1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Lookup.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Sema/DeclSpec.h"
27#include "clang/Sema/ExternalSemaSource.h"
28#include "clang/Sema/Overload.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/ScopeInfo.h"
31#include "clang/Sema/Sema.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/TemplateDeduction.h"
34#include "clang/Sema/TypoCorrection.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/StringMap.h"
39#include "llvm/ADT/TinyPtrVector.h"
40#include "llvm/ADT/edit_distance.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <algorithm>
43#include <iterator>
44#include <limits>
45#include <list>
46#include <map>
47#include <set>
48#include <utility>
49#include <vector>
50
51using namespace clang;
52using namespace sema;
53
54namespace {
55  class UnqualUsingEntry {
56    const DeclContext *Nominated;
57    const DeclContext *CommonAncestor;
58
59  public:
60    UnqualUsingEntry(const DeclContext *Nominated,
61                     const DeclContext *CommonAncestor)
62      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
63    }
64
65    const DeclContext *getCommonAncestor() const {
66      return CommonAncestor;
67    }
68
69    const DeclContext *getNominatedNamespace() const {
70      return Nominated;
71    }
72
73    // Sort by the pointer value of the common ancestor.
74    struct Comparator {
75      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
76        return L.getCommonAncestor() < R.getCommonAncestor();
77      }
78
79      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
80        return E.getCommonAncestor() < DC;
81      }
82
83      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
84        return DC < E.getCommonAncestor();
85      }
86    };
87  };
88
89  /// A collection of using directives, as used by C++ unqualified
90  /// lookup.
91  class UnqualUsingDirectiveSet {
92    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
93
94    ListTy list;
95    llvm::SmallPtrSet<DeclContext*, 8> visited;
96
97  public:
98    UnqualUsingDirectiveSet() {}
99
100    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
101      // C++ [namespace.udir]p1:
102      //   During unqualified name lookup, the names appear as if they
103      //   were declared in the nearest enclosing namespace which contains
104      //   both the using-directive and the nominated namespace.
105      DeclContext *InnermostFileDC
106        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
107      assert(InnermostFileDC && InnermostFileDC->isFileContext());
108
109      for (; S; S = S->getParent()) {
110        // C++ [namespace.udir]p1:
111        //   A using-directive shall not appear in class scope, but may
112        //   appear in namespace scope or in block scope.
113        DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
114        if (Ctx && Ctx->isFileContext()) {
115          visit(Ctx, Ctx);
116        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
117          Scope::udir_iterator I = S->using_directives_begin(),
118                             End = S->using_directives_end();
119          for (; I != End; ++I)
120            visit(*I, InnermostFileDC);
121        }
122      }
123    }
124
125    // Visits a context and collect all of its using directives
126    // recursively.  Treats all using directives as if they were
127    // declared in the context.
128    //
129    // A given context is only every visited once, so it is important
130    // that contexts be visited from the inside out in order to get
131    // the effective DCs right.
132    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
133      if (!visited.insert(DC))
134        return;
135
136      addUsingDirectives(DC, EffectiveDC);
137    }
138
139    // Visits a using directive and collects all of its using
140    // directives recursively.  Treats all using directives as if they
141    // were declared in the effective DC.
142    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
143      DeclContext *NS = UD->getNominatedNamespace();
144      if (!visited.insert(NS))
145        return;
146
147      addUsingDirective(UD, EffectiveDC);
148      addUsingDirectives(NS, EffectiveDC);
149    }
150
151    // Adds all the using directives in a context (and those nominated
152    // by its using directives, transitively) as if they appeared in
153    // the given effective context.
154    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
155      SmallVector<DeclContext*,4> queue;
156      while (true) {
157        DeclContext::udir_iterator I, End;
158        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
159          UsingDirectiveDecl *UD = *I;
160          DeclContext *NS = UD->getNominatedNamespace();
161          if (visited.insert(NS)) {
162            addUsingDirective(UD, EffectiveDC);
163            queue.push_back(NS);
164          }
165        }
166
167        if (queue.empty())
168          return;
169
170        DC = queue.back();
171        queue.pop_back();
172      }
173    }
174
175    // Add a using directive as if it had been declared in the given
176    // context.  This helps implement C++ [namespace.udir]p3:
177    //   The using-directive is transitive: if a scope contains a
178    //   using-directive that nominates a second namespace that itself
179    //   contains using-directives, the effect is as if the
180    //   using-directives from the second namespace also appeared in
181    //   the first.
182    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
183      // Find the common ancestor between the effective context and
184      // the nominated namespace.
185      DeclContext *Common = UD->getNominatedNamespace();
186      while (!Common->Encloses(EffectiveDC))
187        Common = Common->getParent();
188      Common = Common->getPrimaryContext();
189
190      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
191    }
192
193    void done() {
194      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
195    }
196
197    typedef ListTy::const_iterator const_iterator;
198
199    const_iterator begin() const { return list.begin(); }
200    const_iterator end() const { return list.end(); }
201
202    std::pair<const_iterator,const_iterator>
203    getNamespacesFor(DeclContext *DC) const {
204      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
205                              UnqualUsingEntry::Comparator());
206    }
207  };
208}
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                               bool CPlusPlus,
214                               bool Redeclaration) {
215  unsigned IDNS = 0;
216  switch (NameKind) {
217  case Sema::LookupObjCImplicitSelfParam:
218  case Sema::LookupOrdinaryName:
219  case Sema::LookupRedeclarationWithLinkage:
220    IDNS = Decl::IDNS_Ordinary;
221    if (CPlusPlus) {
222      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
223      if (Redeclaration)
224        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
225    }
226    break;
227
228  case Sema::LookupOperatorName:
229    // Operator lookup is its own crazy thing;  it is not the same
230    // as (e.g.) looking up an operator name for redeclaration.
231    assert(!Redeclaration && "cannot do redeclaration operator lookup");
232    IDNS = Decl::IDNS_NonMemberOperator;
233    break;
234
235  case Sema::LookupTagName:
236    if (CPlusPlus) {
237      IDNS = Decl::IDNS_Type;
238
239      // When looking for a redeclaration of a tag name, we add:
240      // 1) TagFriend to find undeclared friend decls
241      // 2) Namespace because they can't "overload" with tag decls.
242      // 3) Tag because it includes class templates, which can't
243      //    "overload" with tag decls.
244      if (Redeclaration)
245        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
246    } else {
247      IDNS = Decl::IDNS_Tag;
248    }
249    break;
250  case Sema::LookupLabel:
251    IDNS = Decl::IDNS_Label;
252    break;
253
254  case Sema::LookupMemberName:
255    IDNS = Decl::IDNS_Member;
256    if (CPlusPlus)
257      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
258    break;
259
260  case Sema::LookupNestedNameSpecifierName:
261    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
262    break;
263
264  case Sema::LookupNamespaceName:
265    IDNS = Decl::IDNS_Namespace;
266    break;
267
268  case Sema::LookupUsingDeclName:
269    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
270         | Decl::IDNS_Member | Decl::IDNS_Using;
271    break;
272
273  case Sema::LookupObjCProtocolName:
274    IDNS = Decl::IDNS_ObjCProtocol;
275    break;
276
277  case Sema::LookupAnyName:
278    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
279      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
280      | Decl::IDNS_Type;
281    break;
282  }
283  return IDNS;
284}
285
286void LookupResult::configure() {
287  IDNS = getIDNS(LookupKind, SemaRef.getLangOpts().CPlusPlus,
288                 isForRedeclaration());
289
290  // If we're looking for one of the allocation or deallocation
291  // operators, make sure that the implicitly-declared new and delete
292  // operators can be found.
293  if (!isForRedeclaration()) {
294    switch (NameInfo.getName().getCXXOverloadedOperator()) {
295    case OO_New:
296    case OO_Delete:
297    case OO_Array_New:
298    case OO_Array_Delete:
299      SemaRef.DeclareGlobalNewDelete();
300      break;
301
302    default:
303      break;
304    }
305  }
306}
307
308void LookupResult::sanityImpl() const {
309  // Note that this function is never called by NDEBUG builds. See
310  // LookupResult::sanity().
311  assert(ResultKind != NotFound || Decls.size() == 0);
312  assert(ResultKind != Found || Decls.size() == 1);
313  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
314         (Decls.size() == 1 &&
315          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
316  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
317  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
318         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
319                                Ambiguity == AmbiguousBaseSubobjectTypes)));
320  assert((Paths != NULL) == (ResultKind == Ambiguous &&
321                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
322                              Ambiguity == AmbiguousBaseSubobjects)));
323}
324
325// Necessary because CXXBasePaths is not complete in Sema.h
326void LookupResult::deletePaths(CXXBasePaths *Paths) {
327  delete Paths;
328}
329
330static NamedDecl *getVisibleDecl(NamedDecl *D);
331
332NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
333  return getVisibleDecl(D);
334}
335
336/// Resolves the result kind of this lookup.
337void LookupResult::resolveKind() {
338  unsigned N = Decls.size();
339
340  // Fast case: no possible ambiguity.
341  if (N == 0) {
342    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
343    return;
344  }
345
346  // If there's a single decl, we need to examine it to decide what
347  // kind of lookup this is.
348  if (N == 1) {
349    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
350    if (isa<FunctionTemplateDecl>(D))
351      ResultKind = FoundOverloaded;
352    else if (isa<UnresolvedUsingValueDecl>(D))
353      ResultKind = FoundUnresolvedValue;
354    return;
355  }
356
357  // Don't do any extra resolution if we've already resolved as ambiguous.
358  if (ResultKind == Ambiguous) return;
359
360  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
361  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
362
363  bool Ambiguous = false;
364  bool HasTag = false, HasFunction = false, HasNonFunction = false;
365  bool HasFunctionTemplate = false, HasUnresolved = false;
366
367  unsigned UniqueTagIndex = 0;
368
369  unsigned I = 0;
370  while (I < N) {
371    NamedDecl *D = Decls[I]->getUnderlyingDecl();
372    D = cast<NamedDecl>(D->getCanonicalDecl());
373
374    // Ignore an invalid declaration unless it's the only one left.
375    if (D->isInvalidDecl() && I < N-1) {
376      Decls[I] = Decls[--N];
377      continue;
378    }
379
380    // Redeclarations of types via typedef can occur both within a scope
381    // and, through using declarations and directives, across scopes. There is
382    // no ambiguity if they all refer to the same type, so unique based on the
383    // canonical type.
384    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
385      if (!TD->getDeclContext()->isRecord()) {
386        QualType T = SemaRef.Context.getTypeDeclType(TD);
387        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
388          // The type is not unique; pull something off the back and continue
389          // at this index.
390          Decls[I] = Decls[--N];
391          continue;
392        }
393      }
394    }
395
396    if (!Unique.insert(D)) {
397      // If it's not unique, pull something off the back (and
398      // continue at this index).
399      Decls[I] = Decls[--N];
400      continue;
401    }
402
403    // Otherwise, do some decl type analysis and then continue.
404
405    if (isa<UnresolvedUsingValueDecl>(D)) {
406      HasUnresolved = true;
407    } else if (isa<TagDecl>(D)) {
408      if (HasTag)
409        Ambiguous = true;
410      UniqueTagIndex = I;
411      HasTag = true;
412    } else if (isa<FunctionTemplateDecl>(D)) {
413      HasFunction = true;
414      HasFunctionTemplate = true;
415    } else if (isa<FunctionDecl>(D)) {
416      HasFunction = true;
417    } else {
418      if (HasNonFunction)
419        Ambiguous = true;
420      HasNonFunction = true;
421    }
422    I++;
423  }
424
425  // C++ [basic.scope.hiding]p2:
426  //   A class name or enumeration name can be hidden by the name of
427  //   an object, function, or enumerator declared in the same
428  //   scope. If a class or enumeration name and an object, function,
429  //   or enumerator are declared in the same scope (in any order)
430  //   with the same name, the class or enumeration name is hidden
431  //   wherever the object, function, or enumerator name is visible.
432  // But it's still an error if there are distinct tag types found,
433  // even if they're not visible. (ref?)
434  if (HideTags && HasTag && !Ambiguous &&
435      (HasFunction || HasNonFunction || HasUnresolved)) {
436    if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
437         Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
438      Decls[UniqueTagIndex] = Decls[--N];
439    else
440      Ambiguous = true;
441  }
442
443  Decls.set_size(N);
444
445  if (HasNonFunction && (HasFunction || HasUnresolved))
446    Ambiguous = true;
447
448  if (Ambiguous)
449    setAmbiguous(LookupResult::AmbiguousReference);
450  else if (HasUnresolved)
451    ResultKind = LookupResult::FoundUnresolvedValue;
452  else if (N > 1 || HasFunctionTemplate)
453    ResultKind = LookupResult::FoundOverloaded;
454  else
455    ResultKind = LookupResult::Found;
456}
457
458void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
459  CXXBasePaths::const_paths_iterator I, E;
460  for (I = P.begin(), E = P.end(); I != E; ++I)
461    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
462         DE = I->Decls.end(); DI != DE; ++DI)
463      addDecl(*DI);
464}
465
466void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
467  Paths = new CXXBasePaths;
468  Paths->swap(P);
469  addDeclsFromBasePaths(*Paths);
470  resolveKind();
471  setAmbiguous(AmbiguousBaseSubobjects);
472}
473
474void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
475  Paths = new CXXBasePaths;
476  Paths->swap(P);
477  addDeclsFromBasePaths(*Paths);
478  resolveKind();
479  setAmbiguous(AmbiguousBaseSubobjectTypes);
480}
481
482void LookupResult::print(raw_ostream &Out) {
483  Out << Decls.size() << " result(s)";
484  if (isAmbiguous()) Out << ", ambiguous";
485  if (Paths) Out << ", base paths present";
486
487  for (iterator I = begin(), E = end(); I != E; ++I) {
488    Out << "\n";
489    (*I)->print(Out, 2);
490  }
491}
492
493/// \brief Lookup a builtin function, when name lookup would otherwise
494/// fail.
495static bool LookupBuiltin(Sema &S, LookupResult &R) {
496  Sema::LookupNameKind NameKind = R.getLookupKind();
497
498  // If we didn't find a use of this identifier, and if the identifier
499  // corresponds to a compiler builtin, create the decl object for the builtin
500  // now, injecting it into translation unit scope, and return it.
501  if (NameKind == Sema::LookupOrdinaryName ||
502      NameKind == Sema::LookupRedeclarationWithLinkage) {
503    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
504    if (II) {
505      // If this is a builtin on this (or all) targets, create the decl.
506      if (unsigned BuiltinID = II->getBuiltinID()) {
507        // In C++, we don't have any predefined library functions like
508        // 'malloc'. Instead, we'll just error.
509        if (S.getLangOpts().CPlusPlus &&
510            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
511          return false;
512
513        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
514                                                 BuiltinID, S.TUScope,
515                                                 R.isForRedeclaration(),
516                                                 R.getNameLoc())) {
517          R.addDecl(D);
518          return true;
519        }
520
521        if (R.isForRedeclaration()) {
522          // If we're redeclaring this function anyway, forget that
523          // this was a builtin at all.
524          S.Context.BuiltinInfo.ForgetBuiltin(BuiltinID, S.Context.Idents);
525        }
526
527        return false;
528      }
529    }
530  }
531
532  return false;
533}
534
535/// \brief Determine whether we can declare a special member function within
536/// the class at this point.
537static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
538  // We need to have a definition for the class.
539  if (!Class->getDefinition() || Class->isDependentContext())
540    return false;
541
542  // We can't be in the middle of defining the class.
543  return !Class->isBeingDefined();
544}
545
546void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
547  if (!CanDeclareSpecialMemberFunction(Class))
548    return;
549
550  // If the default constructor has not yet been declared, do so now.
551  if (Class->needsImplicitDefaultConstructor())
552    DeclareImplicitDefaultConstructor(Class);
553
554  // If the copy constructor has not yet been declared, do so now.
555  if (Class->needsImplicitCopyConstructor())
556    DeclareImplicitCopyConstructor(Class);
557
558  // If the copy assignment operator has not yet been declared, do so now.
559  if (Class->needsImplicitCopyAssignment())
560    DeclareImplicitCopyAssignment(Class);
561
562  if (getLangOpts().CPlusPlus11) {
563    // If the move constructor has not yet been declared, do so now.
564    if (Class->needsImplicitMoveConstructor())
565      DeclareImplicitMoveConstructor(Class); // might not actually do it
566
567    // If the move assignment operator has not yet been declared, do so now.
568    if (Class->needsImplicitMoveAssignment())
569      DeclareImplicitMoveAssignment(Class); // might not actually do it
570  }
571
572  // If the destructor has not yet been declared, do so now.
573  if (Class->needsImplicitDestructor())
574    DeclareImplicitDestructor(Class);
575}
576
577/// \brief Determine whether this is the name of an implicitly-declared
578/// special member function.
579static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
580  switch (Name.getNameKind()) {
581  case DeclarationName::CXXConstructorName:
582  case DeclarationName::CXXDestructorName:
583    return true;
584
585  case DeclarationName::CXXOperatorName:
586    return Name.getCXXOverloadedOperator() == OO_Equal;
587
588  default:
589    break;
590  }
591
592  return false;
593}
594
595/// \brief If there are any implicit member functions with the given name
596/// that need to be declared in the given declaration context, do so.
597static void DeclareImplicitMemberFunctionsWithName(Sema &S,
598                                                   DeclarationName Name,
599                                                   const DeclContext *DC) {
600  if (!DC)
601    return;
602
603  switch (Name.getNameKind()) {
604  case DeclarationName::CXXConstructorName:
605    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
606      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
607        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
608        if (Record->needsImplicitDefaultConstructor())
609          S.DeclareImplicitDefaultConstructor(Class);
610        if (Record->needsImplicitCopyConstructor())
611          S.DeclareImplicitCopyConstructor(Class);
612        if (S.getLangOpts().CPlusPlus11 &&
613            Record->needsImplicitMoveConstructor())
614          S.DeclareImplicitMoveConstructor(Class);
615      }
616    break;
617
618  case DeclarationName::CXXDestructorName:
619    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
620      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
621          CanDeclareSpecialMemberFunction(Record))
622        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
623    break;
624
625  case DeclarationName::CXXOperatorName:
626    if (Name.getCXXOverloadedOperator() != OO_Equal)
627      break;
628
629    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
630      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
631        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
632        if (Record->needsImplicitCopyAssignment())
633          S.DeclareImplicitCopyAssignment(Class);
634        if (S.getLangOpts().CPlusPlus11 &&
635            Record->needsImplicitMoveAssignment())
636          S.DeclareImplicitMoveAssignment(Class);
637      }
638    }
639    break;
640
641  default:
642    break;
643  }
644}
645
646// Adds all qualifying matches for a name within a decl context to the
647// given lookup result.  Returns true if any matches were found.
648static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
649  bool Found = false;
650
651  // Lazily declare C++ special member functions.
652  if (S.getLangOpts().CPlusPlus)
653    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
654
655  // Perform lookup into this declaration context.
656  DeclContext::lookup_const_result DR = DC->lookup(R.getLookupName());
657  for (DeclContext::lookup_const_iterator I = DR.begin(), E = DR.end(); I != E;
658       ++I) {
659    NamedDecl *D = *I;
660    if ((D = R.getAcceptableDecl(D))) {
661      R.addDecl(D);
662      Found = true;
663    }
664  }
665
666  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
667    return true;
668
669  if (R.getLookupName().getNameKind()
670        != DeclarationName::CXXConversionFunctionName ||
671      R.getLookupName().getCXXNameType()->isDependentType() ||
672      !isa<CXXRecordDecl>(DC))
673    return Found;
674
675  // C++ [temp.mem]p6:
676  //   A specialization of a conversion function template is not found by
677  //   name lookup. Instead, any conversion function templates visible in the
678  //   context of the use are considered. [...]
679  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
680  if (!Record->isCompleteDefinition())
681    return Found;
682
683  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
684         UEnd = Record->conversion_end(); U != UEnd; ++U) {
685    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
686    if (!ConvTemplate)
687      continue;
688
689    // When we're performing lookup for the purposes of redeclaration, just
690    // add the conversion function template. When we deduce template
691    // arguments for specializations, we'll end up unifying the return
692    // type of the new declaration with the type of the function template.
693    if (R.isForRedeclaration()) {
694      R.addDecl(ConvTemplate);
695      Found = true;
696      continue;
697    }
698
699    // C++ [temp.mem]p6:
700    //   [...] For each such operator, if argument deduction succeeds
701    //   (14.9.2.3), the resulting specialization is used as if found by
702    //   name lookup.
703    //
704    // When referencing a conversion function for any purpose other than
705    // a redeclaration (such that we'll be building an expression with the
706    // result), perform template argument deduction and place the
707    // specialization into the result set. We do this to avoid forcing all
708    // callers to perform special deduction for conversion functions.
709    TemplateDeductionInfo Info(R.getNameLoc());
710    FunctionDecl *Specialization = 0;
711
712    const FunctionProtoType *ConvProto
713      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
714    assert(ConvProto && "Nonsensical conversion function template type");
715
716    // Compute the type of the function that we would expect the conversion
717    // function to have, if it were to match the name given.
718    // FIXME: Calling convention!
719    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
720    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_Default);
721    EPI.ExceptionSpecType = EST_None;
722    EPI.NumExceptions = 0;
723    QualType ExpectedType
724      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
725                                            ArrayRef<QualType>(), EPI);
726
727    // Perform template argument deduction against the type that we would
728    // expect the function to have.
729    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
730                                            Specialization, Info)
731          == Sema::TDK_Success) {
732      R.addDecl(Specialization);
733      Found = true;
734    }
735  }
736
737  return Found;
738}
739
740// Performs C++ unqualified lookup into the given file context.
741static bool
742CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
743                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
744
745  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
746
747  // Perform direct name lookup into the LookupCtx.
748  bool Found = LookupDirect(S, R, NS);
749
750  // Perform direct name lookup into the namespaces nominated by the
751  // using directives whose common ancestor is this namespace.
752  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
753  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
754
755  for (; UI != UEnd; ++UI)
756    if (LookupDirect(S, R, UI->getNominatedNamespace()))
757      Found = true;
758
759  R.resolveKind();
760
761  return Found;
762}
763
764static bool isNamespaceOrTranslationUnitScope(Scope *S) {
765  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
766    return Ctx->isFileContext();
767  return false;
768}
769
770// Find the next outer declaration context from this scope. This
771// routine actually returns the semantic outer context, which may
772// differ from the lexical context (encoded directly in the Scope
773// stack) when we are parsing a member of a class template. In this
774// case, the second element of the pair will be true, to indicate that
775// name lookup should continue searching in this semantic context when
776// it leaves the current template parameter scope.
777static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
778  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
779  DeclContext *Lexical = 0;
780  for (Scope *OuterS = S->getParent(); OuterS;
781       OuterS = OuterS->getParent()) {
782    if (OuterS->getEntity()) {
783      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
784      break;
785    }
786  }
787
788  // C++ [temp.local]p8:
789  //   In the definition of a member of a class template that appears
790  //   outside of the namespace containing the class template
791  //   definition, the name of a template-parameter hides the name of
792  //   a member of this namespace.
793  //
794  // Example:
795  //
796  //   namespace N {
797  //     class C { };
798  //
799  //     template<class T> class B {
800  //       void f(T);
801  //     };
802  //   }
803  //
804  //   template<class C> void N::B<C>::f(C) {
805  //     C b;  // C is the template parameter, not N::C
806  //   }
807  //
808  // In this example, the lexical context we return is the
809  // TranslationUnit, while the semantic context is the namespace N.
810  if (!Lexical || !DC || !S->getParent() ||
811      !S->getParent()->isTemplateParamScope())
812    return std::make_pair(Lexical, false);
813
814  // Find the outermost template parameter scope.
815  // For the example, this is the scope for the template parameters of
816  // template<class C>.
817  Scope *OutermostTemplateScope = S->getParent();
818  while (OutermostTemplateScope->getParent() &&
819         OutermostTemplateScope->getParent()->isTemplateParamScope())
820    OutermostTemplateScope = OutermostTemplateScope->getParent();
821
822  // Find the namespace context in which the original scope occurs. In
823  // the example, this is namespace N.
824  DeclContext *Semantic = DC;
825  while (!Semantic->isFileContext())
826    Semantic = Semantic->getParent();
827
828  // Find the declaration context just outside of the template
829  // parameter scope. This is the context in which the template is
830  // being lexically declaration (a namespace context). In the
831  // example, this is the global scope.
832  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
833      Lexical->Encloses(Semantic))
834    return std::make_pair(Semantic, true);
835
836  return std::make_pair(Lexical, false);
837}
838
839bool Sema::CppLookupName(LookupResult &R, Scope *S) {
840  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
841
842  DeclarationName Name = R.getLookupName();
843
844  // If this is the name of an implicitly-declared special member function,
845  // go through the scope stack to implicitly declare
846  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
847    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
848      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
849        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
850  }
851
852  // Implicitly declare member functions with the name we're looking for, if in
853  // fact we are in a scope where it matters.
854
855  Scope *Initial = S;
856  IdentifierResolver::iterator
857    I = IdResolver.begin(Name),
858    IEnd = IdResolver.end();
859
860  // First we lookup local scope.
861  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
862  // ...During unqualified name lookup (3.4.1), the names appear as if
863  // they were declared in the nearest enclosing namespace which contains
864  // both the using-directive and the nominated namespace.
865  // [Note: in this context, "contains" means "contains directly or
866  // indirectly".
867  //
868  // For example:
869  // namespace A { int i; }
870  // void foo() {
871  //   int i;
872  //   {
873  //     using namespace A;
874  //     ++i; // finds local 'i', A::i appears at global scope
875  //   }
876  // }
877  //
878  DeclContext *OutsideOfTemplateParamDC = 0;
879  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
880    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
881
882    // Check whether the IdResolver has anything in this scope.
883    bool Found = false;
884    for (; I != IEnd && S->isDeclScope(*I); ++I) {
885      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
886        Found = true;
887        R.addDecl(ND);
888      }
889    }
890    if (Found) {
891      R.resolveKind();
892      if (S->isClassScope())
893        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
894          R.setNamingClass(Record);
895      return true;
896    }
897
898    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
899        S->getParent() && !S->getParent()->isTemplateParamScope()) {
900      // We've just searched the last template parameter scope and
901      // found nothing, so look into the contexts between the
902      // lexical and semantic declaration contexts returned by
903      // findOuterContext(). This implements the name lookup behavior
904      // of C++ [temp.local]p8.
905      Ctx = OutsideOfTemplateParamDC;
906      OutsideOfTemplateParamDC = 0;
907    }
908
909    if (Ctx) {
910      DeclContext *OuterCtx;
911      bool SearchAfterTemplateScope;
912      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
913      if (SearchAfterTemplateScope)
914        OutsideOfTemplateParamDC = OuterCtx;
915
916      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
917        // We do not directly look into transparent contexts, since
918        // those entities will be found in the nearest enclosing
919        // non-transparent context.
920        if (Ctx->isTransparentContext())
921          continue;
922
923        // We do not look directly into function or method contexts,
924        // since all of the local variables and parameters of the
925        // function/method are present within the Scope.
926        if (Ctx->isFunctionOrMethod()) {
927          // If we have an Objective-C instance method, look for ivars
928          // in the corresponding interface.
929          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
930            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
931              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
932                ObjCInterfaceDecl *ClassDeclared;
933                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
934                                                 Name.getAsIdentifierInfo(),
935                                                             ClassDeclared)) {
936                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
937                    R.addDecl(ND);
938                    R.resolveKind();
939                    return true;
940                  }
941                }
942              }
943          }
944
945          continue;
946        }
947
948        // Perform qualified name lookup into this context.
949        // FIXME: In some cases, we know that every name that could be found by
950        // this qualified name lookup will also be on the identifier chain. For
951        // example, inside a class without any base classes, we never need to
952        // perform qualified lookup because all of the members are on top of the
953        // identifier chain.
954        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
955          return true;
956      }
957    }
958  }
959
960  // Stop if we ran out of scopes.
961  // FIXME:  This really, really shouldn't be happening.
962  if (!S) return false;
963
964  // If we are looking for members, no need to look into global/namespace scope.
965  if (R.getLookupKind() == LookupMemberName)
966    return false;
967
968  // Collect UsingDirectiveDecls in all scopes, and recursively all
969  // nominated namespaces by those using-directives.
970  //
971  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
972  // don't build it for each lookup!
973
974  UnqualUsingDirectiveSet UDirs;
975  UDirs.visitScopeChain(Initial, S);
976  UDirs.done();
977
978  // Lookup namespace scope, and global scope.
979  // Unqualified name lookup in C++ requires looking into scopes
980  // that aren't strictly lexical, and therefore we walk through the
981  // context as well as walking through the scopes.
982
983  for (; S; S = S->getParent()) {
984    // Check whether the IdResolver has anything in this scope.
985    bool Found = false;
986    for (; I != IEnd && S->isDeclScope(*I); ++I) {
987      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
988        // We found something.  Look for anything else in our scope
989        // with this same name and in an acceptable identifier
990        // namespace, so that we can construct an overload set if we
991        // need to.
992        Found = true;
993        R.addDecl(ND);
994      }
995    }
996
997    if (Found && S->isTemplateParamScope()) {
998      R.resolveKind();
999      return true;
1000    }
1001
1002    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1003    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1004        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1005      // We've just searched the last template parameter scope and
1006      // found nothing, so look into the contexts between the
1007      // lexical and semantic declaration contexts returned by
1008      // findOuterContext(). This implements the name lookup behavior
1009      // of C++ [temp.local]p8.
1010      Ctx = OutsideOfTemplateParamDC;
1011      OutsideOfTemplateParamDC = 0;
1012    }
1013
1014    if (Ctx) {
1015      DeclContext *OuterCtx;
1016      bool SearchAfterTemplateScope;
1017      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1018      if (SearchAfterTemplateScope)
1019        OutsideOfTemplateParamDC = OuterCtx;
1020
1021      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1022        // We do not directly look into transparent contexts, since
1023        // those entities will be found in the nearest enclosing
1024        // non-transparent context.
1025        if (Ctx->isTransparentContext())
1026          continue;
1027
1028        // If we have a context, and it's not a context stashed in the
1029        // template parameter scope for an out-of-line definition, also
1030        // look into that context.
1031        if (!(Found && S && S->isTemplateParamScope())) {
1032          assert(Ctx->isFileContext() &&
1033              "We should have been looking only at file context here already.");
1034
1035          // Look into context considering using-directives.
1036          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1037            Found = true;
1038        }
1039
1040        if (Found) {
1041          R.resolveKind();
1042          return true;
1043        }
1044
1045        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1046          return false;
1047      }
1048    }
1049
1050    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1051      return false;
1052  }
1053
1054  return !R.empty();
1055}
1056
1057/// \brief Retrieve the visible declaration corresponding to D, if any.
1058///
1059/// This routine determines whether the declaration D is visible in the current
1060/// module, with the current imports. If not, it checks whether any
1061/// redeclaration of D is visible, and if so, returns that declaration.
1062///
1063/// \returns D, or a visible previous declaration of D, whichever is more recent
1064/// and visible. If no declaration of D is visible, returns null.
1065static NamedDecl *getVisibleDecl(NamedDecl *D) {
1066  if (LookupResult::isVisible(D))
1067    return D;
1068
1069  for (Decl::redecl_iterator RD = D->redecls_begin(), RDEnd = D->redecls_end();
1070       RD != RDEnd; ++RD) {
1071    if (NamedDecl *ND = dyn_cast<NamedDecl>(*RD)) {
1072      if (LookupResult::isVisible(ND))
1073        return ND;
1074    }
1075  }
1076
1077  return 0;
1078}
1079
1080/// @brief Perform unqualified name lookup starting from a given
1081/// scope.
1082///
1083/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1084/// used to find names within the current scope. For example, 'x' in
1085/// @code
1086/// int x;
1087/// int f() {
1088///   return x; // unqualified name look finds 'x' in the global scope
1089/// }
1090/// @endcode
1091///
1092/// Different lookup criteria can find different names. For example, a
1093/// particular scope can have both a struct and a function of the same
1094/// name, and each can be found by certain lookup criteria. For more
1095/// information about lookup criteria, see the documentation for the
1096/// class LookupCriteria.
1097///
1098/// @param S        The scope from which unqualified name lookup will
1099/// begin. If the lookup criteria permits, name lookup may also search
1100/// in the parent scopes.
1101///
1102/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1103/// look up and the lookup kind), and is updated with the results of lookup
1104/// including zero or more declarations and possibly additional information
1105/// used to diagnose ambiguities.
1106///
1107/// @returns \c true if lookup succeeded and false otherwise.
1108bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1109  DeclarationName Name = R.getLookupName();
1110  if (!Name) return false;
1111
1112  LookupNameKind NameKind = R.getLookupKind();
1113
1114  if (!getLangOpts().CPlusPlus) {
1115    // Unqualified name lookup in C/Objective-C is purely lexical, so
1116    // search in the declarations attached to the name.
1117    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1118      // Find the nearest non-transparent declaration scope.
1119      while (!(S->getFlags() & Scope::DeclScope) ||
1120             (S->getEntity() &&
1121              static_cast<DeclContext *>(S->getEntity())
1122                ->isTransparentContext()))
1123        S = S->getParent();
1124    }
1125
1126    unsigned IDNS = R.getIdentifierNamespace();
1127
1128    // Scan up the scope chain looking for a decl that matches this
1129    // identifier that is in the appropriate namespace.  This search
1130    // should not take long, as shadowing of names is uncommon, and
1131    // deep shadowing is extremely uncommon.
1132    bool LeftStartingScope = false;
1133
1134    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1135                                   IEnd = IdResolver.end();
1136         I != IEnd; ++I)
1137      if ((*I)->isInIdentifierNamespace(IDNS)) {
1138        if (NameKind == LookupRedeclarationWithLinkage) {
1139          // Determine whether this (or a previous) declaration is
1140          // out-of-scope.
1141          if (!LeftStartingScope && !S->isDeclScope(*I))
1142            LeftStartingScope = true;
1143
1144          // If we found something outside of our starting scope that
1145          // does not have linkage, skip it.
1146          if (LeftStartingScope && !((*I)->hasLinkage()))
1147            continue;
1148        }
1149        else if (NameKind == LookupObjCImplicitSelfParam &&
1150                 !isa<ImplicitParamDecl>(*I))
1151          continue;
1152
1153        // If this declaration is module-private and it came from an AST
1154        // file, we can't see it.
1155        NamedDecl *D = R.isHiddenDeclarationVisible()? *I : getVisibleDecl(*I);
1156        if (!D)
1157          continue;
1158
1159        R.addDecl(D);
1160
1161        // Check whether there are any other declarations with the same name
1162        // and in the same scope.
1163        if (I != IEnd) {
1164          // Find the scope in which this declaration was declared (if it
1165          // actually exists in a Scope).
1166          while (S && !S->isDeclScope(D))
1167            S = S->getParent();
1168
1169          // If the scope containing the declaration is the translation unit,
1170          // then we'll need to perform our checks based on the matching
1171          // DeclContexts rather than matching scopes.
1172          if (S && isNamespaceOrTranslationUnitScope(S))
1173            S = 0;
1174
1175          // Compute the DeclContext, if we need it.
1176          DeclContext *DC = 0;
1177          if (!S)
1178            DC = (*I)->getDeclContext()->getRedeclContext();
1179
1180          IdentifierResolver::iterator LastI = I;
1181          for (++LastI; LastI != IEnd; ++LastI) {
1182            if (S) {
1183              // Match based on scope.
1184              if (!S->isDeclScope(*LastI))
1185                break;
1186            } else {
1187              // Match based on DeclContext.
1188              DeclContext *LastDC
1189                = (*LastI)->getDeclContext()->getRedeclContext();
1190              if (!LastDC->Equals(DC))
1191                break;
1192            }
1193
1194            // If the declaration isn't in the right namespace, skip it.
1195            if (!(*LastI)->isInIdentifierNamespace(IDNS))
1196              continue;
1197
1198            D = R.isHiddenDeclarationVisible()? *LastI : getVisibleDecl(*LastI);
1199            if (D)
1200              R.addDecl(D);
1201          }
1202
1203          R.resolveKind();
1204        }
1205        return true;
1206      }
1207  } else {
1208    // Perform C++ unqualified name lookup.
1209    if (CppLookupName(R, S))
1210      return true;
1211  }
1212
1213  // If we didn't find a use of this identifier, and if the identifier
1214  // corresponds to a compiler builtin, create the decl object for the builtin
1215  // now, injecting it into translation unit scope, and return it.
1216  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1217    return true;
1218
1219  // If we didn't find a use of this identifier, the ExternalSource
1220  // may be able to handle the situation.
1221  // Note: some lookup failures are expected!
1222  // See e.g. R.isForRedeclaration().
1223  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1224}
1225
1226/// @brief Perform qualified name lookup in the namespaces nominated by
1227/// using directives by the given context.
1228///
1229/// C++98 [namespace.qual]p2:
1230///   Given X::m (where X is a user-declared namespace), or given \::m
1231///   (where X is the global namespace), let S be the set of all
1232///   declarations of m in X and in the transitive closure of all
1233///   namespaces nominated by using-directives in X and its used
1234///   namespaces, except that using-directives are ignored in any
1235///   namespace, including X, directly containing one or more
1236///   declarations of m. No namespace is searched more than once in
1237///   the lookup of a name. If S is the empty set, the program is
1238///   ill-formed. Otherwise, if S has exactly one member, or if the
1239///   context of the reference is a using-declaration
1240///   (namespace.udecl), S is the required set of declarations of
1241///   m. Otherwise if the use of m is not one that allows a unique
1242///   declaration to be chosen from S, the program is ill-formed.
1243///
1244/// C++98 [namespace.qual]p5:
1245///   During the lookup of a qualified namespace member name, if the
1246///   lookup finds more than one declaration of the member, and if one
1247///   declaration introduces a class name or enumeration name and the
1248///   other declarations either introduce the same object, the same
1249///   enumerator or a set of functions, the non-type name hides the
1250///   class or enumeration name if and only if the declarations are
1251///   from the same namespace; otherwise (the declarations are from
1252///   different namespaces), the program is ill-formed.
1253static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1254                                                 DeclContext *StartDC) {
1255  assert(StartDC->isFileContext() && "start context is not a file context");
1256
1257  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1258  DeclContext::udir_iterator E = StartDC->using_directives_end();
1259
1260  if (I == E) return false;
1261
1262  // We have at least added all these contexts to the queue.
1263  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1264  Visited.insert(StartDC);
1265
1266  // We have not yet looked into these namespaces, much less added
1267  // their "using-children" to the queue.
1268  SmallVector<NamespaceDecl*, 8> Queue;
1269
1270  // We have already looked into the initial namespace; seed the queue
1271  // with its using-children.
1272  for (; I != E; ++I) {
1273    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1274    if (Visited.insert(ND))
1275      Queue.push_back(ND);
1276  }
1277
1278  // The easiest way to implement the restriction in [namespace.qual]p5
1279  // is to check whether any of the individual results found a tag
1280  // and, if so, to declare an ambiguity if the final result is not
1281  // a tag.
1282  bool FoundTag = false;
1283  bool FoundNonTag = false;
1284
1285  LookupResult LocalR(LookupResult::Temporary, R);
1286
1287  bool Found = false;
1288  while (!Queue.empty()) {
1289    NamespaceDecl *ND = Queue.back();
1290    Queue.pop_back();
1291
1292    // We go through some convolutions here to avoid copying results
1293    // between LookupResults.
1294    bool UseLocal = !R.empty();
1295    LookupResult &DirectR = UseLocal ? LocalR : R;
1296    bool FoundDirect = LookupDirect(S, DirectR, ND);
1297
1298    if (FoundDirect) {
1299      // First do any local hiding.
1300      DirectR.resolveKind();
1301
1302      // If the local result is a tag, remember that.
1303      if (DirectR.isSingleTagDecl())
1304        FoundTag = true;
1305      else
1306        FoundNonTag = true;
1307
1308      // Append the local results to the total results if necessary.
1309      if (UseLocal) {
1310        R.addAllDecls(LocalR);
1311        LocalR.clear();
1312      }
1313    }
1314
1315    // If we find names in this namespace, ignore its using directives.
1316    if (FoundDirect) {
1317      Found = true;
1318      continue;
1319    }
1320
1321    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1322      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1323      if (Visited.insert(Nom))
1324        Queue.push_back(Nom);
1325    }
1326  }
1327
1328  if (Found) {
1329    if (FoundTag && FoundNonTag)
1330      R.setAmbiguousQualifiedTagHiding();
1331    else
1332      R.resolveKind();
1333  }
1334
1335  return Found;
1336}
1337
1338/// \brief Callback that looks for any member of a class with the given name.
1339static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1340                            CXXBasePath &Path,
1341                            void *Name) {
1342  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1343
1344  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1345  Path.Decls = BaseRecord->lookup(N);
1346  return !Path.Decls.empty();
1347}
1348
1349/// \brief Determine whether the given set of member declarations contains only
1350/// static members, nested types, and enumerators.
1351template<typename InputIterator>
1352static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1353  Decl *D = (*First)->getUnderlyingDecl();
1354  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1355    return true;
1356
1357  if (isa<CXXMethodDecl>(D)) {
1358    // Determine whether all of the methods are static.
1359    bool AllMethodsAreStatic = true;
1360    for(; First != Last; ++First) {
1361      D = (*First)->getUnderlyingDecl();
1362
1363      if (!isa<CXXMethodDecl>(D)) {
1364        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1365        break;
1366      }
1367
1368      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1369        AllMethodsAreStatic = false;
1370        break;
1371      }
1372    }
1373
1374    if (AllMethodsAreStatic)
1375      return true;
1376  }
1377
1378  return false;
1379}
1380
1381/// \brief Perform qualified name lookup into a given context.
1382///
1383/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1384/// names when the context of those names is explicit specified, e.g.,
1385/// "std::vector" or "x->member", or as part of unqualified name lookup.
1386///
1387/// Different lookup criteria can find different names. For example, a
1388/// particular scope can have both a struct and a function of the same
1389/// name, and each can be found by certain lookup criteria. For more
1390/// information about lookup criteria, see the documentation for the
1391/// class LookupCriteria.
1392///
1393/// \param R captures both the lookup criteria and any lookup results found.
1394///
1395/// \param LookupCtx The context in which qualified name lookup will
1396/// search. If the lookup criteria permits, name lookup may also search
1397/// in the parent contexts or (for C++ classes) base classes.
1398///
1399/// \param InUnqualifiedLookup true if this is qualified name lookup that
1400/// occurs as part of unqualified name lookup.
1401///
1402/// \returns true if lookup succeeded, false if it failed.
1403bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1404                               bool InUnqualifiedLookup) {
1405  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1406
1407  if (!R.getLookupName())
1408    return false;
1409
1410  // Make sure that the declaration context is complete.
1411  assert((!isa<TagDecl>(LookupCtx) ||
1412          LookupCtx->isDependentContext() ||
1413          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1414          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1415         "Declaration context must already be complete!");
1416
1417  // Perform qualified name lookup into the LookupCtx.
1418  if (LookupDirect(*this, R, LookupCtx)) {
1419    R.resolveKind();
1420    if (isa<CXXRecordDecl>(LookupCtx))
1421      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1422    return true;
1423  }
1424
1425  // Don't descend into implied contexts for redeclarations.
1426  // C++98 [namespace.qual]p6:
1427  //   In a declaration for a namespace member in which the
1428  //   declarator-id is a qualified-id, given that the qualified-id
1429  //   for the namespace member has the form
1430  //     nested-name-specifier unqualified-id
1431  //   the unqualified-id shall name a member of the namespace
1432  //   designated by the nested-name-specifier.
1433  // See also [class.mfct]p5 and [class.static.data]p2.
1434  if (R.isForRedeclaration())
1435    return false;
1436
1437  // If this is a namespace, look it up in the implied namespaces.
1438  if (LookupCtx->isFileContext())
1439    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1440
1441  // If this isn't a C++ class, we aren't allowed to look into base
1442  // classes, we're done.
1443  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1444  if (!LookupRec || !LookupRec->getDefinition())
1445    return false;
1446
1447  // If we're performing qualified name lookup into a dependent class,
1448  // then we are actually looking into a current instantiation. If we have any
1449  // dependent base classes, then we either have to delay lookup until
1450  // template instantiation time (at which point all bases will be available)
1451  // or we have to fail.
1452  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1453      LookupRec->hasAnyDependentBases()) {
1454    R.setNotFoundInCurrentInstantiation();
1455    return false;
1456  }
1457
1458  // Perform lookup into our base classes.
1459  CXXBasePaths Paths;
1460  Paths.setOrigin(LookupRec);
1461
1462  // Look for this member in our base classes
1463  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1464  switch (R.getLookupKind()) {
1465    case LookupObjCImplicitSelfParam:
1466    case LookupOrdinaryName:
1467    case LookupMemberName:
1468    case LookupRedeclarationWithLinkage:
1469      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1470      break;
1471
1472    case LookupTagName:
1473      BaseCallback = &CXXRecordDecl::FindTagMember;
1474      break;
1475
1476    case LookupAnyName:
1477      BaseCallback = &LookupAnyMember;
1478      break;
1479
1480    case LookupUsingDeclName:
1481      // This lookup is for redeclarations only.
1482
1483    case LookupOperatorName:
1484    case LookupNamespaceName:
1485    case LookupObjCProtocolName:
1486    case LookupLabel:
1487      // These lookups will never find a member in a C++ class (or base class).
1488      return false;
1489
1490    case LookupNestedNameSpecifierName:
1491      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1492      break;
1493  }
1494
1495  if (!LookupRec->lookupInBases(BaseCallback,
1496                                R.getLookupName().getAsOpaquePtr(), Paths))
1497    return false;
1498
1499  R.setNamingClass(LookupRec);
1500
1501  // C++ [class.member.lookup]p2:
1502  //   [...] If the resulting set of declarations are not all from
1503  //   sub-objects of the same type, or the set has a nonstatic member
1504  //   and includes members from distinct sub-objects, there is an
1505  //   ambiguity and the program is ill-formed. Otherwise that set is
1506  //   the result of the lookup.
1507  QualType SubobjectType;
1508  int SubobjectNumber = 0;
1509  AccessSpecifier SubobjectAccess = AS_none;
1510
1511  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1512       Path != PathEnd; ++Path) {
1513    const CXXBasePathElement &PathElement = Path->back();
1514
1515    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1516    // across all paths.
1517    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1518
1519    // Determine whether we're looking at a distinct sub-object or not.
1520    if (SubobjectType.isNull()) {
1521      // This is the first subobject we've looked at. Record its type.
1522      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1523      SubobjectNumber = PathElement.SubobjectNumber;
1524      continue;
1525    }
1526
1527    if (SubobjectType
1528                 != Context.getCanonicalType(PathElement.Base->getType())) {
1529      // We found members of the given name in two subobjects of
1530      // different types. If the declaration sets aren't the same, this
1531      // this lookup is ambiguous.
1532      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
1533        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1534        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
1535        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
1536
1537        while (FirstD != FirstPath->Decls.end() &&
1538               CurrentD != Path->Decls.end()) {
1539         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1540             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1541           break;
1542
1543          ++FirstD;
1544          ++CurrentD;
1545        }
1546
1547        if (FirstD == FirstPath->Decls.end() &&
1548            CurrentD == Path->Decls.end())
1549          continue;
1550      }
1551
1552      R.setAmbiguousBaseSubobjectTypes(Paths);
1553      return true;
1554    }
1555
1556    if (SubobjectNumber != PathElement.SubobjectNumber) {
1557      // We have a different subobject of the same type.
1558
1559      // C++ [class.member.lookup]p5:
1560      //   A static member, a nested type or an enumerator defined in
1561      //   a base class T can unambiguously be found even if an object
1562      //   has more than one base class subobject of type T.
1563      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
1564        continue;
1565
1566      // We have found a nonstatic member name in multiple, distinct
1567      // subobjects. Name lookup is ambiguous.
1568      R.setAmbiguousBaseSubobjects(Paths);
1569      return true;
1570    }
1571  }
1572
1573  // Lookup in a base class succeeded; return these results.
1574
1575  DeclContext::lookup_result DR = Paths.front().Decls;
1576  for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E; ++I) {
1577    NamedDecl *D = *I;
1578    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1579                                                    D->getAccess());
1580    R.addDecl(D, AS);
1581  }
1582  R.resolveKind();
1583  return true;
1584}
1585
1586/// @brief Performs name lookup for a name that was parsed in the
1587/// source code, and may contain a C++ scope specifier.
1588///
1589/// This routine is a convenience routine meant to be called from
1590/// contexts that receive a name and an optional C++ scope specifier
1591/// (e.g., "N::M::x"). It will then perform either qualified or
1592/// unqualified name lookup (with LookupQualifiedName or LookupName,
1593/// respectively) on the given name and return those results.
1594///
1595/// @param S        The scope from which unqualified name lookup will
1596/// begin.
1597///
1598/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1599///
1600/// @param EnteringContext Indicates whether we are going to enter the
1601/// context of the scope-specifier SS (if present).
1602///
1603/// @returns True if any decls were found (but possibly ambiguous)
1604bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1605                            bool AllowBuiltinCreation, bool EnteringContext) {
1606  if (SS && SS->isInvalid()) {
1607    // When the scope specifier is invalid, don't even look for
1608    // anything.
1609    return false;
1610  }
1611
1612  if (SS && SS->isSet()) {
1613    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1614      // We have resolved the scope specifier to a particular declaration
1615      // contex, and will perform name lookup in that context.
1616      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1617        return false;
1618
1619      R.setContextRange(SS->getRange());
1620      return LookupQualifiedName(R, DC);
1621    }
1622
1623    // We could not resolve the scope specified to a specific declaration
1624    // context, which means that SS refers to an unknown specialization.
1625    // Name lookup can't find anything in this case.
1626    R.setNotFoundInCurrentInstantiation();
1627    R.setContextRange(SS->getRange());
1628    return false;
1629  }
1630
1631  // Perform unqualified name lookup starting in the given scope.
1632  return LookupName(R, S, AllowBuiltinCreation);
1633}
1634
1635
1636/// \brief Produce a diagnostic describing the ambiguity that resulted
1637/// from name lookup.
1638///
1639/// \param Result The result of the ambiguous lookup to be diagnosed.
1640///
1641/// \returns true
1642bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1643  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1644
1645  DeclarationName Name = Result.getLookupName();
1646  SourceLocation NameLoc = Result.getNameLoc();
1647  SourceRange LookupRange = Result.getContextRange();
1648
1649  switch (Result.getAmbiguityKind()) {
1650  case LookupResult::AmbiguousBaseSubobjects: {
1651    CXXBasePaths *Paths = Result.getBasePaths();
1652    QualType SubobjectType = Paths->front().back().Base->getType();
1653    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1654      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1655      << LookupRange;
1656
1657    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
1658    while (isa<CXXMethodDecl>(*Found) &&
1659           cast<CXXMethodDecl>(*Found)->isStatic())
1660      ++Found;
1661
1662    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1663
1664    return true;
1665  }
1666
1667  case LookupResult::AmbiguousBaseSubobjectTypes: {
1668    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1669      << Name << LookupRange;
1670
1671    CXXBasePaths *Paths = Result.getBasePaths();
1672    std::set<Decl *> DeclsPrinted;
1673    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1674                                      PathEnd = Paths->end();
1675         Path != PathEnd; ++Path) {
1676      Decl *D = Path->Decls.front();
1677      if (DeclsPrinted.insert(D).second)
1678        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1679    }
1680
1681    return true;
1682  }
1683
1684  case LookupResult::AmbiguousTagHiding: {
1685    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1686
1687    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1688
1689    LookupResult::iterator DI, DE = Result.end();
1690    for (DI = Result.begin(); DI != DE; ++DI)
1691      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1692        TagDecls.insert(TD);
1693        Diag(TD->getLocation(), diag::note_hidden_tag);
1694      }
1695
1696    for (DI = Result.begin(); DI != DE; ++DI)
1697      if (!isa<TagDecl>(*DI))
1698        Diag((*DI)->getLocation(), diag::note_hiding_object);
1699
1700    // For recovery purposes, go ahead and implement the hiding.
1701    LookupResult::Filter F = Result.makeFilter();
1702    while (F.hasNext()) {
1703      if (TagDecls.count(F.next()))
1704        F.erase();
1705    }
1706    F.done();
1707
1708    return true;
1709  }
1710
1711  case LookupResult::AmbiguousReference: {
1712    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1713
1714    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1715    for (; DI != DE; ++DI)
1716      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1717
1718    return true;
1719  }
1720  }
1721
1722  llvm_unreachable("unknown ambiguity kind");
1723}
1724
1725namespace {
1726  struct AssociatedLookup {
1727    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
1728                     Sema::AssociatedNamespaceSet &Namespaces,
1729                     Sema::AssociatedClassSet &Classes)
1730      : S(S), Namespaces(Namespaces), Classes(Classes),
1731        InstantiationLoc(InstantiationLoc) {
1732    }
1733
1734    Sema &S;
1735    Sema::AssociatedNamespaceSet &Namespaces;
1736    Sema::AssociatedClassSet &Classes;
1737    SourceLocation InstantiationLoc;
1738  };
1739}
1740
1741static void
1742addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1743
1744static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1745                                      DeclContext *Ctx) {
1746  // Add the associated namespace for this class.
1747
1748  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1749  // be a locally scoped record.
1750
1751  // We skip out of inline namespaces. The innermost non-inline namespace
1752  // contains all names of all its nested inline namespaces anyway, so we can
1753  // replace the entire inline namespace tree with its root.
1754  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1755         Ctx->isInlineNamespace())
1756    Ctx = Ctx->getParent();
1757
1758  if (Ctx->isFileContext())
1759    Namespaces.insert(Ctx->getPrimaryContext());
1760}
1761
1762// \brief Add the associated classes and namespaces for argument-dependent
1763// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1764static void
1765addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1766                                  const TemplateArgument &Arg) {
1767  // C++ [basic.lookup.koenig]p2, last bullet:
1768  //   -- [...] ;
1769  switch (Arg.getKind()) {
1770    case TemplateArgument::Null:
1771      break;
1772
1773    case TemplateArgument::Type:
1774      // [...] the namespaces and classes associated with the types of the
1775      // template arguments provided for template type parameters (excluding
1776      // template template parameters)
1777      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1778      break;
1779
1780    case TemplateArgument::Template:
1781    case TemplateArgument::TemplateExpansion: {
1782      // [...] the namespaces in which any template template arguments are
1783      // defined; and the classes in which any member templates used as
1784      // template template arguments are defined.
1785      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
1786      if (ClassTemplateDecl *ClassTemplate
1787                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1788        DeclContext *Ctx = ClassTemplate->getDeclContext();
1789        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1790          Result.Classes.insert(EnclosingClass);
1791        // Add the associated namespace for this class.
1792        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1793      }
1794      break;
1795    }
1796
1797    case TemplateArgument::Declaration:
1798    case TemplateArgument::Integral:
1799    case TemplateArgument::Expression:
1800    case TemplateArgument::NullPtr:
1801      // [Note: non-type template arguments do not contribute to the set of
1802      //  associated namespaces. ]
1803      break;
1804
1805    case TemplateArgument::Pack:
1806      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1807                                        PEnd = Arg.pack_end();
1808           P != PEnd; ++P)
1809        addAssociatedClassesAndNamespaces(Result, *P);
1810      break;
1811  }
1812}
1813
1814// \brief Add the associated classes and namespaces for
1815// argument-dependent lookup with an argument of class type
1816// (C++ [basic.lookup.koenig]p2).
1817static void
1818addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1819                                  CXXRecordDecl *Class) {
1820
1821  // Just silently ignore anything whose name is __va_list_tag.
1822  if (Class->getDeclName() == Result.S.VAListTagName)
1823    return;
1824
1825  // C++ [basic.lookup.koenig]p2:
1826  //   [...]
1827  //     -- If T is a class type (including unions), its associated
1828  //        classes are: the class itself; the class of which it is a
1829  //        member, if any; and its direct and indirect base
1830  //        classes. Its associated namespaces are the namespaces in
1831  //        which its associated classes are defined.
1832
1833  // Add the class of which it is a member, if any.
1834  DeclContext *Ctx = Class->getDeclContext();
1835  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1836    Result.Classes.insert(EnclosingClass);
1837  // Add the associated namespace for this class.
1838  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1839
1840  // Add the class itself. If we've already seen this class, we don't
1841  // need to visit base classes.
1842  if (!Result.Classes.insert(Class))
1843    return;
1844
1845  // -- If T is a template-id, its associated namespaces and classes are
1846  //    the namespace in which the template is defined; for member
1847  //    templates, the member template's class; the namespaces and classes
1848  //    associated with the types of the template arguments provided for
1849  //    template type parameters (excluding template template parameters); the
1850  //    namespaces in which any template template arguments are defined; and
1851  //    the classes in which any member templates used as template template
1852  //    arguments are defined. [Note: non-type template arguments do not
1853  //    contribute to the set of associated namespaces. ]
1854  if (ClassTemplateSpecializationDecl *Spec
1855        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1856    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1857    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1858      Result.Classes.insert(EnclosingClass);
1859    // Add the associated namespace for this class.
1860    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1861
1862    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1863    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1864      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1865  }
1866
1867  // Only recurse into base classes for complete types.
1868  if (!Class->hasDefinition()) {
1869    QualType type = Result.S.Context.getTypeDeclType(Class);
1870    if (Result.S.RequireCompleteType(Result.InstantiationLoc, type,
1871                                     /*no diagnostic*/ 0))
1872      return;
1873  }
1874
1875  // Add direct and indirect base classes along with their associated
1876  // namespaces.
1877  SmallVector<CXXRecordDecl *, 32> Bases;
1878  Bases.push_back(Class);
1879  while (!Bases.empty()) {
1880    // Pop this class off the stack.
1881    Class = Bases.back();
1882    Bases.pop_back();
1883
1884    // Visit the base classes.
1885    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1886                                         BaseEnd = Class->bases_end();
1887         Base != BaseEnd; ++Base) {
1888      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1889      // In dependent contexts, we do ADL twice, and the first time around,
1890      // the base type might be a dependent TemplateSpecializationType, or a
1891      // TemplateTypeParmType. If that happens, simply ignore it.
1892      // FIXME: If we want to support export, we probably need to add the
1893      // namespace of the template in a TemplateSpecializationType, or even
1894      // the classes and namespaces of known non-dependent arguments.
1895      if (!BaseType)
1896        continue;
1897      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1898      if (Result.Classes.insert(BaseDecl)) {
1899        // Find the associated namespace for this base class.
1900        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1901        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1902
1903        // Make sure we visit the bases of this base class.
1904        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1905          Bases.push_back(BaseDecl);
1906      }
1907    }
1908  }
1909}
1910
1911// \brief Add the associated classes and namespaces for
1912// argument-dependent lookup with an argument of type T
1913// (C++ [basic.lookup.koenig]p2).
1914static void
1915addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1916  // C++ [basic.lookup.koenig]p2:
1917  //
1918  //   For each argument type T in the function call, there is a set
1919  //   of zero or more associated namespaces and a set of zero or more
1920  //   associated classes to be considered. The sets of namespaces and
1921  //   classes is determined entirely by the types of the function
1922  //   arguments (and the namespace of any template template
1923  //   argument). Typedef names and using-declarations used to specify
1924  //   the types do not contribute to this set. The sets of namespaces
1925  //   and classes are determined in the following way:
1926
1927  SmallVector<const Type *, 16> Queue;
1928  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1929
1930  while (true) {
1931    switch (T->getTypeClass()) {
1932
1933#define TYPE(Class, Base)
1934#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1935#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1936#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1937#define ABSTRACT_TYPE(Class, Base)
1938#include "clang/AST/TypeNodes.def"
1939      // T is canonical.  We can also ignore dependent types because
1940      // we don't need to do ADL at the definition point, but if we
1941      // wanted to implement template export (or if we find some other
1942      // use for associated classes and namespaces...) this would be
1943      // wrong.
1944      break;
1945
1946    //    -- If T is a pointer to U or an array of U, its associated
1947    //       namespaces and classes are those associated with U.
1948    case Type::Pointer:
1949      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1950      continue;
1951    case Type::ConstantArray:
1952    case Type::IncompleteArray:
1953    case Type::VariableArray:
1954      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1955      continue;
1956
1957    //     -- If T is a fundamental type, its associated sets of
1958    //        namespaces and classes are both empty.
1959    case Type::Builtin:
1960      break;
1961
1962    //     -- If T is a class type (including unions), its associated
1963    //        classes are: the class itself; the class of which it is a
1964    //        member, if any; and its direct and indirect base
1965    //        classes. Its associated namespaces are the namespaces in
1966    //        which its associated classes are defined.
1967    case Type::Record: {
1968      CXXRecordDecl *Class
1969        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1970      addAssociatedClassesAndNamespaces(Result, Class);
1971      break;
1972    }
1973
1974    //     -- If T is an enumeration type, its associated namespace is
1975    //        the namespace in which it is defined. If it is class
1976    //        member, its associated class is the member's class; else
1977    //        it has no associated class.
1978    case Type::Enum: {
1979      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1980
1981      DeclContext *Ctx = Enum->getDeclContext();
1982      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1983        Result.Classes.insert(EnclosingClass);
1984
1985      // Add the associated namespace for this class.
1986      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1987
1988      break;
1989    }
1990
1991    //     -- If T is a function type, its associated namespaces and
1992    //        classes are those associated with the function parameter
1993    //        types and those associated with the return type.
1994    case Type::FunctionProto: {
1995      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1996      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1997                                             ArgEnd = Proto->arg_type_end();
1998             Arg != ArgEnd; ++Arg)
1999        Queue.push_back(Arg->getTypePtr());
2000      // fallthrough
2001    }
2002    case Type::FunctionNoProto: {
2003      const FunctionType *FnType = cast<FunctionType>(T);
2004      T = FnType->getResultType().getTypePtr();
2005      continue;
2006    }
2007
2008    //     -- If T is a pointer to a member function of a class X, its
2009    //        associated namespaces and classes are those associated
2010    //        with the function parameter types and return type,
2011    //        together with those associated with X.
2012    //
2013    //     -- If T is a pointer to a data member of class X, its
2014    //        associated namespaces and classes are those associated
2015    //        with the member type together with those associated with
2016    //        X.
2017    case Type::MemberPointer: {
2018      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2019
2020      // Queue up the class type into which this points.
2021      Queue.push_back(MemberPtr->getClass());
2022
2023      // And directly continue with the pointee type.
2024      T = MemberPtr->getPointeeType().getTypePtr();
2025      continue;
2026    }
2027
2028    // As an extension, treat this like a normal pointer.
2029    case Type::BlockPointer:
2030      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2031      continue;
2032
2033    // References aren't covered by the standard, but that's such an
2034    // obvious defect that we cover them anyway.
2035    case Type::LValueReference:
2036    case Type::RValueReference:
2037      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2038      continue;
2039
2040    // These are fundamental types.
2041    case Type::Vector:
2042    case Type::ExtVector:
2043    case Type::Complex:
2044      break;
2045
2046    // If T is an Objective-C object or interface type, or a pointer to an
2047    // object or interface type, the associated namespace is the global
2048    // namespace.
2049    case Type::ObjCObject:
2050    case Type::ObjCInterface:
2051    case Type::ObjCObjectPointer:
2052      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2053      break;
2054
2055    // Atomic types are just wrappers; use the associations of the
2056    // contained type.
2057    case Type::Atomic:
2058      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2059      continue;
2060    }
2061
2062    if (Queue.empty()) break;
2063    T = Queue.back();
2064    Queue.pop_back();
2065  }
2066}
2067
2068/// \brief Find the associated classes and namespaces for
2069/// argument-dependent lookup for a call with the given set of
2070/// arguments.
2071///
2072/// This routine computes the sets of associated classes and associated
2073/// namespaces searched by argument-dependent lookup
2074/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2075void
2076Sema::FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
2077                                         llvm::ArrayRef<Expr *> Args,
2078                                 AssociatedNamespaceSet &AssociatedNamespaces,
2079                                 AssociatedClassSet &AssociatedClasses) {
2080  AssociatedNamespaces.clear();
2081  AssociatedClasses.clear();
2082
2083  AssociatedLookup Result(*this, InstantiationLoc,
2084                          AssociatedNamespaces, AssociatedClasses);
2085
2086  // C++ [basic.lookup.koenig]p2:
2087  //   For each argument type T in the function call, there is a set
2088  //   of zero or more associated namespaces and a set of zero or more
2089  //   associated classes to be considered. The sets of namespaces and
2090  //   classes is determined entirely by the types of the function
2091  //   arguments (and the namespace of any template template
2092  //   argument).
2093  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2094    Expr *Arg = Args[ArgIdx];
2095
2096    if (Arg->getType() != Context.OverloadTy) {
2097      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2098      continue;
2099    }
2100
2101    // [...] In addition, if the argument is the name or address of a
2102    // set of overloaded functions and/or function templates, its
2103    // associated classes and namespaces are the union of those
2104    // associated with each of the members of the set: the namespace
2105    // in which the function or function template is defined and the
2106    // classes and namespaces associated with its (non-dependent)
2107    // parameter types and return type.
2108    Arg = Arg->IgnoreParens();
2109    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2110      if (unaryOp->getOpcode() == UO_AddrOf)
2111        Arg = unaryOp->getSubExpr();
2112
2113    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2114    if (!ULE) continue;
2115
2116    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2117           I != E; ++I) {
2118      // Look through any using declarations to find the underlying function.
2119      NamedDecl *Fn = (*I)->getUnderlyingDecl();
2120
2121      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2122      if (!FDecl)
2123        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2124
2125      // Add the classes and namespaces associated with the parameter
2126      // types and return type of this function.
2127      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2128    }
2129  }
2130}
2131
2132/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2133/// an acceptable non-member overloaded operator for a call whose
2134/// arguments have types T1 (and, if non-empty, T2). This routine
2135/// implements the check in C++ [over.match.oper]p3b2 concerning
2136/// enumeration types.
2137static bool
2138IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2139                                       QualType T1, QualType T2,
2140                                       ASTContext &Context) {
2141  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2142    return true;
2143
2144  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2145    return true;
2146
2147  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2148  if (Proto->getNumArgs() < 1)
2149    return false;
2150
2151  if (T1->isEnumeralType()) {
2152    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2153    if (Context.hasSameUnqualifiedType(T1, ArgType))
2154      return true;
2155  }
2156
2157  if (Proto->getNumArgs() < 2)
2158    return false;
2159
2160  if (!T2.isNull() && T2->isEnumeralType()) {
2161    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2162    if (Context.hasSameUnqualifiedType(T2, ArgType))
2163      return true;
2164  }
2165
2166  return false;
2167}
2168
2169NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2170                                  SourceLocation Loc,
2171                                  LookupNameKind NameKind,
2172                                  RedeclarationKind Redecl) {
2173  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2174  LookupName(R, S);
2175  return R.getAsSingle<NamedDecl>();
2176}
2177
2178/// \brief Find the protocol with the given name, if any.
2179ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2180                                       SourceLocation IdLoc,
2181                                       RedeclarationKind Redecl) {
2182  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2183                             LookupObjCProtocolName, Redecl);
2184  return cast_or_null<ObjCProtocolDecl>(D);
2185}
2186
2187void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2188                                        QualType T1, QualType T2,
2189                                        UnresolvedSetImpl &Functions) {
2190  // C++ [over.match.oper]p3:
2191  //     -- The set of non-member candidates is the result of the
2192  //        unqualified lookup of operator@ in the context of the
2193  //        expression according to the usual rules for name lookup in
2194  //        unqualified function calls (3.4.2) except that all member
2195  //        functions are ignored. However, if no operand has a class
2196  //        type, only those non-member functions in the lookup set
2197  //        that have a first parameter of type T1 or "reference to
2198  //        (possibly cv-qualified) T1", when T1 is an enumeration
2199  //        type, or (if there is a right operand) a second parameter
2200  //        of type T2 or "reference to (possibly cv-qualified) T2",
2201  //        when T2 is an enumeration type, are candidate functions.
2202  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2203  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2204  LookupName(Operators, S);
2205
2206  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2207
2208  if (Operators.empty())
2209    return;
2210
2211  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2212       Op != OpEnd; ++Op) {
2213    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2214    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2215      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2216        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2217    } else if (FunctionTemplateDecl *FunTmpl
2218                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2219      // FIXME: friend operators?
2220      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2221      // later?
2222      if (!FunTmpl->getDeclContext()->isRecord())
2223        Functions.addDecl(*Op, Op.getAccess());
2224    }
2225  }
2226}
2227
2228Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2229                                                            CXXSpecialMember SM,
2230                                                            bool ConstArg,
2231                                                            bool VolatileArg,
2232                                                            bool RValueThis,
2233                                                            bool ConstThis,
2234                                                            bool VolatileThis) {
2235  assert(CanDeclareSpecialMemberFunction(RD) &&
2236         "doing special member lookup into record that isn't fully complete");
2237  RD = RD->getDefinition();
2238  if (RValueThis || ConstThis || VolatileThis)
2239    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2240           "constructors and destructors always have unqualified lvalue this");
2241  if (ConstArg || VolatileArg)
2242    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2243           "parameter-less special members can't have qualified arguments");
2244
2245  llvm::FoldingSetNodeID ID;
2246  ID.AddPointer(RD);
2247  ID.AddInteger(SM);
2248  ID.AddInteger(ConstArg);
2249  ID.AddInteger(VolatileArg);
2250  ID.AddInteger(RValueThis);
2251  ID.AddInteger(ConstThis);
2252  ID.AddInteger(VolatileThis);
2253
2254  void *InsertPoint;
2255  SpecialMemberOverloadResult *Result =
2256    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2257
2258  // This was already cached
2259  if (Result)
2260    return Result;
2261
2262  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2263  Result = new (Result) SpecialMemberOverloadResult(ID);
2264  SpecialMemberCache.InsertNode(Result, InsertPoint);
2265
2266  if (SM == CXXDestructor) {
2267    if (RD->needsImplicitDestructor())
2268      DeclareImplicitDestructor(RD);
2269    CXXDestructorDecl *DD = RD->getDestructor();
2270    assert(DD && "record without a destructor");
2271    Result->setMethod(DD);
2272    Result->setKind(DD->isDeleted() ?
2273                    SpecialMemberOverloadResult::NoMemberOrDeleted :
2274                    SpecialMemberOverloadResult::Success);
2275    return Result;
2276  }
2277
2278  // Prepare for overload resolution. Here we construct a synthetic argument
2279  // if necessary and make sure that implicit functions are declared.
2280  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2281  DeclarationName Name;
2282  Expr *Arg = 0;
2283  unsigned NumArgs;
2284
2285  QualType ArgType = CanTy;
2286  ExprValueKind VK = VK_LValue;
2287
2288  if (SM == CXXDefaultConstructor) {
2289    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2290    NumArgs = 0;
2291    if (RD->needsImplicitDefaultConstructor())
2292      DeclareImplicitDefaultConstructor(RD);
2293  } else {
2294    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2295      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2296      if (RD->needsImplicitCopyConstructor())
2297        DeclareImplicitCopyConstructor(RD);
2298      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2299        DeclareImplicitMoveConstructor(RD);
2300    } else {
2301      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2302      if (RD->needsImplicitCopyAssignment())
2303        DeclareImplicitCopyAssignment(RD);
2304      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2305        DeclareImplicitMoveAssignment(RD);
2306    }
2307
2308    if (ConstArg)
2309      ArgType.addConst();
2310    if (VolatileArg)
2311      ArgType.addVolatile();
2312
2313    // This isn't /really/ specified by the standard, but it's implied
2314    // we should be working from an RValue in the case of move to ensure
2315    // that we prefer to bind to rvalue references, and an LValue in the
2316    // case of copy to ensure we don't bind to rvalue references.
2317    // Possibly an XValue is actually correct in the case of move, but
2318    // there is no semantic difference for class types in this restricted
2319    // case.
2320    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2321      VK = VK_LValue;
2322    else
2323      VK = VK_RValue;
2324  }
2325
2326  OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2327
2328  if (SM != CXXDefaultConstructor) {
2329    NumArgs = 1;
2330    Arg = &FakeArg;
2331  }
2332
2333  // Create the object argument
2334  QualType ThisTy = CanTy;
2335  if (ConstThis)
2336    ThisTy.addConst();
2337  if (VolatileThis)
2338    ThisTy.addVolatile();
2339  Expr::Classification Classification =
2340    OpaqueValueExpr(SourceLocation(), ThisTy,
2341                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2342
2343  // Now we perform lookup on the name we computed earlier and do overload
2344  // resolution. Lookup is only performed directly into the class since there
2345  // will always be a (possibly implicit) declaration to shadow any others.
2346  OverloadCandidateSet OCS((SourceLocation()));
2347  DeclContext::lookup_result R = RD->lookup(Name);
2348
2349  assert(!R.empty() &&
2350         "lookup for a constructor or assignment operator was empty");
2351  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
2352    Decl *Cand = *I;
2353
2354    if (Cand->isInvalidDecl())
2355      continue;
2356
2357    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2358      // FIXME: [namespace.udecl]p15 says that we should only consider a
2359      // using declaration here if it does not match a declaration in the
2360      // derived class. We do not implement this correctly in other cases
2361      // either.
2362      Cand = U->getTargetDecl();
2363
2364      if (Cand->isInvalidDecl())
2365        continue;
2366    }
2367
2368    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2369      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2370        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2371                           Classification, llvm::makeArrayRef(&Arg, NumArgs),
2372                           OCS, true);
2373      else
2374        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2375                             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2376    } else if (FunctionTemplateDecl *Tmpl =
2377                 dyn_cast<FunctionTemplateDecl>(Cand)) {
2378      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2379        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2380                                   RD, 0, ThisTy, Classification,
2381                                   llvm::makeArrayRef(&Arg, NumArgs),
2382                                   OCS, true);
2383      else
2384        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2385                                     0, llvm::makeArrayRef(&Arg, NumArgs),
2386                                     OCS, true);
2387    } else {
2388      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2389    }
2390  }
2391
2392  OverloadCandidateSet::iterator Best;
2393  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2394    case OR_Success:
2395      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2396      Result->setKind(SpecialMemberOverloadResult::Success);
2397      break;
2398
2399    case OR_Deleted:
2400      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2401      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2402      break;
2403
2404    case OR_Ambiguous:
2405      Result->setMethod(0);
2406      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2407      break;
2408
2409    case OR_No_Viable_Function:
2410      Result->setMethod(0);
2411      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2412      break;
2413  }
2414
2415  return Result;
2416}
2417
2418/// \brief Look up the default constructor for the given class.
2419CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2420  SpecialMemberOverloadResult *Result =
2421    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2422                        false, false);
2423
2424  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2425}
2426
2427/// \brief Look up the copying constructor for the given class.
2428CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2429                                                   unsigned Quals) {
2430  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2431         "non-const, non-volatile qualifiers for copy ctor arg");
2432  SpecialMemberOverloadResult *Result =
2433    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2434                        Quals & Qualifiers::Volatile, false, false, false);
2435
2436  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2437}
2438
2439/// \brief Look up the moving constructor for the given class.
2440CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2441                                                  unsigned Quals) {
2442  SpecialMemberOverloadResult *Result =
2443    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2444                        Quals & Qualifiers::Volatile, false, false, false);
2445
2446  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2447}
2448
2449/// \brief Look up the constructors for the given class.
2450DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2451  // If the implicit constructors have not yet been declared, do so now.
2452  if (CanDeclareSpecialMemberFunction(Class)) {
2453    if (Class->needsImplicitDefaultConstructor())
2454      DeclareImplicitDefaultConstructor(Class);
2455    if (Class->needsImplicitCopyConstructor())
2456      DeclareImplicitCopyConstructor(Class);
2457    if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2458      DeclareImplicitMoveConstructor(Class);
2459  }
2460
2461  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2462  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2463  return Class->lookup(Name);
2464}
2465
2466/// \brief Look up the copying assignment operator for the given class.
2467CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2468                                             unsigned Quals, bool RValueThis,
2469                                             unsigned ThisQuals) {
2470  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2471         "non-const, non-volatile qualifiers for copy assignment arg");
2472  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2473         "non-const, non-volatile qualifiers for copy assignment this");
2474  SpecialMemberOverloadResult *Result =
2475    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2476                        Quals & Qualifiers::Volatile, RValueThis,
2477                        ThisQuals & Qualifiers::Const,
2478                        ThisQuals & Qualifiers::Volatile);
2479
2480  return Result->getMethod();
2481}
2482
2483/// \brief Look up the moving assignment operator for the given class.
2484CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2485                                            unsigned Quals,
2486                                            bool RValueThis,
2487                                            unsigned ThisQuals) {
2488  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2489         "non-const, non-volatile qualifiers for copy assignment this");
2490  SpecialMemberOverloadResult *Result =
2491    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2492                        Quals & Qualifiers::Volatile, RValueThis,
2493                        ThisQuals & Qualifiers::Const,
2494                        ThisQuals & Qualifiers::Volatile);
2495
2496  return Result->getMethod();
2497}
2498
2499/// \brief Look for the destructor of the given class.
2500///
2501/// During semantic analysis, this routine should be used in lieu of
2502/// CXXRecordDecl::getDestructor().
2503///
2504/// \returns The destructor for this class.
2505CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2506  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
2507                                                     false, false, false,
2508                                                     false, false)->getMethod());
2509}
2510
2511/// LookupLiteralOperator - Determine which literal operator should be used for
2512/// a user-defined literal, per C++11 [lex.ext].
2513///
2514/// Normal overload resolution is not used to select which literal operator to
2515/// call for a user-defined literal. Look up the provided literal operator name,
2516/// and filter the results to the appropriate set for the given argument types.
2517Sema::LiteralOperatorLookupResult
2518Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
2519                            ArrayRef<QualType> ArgTys,
2520                            bool AllowRawAndTemplate) {
2521  LookupName(R, S);
2522  assert(R.getResultKind() != LookupResult::Ambiguous &&
2523         "literal operator lookup can't be ambiguous");
2524
2525  // Filter the lookup results appropriately.
2526  LookupResult::Filter F = R.makeFilter();
2527
2528  bool FoundTemplate = false;
2529  bool FoundRaw = false;
2530  bool FoundExactMatch = false;
2531
2532  while (F.hasNext()) {
2533    Decl *D = F.next();
2534    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2535      D = USD->getTargetDecl();
2536
2537    bool IsTemplate = isa<FunctionTemplateDecl>(D);
2538    bool IsRaw = false;
2539    bool IsExactMatch = false;
2540
2541    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2542      if (FD->getNumParams() == 1 &&
2543          FD->getParamDecl(0)->getType()->getAs<PointerType>())
2544        IsRaw = true;
2545      else if (FD->getNumParams() == ArgTys.size()) {
2546        IsExactMatch = true;
2547        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
2548          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
2549          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
2550            IsExactMatch = false;
2551            break;
2552          }
2553        }
2554      }
2555    }
2556
2557    if (IsExactMatch) {
2558      FoundExactMatch = true;
2559      AllowRawAndTemplate = false;
2560      if (FoundRaw || FoundTemplate) {
2561        // Go through again and remove the raw and template decls we've
2562        // already found.
2563        F.restart();
2564        FoundRaw = FoundTemplate = false;
2565      }
2566    } else if (AllowRawAndTemplate && (IsTemplate || IsRaw)) {
2567      FoundTemplate |= IsTemplate;
2568      FoundRaw |= IsRaw;
2569    } else {
2570      F.erase();
2571    }
2572  }
2573
2574  F.done();
2575
2576  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
2577  // parameter type, that is used in preference to a raw literal operator
2578  // or literal operator template.
2579  if (FoundExactMatch)
2580    return LOLR_Cooked;
2581
2582  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
2583  // operator template, but not both.
2584  if (FoundRaw && FoundTemplate) {
2585    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
2586    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
2587      Decl *D = *I;
2588      if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
2589        D = USD->getTargetDecl();
2590      if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
2591        D = FunTmpl->getTemplatedDecl();
2592      NoteOverloadCandidate(cast<FunctionDecl>(D));
2593    }
2594    return LOLR_Error;
2595  }
2596
2597  if (FoundRaw)
2598    return LOLR_Raw;
2599
2600  if (FoundTemplate)
2601    return LOLR_Template;
2602
2603  // Didn't find anything we could use.
2604  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
2605    << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
2606    << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRawAndTemplate;
2607  return LOLR_Error;
2608}
2609
2610void ADLResult::insert(NamedDecl *New) {
2611  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2612
2613  // If we haven't yet seen a decl for this key, or the last decl
2614  // was exactly this one, we're done.
2615  if (Old == 0 || Old == New) {
2616    Old = New;
2617    return;
2618  }
2619
2620  // Otherwise, decide which is a more recent redeclaration.
2621  FunctionDecl *OldFD, *NewFD;
2622  if (isa<FunctionTemplateDecl>(New)) {
2623    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2624    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2625  } else {
2626    OldFD = cast<FunctionDecl>(Old);
2627    NewFD = cast<FunctionDecl>(New);
2628  }
2629
2630  FunctionDecl *Cursor = NewFD;
2631  while (true) {
2632    Cursor = Cursor->getPreviousDecl();
2633
2634    // If we got to the end without finding OldFD, OldFD is the newer
2635    // declaration;  leave things as they are.
2636    if (!Cursor) return;
2637
2638    // If we do find OldFD, then NewFD is newer.
2639    if (Cursor == OldFD) break;
2640
2641    // Otherwise, keep looking.
2642  }
2643
2644  Old = New;
2645}
2646
2647void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2648                                   SourceLocation Loc,
2649                                   llvm::ArrayRef<Expr *> Args,
2650                                   ADLResult &Result) {
2651  // Find all of the associated namespaces and classes based on the
2652  // arguments we have.
2653  AssociatedNamespaceSet AssociatedNamespaces;
2654  AssociatedClassSet AssociatedClasses;
2655  FindAssociatedClassesAndNamespaces(Loc, Args,
2656                                     AssociatedNamespaces,
2657                                     AssociatedClasses);
2658
2659  QualType T1, T2;
2660  if (Operator) {
2661    T1 = Args[0]->getType();
2662    if (Args.size() >= 2)
2663      T2 = Args[1]->getType();
2664  }
2665
2666  // C++ [basic.lookup.argdep]p3:
2667  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2668  //   and let Y be the lookup set produced by argument dependent
2669  //   lookup (defined as follows). If X contains [...] then Y is
2670  //   empty. Otherwise Y is the set of declarations found in the
2671  //   namespaces associated with the argument types as described
2672  //   below. The set of declarations found by the lookup of the name
2673  //   is the union of X and Y.
2674  //
2675  // Here, we compute Y and add its members to the overloaded
2676  // candidate set.
2677  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2678                                     NSEnd = AssociatedNamespaces.end();
2679       NS != NSEnd; ++NS) {
2680    //   When considering an associated namespace, the lookup is the
2681    //   same as the lookup performed when the associated namespace is
2682    //   used as a qualifier (3.4.3.2) except that:
2683    //
2684    //     -- Any using-directives in the associated namespace are
2685    //        ignored.
2686    //
2687    //     -- Any namespace-scope friend functions declared in
2688    //        associated classes are visible within their respective
2689    //        namespaces even if they are not visible during an ordinary
2690    //        lookup (11.4).
2691    DeclContext::lookup_result R = (*NS)->lookup(Name);
2692    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2693         ++I) {
2694      NamedDecl *D = *I;
2695      // If the only declaration here is an ordinary friend, consider
2696      // it only if it was declared in an associated classes.
2697      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2698        DeclContext *LexDC = D->getLexicalDeclContext();
2699        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2700          continue;
2701      }
2702
2703      if (isa<UsingShadowDecl>(D))
2704        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2705
2706      if (isa<FunctionDecl>(D)) {
2707        if (Operator &&
2708            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2709                                                    T1, T2, Context))
2710          continue;
2711      } else if (!isa<FunctionTemplateDecl>(D))
2712        continue;
2713
2714      Result.insert(D);
2715    }
2716  }
2717}
2718
2719//----------------------------------------------------------------------------
2720// Search for all visible declarations.
2721//----------------------------------------------------------------------------
2722VisibleDeclConsumer::~VisibleDeclConsumer() { }
2723
2724namespace {
2725
2726class ShadowContextRAII;
2727
2728class VisibleDeclsRecord {
2729public:
2730  /// \brief An entry in the shadow map, which is optimized to store a
2731  /// single declaration (the common case) but can also store a list
2732  /// of declarations.
2733  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
2734
2735private:
2736  /// \brief A mapping from declaration names to the declarations that have
2737  /// this name within a particular scope.
2738  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2739
2740  /// \brief A list of shadow maps, which is used to model name hiding.
2741  std::list<ShadowMap> ShadowMaps;
2742
2743  /// \brief The declaration contexts we have already visited.
2744  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2745
2746  friend class ShadowContextRAII;
2747
2748public:
2749  /// \brief Determine whether we have already visited this context
2750  /// (and, if not, note that we are going to visit that context now).
2751  bool visitedContext(DeclContext *Ctx) {
2752    return !VisitedContexts.insert(Ctx);
2753  }
2754
2755  bool alreadyVisitedContext(DeclContext *Ctx) {
2756    return VisitedContexts.count(Ctx);
2757  }
2758
2759  /// \brief Determine whether the given declaration is hidden in the
2760  /// current scope.
2761  ///
2762  /// \returns the declaration that hides the given declaration, or
2763  /// NULL if no such declaration exists.
2764  NamedDecl *checkHidden(NamedDecl *ND);
2765
2766  /// \brief Add a declaration to the current shadow map.
2767  void add(NamedDecl *ND) {
2768    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
2769  }
2770};
2771
2772/// \brief RAII object that records when we've entered a shadow context.
2773class ShadowContextRAII {
2774  VisibleDeclsRecord &Visible;
2775
2776  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2777
2778public:
2779  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2780    Visible.ShadowMaps.push_back(ShadowMap());
2781  }
2782
2783  ~ShadowContextRAII() {
2784    Visible.ShadowMaps.pop_back();
2785  }
2786};
2787
2788} // end anonymous namespace
2789
2790NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2791  // Look through using declarations.
2792  ND = ND->getUnderlyingDecl();
2793
2794  unsigned IDNS = ND->getIdentifierNamespace();
2795  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2796  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2797       SM != SMEnd; ++SM) {
2798    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2799    if (Pos == SM->end())
2800      continue;
2801
2802    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2803                               IEnd = Pos->second.end();
2804         I != IEnd; ++I) {
2805      // A tag declaration does not hide a non-tag declaration.
2806      if ((*I)->hasTagIdentifierNamespace() &&
2807          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2808                   Decl::IDNS_ObjCProtocol)))
2809        continue;
2810
2811      // Protocols are in distinct namespaces from everything else.
2812      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2813           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2814          (*I)->getIdentifierNamespace() != IDNS)
2815        continue;
2816
2817      // Functions and function templates in the same scope overload
2818      // rather than hide.  FIXME: Look for hiding based on function
2819      // signatures!
2820      if ((*I)->isFunctionOrFunctionTemplate() &&
2821          ND->isFunctionOrFunctionTemplate() &&
2822          SM == ShadowMaps.rbegin())
2823        continue;
2824
2825      // We've found a declaration that hides this one.
2826      return *I;
2827    }
2828  }
2829
2830  return 0;
2831}
2832
2833static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2834                               bool QualifiedNameLookup,
2835                               bool InBaseClass,
2836                               VisibleDeclConsumer &Consumer,
2837                               VisibleDeclsRecord &Visited) {
2838  if (!Ctx)
2839    return;
2840
2841  // Make sure we don't visit the same context twice.
2842  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2843    return;
2844
2845  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2846    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2847
2848  // Enumerate all of the results in this context.
2849  for (DeclContext::all_lookups_iterator L = Ctx->lookups_begin(),
2850                                      LEnd = Ctx->lookups_end();
2851       L != LEnd; ++L) {
2852    DeclContext::lookup_result R = *L;
2853    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
2854         ++I) {
2855      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I)) {
2856        if ((ND = Result.getAcceptableDecl(ND))) {
2857          Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
2858          Visited.add(ND);
2859        }
2860      }
2861    }
2862  }
2863
2864  // Traverse using directives for qualified name lookup.
2865  if (QualifiedNameLookup) {
2866    ShadowContextRAII Shadow(Visited);
2867    DeclContext::udir_iterator I, E;
2868    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2869      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2870                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2871    }
2872  }
2873
2874  // Traverse the contexts of inherited C++ classes.
2875  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2876    if (!Record->hasDefinition())
2877      return;
2878
2879    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2880                                         BEnd = Record->bases_end();
2881         B != BEnd; ++B) {
2882      QualType BaseType = B->getType();
2883
2884      // Don't look into dependent bases, because name lookup can't look
2885      // there anyway.
2886      if (BaseType->isDependentType())
2887        continue;
2888
2889      const RecordType *Record = BaseType->getAs<RecordType>();
2890      if (!Record)
2891        continue;
2892
2893      // FIXME: It would be nice to be able to determine whether referencing
2894      // a particular member would be ambiguous. For example, given
2895      //
2896      //   struct A { int member; };
2897      //   struct B { int member; };
2898      //   struct C : A, B { };
2899      //
2900      //   void f(C *c) { c->### }
2901      //
2902      // accessing 'member' would result in an ambiguity. However, we
2903      // could be smart enough to qualify the member with the base
2904      // class, e.g.,
2905      //
2906      //   c->B::member
2907      //
2908      // or
2909      //
2910      //   c->A::member
2911
2912      // Find results in this base class (and its bases).
2913      ShadowContextRAII Shadow(Visited);
2914      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2915                         true, Consumer, Visited);
2916    }
2917  }
2918
2919  // Traverse the contexts of Objective-C classes.
2920  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2921    // Traverse categories.
2922    for (ObjCInterfaceDecl::visible_categories_iterator
2923           Cat = IFace->visible_categories_begin(),
2924           CatEnd = IFace->visible_categories_end();
2925         Cat != CatEnd; ++Cat) {
2926      ShadowContextRAII Shadow(Visited);
2927      LookupVisibleDecls(*Cat, Result, QualifiedNameLookup, false,
2928                         Consumer, Visited);
2929    }
2930
2931    // Traverse protocols.
2932    for (ObjCInterfaceDecl::all_protocol_iterator
2933         I = IFace->all_referenced_protocol_begin(),
2934         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2935      ShadowContextRAII Shadow(Visited);
2936      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2937                         Visited);
2938    }
2939
2940    // Traverse the superclass.
2941    if (IFace->getSuperClass()) {
2942      ShadowContextRAII Shadow(Visited);
2943      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2944                         true, Consumer, Visited);
2945    }
2946
2947    // If there is an implementation, traverse it. We do this to find
2948    // synthesized ivars.
2949    if (IFace->getImplementation()) {
2950      ShadowContextRAII Shadow(Visited);
2951      LookupVisibleDecls(IFace->getImplementation(), Result,
2952                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2953    }
2954  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2955    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2956           E = Protocol->protocol_end(); I != E; ++I) {
2957      ShadowContextRAII Shadow(Visited);
2958      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2959                         Visited);
2960    }
2961  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2962    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2963           E = Category->protocol_end(); I != E; ++I) {
2964      ShadowContextRAII Shadow(Visited);
2965      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2966                         Visited);
2967    }
2968
2969    // If there is an implementation, traverse it.
2970    if (Category->getImplementation()) {
2971      ShadowContextRAII Shadow(Visited);
2972      LookupVisibleDecls(Category->getImplementation(), Result,
2973                         QualifiedNameLookup, true, Consumer, Visited);
2974    }
2975  }
2976}
2977
2978static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2979                               UnqualUsingDirectiveSet &UDirs,
2980                               VisibleDeclConsumer &Consumer,
2981                               VisibleDeclsRecord &Visited) {
2982  if (!S)
2983    return;
2984
2985  if (!S->getEntity() ||
2986      (!S->getParent() &&
2987       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2988      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2989    // Walk through the declarations in this Scope.
2990    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2991         D != DEnd; ++D) {
2992      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2993        if ((ND = Result.getAcceptableDecl(ND))) {
2994          Consumer.FoundDecl(ND, Visited.checkHidden(ND), 0, false);
2995          Visited.add(ND);
2996        }
2997    }
2998  }
2999
3000  // FIXME: C++ [temp.local]p8
3001  DeclContext *Entity = 0;
3002  if (S->getEntity()) {
3003    // Look into this scope's declaration context, along with any of its
3004    // parent lookup contexts (e.g., enclosing classes), up to the point
3005    // where we hit the context stored in the next outer scope.
3006    Entity = (DeclContext *)S->getEntity();
3007    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3008
3009    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3010         Ctx = Ctx->getLookupParent()) {
3011      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3012        if (Method->isInstanceMethod()) {
3013          // For instance methods, look for ivars in the method's interface.
3014          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3015                                  Result.getNameLoc(), Sema::LookupMemberName);
3016          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3017            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3018                               /*InBaseClass=*/false, Consumer, Visited);
3019          }
3020        }
3021
3022        // We've already performed all of the name lookup that we need
3023        // to for Objective-C methods; the next context will be the
3024        // outer scope.
3025        break;
3026      }
3027
3028      if (Ctx->isFunctionOrMethod())
3029        continue;
3030
3031      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3032                         /*InBaseClass=*/false, Consumer, Visited);
3033    }
3034  } else if (!S->getParent()) {
3035    // Look into the translation unit scope. We walk through the translation
3036    // unit's declaration context, because the Scope itself won't have all of
3037    // the declarations if we loaded a precompiled header.
3038    // FIXME: We would like the translation unit's Scope object to point to the
3039    // translation unit, so we don't need this special "if" branch. However,
3040    // doing so would force the normal C++ name-lookup code to look into the
3041    // translation unit decl when the IdentifierInfo chains would suffice.
3042    // Once we fix that problem (which is part of a more general "don't look
3043    // in DeclContexts unless we have to" optimization), we can eliminate this.
3044    Entity = Result.getSema().Context.getTranslationUnitDecl();
3045    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3046                       /*InBaseClass=*/false, Consumer, Visited);
3047  }
3048
3049  if (Entity) {
3050    // Lookup visible declarations in any namespaces found by using
3051    // directives.
3052    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
3053    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
3054    for (; UI != UEnd; ++UI)
3055      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
3056                         Result, /*QualifiedNameLookup=*/false,
3057                         /*InBaseClass=*/false, Consumer, Visited);
3058  }
3059
3060  // Lookup names in the parent scope.
3061  ShadowContextRAII Shadow(Visited);
3062  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3063}
3064
3065void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3066                              VisibleDeclConsumer &Consumer,
3067                              bool IncludeGlobalScope) {
3068  // Determine the set of using directives available during
3069  // unqualified name lookup.
3070  Scope *Initial = S;
3071  UnqualUsingDirectiveSet UDirs;
3072  if (getLangOpts().CPlusPlus) {
3073    // Find the first namespace or translation-unit scope.
3074    while (S && !isNamespaceOrTranslationUnitScope(S))
3075      S = S->getParent();
3076
3077    UDirs.visitScopeChain(Initial, S);
3078  }
3079  UDirs.done();
3080
3081  // Look for visible declarations.
3082  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3083  VisibleDeclsRecord Visited;
3084  if (!IncludeGlobalScope)
3085    Visited.visitedContext(Context.getTranslationUnitDecl());
3086  ShadowContextRAII Shadow(Visited);
3087  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3088}
3089
3090void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3091                              VisibleDeclConsumer &Consumer,
3092                              bool IncludeGlobalScope) {
3093  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3094  VisibleDeclsRecord Visited;
3095  if (!IncludeGlobalScope)
3096    Visited.visitedContext(Context.getTranslationUnitDecl());
3097  ShadowContextRAII Shadow(Visited);
3098  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3099                       /*InBaseClass=*/false, Consumer, Visited);
3100}
3101
3102/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3103/// If GnuLabelLoc is a valid source location, then this is a definition
3104/// of an __label__ label name, otherwise it is a normal label definition
3105/// or use.
3106LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3107                                     SourceLocation GnuLabelLoc) {
3108  // Do a lookup to see if we have a label with this name already.
3109  NamedDecl *Res = 0;
3110
3111  if (GnuLabelLoc.isValid()) {
3112    // Local label definitions always shadow existing labels.
3113    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3114    Scope *S = CurScope;
3115    PushOnScopeChains(Res, S, true);
3116    return cast<LabelDecl>(Res);
3117  }
3118
3119  // Not a GNU local label.
3120  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3121  // If we found a label, check to see if it is in the same context as us.
3122  // When in a Block, we don't want to reuse a label in an enclosing function.
3123  if (Res && Res->getDeclContext() != CurContext)
3124    Res = 0;
3125  if (Res == 0) {
3126    // If not forward referenced or defined already, create the backing decl.
3127    Res = LabelDecl::Create(Context, CurContext, Loc, II);
3128    Scope *S = CurScope->getFnParent();
3129    assert(S && "Not in a function?");
3130    PushOnScopeChains(Res, S, true);
3131  }
3132  return cast<LabelDecl>(Res);
3133}
3134
3135//===----------------------------------------------------------------------===//
3136// Typo correction
3137//===----------------------------------------------------------------------===//
3138
3139namespace {
3140
3141typedef SmallVector<TypoCorrection, 1> TypoResultList;
3142typedef llvm::StringMap<TypoResultList, llvm::BumpPtrAllocator> TypoResultsMap;
3143typedef std::map<unsigned, TypoResultsMap> TypoEditDistanceMap;
3144
3145static const unsigned MaxTypoDistanceResultSets = 5;
3146
3147class TypoCorrectionConsumer : public VisibleDeclConsumer {
3148  /// \brief The name written that is a typo in the source.
3149  StringRef Typo;
3150
3151  /// \brief The results found that have the smallest edit distance
3152  /// found (so far) with the typo name.
3153  ///
3154  /// The pointer value being set to the current DeclContext indicates
3155  /// whether there is a keyword with this name.
3156  TypoEditDistanceMap CorrectionResults;
3157
3158  Sema &SemaRef;
3159
3160public:
3161  explicit TypoCorrectionConsumer(Sema &SemaRef, IdentifierInfo *Typo)
3162    : Typo(Typo->getName()),
3163      SemaRef(SemaRef) { }
3164
3165  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, DeclContext *Ctx,
3166                         bool InBaseClass);
3167  void FoundName(StringRef Name);
3168  void addKeywordResult(StringRef Keyword);
3169  void addName(StringRef Name, NamedDecl *ND, unsigned Distance,
3170               NestedNameSpecifier *NNS=NULL, bool isKeyword=false);
3171  void addCorrection(TypoCorrection Correction);
3172
3173  typedef TypoResultsMap::iterator result_iterator;
3174  typedef TypoEditDistanceMap::iterator distance_iterator;
3175  distance_iterator begin() { return CorrectionResults.begin(); }
3176  distance_iterator end()  { return CorrectionResults.end(); }
3177  void erase(distance_iterator I) { CorrectionResults.erase(I); }
3178  unsigned size() const { return CorrectionResults.size(); }
3179  bool empty() const { return CorrectionResults.empty(); }
3180
3181  TypoResultList &operator[](StringRef Name) {
3182    return CorrectionResults.begin()->second[Name];
3183  }
3184
3185  unsigned getBestEditDistance(bool Normalized) {
3186    if (CorrectionResults.empty())
3187      return (std::numeric_limits<unsigned>::max)();
3188
3189    unsigned BestED = CorrectionResults.begin()->first;
3190    return Normalized ? TypoCorrection::NormalizeEditDistance(BestED) : BestED;
3191  }
3192
3193  TypoResultsMap &getBestResults() {
3194    return CorrectionResults.begin()->second;
3195  }
3196
3197};
3198
3199}
3200
3201void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3202                                       DeclContext *Ctx, bool InBaseClass) {
3203  // Don't consider hidden names for typo correction.
3204  if (Hiding)
3205    return;
3206
3207  // Only consider entities with identifiers for names, ignoring
3208  // special names (constructors, overloaded operators, selectors,
3209  // etc.).
3210  IdentifierInfo *Name = ND->getIdentifier();
3211  if (!Name)
3212    return;
3213
3214  FoundName(Name->getName());
3215}
3216
3217void TypoCorrectionConsumer::FoundName(StringRef Name) {
3218  // Use a simple length-based heuristic to determine the minimum possible
3219  // edit distance. If the minimum isn't good enough, bail out early.
3220  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
3221  if (MinED && Typo.size() / MinED < 3)
3222    return;
3223
3224  // Compute an upper bound on the allowable edit distance, so that the
3225  // edit-distance algorithm can short-circuit.
3226  unsigned UpperBound = (Typo.size() + 2) / 3;
3227
3228  // Compute the edit distance between the typo and the name of this
3229  // entity, and add the identifier to the list of results.
3230  addName(Name, NULL, Typo.edit_distance(Name, true, UpperBound));
3231}
3232
3233void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3234  // Compute the edit distance between the typo and this keyword,
3235  // and add the keyword to the list of results.
3236  addName(Keyword, NULL, Typo.edit_distance(Keyword), NULL, true);
3237}
3238
3239void TypoCorrectionConsumer::addName(StringRef Name,
3240                                     NamedDecl *ND,
3241                                     unsigned Distance,
3242                                     NestedNameSpecifier *NNS,
3243                                     bool isKeyword) {
3244  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, Distance);
3245  if (isKeyword) TC.makeKeyword();
3246  addCorrection(TC);
3247}
3248
3249void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3250  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3251  TypoResultList &CList =
3252      CorrectionResults[Correction.getEditDistance(false)][Name];
3253
3254  if (!CList.empty() && !CList.back().isResolved())
3255    CList.pop_back();
3256  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3257    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3258    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3259         RI != RIEnd; ++RI) {
3260      // If the Correction refers to a decl already in the result list,
3261      // replace the existing result if the string representation of Correction
3262      // comes before the current result alphabetically, then stop as there is
3263      // nothing more to be done to add Correction to the candidate set.
3264      if (RI->getCorrectionDecl() == NewND) {
3265        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3266          *RI = Correction;
3267        return;
3268      }
3269    }
3270  }
3271  if (CList.empty() || Correction.isResolved())
3272    CList.push_back(Correction);
3273
3274  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3275    erase(llvm::prior(CorrectionResults.end()));
3276}
3277
3278// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3279// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3280// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3281static void getNestedNameSpecifierIdentifiers(
3282    NestedNameSpecifier *NNS,
3283    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3284  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3285    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3286  else
3287    Identifiers.clear();
3288
3289  const IdentifierInfo *II = NULL;
3290
3291  switch (NNS->getKind()) {
3292  case NestedNameSpecifier::Identifier:
3293    II = NNS->getAsIdentifier();
3294    break;
3295
3296  case NestedNameSpecifier::Namespace:
3297    if (NNS->getAsNamespace()->isAnonymousNamespace())
3298      return;
3299    II = NNS->getAsNamespace()->getIdentifier();
3300    break;
3301
3302  case NestedNameSpecifier::NamespaceAlias:
3303    II = NNS->getAsNamespaceAlias()->getIdentifier();
3304    break;
3305
3306  case NestedNameSpecifier::TypeSpecWithTemplate:
3307  case NestedNameSpecifier::TypeSpec:
3308    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3309    break;
3310
3311  case NestedNameSpecifier::Global:
3312    return;
3313  }
3314
3315  if (II)
3316    Identifiers.push_back(II);
3317}
3318
3319namespace {
3320
3321class SpecifierInfo {
3322 public:
3323  DeclContext* DeclCtx;
3324  NestedNameSpecifier* NameSpecifier;
3325  unsigned EditDistance;
3326
3327  SpecifierInfo(DeclContext *Ctx, NestedNameSpecifier *NNS, unsigned ED)
3328      : DeclCtx(Ctx), NameSpecifier(NNS), EditDistance(ED) {}
3329};
3330
3331typedef SmallVector<DeclContext*, 4> DeclContextList;
3332typedef SmallVector<SpecifierInfo, 16> SpecifierInfoList;
3333
3334class NamespaceSpecifierSet {
3335  ASTContext &Context;
3336  DeclContextList CurContextChain;
3337  SmallVector<const IdentifierInfo*, 4> CurContextIdentifiers;
3338  SmallVector<const IdentifierInfo*, 4> CurNameSpecifierIdentifiers;
3339  bool isSorted;
3340
3341  SpecifierInfoList Specifiers;
3342  llvm::SmallSetVector<unsigned, 4> Distances;
3343  llvm::DenseMap<unsigned, SpecifierInfoList> DistanceMap;
3344
3345  /// \brief Helper for building the list of DeclContexts between the current
3346  /// context and the top of the translation unit
3347  static DeclContextList BuildContextChain(DeclContext *Start);
3348
3349  void SortNamespaces();
3350
3351 public:
3352  NamespaceSpecifierSet(ASTContext &Context, DeclContext *CurContext,
3353                        CXXScopeSpec *CurScopeSpec)
3354      : Context(Context), CurContextChain(BuildContextChain(CurContext)),
3355        isSorted(true) {
3356    if (CurScopeSpec && CurScopeSpec->getScopeRep())
3357      getNestedNameSpecifierIdentifiers(CurScopeSpec->getScopeRep(),
3358                                        CurNameSpecifierIdentifiers);
3359    // Build the list of identifiers that would be used for an absolute
3360    // (from the global context) NestedNameSpecifier referring to the current
3361    // context.
3362    for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3363                                        CEnd = CurContextChain.rend();
3364         C != CEnd; ++C) {
3365      if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
3366        CurContextIdentifiers.push_back(ND->getIdentifier());
3367    }
3368  }
3369
3370  /// \brief Add the namespace to the set, computing the corresponding
3371  /// NestedNameSpecifier and its distance in the process.
3372  void AddNamespace(NamespaceDecl *ND);
3373
3374  typedef SpecifierInfoList::iterator iterator;
3375  iterator begin() {
3376    if (!isSorted) SortNamespaces();
3377    return Specifiers.begin();
3378  }
3379  iterator end() { return Specifiers.end(); }
3380};
3381
3382}
3383
3384DeclContextList NamespaceSpecifierSet::BuildContextChain(DeclContext *Start) {
3385  assert(Start && "Bulding a context chain from a null context");
3386  DeclContextList Chain;
3387  for (DeclContext *DC = Start->getPrimaryContext(); DC != NULL;
3388       DC = DC->getLookupParent()) {
3389    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
3390    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
3391        !(ND && ND->isAnonymousNamespace()))
3392      Chain.push_back(DC->getPrimaryContext());
3393  }
3394  return Chain;
3395}
3396
3397void NamespaceSpecifierSet::SortNamespaces() {
3398  SmallVector<unsigned, 4> sortedDistances;
3399  sortedDistances.append(Distances.begin(), Distances.end());
3400
3401  if (sortedDistances.size() > 1)
3402    std::sort(sortedDistances.begin(), sortedDistances.end());
3403
3404  Specifiers.clear();
3405  for (SmallVector<unsigned, 4>::iterator DI = sortedDistances.begin(),
3406                                       DIEnd = sortedDistances.end();
3407       DI != DIEnd; ++DI) {
3408    SpecifierInfoList &SpecList = DistanceMap[*DI];
3409    Specifiers.append(SpecList.begin(), SpecList.end());
3410  }
3411
3412  isSorted = true;
3413}
3414
3415void NamespaceSpecifierSet::AddNamespace(NamespaceDecl *ND) {
3416  DeclContext *Ctx = cast<DeclContext>(ND);
3417  NestedNameSpecifier *NNS = NULL;
3418  unsigned NumSpecifiers = 0;
3419  DeclContextList NamespaceDeclChain(BuildContextChain(Ctx));
3420  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
3421
3422  // Eliminate common elements from the two DeclContext chains.
3423  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
3424                                      CEnd = CurContextChain.rend();
3425       C != CEnd && !NamespaceDeclChain.empty() &&
3426       NamespaceDeclChain.back() == *C; ++C) {
3427    NamespaceDeclChain.pop_back();
3428  }
3429
3430  // Add an explicit leading '::' specifier if needed.
3431  if (NamespaceDecl *ND =
3432        NamespaceDeclChain.empty() ? NULL :
3433          dyn_cast_or_null<NamespaceDecl>(NamespaceDeclChain.back())) {
3434    IdentifierInfo *Name = ND->getIdentifier();
3435    if (std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
3436                  Name) != CurContextIdentifiers.end() ||
3437        std::find(CurNameSpecifierIdentifiers.begin(),
3438                  CurNameSpecifierIdentifiers.end(),
3439                  Name) != CurNameSpecifierIdentifiers.end()) {
3440      NamespaceDeclChain = FullNamespaceDeclChain;
3441      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
3442    }
3443  }
3444
3445  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
3446  for (DeclContextList::reverse_iterator C = NamespaceDeclChain.rbegin(),
3447                                      CEnd = NamespaceDeclChain.rend();
3448       C != CEnd; ++C) {
3449    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C);
3450    if (ND) {
3451      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
3452      ++NumSpecifiers;
3453    }
3454  }
3455
3456  // If the built NestedNameSpecifier would be replacing an existing
3457  // NestedNameSpecifier, use the number of component identifiers that
3458  // would need to be changed as the edit distance instead of the number
3459  // of components in the built NestedNameSpecifier.
3460  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
3461    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
3462    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
3463    NumSpecifiers = llvm::ComputeEditDistance(
3464      llvm::ArrayRef<const IdentifierInfo*>(CurNameSpecifierIdentifiers),
3465      llvm::ArrayRef<const IdentifierInfo*>(NewNameSpecifierIdentifiers));
3466  }
3467
3468  isSorted = false;
3469  Distances.insert(NumSpecifiers);
3470  DistanceMap[NumSpecifiers].push_back(SpecifierInfo(Ctx, NNS, NumSpecifiers));
3471}
3472
3473/// \brief Perform name lookup for a possible result for typo correction.
3474static void LookupPotentialTypoResult(Sema &SemaRef,
3475                                      LookupResult &Res,
3476                                      IdentifierInfo *Name,
3477                                      Scope *S, CXXScopeSpec *SS,
3478                                      DeclContext *MemberContext,
3479                                      bool EnteringContext,
3480                                      bool isObjCIvarLookup) {
3481  Res.suppressDiagnostics();
3482  Res.clear();
3483  Res.setLookupName(Name);
3484  if (MemberContext) {
3485    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
3486      if (isObjCIvarLookup) {
3487        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
3488          Res.addDecl(Ivar);
3489          Res.resolveKind();
3490          return;
3491        }
3492      }
3493
3494      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
3495        Res.addDecl(Prop);
3496        Res.resolveKind();
3497        return;
3498      }
3499    }
3500
3501    SemaRef.LookupQualifiedName(Res, MemberContext);
3502    return;
3503  }
3504
3505  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3506                           EnteringContext);
3507
3508  // Fake ivar lookup; this should really be part of
3509  // LookupParsedName.
3510  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
3511    if (Method->isInstanceMethod() && Method->getClassInterface() &&
3512        (Res.empty() ||
3513         (Res.isSingleResult() &&
3514          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
3515       if (ObjCIvarDecl *IV
3516             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
3517         Res.addDecl(IV);
3518         Res.resolveKind();
3519       }
3520     }
3521  }
3522}
3523
3524/// \brief Add keywords to the consumer as possible typo corrections.
3525static void AddKeywordsToConsumer(Sema &SemaRef,
3526                                  TypoCorrectionConsumer &Consumer,
3527                                  Scope *S, CorrectionCandidateCallback &CCC,
3528                                  bool AfterNestedNameSpecifier) {
3529  if (AfterNestedNameSpecifier) {
3530    // For 'X::', we know exactly which keywords can appear next.
3531    Consumer.addKeywordResult("template");
3532    if (CCC.WantExpressionKeywords)
3533      Consumer.addKeywordResult("operator");
3534    return;
3535  }
3536
3537  if (CCC.WantObjCSuper)
3538    Consumer.addKeywordResult("super");
3539
3540  if (CCC.WantTypeSpecifiers) {
3541    // Add type-specifier keywords to the set of results.
3542    const char *CTypeSpecs[] = {
3543      "char", "const", "double", "enum", "float", "int", "long", "short",
3544      "signed", "struct", "union", "unsigned", "void", "volatile",
3545      "_Complex", "_Imaginary",
3546      // storage-specifiers as well
3547      "extern", "inline", "static", "typedef"
3548    };
3549
3550    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3551    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3552      Consumer.addKeywordResult(CTypeSpecs[I]);
3553
3554    if (SemaRef.getLangOpts().C99)
3555      Consumer.addKeywordResult("restrict");
3556    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
3557      Consumer.addKeywordResult("bool");
3558    else if (SemaRef.getLangOpts().C99)
3559      Consumer.addKeywordResult("_Bool");
3560
3561    if (SemaRef.getLangOpts().CPlusPlus) {
3562      Consumer.addKeywordResult("class");
3563      Consumer.addKeywordResult("typename");
3564      Consumer.addKeywordResult("wchar_t");
3565
3566      if (SemaRef.getLangOpts().CPlusPlus11) {
3567        Consumer.addKeywordResult("char16_t");
3568        Consumer.addKeywordResult("char32_t");
3569        Consumer.addKeywordResult("constexpr");
3570        Consumer.addKeywordResult("decltype");
3571        Consumer.addKeywordResult("thread_local");
3572      }
3573    }
3574
3575    if (SemaRef.getLangOpts().GNUMode)
3576      Consumer.addKeywordResult("typeof");
3577  }
3578
3579  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
3580    Consumer.addKeywordResult("const_cast");
3581    Consumer.addKeywordResult("dynamic_cast");
3582    Consumer.addKeywordResult("reinterpret_cast");
3583    Consumer.addKeywordResult("static_cast");
3584  }
3585
3586  if (CCC.WantExpressionKeywords) {
3587    Consumer.addKeywordResult("sizeof");
3588    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
3589      Consumer.addKeywordResult("false");
3590      Consumer.addKeywordResult("true");
3591    }
3592
3593    if (SemaRef.getLangOpts().CPlusPlus) {
3594      const char *CXXExprs[] = {
3595        "delete", "new", "operator", "throw", "typeid"
3596      };
3597      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3598      for (unsigned I = 0; I != NumCXXExprs; ++I)
3599        Consumer.addKeywordResult(CXXExprs[I]);
3600
3601      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
3602          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
3603        Consumer.addKeywordResult("this");
3604
3605      if (SemaRef.getLangOpts().CPlusPlus11) {
3606        Consumer.addKeywordResult("alignof");
3607        Consumer.addKeywordResult("nullptr");
3608      }
3609    }
3610
3611    if (SemaRef.getLangOpts().C11) {
3612      // FIXME: We should not suggest _Alignof if the alignof macro
3613      // is present.
3614      Consumer.addKeywordResult("_Alignof");
3615    }
3616  }
3617
3618  if (CCC.WantRemainingKeywords) {
3619    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
3620      // Statements.
3621      const char *CStmts[] = {
3622        "do", "else", "for", "goto", "if", "return", "switch", "while" };
3623      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3624      for (unsigned I = 0; I != NumCStmts; ++I)
3625        Consumer.addKeywordResult(CStmts[I]);
3626
3627      if (SemaRef.getLangOpts().CPlusPlus) {
3628        Consumer.addKeywordResult("catch");
3629        Consumer.addKeywordResult("try");
3630      }
3631
3632      if (S && S->getBreakParent())
3633        Consumer.addKeywordResult("break");
3634
3635      if (S && S->getContinueParent())
3636        Consumer.addKeywordResult("continue");
3637
3638      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
3639        Consumer.addKeywordResult("case");
3640        Consumer.addKeywordResult("default");
3641      }
3642    } else {
3643      if (SemaRef.getLangOpts().CPlusPlus) {
3644        Consumer.addKeywordResult("namespace");
3645        Consumer.addKeywordResult("template");
3646      }
3647
3648      if (S && S->isClassScope()) {
3649        Consumer.addKeywordResult("explicit");
3650        Consumer.addKeywordResult("friend");
3651        Consumer.addKeywordResult("mutable");
3652        Consumer.addKeywordResult("private");
3653        Consumer.addKeywordResult("protected");
3654        Consumer.addKeywordResult("public");
3655        Consumer.addKeywordResult("virtual");
3656      }
3657    }
3658
3659    if (SemaRef.getLangOpts().CPlusPlus) {
3660      Consumer.addKeywordResult("using");
3661
3662      if (SemaRef.getLangOpts().CPlusPlus11)
3663        Consumer.addKeywordResult("static_assert");
3664    }
3665  }
3666}
3667
3668static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3669                              TypoCorrection &Candidate) {
3670  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3671  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3672}
3673
3674/// \brief Try to "correct" a typo in the source code by finding
3675/// visible declarations whose names are similar to the name that was
3676/// present in the source code.
3677///
3678/// \param TypoName the \c DeclarationNameInfo structure that contains
3679/// the name that was present in the source code along with its location.
3680///
3681/// \param LookupKind the name-lookup criteria used to search for the name.
3682///
3683/// \param S the scope in which name lookup occurs.
3684///
3685/// \param SS the nested-name-specifier that precedes the name we're
3686/// looking for, if present.
3687///
3688/// \param CCC A CorrectionCandidateCallback object that provides further
3689/// validation of typo correction candidates. It also provides flags for
3690/// determining the set of keywords permitted.
3691///
3692/// \param MemberContext if non-NULL, the context in which to look for
3693/// a member access expression.
3694///
3695/// \param EnteringContext whether we're entering the context described by
3696/// the nested-name-specifier SS.
3697///
3698/// \param OPT when non-NULL, the search for visible declarations will
3699/// also walk the protocols in the qualified interfaces of \p OPT.
3700///
3701/// \returns a \c TypoCorrection containing the corrected name if the typo
3702/// along with information such as the \c NamedDecl where the corrected name
3703/// was declared, and any additional \c NestedNameSpecifier needed to access
3704/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
3705TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
3706                                 Sema::LookupNameKind LookupKind,
3707                                 Scope *S, CXXScopeSpec *SS,
3708                                 CorrectionCandidateCallback &CCC,
3709                                 DeclContext *MemberContext,
3710                                 bool EnteringContext,
3711                                 const ObjCObjectPointerType *OPT) {
3712  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking)
3713    return TypoCorrection();
3714
3715  // In Microsoft mode, don't perform typo correction in a template member
3716  // function dependent context because it interferes with the "lookup into
3717  // dependent bases of class templates" feature.
3718  if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
3719      isa<CXXMethodDecl>(CurContext))
3720    return TypoCorrection();
3721
3722  // We only attempt to correct typos for identifiers.
3723  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
3724  if (!Typo)
3725    return TypoCorrection();
3726
3727  // If the scope specifier itself was invalid, don't try to correct
3728  // typos.
3729  if (SS && SS->isInvalid())
3730    return TypoCorrection();
3731
3732  // Never try to correct typos during template deduction or
3733  // instantiation.
3734  if (!ActiveTemplateInstantiations.empty())
3735    return TypoCorrection();
3736
3737  // Don't try to correct 'super'.
3738  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
3739    return TypoCorrection();
3740
3741  // This is for testing.
3742  if (Diags.getWarnOnSpellCheck()) {
3743    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Warning,
3744                                            "spell-checking initiated for %0");
3745    Diag(TypoName.getLoc(), DiagID) << TypoName.getName();
3746  }
3747
3748  NamespaceSpecifierSet Namespaces(Context, CurContext, SS);
3749
3750  TypoCorrectionConsumer Consumer(*this, Typo);
3751
3752  // If a callback object considers an empty typo correction candidate to be
3753  // viable, assume it does not do any actual validation of the candidates.
3754  TypoCorrection EmptyCorrection;
3755  bool ValidatingCallback = !isCandidateViable(CCC, EmptyCorrection);
3756
3757  // Perform name lookup to find visible, similarly-named entities.
3758  bool IsUnqualifiedLookup = false;
3759  DeclContext *QualifiedDC = MemberContext;
3760  if (MemberContext) {
3761    LookupVisibleDecls(MemberContext, LookupKind, Consumer);
3762
3763    // Look in qualified interfaces.
3764    if (OPT) {
3765      for (ObjCObjectPointerType::qual_iterator
3766             I = OPT->qual_begin(), E = OPT->qual_end();
3767           I != E; ++I)
3768        LookupVisibleDecls(*I, LookupKind, Consumer);
3769    }
3770  } else if (SS && SS->isSet()) {
3771    QualifiedDC = computeDeclContext(*SS, EnteringContext);
3772    if (!QualifiedDC)
3773      return TypoCorrection();
3774
3775    // Provide a stop gap for files that are just seriously broken.  Trying
3776    // to correct all typos can turn into a HUGE performance penalty, causing
3777    // some files to take minutes to get rejected by the parser.
3778    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3779      return TypoCorrection();
3780    ++TyposCorrected;
3781
3782    LookupVisibleDecls(QualifiedDC, LookupKind, Consumer);
3783  } else {
3784    IsUnqualifiedLookup = true;
3785    UnqualifiedTyposCorrectedMap::iterator Cached
3786      = UnqualifiedTyposCorrected.find(Typo);
3787    if (Cached != UnqualifiedTyposCorrected.end()) {
3788      // Add the cached value, unless it's a keyword or fails validation. In the
3789      // keyword case, we'll end up adding the keyword below.
3790      if (Cached->second) {
3791        if (!Cached->second.isKeyword() &&
3792            isCandidateViable(CCC, Cached->second))
3793          Consumer.addCorrection(Cached->second);
3794      } else {
3795        // Only honor no-correction cache hits when a callback that will validate
3796        // correction candidates is not being used.
3797        if (!ValidatingCallback)
3798          return TypoCorrection();
3799      }
3800    }
3801    if (Cached == UnqualifiedTyposCorrected.end()) {
3802      // Provide a stop gap for files that are just seriously broken.  Trying
3803      // to correct all typos can turn into a HUGE performance penalty, causing
3804      // some files to take minutes to get rejected by the parser.
3805      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
3806        return TypoCorrection();
3807    }
3808  }
3809
3810  // Determine whether we are going to search in the various namespaces for
3811  // corrections.
3812  bool SearchNamespaces
3813    = getLangOpts().CPlusPlus &&
3814      (IsUnqualifiedLookup || (QualifiedDC && QualifiedDC->isNamespace()));
3815  // In a few cases we *only* want to search for corrections bases on just
3816  // adding or changing the nested name specifier.
3817  bool AllowOnlyNNSChanges = Typo->getName().size() < 3;
3818
3819  if (IsUnqualifiedLookup || SearchNamespaces) {
3820    // For unqualified lookup, look through all of the names that we have
3821    // seen in this translation unit.
3822    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3823    for (IdentifierTable::iterator I = Context.Idents.begin(),
3824                                IEnd = Context.Idents.end();
3825         I != IEnd; ++I)
3826      Consumer.FoundName(I->getKey());
3827
3828    // Walk through identifiers in external identifier sources.
3829    // FIXME: Re-add the ability to skip very unlikely potential corrections.
3830    if (IdentifierInfoLookup *External
3831                            = Context.Idents.getExternalIdentifierLookup()) {
3832      OwningPtr<IdentifierIterator> Iter(External->getIdentifiers());
3833      do {
3834        StringRef Name = Iter->Next();
3835        if (Name.empty())
3836          break;
3837
3838        Consumer.FoundName(Name);
3839      } while (true);
3840    }
3841  }
3842
3843  AddKeywordsToConsumer(*this, Consumer, S, CCC, SS && SS->isNotEmpty());
3844
3845  // If we haven't found anything, we're done.
3846  if (Consumer.empty()) {
3847    // If this was an unqualified lookup, note that no correction was found.
3848    if (IsUnqualifiedLookup)
3849      (void)UnqualifiedTyposCorrected[Typo];
3850
3851    return TypoCorrection();
3852  }
3853
3854  // Make sure the best edit distance (prior to adding any namespace qualifiers)
3855  // is not more that about a third of the length of the typo's identifier.
3856  unsigned ED = Consumer.getBestEditDistance(true);
3857  if (ED > 0 && Typo->getName().size() / ED < 3) {
3858    // If this was an unqualified lookup, note that no correction was found.
3859    if (IsUnqualifiedLookup)
3860      (void)UnqualifiedTyposCorrected[Typo];
3861
3862    return TypoCorrection();
3863  }
3864
3865  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
3866  // to search those namespaces.
3867  if (SearchNamespaces) {
3868    // Load any externally-known namespaces.
3869    if (ExternalSource && !LoadedExternalKnownNamespaces) {
3870      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
3871      LoadedExternalKnownNamespaces = true;
3872      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
3873      for (unsigned I = 0, N = ExternalKnownNamespaces.size(); I != N; ++I)
3874        KnownNamespaces[ExternalKnownNamespaces[I]] = true;
3875    }
3876
3877    for (llvm::MapVector<NamespaceDecl*, bool>::iterator
3878           KNI = KnownNamespaces.begin(),
3879           KNIEnd = KnownNamespaces.end();
3880         KNI != KNIEnd; ++KNI)
3881      Namespaces.AddNamespace(KNI->first);
3882  }
3883
3884  // Weed out any names that could not be found by name lookup or, if a
3885  // CorrectionCandidateCallback object was provided, failed validation.
3886  SmallVector<TypoCorrection, 16> QualifiedResults;
3887  LookupResult TmpRes(*this, TypoName, LookupKind);
3888  TmpRes.suppressDiagnostics();
3889  while (!Consumer.empty()) {
3890    TypoCorrectionConsumer::distance_iterator DI = Consumer.begin();
3891    unsigned ED = DI->first;
3892    for (TypoCorrectionConsumer::result_iterator I = DI->second.begin(),
3893                                              IEnd = DI->second.end();
3894         I != IEnd; /* Increment in loop. */) {
3895      // If we only want nested name specifier corrections, ignore potential
3896      // corrections that have a different base identifier from the typo.
3897      if (AllowOnlyNNSChanges &&
3898          I->second.front().getCorrectionAsIdentifierInfo() != Typo) {
3899        TypoCorrectionConsumer::result_iterator Prev = I;
3900        ++I;
3901        DI->second.erase(Prev);
3902        continue;
3903      }
3904
3905      // If the item already has been looked up or is a keyword, keep it.
3906      // If a validator callback object was given, drop the correction
3907      // unless it passes validation.
3908      bool Viable = false;
3909      for (TypoResultList::iterator RI = I->second.begin();
3910           RI != I->second.end(); /* Increment in loop. */) {
3911        TypoResultList::iterator Prev = RI;
3912        ++RI;
3913        if (Prev->isResolved()) {
3914          if (!isCandidateViable(CCC, *Prev))
3915            RI = I->second.erase(Prev);
3916          else
3917            Viable = true;
3918        }
3919      }
3920      if (Viable || I->second.empty()) {
3921        TypoCorrectionConsumer::result_iterator Prev = I;
3922        ++I;
3923        if (!Viable)
3924          DI->second.erase(Prev);
3925        continue;
3926      }
3927      assert(I->second.size() == 1 && "Expected a single unresolved candidate");
3928
3929      // Perform name lookup on this name.
3930      TypoCorrection &Candidate = I->second.front();
3931      IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3932      LookupPotentialTypoResult(*this, TmpRes, Name, S, SS, MemberContext,
3933                                EnteringContext, CCC.IsObjCIvarLookup);
3934
3935      switch (TmpRes.getResultKind()) {
3936      case LookupResult::NotFound:
3937      case LookupResult::NotFoundInCurrentInstantiation:
3938      case LookupResult::FoundUnresolvedValue:
3939        QualifiedResults.push_back(Candidate);
3940        // We didn't find this name in our scope, or didn't like what we found;
3941        // ignore it.
3942        {
3943          TypoCorrectionConsumer::result_iterator Next = I;
3944          ++Next;
3945          DI->second.erase(I);
3946          I = Next;
3947        }
3948        break;
3949
3950      case LookupResult::Ambiguous:
3951        // We don't deal with ambiguities.
3952        return TypoCorrection();
3953
3954      case LookupResult::FoundOverloaded: {
3955        TypoCorrectionConsumer::result_iterator Prev = I;
3956        // Store all of the Decls for overloaded symbols
3957        for (LookupResult::iterator TRD = TmpRes.begin(),
3958                                 TRDEnd = TmpRes.end();
3959             TRD != TRDEnd; ++TRD)
3960          Candidate.addCorrectionDecl(*TRD);
3961        ++I;
3962        if (!isCandidateViable(CCC, Candidate))
3963          DI->second.erase(Prev);
3964        break;
3965      }
3966
3967      case LookupResult::Found: {
3968        TypoCorrectionConsumer::result_iterator Prev = I;
3969        Candidate.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
3970        ++I;
3971        if (!isCandidateViable(CCC, Candidate))
3972          DI->second.erase(Prev);
3973        break;
3974      }
3975
3976      }
3977    }
3978
3979    if (DI->second.empty())
3980      Consumer.erase(DI);
3981    else if (!getLangOpts().CPlusPlus || QualifiedResults.empty() || !ED)
3982      // If there are results in the closest possible bucket, stop
3983      break;
3984
3985    // Only perform the qualified lookups for C++
3986    if (SearchNamespaces) {
3987      TmpRes.suppressDiagnostics();
3988      for (SmallVector<TypoCorrection,
3989                       16>::iterator QRI = QualifiedResults.begin(),
3990                                  QRIEnd = QualifiedResults.end();
3991           QRI != QRIEnd; ++QRI) {
3992        for (NamespaceSpecifierSet::iterator NI = Namespaces.begin(),
3993                                          NIEnd = Namespaces.end();
3994             NI != NIEnd; ++NI) {
3995          DeclContext *Ctx = NI->DeclCtx;
3996
3997          // FIXME: Stop searching once the namespaces are too far away to create
3998          // acceptable corrections for this identifier (since the namespaces
3999          // are sorted in ascending order by edit distance).
4000
4001          TmpRes.clear();
4002          TmpRes.setLookupName(QRI->getCorrectionAsIdentifierInfo());
4003          if (!LookupQualifiedName(TmpRes, Ctx)) continue;
4004
4005          // Any corrections added below will be validated in subsequent
4006          // iterations of the main while() loop over the Consumer's contents.
4007          switch (TmpRes.getResultKind()) {
4008          case LookupResult::Found: {
4009            TypoCorrection TC(*QRI);
4010            TC.setCorrectionDecl(TmpRes.getAsSingle<NamedDecl>());
4011            TC.setCorrectionSpecifier(NI->NameSpecifier);
4012            TC.setQualifierDistance(NI->EditDistance);
4013            Consumer.addCorrection(TC);
4014            break;
4015          }
4016          case LookupResult::FoundOverloaded: {
4017            TypoCorrection TC(*QRI);
4018            TC.setCorrectionSpecifier(NI->NameSpecifier);
4019            TC.setQualifierDistance(NI->EditDistance);
4020            for (LookupResult::iterator TRD = TmpRes.begin(),
4021                                     TRDEnd = TmpRes.end();
4022                 TRD != TRDEnd; ++TRD)
4023              TC.addCorrectionDecl(*TRD);
4024            Consumer.addCorrection(TC);
4025            break;
4026          }
4027          case LookupResult::NotFound:
4028          case LookupResult::NotFoundInCurrentInstantiation:
4029          case LookupResult::Ambiguous:
4030          case LookupResult::FoundUnresolvedValue:
4031            break;
4032          }
4033        }
4034      }
4035    }
4036
4037    QualifiedResults.clear();
4038  }
4039
4040  // No corrections remain...
4041  if (Consumer.empty()) return TypoCorrection();
4042
4043  TypoResultsMap &BestResults = Consumer.getBestResults();
4044  ED = Consumer.getBestEditDistance(true);
4045
4046  if (!AllowOnlyNNSChanges && ED > 0 && Typo->getName().size() / ED < 3) {
4047    // If this was an unqualified lookup and we believe the callback
4048    // object wouldn't have filtered out possible corrections, note
4049    // that no correction was found.
4050    if (IsUnqualifiedLookup && !ValidatingCallback)
4051      (void)UnqualifiedTyposCorrected[Typo];
4052
4053    return TypoCorrection();
4054  }
4055
4056  // If only a single name remains, return that result.
4057  if (BestResults.size() == 1) {
4058    const TypoResultList &CorrectionList = BestResults.begin()->second;
4059    const TypoCorrection &Result = CorrectionList.front();
4060    if (CorrectionList.size() != 1) return TypoCorrection();
4061
4062    // Don't correct to a keyword that's the same as the typo; the keyword
4063    // wasn't actually in scope.
4064    if (ED == 0 && Result.isKeyword()) return TypoCorrection();
4065
4066    // Record the correction for unqualified lookup.
4067    if (IsUnqualifiedLookup)
4068      UnqualifiedTyposCorrected[Typo] = Result;
4069
4070    TypoCorrection TC = Result;
4071    TC.setCorrectionRange(SS, TypoName);
4072    return TC;
4073  }
4074  else if (BestResults.size() > 1
4075           // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4076           // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4077           // some instances of CTC_Unknown, while WantRemainingKeywords is true
4078           // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4079           && CCC.WantObjCSuper && !CCC.WantRemainingKeywords
4080           && BestResults["super"].front().isKeyword()) {
4081    // Prefer 'super' when we're completing in a message-receiver
4082    // context.
4083
4084    // Don't correct to a keyword that's the same as the typo; the keyword
4085    // wasn't actually in scope.
4086    if (ED == 0) return TypoCorrection();
4087
4088    // Record the correction for unqualified lookup.
4089    if (IsUnqualifiedLookup)
4090      UnqualifiedTyposCorrected[Typo] = BestResults["super"].front();
4091
4092    TypoCorrection TC = BestResults["super"].front();
4093    TC.setCorrectionRange(SS, TypoName);
4094    return TC;
4095  }
4096
4097  // If this was an unqualified lookup and we believe the callback object did
4098  // not filter out possible corrections, note that no correction was found.
4099  if (IsUnqualifiedLookup && !ValidatingCallback)
4100    (void)UnqualifiedTyposCorrected[Typo];
4101
4102  return TypoCorrection();
4103}
4104
4105void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4106  if (!CDecl) return;
4107
4108  if (isKeyword())
4109    CorrectionDecls.clear();
4110
4111  CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4112
4113  if (!CorrectionName)
4114    CorrectionName = CDecl->getDeclName();
4115}
4116
4117std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4118  if (CorrectionNameSpec) {
4119    std::string tmpBuffer;
4120    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4121    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4122    CorrectionName.printName(PrefixOStream);
4123    return PrefixOStream.str();
4124  }
4125
4126  return CorrectionName.getAsString();
4127}
4128