conversion to a transparent union.
4098      ExprResult CurInitExprRes = move(CurInit);
4099      if (ConvTy != Sema::Compatible &&
4100          Entity.getKind() == InitializedEntity::EK_Parameter &&
4101          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
4102            == Sema::Compatible)
4103        ConvTy = Sema::Compatible;
4104      if (CurInitExprRes.isInvalid())
4105        return ExprError();
4106      CurInit = move(CurInitExprRes);
4107
4108      bool Complained;
4109      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4110                                     Step->Type, SourceType,
4111                                     CurInit.get(),
4112                                     getAssignmentAction(Entity),
4113                                     &Complained)) {
4114        PrintInitLocationNote(S, Entity);
4115        return ExprError();
4116      } else if (Complained)
4117        PrintInitLocationNote(S, Entity);
4118      break;
4119    }
4120
4121    case SK_StringInit: {
4122      QualType Ty = Step->Type;
4123      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
4124                      S.Context.getAsArrayType(Ty), S);
4125      break;
4126    }
4127
4128    case SK_ObjCObjectConversion:
4129      CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
4130                          CK_ObjCObjectLValueCast,
4131                          S.CastCategory(CurInit.get()));
4132      break;
4133
4134    case SK_ArrayInit:
4135      // Okay: we checked everything before creating this step. Note that
4136      // this is a GNU extension.
4137      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
4138        << Step->Type << CurInit.get()->getType()
4139        << CurInit.get()->getSourceRange();
4140
4141      // If the destination type is an incomplete array type, update the
4142      // type accordingly.
4143      if (ResultType) {
4144        if (const IncompleteArrayType *IncompleteDest
4145                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
4146          if (const ConstantArrayType *ConstantSource
4147                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
4148            *ResultType = S.Context.getConstantArrayType(
4149                                             IncompleteDest->getElementType(),
4150                                             ConstantSource->getSize(),
4151                                             ArrayType::Normal, 0);
4152          }
4153        }
4154      }
4155
4156      break;
4157    }
4158  }
4159
4160  // Diagnose non-fatal problems with the completed initialization.
4161  if (Entity.getKind() == InitializedEntity::EK_Member &&
4162      cast<FieldDecl>(Entity.getDecl())->isBitField())
4163    S.CheckBitFieldInitialization(Kind.getLocation(),
4164                                  cast<FieldDecl>(Entity.getDecl()),
4165                                  CurInit.get());
4166
4167  return move(CurInit);
4168}
4169
4170//===----------------------------------------------------------------------===//
4171// Diagnose initialization failures
4172//===----------------------------------------------------------------------===//
4173bool InitializationSequence::Diagnose(Sema &S,
4174                                      const InitializedEntity &Entity,
4175                                      const InitializationKind &Kind,
4176                                      Expr **Args, unsigned NumArgs) {
4177  if (SequenceKind != FailedSequence)
4178    return false;
4179
4180  QualType DestType = Entity.getType();
4181  switch (Failure) {
4182  case FK_TooManyInitsForReference:
4183    // FIXME: Customize for the initialized entity?
4184    if (NumArgs == 0)
4185      S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4186        << DestType.getNonReferenceType();
4187    else  // FIXME: diagnostic below could be better!
4188      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4189        << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4190    break;
4191
4192  case FK_ArrayNeedsInitList:
4193  case FK_ArrayNeedsInitListOrStringLiteral:
4194    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4195      << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4196    break;
4197
4198  case FK_ArrayTypeMismatch:
4199  case FK_NonConstantArrayInit:
4200    S.Diag(Kind.getLocation(),
4201           (Failure == FK_ArrayTypeMismatch
4202              ? diag::err_array_init_different_type
4203              : diag::err_array_init_non_constant_array))
4204      << DestType.getNonReferenceType()
4205      << Args[0]->getType()
4206      << Args[0]->getSourceRange();
4207    break;
4208
4209  case FK_AddressOfOverloadFailed: {
4210    DeclAccessPair Found;
4211    S.ResolveAddressOfOverloadedFunction(Args[0],
4212                                         DestType.getNonReferenceType(),
4213                                         true,
4214                                         Found);
4215    break;
4216  }
4217
4218  case FK_ReferenceInitOverloadFailed:
4219  case FK_UserConversionOverloadFailed:
4220    switch (FailedOverloadResult) {
4221    case OR_Ambiguous:
4222      if (Failure == FK_UserConversionOverloadFailed)
4223        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4224          << Args[0]->getType() << DestType
4225          << Args[0]->getSourceRange();
4226      else
4227        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4228          << DestType << Args[0]->getType()
4229          << Args[0]->getSourceRange();
4230
4231      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4232      break;
4233
4234    case OR_No_Viable_Function:
4235      S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4236        << Args[0]->getType() << DestType.getNonReferenceType()
4237        << Args[0]->getSourceRange();
4238      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4239      break;
4240
4241    case OR_Deleted: {
4242      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4243        << Args[0]->getType() << DestType.getNonReferenceType()
4244        << Args[0]->getSourceRange();
4245      OverloadCandidateSet::iterator Best;
4246      OverloadingResult Ovl
4247        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4248                                                true);
4249      if (Ovl == OR_Deleted) {
4250        S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4251          << Best->Function->isDeleted();
4252      } else {
4253        llvm_unreachable("Inconsistent overload resolution?");
4254      }
4255      break;
4256    }
4257
4258    case OR_Success:
4259      llvm_unreachable("Conversion did not fail!");
4260      break;
4261    }
4262    break;
4263
4264  case FK_NonConstLValueReferenceBindingToTemporary:
4265  case FK_NonConstLValueReferenceBindingToUnrelated:
4266    S.Diag(Kind.getLocation(),
4267           Failure == FK_NonConstLValueReferenceBindingToTemporary
4268             ? diag::err_lvalue_reference_bind_to_temporary
4269             : diag::err_lvalue_reference_bind_to_unrelated)
4270      << DestType.getNonReferenceType().isVolatileQualified()
4271      << DestType.getNonReferenceType()
4272      << Args[0]->getType()
4273      << Args[0]->getSourceRange();
4274    break;
4275
4276  case FK_RValueReferenceBindingToLValue:
4277    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
4278      << DestType.getNonReferenceType() << Args[0]->getType()
4279      << Args[0]->getSourceRange();
4280    break;
4281
4282  case FK_ReferenceInitDropsQualifiers:
4283    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
4284      << DestType.getNonReferenceType()
4285      << Args[0]->getType()
4286      << Args[0]->getSourceRange();
4287    break;
4288
4289  case FK_ReferenceInitFailed:
4290    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
4291      << DestType.getNonReferenceType()
4292      << Args[0]->isLValue()
4293      << Args[0]->getType()
4294      << Args[0]->getSourceRange();
4295    break;
4296
4297  case FK_ConversionFailed: {
4298    QualType FromType = Args[0]->getType();
4299    S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
4300      << (int)Entity.getKind()
4301      << DestType
4302      << Args[0]->isLValue()
4303      << FromType
4304      << Args[0]->getSourceRange();
4305    break;
4306  }
4307
4308  case FK_ConversionFromPropertyFailed:
4309    // No-op. This error has already been reported.
4310    break;
4311
4312  case FK_TooManyInitsForScalar: {
4313    SourceRange R;
4314
4315    if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
4316      R = SourceRange(InitList->getInit(0)->getLocEnd(),
4317                      InitList->getLocEnd());
4318    else
4319      R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
4320
4321    R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
4322    if (Kind.isCStyleOrFunctionalCast())
4323      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
4324        << R;
4325    else
4326      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
4327        << /*scalar=*/2 << R;
4328    break;
4329  }
4330
4331  case FK_ReferenceBindingToInitList:
4332    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
4333      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
4334    break;
4335
4336  case FK_InitListBadDestinationType:
4337    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
4338      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
4339    break;
4340
4341  case FK_ConstructorOverloadFailed: {
4342    SourceRange ArgsRange;
4343    if (NumArgs)
4344      ArgsRange = SourceRange(Args[0]->getLocStart(),
4345                              Args[NumArgs - 1]->getLocEnd());
4346
4347    // FIXME: Using "DestType" for the entity we're printing is probably
4348    // bad.
4349    switch (FailedOverloadResult) {
4350      case OR_Ambiguous:
4351        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
4352          << DestType << ArgsRange;
4353        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
4354                                          Args, NumArgs);
4355        break;
4356
4357      case OR_No_Viable_Function:
4358        if (Kind.getKind() == InitializationKind::IK_Default &&
4359            (Entity.getKind() == InitializedEntity::EK_Base ||
4360             Entity.getKind() == InitializedEntity::EK_Member) &&
4361            isa<CXXConstructorDecl>(S.CurContext)) {
4362          // This is implicit default initialization of a member or
4363          // base within a constructor. If no viable function was
4364          // found, notify the user that she needs to explicitly
4365          // initialize this base/member.
4366          CXXConstructorDecl *Constructor
4367            = cast<CXXConstructorDecl>(S.CurContext);
4368          if (Entity.getKind() == InitializedEntity::EK_Base) {
4369            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4370              << Constructor->isImplicit()
4371              << S.Context.getTypeDeclType(Constructor->getParent())
4372              << /*base=*/0
4373              << Entity.getType();
4374
4375            RecordDecl *BaseDecl
4376              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
4377                                                                  ->getDecl();
4378            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
4379              << S.Context.getTagDeclType(BaseDecl);
4380          } else {
4381            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
4382              << Constructor->isImplicit()
4383              << S.Context.getTypeDeclType(Constructor->getParent())
4384              << /*member=*/1
4385              << Entity.getName();
4386            S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
4387
4388            if (const RecordType *Record
4389                                 = Entity.getType()->getAs<RecordType>())
4390              S.Diag(Record->getDecl()->getLocation(),
4391                     diag::note_previous_decl)
4392                << S.Context.getTagDeclType(Record->getDecl());
4393          }
4394          break;
4395        }
4396
4397        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
4398          << DestType << ArgsRange;
4399        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4400        break;
4401
4402      case OR_Deleted: {
4403        S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
4404          << true << DestType << ArgsRange;
4405        OverloadCandidateSet::iterator Best;
4406        OverloadingResult Ovl
4407          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
4408        if (Ovl == OR_Deleted) {
4409          S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4410            << Best->Function->isDeleted();
4411        } else {
4412          llvm_unreachable("Inconsistent overload resolution?");
4413        }
4414        break;
4415      }
4416
4417      case OR_Success:
4418        llvm_unreachable("Conversion did not fail!");
4419        break;
4420    }
4421    break;
4422  }
4423
4424  case FK_DefaultInitOfConst:
4425    if (Entity.getKind() == InitializedEntity::EK_Member &&
4426        isa<CXXConstructorDecl>(S.CurContext)) {
4427      // This is implicit default-initialization of a const member in
4428      // a constructor. Complain that it needs to be explicitly
4429      // initialized.
4430      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
4431      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
4432        << Constructor->isImplicit()
4433        << S.Context.getTypeDeclType(Constructor->getParent())
4434        << /*const=*/1
4435        << Entity.getName();
4436      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
4437        << Entity.getName();
4438    } else {
4439      S.Diag(Kind.getLocation(), diag::err_default_init_const)
4440        << DestType << (bool)DestType->getAs<RecordType>();
4441    }
4442    break;
4443
4444    case FK_Incomplete:
4445      S.RequireCompleteType(Kind.getLocation(), DestType,
4446                            diag::err_init_incomplete_type);
4447      break;
4448  }
4449
4450  PrintInitLocationNote(S, Entity);
4451  return true;
4452}
4453
4454void InitializationSequence::dump(llvm::raw_ostream &OS) const {
4455  switch (SequenceKind) {
4456  case FailedSequence: {
4457    OS << "Failed sequence: ";
4458    switch (Failure) {
4459    case FK_TooManyInitsForReference:
4460      OS << "too many initializers for reference";
4461      break;
4462
4463    case FK_ArrayNeedsInitList:
4464      OS << "array requires initializer list";
4465      break;
4466
4467    case FK_ArrayNeedsInitListOrStringLiteral:
4468      OS << "array requires initializer list or string literal";
4469      break;
4470
4471    case FK_ArrayTypeMismatch:
4472      OS << "array type mismatch";
4473      break;
4474
4475    case FK_NonConstantArrayInit:
4476      OS << "non-constant array initializer";
4477      break;
4478
4479    case FK_AddressOfOverloadFailed:
4480      OS << "address of overloaded function failed";
4481      break;
4482
4483    case FK_ReferenceInitOverloadFailed:
4484      OS << "overload resolution for reference initialization failed";
4485      break;
4486
4487    case FK_NonConstLValueReferenceBindingToTemporary:
4488      OS << "non-const lvalue reference bound to temporary";
4489      break;
4490
4491    case FK_NonConstLValueReferenceBindingToUnrelated:
4492      OS << "non-const lvalue reference bound to unrelated type";
4493      break;
4494
4495    case FK_RValueReferenceBindingToLValue:
4496      OS << "rvalue reference bound to an lvalue";
4497      break;
4498
4499    case FK_ReferenceInitDropsQualifiers:
4500      OS << "reference initialization drops qualifiers";
4501      break;
4502
4503    case FK_ReferenceInitFailed:
4504      OS << "reference initialization failed";
4505      break;
4506
4507    case FK_ConversionFailed:
4508      OS << "conversion failed";
4509      break;
4510
4511    case FK_ConversionFromPropertyFailed:
4512      OS << "conversion from property failed";
4513      break;
4514
4515    case FK_TooManyInitsForScalar:
4516      OS << "too many initializers for scalar";
4517      break;
4518
4519    case FK_ReferenceBindingToInitList:
4520      OS << "referencing binding to initializer list";
4521      break;
4522
4523    case FK_InitListBadDestinationType:
4524      OS << "initializer list for non-aggregate, non-scalar type";
4525      break;
4526
4527    case FK_UserConversionOverloadFailed:
4528      OS << "overloading failed for user-defined conversion";
4529      break;
4530
4531    case FK_ConstructorOverloadFailed:
4532      OS << "constructor overloading failed";
4533      break;
4534
4535    case FK_DefaultInitOfConst:
4536      OS << "default initialization of a const variable";
4537      break;
4538
4539    case FK_Incomplete:
4540      OS << "initialization of incomplete type";
4541      break;
4542    }
4543    OS << '\n';
4544    return;
4545  }
4546
4547  case DependentSequence:
4548    OS << "Dependent sequence: ";
4549    return;
4550
4551  case UserDefinedConversion:
4552    OS << "User-defined conversion sequence: ";
4553    break;
4554
4555  case ConstructorInitialization:
4556    OS << "Constructor initialization sequence: ";
4557    break;
4558
4559  case ReferenceBinding:
4560    OS << "Reference binding: ";
4561    break;
4562
4563  case ListInitialization:
4564    OS << "List initialization: ";
4565    break;
4566
4567  case ZeroInitialization:
4568    OS << "Zero initialization\n";
4569    return;
4570
4571  case NoInitialization:
4572    OS << "No initialization\n";
4573    return;
4574
4575  case StandardConversion:
4576    OS << "Standard conversion: ";
4577    break;
4578
4579  case CAssignment:
4580    OS << "C assignment: ";
4581    break;
4582
4583  case StringInit:
4584    OS << "String initialization: ";
4585    break;
4586
4587  case ArrayInit:
4588    OS << "Array initialization: ";
4589    break;
4590  }
4591
4592  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
4593    if (S != step_begin()) {
4594      OS << " -> ";
4595    }
4596
4597    switch (S->Kind) {
4598    case SK_ResolveAddressOfOverloadedFunction:
4599      OS << "resolve address of overloaded function";
4600      break;
4601
4602    case SK_CastDerivedToBaseRValue:
4603      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
4604      break;
4605
4606    case SK_CastDerivedToBaseXValue:
4607      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
4608      break;
4609
4610    case SK_CastDerivedToBaseLValue:
4611      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
4612      break;
4613
4614    case SK_BindReference:
4615      OS << "bind reference to lvalue";
4616      break;
4617
4618    case SK_BindReferenceToTemporary:
4619      OS << "bind reference to a temporary";
4620      break;
4621
4622    case SK_ExtraneousCopyToTemporary:
4623      OS << "extraneous C++03 copy to temporary";
4624      break;
4625
4626    case SK_UserConversion:
4627      OS << "user-defined conversion via " << S->Function.Function;
4628      break;
4629
4630    case SK_QualificationConversionRValue:
4631      OS << "qualification conversion (rvalue)";
4632
4633    case SK_QualificationConversionXValue:
4634      OS << "qualification conversion (xvalue)";
4635
4636    case SK_QualificationConversionLValue:
4637      OS << "qualification conversion (lvalue)";
4638      break;
4639
4640    case SK_ConversionSequence:
4641      OS << "implicit conversion sequence (";
4642      S->ICS->DebugPrint(); // FIXME: use OS
4643      OS << ")";
4644      break;
4645
4646    case SK_ListInitialization:
4647      OS << "list initialization";
4648      break;
4649
4650    case SK_ConstructorInitialization:
4651      OS << "constructor initialization";
4652      break;
4653
4654    case SK_ZeroInitialization:
4655      OS << "zero initialization";
4656      break;
4657
4658    case SK_CAssignment:
4659      OS << "C assignment";
4660      break;
4661
4662    case SK_StringInit:
4663      OS << "string initialization";
4664      break;
4665
4666    case SK_ObjCObjectConversion:
4667      OS << "Objective-C object conversion";
4668      break;
4669
4670    case SK_ArrayInit:
4671      OS << "array initialization";
4672      break;
4673    }
4674  }
4675}
4676
4677void InitializationSequence::dump() const {
4678  dump(llvm::errs());
4679}
4680
4681//===----------------------------------------------------------------------===//
4682// Initialization helper functions
4683//===----------------------------------------------------------------------===//
4684ExprResult
4685Sema::PerformCopyInitialization(const InitializedEntity &Entity,
4686                                SourceLocation EqualLoc,
4687                                ExprResult Init) {
4688  if (Init.isInvalid())
4689    return ExprError();
4690
4691  Expr *InitE = Init.get();
4692  assert(InitE && "No initialization expression?");
4693
4694  if (EqualLoc.isInvalid())
4695    EqualLoc = InitE->getLocStart();
4696
4697  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
4698                                                           EqualLoc);
4699  InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
4700  Init.release();
4701  return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
4702}
4703