1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/ 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7//===----------------------------------------------------------------------===/ 8// 9// This file implements semantic analysis for C++ templates. 10//===----------------------------------------------------------------------===/ 11 12#include "TreeTransform.h" 13#include "clang/AST/ASTContext.h" 14#include "clang/AST/DeclFriend.h" 15#include "clang/AST/DeclTemplate.h" 16#include "clang/AST/Expr.h" 17#include "clang/AST/ExprCXX.h" 18#include "clang/AST/RecursiveASTVisitor.h" 19#include "clang/AST/TypeVisitor.h" 20#include "clang/Basic/LangOptions.h" 21#include "clang/Basic/PartialDiagnostic.h" 22#include "clang/Sema/DeclSpec.h" 23#include "clang/Sema/Lookup.h" 24#include "clang/Sema/ParsedTemplate.h" 25#include "clang/Sema/Scope.h" 26#include "clang/Sema/SemaInternal.h" 27#include "clang/Sema/Template.h" 28#include "clang/Sema/TemplateDeduction.h" 29#include "llvm/ADT/SmallBitVector.h" 30#include "llvm/ADT/SmallString.h" 31#include "llvm/ADT/StringExtras.h" 32using namespace clang; 33using namespace sema; 34 35// Exported for use by Parser. 36SourceRange 37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, 38 unsigned N) { 39 if (!N) return SourceRange(); 40 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); 41} 42 43/// \brief Determine whether the declaration found is acceptable as the name 44/// of a template and, if so, return that template declaration. Otherwise, 45/// returns NULL. 46static NamedDecl *isAcceptableTemplateName(ASTContext &Context, 47 NamedDecl *Orig, 48 bool AllowFunctionTemplates) { 49 NamedDecl *D = Orig->getUnderlyingDecl(); 50 51 if (isa<TemplateDecl>(D)) { 52 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) 53 return 0; 54 55 return Orig; 56 } 57 58 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 59 // C++ [temp.local]p1: 60 // Like normal (non-template) classes, class templates have an 61 // injected-class-name (Clause 9). The injected-class-name 62 // can be used with or without a template-argument-list. When 63 // it is used without a template-argument-list, it is 64 // equivalent to the injected-class-name followed by the 65 // template-parameters of the class template enclosed in 66 // <>. When it is used with a template-argument-list, it 67 // refers to the specified class template specialization, 68 // which could be the current specialization or another 69 // specialization. 70 if (Record->isInjectedClassName()) { 71 Record = cast<CXXRecordDecl>(Record->getDeclContext()); 72 if (Record->getDescribedClassTemplate()) 73 return Record->getDescribedClassTemplate(); 74 75 if (ClassTemplateSpecializationDecl *Spec 76 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) 77 return Spec->getSpecializedTemplate(); 78 } 79 80 return 0; 81 } 82 83 return 0; 84} 85 86void Sema::FilterAcceptableTemplateNames(LookupResult &R, 87 bool AllowFunctionTemplates) { 88 // The set of class templates we've already seen. 89 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates; 90 LookupResult::Filter filter = R.makeFilter(); 91 while (filter.hasNext()) { 92 NamedDecl *Orig = filter.next(); 93 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig, 94 AllowFunctionTemplates); 95 if (!Repl) 96 filter.erase(); 97 else if (Repl != Orig) { 98 99 // C++ [temp.local]p3: 100 // A lookup that finds an injected-class-name (10.2) can result in an 101 // ambiguity in certain cases (for example, if it is found in more than 102 // one base class). If all of the injected-class-names that are found 103 // refer to specializations of the same class template, and if the name 104 // is used as a template-name, the reference refers to the class 105 // template itself and not a specialization thereof, and is not 106 // ambiguous. 107 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl)) 108 if (!ClassTemplates.insert(ClassTmpl)) { 109 filter.erase(); 110 continue; 111 } 112 113 // FIXME: we promote access to public here as a workaround to 114 // the fact that LookupResult doesn't let us remember that we 115 // found this template through a particular injected class name, 116 // which means we end up doing nasty things to the invariants. 117 // Pretending that access is public is *much* safer. 118 filter.replace(Repl, AS_public); 119 } 120 } 121 filter.done(); 122} 123 124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, 125 bool AllowFunctionTemplates) { 126 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) 127 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates)) 128 return true; 129 130 return false; 131} 132 133TemplateNameKind Sema::isTemplateName(Scope *S, 134 CXXScopeSpec &SS, 135 bool hasTemplateKeyword, 136 UnqualifiedId &Name, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext, 139 TemplateTy &TemplateResult, 140 bool &MemberOfUnknownSpecialization) { 141 assert(getLangOpts().CPlusPlus && "No template names in C!"); 142 143 DeclarationName TName; 144 MemberOfUnknownSpecialization = false; 145 146 switch (Name.getKind()) { 147 case UnqualifiedId::IK_Identifier: 148 TName = DeclarationName(Name.Identifier); 149 break; 150 151 case UnqualifiedId::IK_OperatorFunctionId: 152 TName = Context.DeclarationNames.getCXXOperatorName( 153 Name.OperatorFunctionId.Operator); 154 break; 155 156 case UnqualifiedId::IK_LiteralOperatorId: 157 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); 158 break; 159 160 default: 161 return TNK_Non_template; 162 } 163 164 QualType ObjectType = ObjectTypePtr.get(); 165 166 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName); 167 LookupTemplateName(R, S, SS, ObjectType, EnteringContext, 168 MemberOfUnknownSpecialization); 169 if (R.empty()) return TNK_Non_template; 170 if (R.isAmbiguous()) { 171 // Suppress diagnostics; we'll redo this lookup later. 172 R.suppressDiagnostics(); 173 174 // FIXME: we might have ambiguous templates, in which case we 175 // should at least parse them properly! 176 return TNK_Non_template; 177 } 178 179 TemplateName Template; 180 TemplateNameKind TemplateKind; 181 182 unsigned ResultCount = R.end() - R.begin(); 183 if (ResultCount > 1) { 184 // We assume that we'll preserve the qualifier from a function 185 // template name in other ways. 186 Template = Context.getOverloadedTemplateName(R.begin(), R.end()); 187 TemplateKind = TNK_Function_template; 188 189 // We'll do this lookup again later. 190 R.suppressDiagnostics(); 191 } else { 192 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl()); 193 194 if (SS.isSet() && !SS.isInvalid()) { 195 NestedNameSpecifier *Qualifier 196 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 197 Template = Context.getQualifiedTemplateName(Qualifier, 198 hasTemplateKeyword, TD); 199 } else { 200 Template = TemplateName(TD); 201 } 202 203 if (isa<FunctionTemplateDecl>(TD)) { 204 TemplateKind = TNK_Function_template; 205 206 // We'll do this lookup again later. 207 R.suppressDiagnostics(); 208 } else { 209 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || 210 isa<TypeAliasTemplateDecl>(TD)); 211 TemplateKind = TNK_Type_template; 212 } 213 } 214 215 TemplateResult = TemplateTy::make(Template); 216 return TemplateKind; 217} 218 219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, 220 SourceLocation IILoc, 221 Scope *S, 222 const CXXScopeSpec *SS, 223 TemplateTy &SuggestedTemplate, 224 TemplateNameKind &SuggestedKind) { 225 // We can't recover unless there's a dependent scope specifier preceding the 226 // template name. 227 // FIXME: Typo correction? 228 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || 229 computeDeclContext(*SS)) 230 return false; 231 232 // The code is missing a 'template' keyword prior to the dependent template 233 // name. 234 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); 235 Diag(IILoc, diag::err_template_kw_missing) 236 << Qualifier << II.getName() 237 << FixItHint::CreateInsertion(IILoc, "template "); 238 SuggestedTemplate 239 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); 240 SuggestedKind = TNK_Dependent_template_name; 241 return true; 242} 243 244void Sema::LookupTemplateName(LookupResult &Found, 245 Scope *S, CXXScopeSpec &SS, 246 QualType ObjectType, 247 bool EnteringContext, 248 bool &MemberOfUnknownSpecialization) { 249 // Determine where to perform name lookup 250 MemberOfUnknownSpecialization = false; 251 DeclContext *LookupCtx = 0; 252 bool isDependent = false; 253 if (!ObjectType.isNull()) { 254 // This nested-name-specifier occurs in a member access expression, e.g., 255 // x->B::f, and we are looking into the type of the object. 256 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 257 LookupCtx = computeDeclContext(ObjectType); 258 isDependent = ObjectType->isDependentType(); 259 assert((isDependent || !ObjectType->isIncompleteType()) && 260 "Caller should have completed object type"); 261 262 // Template names cannot appear inside an Objective-C class or object type. 263 if (ObjectType->isObjCObjectOrInterfaceType()) { 264 Found.clear(); 265 return; 266 } 267 } else if (SS.isSet()) { 268 // This nested-name-specifier occurs after another nested-name-specifier, 269 // so long into the context associated with the prior nested-name-specifier. 270 LookupCtx = computeDeclContext(SS, EnteringContext); 271 isDependent = isDependentScopeSpecifier(SS); 272 273 // The declaration context must be complete. 274 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) 275 return; 276 } 277 278 bool ObjectTypeSearchedInScope = false; 279 bool AllowFunctionTemplatesInLookup = true; 280 if (LookupCtx) { 281 // Perform "qualified" name lookup into the declaration context we 282 // computed, which is either the type of the base of a member access 283 // expression or the declaration context associated with a prior 284 // nested-name-specifier. 285 LookupQualifiedName(Found, LookupCtx); 286 if (!ObjectType.isNull() && Found.empty()) { 287 // C++ [basic.lookup.classref]p1: 288 // In a class member access expression (5.2.5), if the . or -> token is 289 // immediately followed by an identifier followed by a <, the 290 // identifier must be looked up to determine whether the < is the 291 // beginning of a template argument list (14.2) or a less-than operator. 292 // The identifier is first looked up in the class of the object 293 // expression. If the identifier is not found, it is then looked up in 294 // the context of the entire postfix-expression and shall name a class 295 // or function template. 296 if (S) LookupName(Found, S); 297 ObjectTypeSearchedInScope = true; 298 AllowFunctionTemplatesInLookup = false; 299 } 300 } else if (isDependent && (!S || ObjectType.isNull())) { 301 // We cannot look into a dependent object type or nested nme 302 // specifier. 303 MemberOfUnknownSpecialization = true; 304 return; 305 } else { 306 // Perform unqualified name lookup in the current scope. 307 LookupName(Found, S); 308 309 if (!ObjectType.isNull()) 310 AllowFunctionTemplatesInLookup = false; 311 } 312 313 if (Found.empty() && !isDependent) { 314 // If we did not find any names, attempt to correct any typos. 315 DeclarationName Name = Found.getLookupName(); 316 Found.clear(); 317 // Simple filter callback that, for keywords, only accepts the C++ *_cast 318 CorrectionCandidateCallback FilterCCC; 319 FilterCCC.WantTypeSpecifiers = false; 320 FilterCCC.WantExpressionKeywords = false; 321 FilterCCC.WantRemainingKeywords = false; 322 FilterCCC.WantCXXNamedCasts = true; 323 if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(), 324 Found.getLookupKind(), S, &SS, 325 FilterCCC, LookupCtx)) { 326 Found.setLookupName(Corrected.getCorrection()); 327 if (Corrected.getCorrectionDecl()) 328 Found.addDecl(Corrected.getCorrectionDecl()); 329 FilterAcceptableTemplateNames(Found); 330 if (!Found.empty()) { 331 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 332 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 333 if (LookupCtx) 334 Diag(Found.getNameLoc(), diag::err_no_member_template_suggest) 335 << Name << LookupCtx << CorrectedQuotedStr << SS.getRange() 336 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(), 337 CorrectedStr); 338 else 339 Diag(Found.getNameLoc(), diag::err_no_template_suggest) 340 << Name << CorrectedQuotedStr 341 << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr); 342 if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>()) 343 Diag(Template->getLocation(), diag::note_previous_decl) 344 << CorrectedQuotedStr; 345 } 346 } else { 347 Found.setLookupName(Name); 348 } 349 } 350 351 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); 352 if (Found.empty()) { 353 if (isDependent) 354 MemberOfUnknownSpecialization = true; 355 return; 356 } 357 358 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && 359 !(getLangOpts().CPlusPlus11 && !Found.empty())) { 360 // C++03 [basic.lookup.classref]p1: 361 // [...] If the lookup in the class of the object expression finds a 362 // template, the name is also looked up in the context of the entire 363 // postfix-expression and [...] 364 // 365 // Note: C++11 does not perform this second lookup. 366 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), 367 LookupOrdinaryName); 368 LookupName(FoundOuter, S); 369 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); 370 371 if (FoundOuter.empty()) { 372 // - if the name is not found, the name found in the class of the 373 // object expression is used, otherwise 374 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() || 375 FoundOuter.isAmbiguous()) { 376 // - if the name is found in the context of the entire 377 // postfix-expression and does not name a class template, the name 378 // found in the class of the object expression is used, otherwise 379 FoundOuter.clear(); 380 } else if (!Found.isSuppressingDiagnostics()) { 381 // - if the name found is a class template, it must refer to the same 382 // entity as the one found in the class of the object expression, 383 // otherwise the program is ill-formed. 384 if (!Found.isSingleResult() || 385 Found.getFoundDecl()->getCanonicalDecl() 386 != FoundOuter.getFoundDecl()->getCanonicalDecl()) { 387 Diag(Found.getNameLoc(), 388 diag::ext_nested_name_member_ref_lookup_ambiguous) 389 << Found.getLookupName() 390 << ObjectType; 391 Diag(Found.getRepresentativeDecl()->getLocation(), 392 diag::note_ambig_member_ref_object_type) 393 << ObjectType; 394 Diag(FoundOuter.getFoundDecl()->getLocation(), 395 diag::note_ambig_member_ref_scope); 396 397 // Recover by taking the template that we found in the object 398 // expression's type. 399 } 400 } 401 } 402} 403 404/// ActOnDependentIdExpression - Handle a dependent id-expression that 405/// was just parsed. This is only possible with an explicit scope 406/// specifier naming a dependent type. 407ExprResult 408Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, 409 SourceLocation TemplateKWLoc, 410 const DeclarationNameInfo &NameInfo, 411 bool isAddressOfOperand, 412 const TemplateArgumentListInfo *TemplateArgs) { 413 DeclContext *DC = getFunctionLevelDeclContext(); 414 415 if (!isAddressOfOperand && 416 isa<CXXMethodDecl>(DC) && 417 cast<CXXMethodDecl>(DC)->isInstance()) { 418 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context); 419 420 // Since the 'this' expression is synthesized, we don't need to 421 // perform the double-lookup check. 422 NamedDecl *FirstQualifierInScope = 0; 423 424 return Owned(CXXDependentScopeMemberExpr::Create(Context, 425 /*This*/ 0, ThisType, 426 /*IsArrow*/ true, 427 /*Op*/ SourceLocation(), 428 SS.getWithLocInContext(Context), 429 TemplateKWLoc, 430 FirstQualifierInScope, 431 NameInfo, 432 TemplateArgs)); 433 } 434 435 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 436} 437 438ExprResult 439Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, 440 SourceLocation TemplateKWLoc, 441 const DeclarationNameInfo &NameInfo, 442 const TemplateArgumentListInfo *TemplateArgs) { 443 return Owned(DependentScopeDeclRefExpr::Create(Context, 444 SS.getWithLocInContext(Context), 445 TemplateKWLoc, 446 NameInfo, 447 TemplateArgs)); 448} 449 450/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining 451/// that the template parameter 'PrevDecl' is being shadowed by a new 452/// declaration at location Loc. Returns true to indicate that this is 453/// an error, and false otherwise. 454void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { 455 assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); 456 457 // Microsoft Visual C++ permits template parameters to be shadowed. 458 if (getLangOpts().MicrosoftExt) 459 return; 460 461 // C++ [temp.local]p4: 462 // A template-parameter shall not be redeclared within its 463 // scope (including nested scopes). 464 Diag(Loc, diag::err_template_param_shadow) 465 << cast<NamedDecl>(PrevDecl)->getDeclName(); 466 Diag(PrevDecl->getLocation(), diag::note_template_param_here); 467 return; 468} 469 470/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset 471/// the parameter D to reference the templated declaration and return a pointer 472/// to the template declaration. Otherwise, do nothing to D and return null. 473TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { 474 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { 475 D = Temp->getTemplatedDecl(); 476 return Temp; 477 } 478 return 0; 479} 480 481ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( 482 SourceLocation EllipsisLoc) const { 483 assert(Kind == Template && 484 "Only template template arguments can be pack expansions here"); 485 assert(getAsTemplate().get().containsUnexpandedParameterPack() && 486 "Template template argument pack expansion without packs"); 487 ParsedTemplateArgument Result(*this); 488 Result.EllipsisLoc = EllipsisLoc; 489 return Result; 490} 491 492static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, 493 const ParsedTemplateArgument &Arg) { 494 495 switch (Arg.getKind()) { 496 case ParsedTemplateArgument::Type: { 497 TypeSourceInfo *DI; 498 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); 499 if (!DI) 500 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); 501 return TemplateArgumentLoc(TemplateArgument(T), DI); 502 } 503 504 case ParsedTemplateArgument::NonType: { 505 Expr *E = static_cast<Expr *>(Arg.getAsExpr()); 506 return TemplateArgumentLoc(TemplateArgument(E), E); 507 } 508 509 case ParsedTemplateArgument::Template: { 510 TemplateName Template = Arg.getAsTemplate().get(); 511 TemplateArgument TArg; 512 if (Arg.getEllipsisLoc().isValid()) 513 TArg = TemplateArgument(Template, Optional<unsigned int>()); 514 else 515 TArg = Template; 516 return TemplateArgumentLoc(TArg, 517 Arg.getScopeSpec().getWithLocInContext( 518 SemaRef.Context), 519 Arg.getLocation(), 520 Arg.getEllipsisLoc()); 521 } 522 } 523 524 llvm_unreachable("Unhandled parsed template argument"); 525} 526 527/// \brief Translates template arguments as provided by the parser 528/// into template arguments used by semantic analysis. 529void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, 530 TemplateArgumentListInfo &TemplateArgs) { 531 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) 532 TemplateArgs.addArgument(translateTemplateArgument(*this, 533 TemplateArgsIn[I])); 534} 535 536/// ActOnTypeParameter - Called when a C++ template type parameter 537/// (e.g., "typename T") has been parsed. Typename specifies whether 538/// the keyword "typename" was used to declare the type parameter 539/// (otherwise, "class" was used), and KeyLoc is the location of the 540/// "class" or "typename" keyword. ParamName is the name of the 541/// parameter (NULL indicates an unnamed template parameter) and 542/// ParamNameLoc is the location of the parameter name (if any). 543/// If the type parameter has a default argument, it will be added 544/// later via ActOnTypeParameterDefault. 545Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis, 546 SourceLocation EllipsisLoc, 547 SourceLocation KeyLoc, 548 IdentifierInfo *ParamName, 549 SourceLocation ParamNameLoc, 550 unsigned Depth, unsigned Position, 551 SourceLocation EqualLoc, 552 ParsedType DefaultArg) { 553 assert(S->isTemplateParamScope() && 554 "Template type parameter not in template parameter scope!"); 555 bool Invalid = false; 556 557 if (ParamName) { 558 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc, 559 LookupOrdinaryName, 560 ForRedeclaration); 561 if (PrevDecl && PrevDecl->isTemplateParameter()) { 562 DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl); 563 PrevDecl = 0; 564 } 565 } 566 567 SourceLocation Loc = ParamNameLoc; 568 if (!ParamName) 569 Loc = KeyLoc; 570 571 TemplateTypeParmDecl *Param 572 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), 573 KeyLoc, Loc, Depth, Position, ParamName, 574 Typename, Ellipsis); 575 Param->setAccess(AS_public); 576 if (Invalid) 577 Param->setInvalidDecl(); 578 579 if (ParamName) { 580 // Add the template parameter into the current scope. 581 S->AddDecl(Param); 582 IdResolver.AddDecl(Param); 583 } 584 585 // C++0x [temp.param]p9: 586 // A default template-argument may be specified for any kind of 587 // template-parameter that is not a template parameter pack. 588 if (DefaultArg && Ellipsis) { 589 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 590 DefaultArg = ParsedType(); 591 } 592 593 // Handle the default argument, if provided. 594 if (DefaultArg) { 595 TypeSourceInfo *DefaultTInfo; 596 GetTypeFromParser(DefaultArg, &DefaultTInfo); 597 598 assert(DefaultTInfo && "expected source information for type"); 599 600 // Check for unexpanded parameter packs. 601 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo, 602 UPPC_DefaultArgument)) 603 return Param; 604 605 // Check the template argument itself. 606 if (CheckTemplateArgument(Param, DefaultTInfo)) { 607 Param->setInvalidDecl(); 608 return Param; 609 } 610 611 Param->setDefaultArgument(DefaultTInfo, false); 612 } 613 614 return Param; 615} 616 617/// \brief Check that the type of a non-type template parameter is 618/// well-formed. 619/// 620/// \returns the (possibly-promoted) parameter type if valid; 621/// otherwise, produces a diagnostic and returns a NULL type. 622QualType 623Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) { 624 // We don't allow variably-modified types as the type of non-type template 625 // parameters. 626 if (T->isVariablyModifiedType()) { 627 Diag(Loc, diag::err_variably_modified_nontype_template_param) 628 << T; 629 return QualType(); 630 } 631 632 // C++ [temp.param]p4: 633 // 634 // A non-type template-parameter shall have one of the following 635 // (optionally cv-qualified) types: 636 // 637 // -- integral or enumeration type, 638 if (T->isIntegralOrEnumerationType() || 639 // -- pointer to object or pointer to function, 640 T->isPointerType() || 641 // -- reference to object or reference to function, 642 T->isReferenceType() || 643 // -- pointer to member, 644 T->isMemberPointerType() || 645 // -- std::nullptr_t. 646 T->isNullPtrType() || 647 // If T is a dependent type, we can't do the check now, so we 648 // assume that it is well-formed. 649 T->isDependentType()) { 650 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter 651 // are ignored when determining its type. 652 return T.getUnqualifiedType(); 653 } 654 655 // C++ [temp.param]p8: 656 // 657 // A non-type template-parameter of type "array of T" or 658 // "function returning T" is adjusted to be of type "pointer to 659 // T" or "pointer to function returning T", respectively. 660 else if (T->isArrayType()) 661 // FIXME: Keep the type prior to promotion? 662 return Context.getArrayDecayedType(T); 663 else if (T->isFunctionType()) 664 // FIXME: Keep the type prior to promotion? 665 return Context.getPointerType(T); 666 667 Diag(Loc, diag::err_template_nontype_parm_bad_type) 668 << T; 669 670 return QualType(); 671} 672 673Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, 674 unsigned Depth, 675 unsigned Position, 676 SourceLocation EqualLoc, 677 Expr *Default) { 678 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 679 QualType T = TInfo->getType(); 680 681 assert(S->isTemplateParamScope() && 682 "Non-type template parameter not in template parameter scope!"); 683 bool Invalid = false; 684 685 IdentifierInfo *ParamName = D.getIdentifier(); 686 if (ParamName) { 687 NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(), 688 LookupOrdinaryName, 689 ForRedeclaration); 690 if (PrevDecl && PrevDecl->isTemplateParameter()) { 691 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 692 PrevDecl = 0; 693 } 694 } 695 696 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc()); 697 if (T.isNull()) { 698 T = Context.IntTy; // Recover with an 'int' type. 699 Invalid = true; 700 } 701 702 bool IsParameterPack = D.hasEllipsis(); 703 NonTypeTemplateParmDecl *Param 704 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 705 D.getLocStart(), 706 D.getIdentifierLoc(), 707 Depth, Position, ParamName, T, 708 IsParameterPack, TInfo); 709 Param->setAccess(AS_public); 710 711 if (Invalid) 712 Param->setInvalidDecl(); 713 714 if (D.getIdentifier()) { 715 // Add the template parameter into the current scope. 716 S->AddDecl(Param); 717 IdResolver.AddDecl(Param); 718 } 719 720 // C++0x [temp.param]p9: 721 // A default template-argument may be specified for any kind of 722 // template-parameter that is not a template parameter pack. 723 if (Default && IsParameterPack) { 724 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 725 Default = 0; 726 } 727 728 // Check the well-formedness of the default template argument, if provided. 729 if (Default) { 730 // Check for unexpanded parameter packs. 731 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) 732 return Param; 733 734 TemplateArgument Converted; 735 ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted); 736 if (DefaultRes.isInvalid()) { 737 Param->setInvalidDecl(); 738 return Param; 739 } 740 Default = DefaultRes.take(); 741 742 Param->setDefaultArgument(Default, false); 743 } 744 745 return Param; 746} 747 748/// ActOnTemplateTemplateParameter - Called when a C++ template template 749/// parameter (e.g. T in template <template \<typename> class T> class array) 750/// has been parsed. S is the current scope. 751Decl *Sema::ActOnTemplateTemplateParameter(Scope* S, 752 SourceLocation TmpLoc, 753 TemplateParameterList *Params, 754 SourceLocation EllipsisLoc, 755 IdentifierInfo *Name, 756 SourceLocation NameLoc, 757 unsigned Depth, 758 unsigned Position, 759 SourceLocation EqualLoc, 760 ParsedTemplateArgument Default) { 761 assert(S->isTemplateParamScope() && 762 "Template template parameter not in template parameter scope!"); 763 764 // Construct the parameter object. 765 bool IsParameterPack = EllipsisLoc.isValid(); 766 TemplateTemplateParmDecl *Param = 767 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), 768 NameLoc.isInvalid()? TmpLoc : NameLoc, 769 Depth, Position, IsParameterPack, 770 Name, Params); 771 Param->setAccess(AS_public); 772 773 // If the template template parameter has a name, then link the identifier 774 // into the scope and lookup mechanisms. 775 if (Name) { 776 S->AddDecl(Param); 777 IdResolver.AddDecl(Param); 778 } 779 780 if (Params->size() == 0) { 781 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) 782 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); 783 Param->setInvalidDecl(); 784 } 785 786 // C++0x [temp.param]p9: 787 // A default template-argument may be specified for any kind of 788 // template-parameter that is not a template parameter pack. 789 if (IsParameterPack && !Default.isInvalid()) { 790 Diag(EqualLoc, diag::err_template_param_pack_default_arg); 791 Default = ParsedTemplateArgument(); 792 } 793 794 if (!Default.isInvalid()) { 795 // Check only that we have a template template argument. We don't want to 796 // try to check well-formedness now, because our template template parameter 797 // might have dependent types in its template parameters, which we wouldn't 798 // be able to match now. 799 // 800 // If none of the template template parameter's template arguments mention 801 // other template parameters, we could actually perform more checking here. 802 // However, it isn't worth doing. 803 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); 804 if (DefaultArg.getArgument().getAsTemplate().isNull()) { 805 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template) 806 << DefaultArg.getSourceRange(); 807 return Param; 808 } 809 810 // Check for unexpanded parameter packs. 811 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), 812 DefaultArg.getArgument().getAsTemplate(), 813 UPPC_DefaultArgument)) 814 return Param; 815 816 Param->setDefaultArgument(DefaultArg, false); 817 } 818 819 return Param; 820} 821 822/// ActOnTemplateParameterList - Builds a TemplateParameterList that 823/// contains the template parameters in Params/NumParams. 824TemplateParameterList * 825Sema::ActOnTemplateParameterList(unsigned Depth, 826 SourceLocation ExportLoc, 827 SourceLocation TemplateLoc, 828 SourceLocation LAngleLoc, 829 Decl **Params, unsigned NumParams, 830 SourceLocation RAngleLoc) { 831 if (ExportLoc.isValid()) 832 Diag(ExportLoc, diag::warn_template_export_unsupported); 833 834 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc, 835 (NamedDecl**)Params, NumParams, 836 RAngleLoc); 837} 838 839static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) { 840 if (SS.isSet()) 841 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext())); 842} 843 844DeclResult 845Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK, 846 SourceLocation KWLoc, CXXScopeSpec &SS, 847 IdentifierInfo *Name, SourceLocation NameLoc, 848 AttributeList *Attr, 849 TemplateParameterList *TemplateParams, 850 AccessSpecifier AS, SourceLocation ModulePrivateLoc, 851 unsigned NumOuterTemplateParamLists, 852 TemplateParameterList** OuterTemplateParamLists) { 853 assert(TemplateParams && TemplateParams->size() > 0 && 854 "No template parameters"); 855 assert(TUK != TUK_Reference && "Can only declare or define class templates"); 856 bool Invalid = false; 857 858 // Check that we can declare a template here. 859 if (CheckTemplateDeclScope(S, TemplateParams)) 860 return true; 861 862 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 863 assert(Kind != TTK_Enum && "can't build template of enumerated type"); 864 865 // There is no such thing as an unnamed class template. 866 if (!Name) { 867 Diag(KWLoc, diag::err_template_unnamed_class); 868 return true; 869 } 870 871 // Find any previous declaration with this name. For a friend with no 872 // scope explicitly specified, we only look for tag declarations (per 873 // C++11 [basic.lookup.elab]p2). 874 DeclContext *SemanticContext; 875 LookupResult Previous(*this, Name, NameLoc, 876 (SS.isEmpty() && TUK == TUK_Friend) 877 ? LookupTagName : LookupOrdinaryName, 878 ForRedeclaration); 879 if (SS.isNotEmpty() && !SS.isInvalid()) { 880 SemanticContext = computeDeclContext(SS, true); 881 if (!SemanticContext) { 882 // FIXME: Horrible, horrible hack! We can't currently represent this 883 // in the AST, and historically we have just ignored such friend 884 // class templates, so don't complain here. 885 if (TUK != TUK_Friend) 886 Diag(NameLoc, diag::err_template_qualified_declarator_no_match) 887 << SS.getScopeRep() << SS.getRange(); 888 return true; 889 } 890 891 if (RequireCompleteDeclContext(SS, SemanticContext)) 892 return true; 893 894 // If we're adding a template to a dependent context, we may need to 895 // rebuilding some of the types used within the template parameter list, 896 // now that we know what the current instantiation is. 897 if (SemanticContext->isDependentContext()) { 898 ContextRAII SavedContext(*this, SemanticContext); 899 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 900 Invalid = true; 901 } else if (TUK != TUK_Friend && TUK != TUK_Reference) 902 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc); 903 904 LookupQualifiedName(Previous, SemanticContext); 905 } else { 906 SemanticContext = CurContext; 907 LookupName(Previous, S); 908 } 909 910 if (Previous.isAmbiguous()) 911 return true; 912 913 NamedDecl *PrevDecl = 0; 914 if (Previous.begin() != Previous.end()) 915 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 916 917 // If there is a previous declaration with the same name, check 918 // whether this is a valid redeclaration. 919 ClassTemplateDecl *PrevClassTemplate 920 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); 921 922 // We may have found the injected-class-name of a class template, 923 // class template partial specialization, or class template specialization. 924 // In these cases, grab the template that is being defined or specialized. 925 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && 926 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { 927 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); 928 PrevClassTemplate 929 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); 930 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { 931 PrevClassTemplate 932 = cast<ClassTemplateSpecializationDecl>(PrevDecl) 933 ->getSpecializedTemplate(); 934 } 935 } 936 937 if (TUK == TUK_Friend) { 938 // C++ [namespace.memdef]p3: 939 // [...] When looking for a prior declaration of a class or a function 940 // declared as a friend, and when the name of the friend class or 941 // function is neither a qualified name nor a template-id, scopes outside 942 // the innermost enclosing namespace scope are not considered. 943 if (!SS.isSet()) { 944 DeclContext *OutermostContext = CurContext; 945 while (!OutermostContext->isFileContext()) 946 OutermostContext = OutermostContext->getLookupParent(); 947 948 if (PrevDecl && 949 (OutermostContext->Equals(PrevDecl->getDeclContext()) || 950 OutermostContext->Encloses(PrevDecl->getDeclContext()))) { 951 SemanticContext = PrevDecl->getDeclContext(); 952 } else { 953 // Declarations in outer scopes don't matter. However, the outermost 954 // context we computed is the semantic context for our new 955 // declaration. 956 PrevDecl = PrevClassTemplate = 0; 957 SemanticContext = OutermostContext; 958 959 // Check that the chosen semantic context doesn't already contain a 960 // declaration of this name as a non-tag type. 961 LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName, 962 ForRedeclaration); 963 DeclContext *LookupContext = SemanticContext; 964 while (LookupContext->isTransparentContext()) 965 LookupContext = LookupContext->getLookupParent(); 966 LookupQualifiedName(Previous, LookupContext); 967 968 if (Previous.isAmbiguous()) 969 return true; 970 971 if (Previous.begin() != Previous.end()) 972 PrevDecl = (*Previous.begin())->getUnderlyingDecl(); 973 } 974 } 975 } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S)) 976 PrevDecl = PrevClassTemplate = 0; 977 978 if (PrevClassTemplate) { 979 // Ensure that the template parameter lists are compatible. Skip this check 980 // for a friend in a dependent context: the template parameter list itself 981 // could be dependent. 982 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 983 !TemplateParameterListsAreEqual(TemplateParams, 984 PrevClassTemplate->getTemplateParameters(), 985 /*Complain=*/true, 986 TPL_TemplateMatch)) 987 return true; 988 989 // C++ [temp.class]p4: 990 // In a redeclaration, partial specialization, explicit 991 // specialization or explicit instantiation of a class template, 992 // the class-key shall agree in kind with the original class 993 // template declaration (7.1.5.3). 994 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); 995 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, 996 TUK == TUK_Definition, KWLoc, *Name)) { 997 Diag(KWLoc, diag::err_use_with_wrong_tag) 998 << Name 999 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); 1000 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); 1001 Kind = PrevRecordDecl->getTagKind(); 1002 } 1003 1004 // Check for redefinition of this class template. 1005 if (TUK == TUK_Definition) { 1006 if (TagDecl *Def = PrevRecordDecl->getDefinition()) { 1007 Diag(NameLoc, diag::err_redefinition) << Name; 1008 Diag(Def->getLocation(), diag::note_previous_definition); 1009 // FIXME: Would it make sense to try to "forget" the previous 1010 // definition, as part of error recovery? 1011 return true; 1012 } 1013 } 1014 } else if (PrevDecl && PrevDecl->isTemplateParameter()) { 1015 // Maybe we will complain about the shadowed template parameter. 1016 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); 1017 // Just pretend that we didn't see the previous declaration. 1018 PrevDecl = 0; 1019 } else if (PrevDecl) { 1020 // C++ [temp]p5: 1021 // A class template shall not have the same name as any other 1022 // template, class, function, object, enumeration, enumerator, 1023 // namespace, or type in the same scope (3.3), except as specified 1024 // in (14.5.4). 1025 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 1026 Diag(PrevDecl->getLocation(), diag::note_previous_definition); 1027 return true; 1028 } 1029 1030 // Check the template parameter list of this declaration, possibly 1031 // merging in the template parameter list from the previous class 1032 // template declaration. Skip this check for a friend in a dependent 1033 // context, because the template parameter list might be dependent. 1034 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && 1035 CheckTemplateParameterList(TemplateParams, 1036 PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0, 1037 (SS.isSet() && SemanticContext && 1038 SemanticContext->isRecord() && 1039 SemanticContext->isDependentContext()) 1040 ? TPC_ClassTemplateMember 1041 : TPC_ClassTemplate)) 1042 Invalid = true; 1043 1044 if (SS.isSet()) { 1045 // If the name of the template was qualified, we must be defining the 1046 // template out-of-line. 1047 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { 1048 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match 1049 : diag::err_member_def_does_not_match) 1050 << Name << SemanticContext << SS.getRange(); 1051 Invalid = true; 1052 } 1053 } 1054 1055 CXXRecordDecl *NewClass = 1056 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, 1057 PrevClassTemplate? 1058 PrevClassTemplate->getTemplatedDecl() : 0, 1059 /*DelayTypeCreation=*/true); 1060 SetNestedNameSpecifier(NewClass, SS); 1061 if (NumOuterTemplateParamLists > 0) 1062 NewClass->setTemplateParameterListsInfo(Context, 1063 NumOuterTemplateParamLists, 1064 OuterTemplateParamLists); 1065 1066 // Add alignment attributes if necessary; these attributes are checked when 1067 // the ASTContext lays out the structure. 1068 if (TUK == TUK_Definition) { 1069 AddAlignmentAttributesForRecord(NewClass); 1070 AddMsStructLayoutForRecord(NewClass); 1071 } 1072 1073 ClassTemplateDecl *NewTemplate 1074 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, 1075 DeclarationName(Name), TemplateParams, 1076 NewClass, PrevClassTemplate); 1077 NewClass->setDescribedClassTemplate(NewTemplate); 1078 1079 if (ModulePrivateLoc.isValid()) 1080 NewTemplate->setModulePrivate(); 1081 1082 // Build the type for the class template declaration now. 1083 QualType T = NewTemplate->getInjectedClassNameSpecialization(); 1084 T = Context.getInjectedClassNameType(NewClass, T); 1085 assert(T->isDependentType() && "Class template type is not dependent?"); 1086 (void)T; 1087 1088 // If we are providing an explicit specialization of a member that is a 1089 // class template, make a note of that. 1090 if (PrevClassTemplate && 1091 PrevClassTemplate->getInstantiatedFromMemberTemplate()) 1092 PrevClassTemplate->setMemberSpecialization(); 1093 1094 // Set the access specifier. 1095 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) 1096 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); 1097 1098 // Set the lexical context of these templates 1099 NewClass->setLexicalDeclContext(CurContext); 1100 NewTemplate->setLexicalDeclContext(CurContext); 1101 1102 if (TUK == TUK_Definition) 1103 NewClass->startDefinition(); 1104 1105 if (Attr) 1106 ProcessDeclAttributeList(S, NewClass, Attr); 1107 1108 if (PrevClassTemplate) 1109 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); 1110 1111 AddPushedVisibilityAttribute(NewClass); 1112 1113 if (TUK != TUK_Friend) 1114 PushOnScopeChains(NewTemplate, S); 1115 else { 1116 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { 1117 NewTemplate->setAccess(PrevClassTemplate->getAccess()); 1118 NewClass->setAccess(PrevClassTemplate->getAccess()); 1119 } 1120 1121 NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */ 1122 PrevClassTemplate != NULL); 1123 1124 // Friend templates are visible in fairly strange ways. 1125 if (!CurContext->isDependentContext()) { 1126 DeclContext *DC = SemanticContext->getRedeclContext(); 1127 DC->makeDeclVisibleInContext(NewTemplate); 1128 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 1129 PushOnScopeChains(NewTemplate, EnclosingScope, 1130 /* AddToContext = */ false); 1131 } 1132 1133 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 1134 NewClass->getLocation(), 1135 NewTemplate, 1136 /*FIXME:*/NewClass->getLocation()); 1137 Friend->setAccess(AS_public); 1138 CurContext->addDecl(Friend); 1139 } 1140 1141 if (Invalid) { 1142 NewTemplate->setInvalidDecl(); 1143 NewClass->setInvalidDecl(); 1144 } 1145 1146 ActOnDocumentableDecl(NewTemplate); 1147 1148 return NewTemplate; 1149} 1150 1151/// \brief Diagnose the presence of a default template argument on a 1152/// template parameter, which is ill-formed in certain contexts. 1153/// 1154/// \returns true if the default template argument should be dropped. 1155static bool DiagnoseDefaultTemplateArgument(Sema &S, 1156 Sema::TemplateParamListContext TPC, 1157 SourceLocation ParamLoc, 1158 SourceRange DefArgRange) { 1159 switch (TPC) { 1160 case Sema::TPC_ClassTemplate: 1161 case Sema::TPC_TypeAliasTemplate: 1162 return false; 1163 1164 case Sema::TPC_FunctionTemplate: 1165 case Sema::TPC_FriendFunctionTemplateDefinition: 1166 // C++ [temp.param]p9: 1167 // A default template-argument shall not be specified in a 1168 // function template declaration or a function template 1169 // definition [...] 1170 // If a friend function template declaration specifies a default 1171 // template-argument, that declaration shall be a definition and shall be 1172 // the only declaration of the function template in the translation unit. 1173 // (C++98/03 doesn't have this wording; see DR226). 1174 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? 1175 diag::warn_cxx98_compat_template_parameter_default_in_function_template 1176 : diag::ext_template_parameter_default_in_function_template) 1177 << DefArgRange; 1178 return false; 1179 1180 case Sema::TPC_ClassTemplateMember: 1181 // C++0x [temp.param]p9: 1182 // A default template-argument shall not be specified in the 1183 // template-parameter-lists of the definition of a member of a 1184 // class template that appears outside of the member's class. 1185 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) 1186 << DefArgRange; 1187 return true; 1188 1189 case Sema::TPC_FriendFunctionTemplate: 1190 // C++ [temp.param]p9: 1191 // A default template-argument shall not be specified in a 1192 // friend template declaration. 1193 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) 1194 << DefArgRange; 1195 return true; 1196 1197 // FIXME: C++0x [temp.param]p9 allows default template-arguments 1198 // for friend function templates if there is only a single 1199 // declaration (and it is a definition). Strange! 1200 } 1201 1202 llvm_unreachable("Invalid TemplateParamListContext!"); 1203} 1204 1205/// \brief Check for unexpanded parameter packs within the template parameters 1206/// of a template template parameter, recursively. 1207static bool DiagnoseUnexpandedParameterPacks(Sema &S, 1208 TemplateTemplateParmDecl *TTP) { 1209 // A template template parameter which is a parameter pack is also a pack 1210 // expansion. 1211 if (TTP->isParameterPack()) 1212 return false; 1213 1214 TemplateParameterList *Params = TTP->getTemplateParameters(); 1215 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 1216 NamedDecl *P = Params->getParam(I); 1217 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 1218 if (!NTTP->isParameterPack() && 1219 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), 1220 NTTP->getTypeSourceInfo(), 1221 Sema::UPPC_NonTypeTemplateParameterType)) 1222 return true; 1223 1224 continue; 1225 } 1226 1227 if (TemplateTemplateParmDecl *InnerTTP 1228 = dyn_cast<TemplateTemplateParmDecl>(P)) 1229 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) 1230 return true; 1231 } 1232 1233 return false; 1234} 1235 1236/// \brief Checks the validity of a template parameter list, possibly 1237/// considering the template parameter list from a previous 1238/// declaration. 1239/// 1240/// If an "old" template parameter list is provided, it must be 1241/// equivalent (per TemplateParameterListsAreEqual) to the "new" 1242/// template parameter list. 1243/// 1244/// \param NewParams Template parameter list for a new template 1245/// declaration. This template parameter list will be updated with any 1246/// default arguments that are carried through from the previous 1247/// template parameter list. 1248/// 1249/// \param OldParams If provided, template parameter list from a 1250/// previous declaration of the same template. Default template 1251/// arguments will be merged from the old template parameter list to 1252/// the new template parameter list. 1253/// 1254/// \param TPC Describes the context in which we are checking the given 1255/// template parameter list. 1256/// 1257/// \returns true if an error occurred, false otherwise. 1258bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, 1259 TemplateParameterList *OldParams, 1260 TemplateParamListContext TPC) { 1261 bool Invalid = false; 1262 1263 // C++ [temp.param]p10: 1264 // The set of default template-arguments available for use with a 1265 // template declaration or definition is obtained by merging the 1266 // default arguments from the definition (if in scope) and all 1267 // declarations in scope in the same way default function 1268 // arguments are (8.3.6). 1269 bool SawDefaultArgument = false; 1270 SourceLocation PreviousDefaultArgLoc; 1271 1272 // Dummy initialization to avoid warnings. 1273 TemplateParameterList::iterator OldParam = NewParams->end(); 1274 if (OldParams) 1275 OldParam = OldParams->begin(); 1276 1277 bool RemoveDefaultArguments = false; 1278 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1279 NewParamEnd = NewParams->end(); 1280 NewParam != NewParamEnd; ++NewParam) { 1281 // Variables used to diagnose redundant default arguments 1282 bool RedundantDefaultArg = false; 1283 SourceLocation OldDefaultLoc; 1284 SourceLocation NewDefaultLoc; 1285 1286 // Variable used to diagnose missing default arguments 1287 bool MissingDefaultArg = false; 1288 1289 // Variable used to diagnose non-final parameter packs 1290 bool SawParameterPack = false; 1291 1292 if (TemplateTypeParmDecl *NewTypeParm 1293 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { 1294 // Check the presence of a default argument here. 1295 if (NewTypeParm->hasDefaultArgument() && 1296 DiagnoseDefaultTemplateArgument(*this, TPC, 1297 NewTypeParm->getLocation(), 1298 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() 1299 .getSourceRange())) 1300 NewTypeParm->removeDefaultArgument(); 1301 1302 // Merge default arguments for template type parameters. 1303 TemplateTypeParmDecl *OldTypeParm 1304 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0; 1305 1306 if (NewTypeParm->isParameterPack()) { 1307 assert(!NewTypeParm->hasDefaultArgument() && 1308 "Parameter packs can't have a default argument!"); 1309 SawParameterPack = true; 1310 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() && 1311 NewTypeParm->hasDefaultArgument()) { 1312 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); 1313 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); 1314 SawDefaultArgument = true; 1315 RedundantDefaultArg = true; 1316 PreviousDefaultArgLoc = NewDefaultLoc; 1317 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { 1318 // Merge the default argument from the old declaration to the 1319 // new declaration. 1320 SawDefaultArgument = true; 1321 NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(), 1322 true); 1323 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); 1324 } else if (NewTypeParm->hasDefaultArgument()) { 1325 SawDefaultArgument = true; 1326 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); 1327 } else if (SawDefaultArgument) 1328 MissingDefaultArg = true; 1329 } else if (NonTypeTemplateParmDecl *NewNonTypeParm 1330 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { 1331 // Check for unexpanded parameter packs. 1332 if (!NewNonTypeParm->isParameterPack() && 1333 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), 1334 NewNonTypeParm->getTypeSourceInfo(), 1335 UPPC_NonTypeTemplateParameterType)) { 1336 Invalid = true; 1337 continue; 1338 } 1339 1340 // Check the presence of a default argument here. 1341 if (NewNonTypeParm->hasDefaultArgument() && 1342 DiagnoseDefaultTemplateArgument(*this, TPC, 1343 NewNonTypeParm->getLocation(), 1344 NewNonTypeParm->getDefaultArgument()->getSourceRange())) { 1345 NewNonTypeParm->removeDefaultArgument(); 1346 } 1347 1348 // Merge default arguments for non-type template parameters 1349 NonTypeTemplateParmDecl *OldNonTypeParm 1350 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0; 1351 if (NewNonTypeParm->isParameterPack()) { 1352 assert(!NewNonTypeParm->hasDefaultArgument() && 1353 "Parameter packs can't have a default argument!"); 1354 if (!NewNonTypeParm->isPackExpansion()) 1355 SawParameterPack = true; 1356 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() && 1357 NewNonTypeParm->hasDefaultArgument()) { 1358 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1359 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1360 SawDefaultArgument = true; 1361 RedundantDefaultArg = true; 1362 PreviousDefaultArgLoc = NewDefaultLoc; 1363 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { 1364 // Merge the default argument from the old declaration to the 1365 // new declaration. 1366 SawDefaultArgument = true; 1367 // FIXME: We need to create a new kind of "default argument" 1368 // expression that points to a previous non-type template 1369 // parameter. 1370 NewNonTypeParm->setDefaultArgument( 1371 OldNonTypeParm->getDefaultArgument(), 1372 /*Inherited=*/ true); 1373 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); 1374 } else if (NewNonTypeParm->hasDefaultArgument()) { 1375 SawDefaultArgument = true; 1376 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); 1377 } else if (SawDefaultArgument) 1378 MissingDefaultArg = true; 1379 } else { 1380 TemplateTemplateParmDecl *NewTemplateParm 1381 = cast<TemplateTemplateParmDecl>(*NewParam); 1382 1383 // Check for unexpanded parameter packs, recursively. 1384 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { 1385 Invalid = true; 1386 continue; 1387 } 1388 1389 // Check the presence of a default argument here. 1390 if (NewTemplateParm->hasDefaultArgument() && 1391 DiagnoseDefaultTemplateArgument(*this, TPC, 1392 NewTemplateParm->getLocation(), 1393 NewTemplateParm->getDefaultArgument().getSourceRange())) 1394 NewTemplateParm->removeDefaultArgument(); 1395 1396 // Merge default arguments for template template parameters 1397 TemplateTemplateParmDecl *OldTemplateParm 1398 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0; 1399 if (NewTemplateParm->isParameterPack()) { 1400 assert(!NewTemplateParm->hasDefaultArgument() && 1401 "Parameter packs can't have a default argument!"); 1402 if (!NewTemplateParm->isPackExpansion()) 1403 SawParameterPack = true; 1404 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() && 1405 NewTemplateParm->hasDefaultArgument()) { 1406 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); 1407 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); 1408 SawDefaultArgument = true; 1409 RedundantDefaultArg = true; 1410 PreviousDefaultArgLoc = NewDefaultLoc; 1411 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { 1412 // Merge the default argument from the old declaration to the 1413 // new declaration. 1414 SawDefaultArgument = true; 1415 // FIXME: We need to create a new kind of "default argument" expression 1416 // that points to a previous template template parameter. 1417 NewTemplateParm->setDefaultArgument( 1418 OldTemplateParm->getDefaultArgument(), 1419 /*Inherited=*/ true); 1420 PreviousDefaultArgLoc 1421 = OldTemplateParm->getDefaultArgument().getLocation(); 1422 } else if (NewTemplateParm->hasDefaultArgument()) { 1423 SawDefaultArgument = true; 1424 PreviousDefaultArgLoc 1425 = NewTemplateParm->getDefaultArgument().getLocation(); 1426 } else if (SawDefaultArgument) 1427 MissingDefaultArg = true; 1428 } 1429 1430 // C++11 [temp.param]p11: 1431 // If a template parameter of a primary class template or alias template 1432 // is a template parameter pack, it shall be the last template parameter. 1433 if (SawParameterPack && (NewParam + 1) != NewParamEnd && 1434 (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) { 1435 Diag((*NewParam)->getLocation(), 1436 diag::err_template_param_pack_must_be_last_template_parameter); 1437 Invalid = true; 1438 } 1439 1440 if (RedundantDefaultArg) { 1441 // C++ [temp.param]p12: 1442 // A template-parameter shall not be given default arguments 1443 // by two different declarations in the same scope. 1444 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); 1445 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); 1446 Invalid = true; 1447 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { 1448 // C++ [temp.param]p11: 1449 // If a template-parameter of a class template has a default 1450 // template-argument, each subsequent template-parameter shall either 1451 // have a default template-argument supplied or be a template parameter 1452 // pack. 1453 Diag((*NewParam)->getLocation(), 1454 diag::err_template_param_default_arg_missing); 1455 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); 1456 Invalid = true; 1457 RemoveDefaultArguments = true; 1458 } 1459 1460 // If we have an old template parameter list that we're merging 1461 // in, move on to the next parameter. 1462 if (OldParams) 1463 ++OldParam; 1464 } 1465 1466 // We were missing some default arguments at the end of the list, so remove 1467 // all of the default arguments. 1468 if (RemoveDefaultArguments) { 1469 for (TemplateParameterList::iterator NewParam = NewParams->begin(), 1470 NewParamEnd = NewParams->end(); 1471 NewParam != NewParamEnd; ++NewParam) { 1472 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) 1473 TTP->removeDefaultArgument(); 1474 else if (NonTypeTemplateParmDecl *NTTP 1475 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) 1476 NTTP->removeDefaultArgument(); 1477 else 1478 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); 1479 } 1480 } 1481 1482 return Invalid; 1483} 1484 1485namespace { 1486 1487/// A class which looks for a use of a certain level of template 1488/// parameter. 1489struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { 1490 typedef RecursiveASTVisitor<DependencyChecker> super; 1491 1492 unsigned Depth; 1493 bool Match; 1494 1495 DependencyChecker(TemplateParameterList *Params) : Match(false) { 1496 NamedDecl *ND = Params->getParam(0); 1497 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { 1498 Depth = PD->getDepth(); 1499 } else if (NonTypeTemplateParmDecl *PD = 1500 dyn_cast<NonTypeTemplateParmDecl>(ND)) { 1501 Depth = PD->getDepth(); 1502 } else { 1503 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); 1504 } 1505 } 1506 1507 bool Matches(unsigned ParmDepth) { 1508 if (ParmDepth >= Depth) { 1509 Match = true; 1510 return true; 1511 } 1512 return false; 1513 } 1514 1515 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { 1516 return !Matches(T->getDepth()); 1517 } 1518 1519 bool TraverseTemplateName(TemplateName N) { 1520 if (TemplateTemplateParmDecl *PD = 1521 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) 1522 if (Matches(PD->getDepth())) return false; 1523 return super::TraverseTemplateName(N); 1524 } 1525 1526 bool VisitDeclRefExpr(DeclRefExpr *E) { 1527 if (NonTypeTemplateParmDecl *PD = 1528 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) { 1529 if (PD->getDepth() == Depth) { 1530 Match = true; 1531 return false; 1532 } 1533 } 1534 return super::VisitDeclRefExpr(E); 1535 } 1536 1537 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { 1538 return TraverseType(T->getInjectedSpecializationType()); 1539 } 1540}; 1541} 1542 1543/// Determines whether a given type depends on the given parameter 1544/// list. 1545static bool 1546DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { 1547 DependencyChecker Checker(Params); 1548 Checker.TraverseType(T); 1549 return Checker.Match; 1550} 1551 1552// Find the source range corresponding to the named type in the given 1553// nested-name-specifier, if any. 1554static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, 1555 QualType T, 1556 const CXXScopeSpec &SS) { 1557 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); 1558 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { 1559 if (const Type *CurType = NNS->getAsType()) { 1560 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) 1561 return NNSLoc.getTypeLoc().getSourceRange(); 1562 } else 1563 break; 1564 1565 NNSLoc = NNSLoc.getPrefix(); 1566 } 1567 1568 return SourceRange(); 1569} 1570 1571/// \brief Match the given template parameter lists to the given scope 1572/// specifier, returning the template parameter list that applies to the 1573/// name. 1574/// 1575/// \param DeclStartLoc the start of the declaration that has a scope 1576/// specifier or a template parameter list. 1577/// 1578/// \param DeclLoc The location of the declaration itself. 1579/// 1580/// \param SS the scope specifier that will be matched to the given template 1581/// parameter lists. This scope specifier precedes a qualified name that is 1582/// being declared. 1583/// 1584/// \param ParamLists the template parameter lists, from the outermost to the 1585/// innermost template parameter lists. 1586/// 1587/// \param NumParamLists the number of template parameter lists in ParamLists. 1588/// 1589/// \param IsFriend Whether to apply the slightly different rules for 1590/// matching template parameters to scope specifiers in friend 1591/// declarations. 1592/// 1593/// \param IsExplicitSpecialization will be set true if the entity being 1594/// declared is an explicit specialization, false otherwise. 1595/// 1596/// \returns the template parameter list, if any, that corresponds to the 1597/// name that is preceded by the scope specifier @p SS. This template 1598/// parameter list may have template parameters (if we're declaring a 1599/// template) or may have no template parameters (if we're declaring a 1600/// template specialization), or may be NULL (if what we're declaring isn't 1601/// itself a template). 1602TemplateParameterList * 1603Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc, 1604 SourceLocation DeclLoc, 1605 const CXXScopeSpec &SS, 1606 TemplateParameterList **ParamLists, 1607 unsigned NumParamLists, 1608 bool IsFriend, 1609 bool &IsExplicitSpecialization, 1610 bool &Invalid) { 1611 IsExplicitSpecialization = false; 1612 Invalid = false; 1613 1614 // The sequence of nested types to which we will match up the template 1615 // parameter lists. We first build this list by starting with the type named 1616 // by the nested-name-specifier and walking out until we run out of types. 1617 SmallVector<QualType, 4> NestedTypes; 1618 QualType T; 1619 if (SS.getScopeRep()) { 1620 if (CXXRecordDecl *Record 1621 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) 1622 T = Context.getTypeDeclType(Record); 1623 else 1624 T = QualType(SS.getScopeRep()->getAsType(), 0); 1625 } 1626 1627 // If we found an explicit specialization that prevents us from needing 1628 // 'template<>' headers, this will be set to the location of that 1629 // explicit specialization. 1630 SourceLocation ExplicitSpecLoc; 1631 1632 while (!T.isNull()) { 1633 NestedTypes.push_back(T); 1634 1635 // Retrieve the parent of a record type. 1636 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1637 // If this type is an explicit specialization, we're done. 1638 if (ClassTemplateSpecializationDecl *Spec 1639 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1640 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && 1641 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { 1642 ExplicitSpecLoc = Spec->getLocation(); 1643 break; 1644 } 1645 } else if (Record->getTemplateSpecializationKind() 1646 == TSK_ExplicitSpecialization) { 1647 ExplicitSpecLoc = Record->getLocation(); 1648 break; 1649 } 1650 1651 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) 1652 T = Context.getTypeDeclType(Parent); 1653 else 1654 T = QualType(); 1655 continue; 1656 } 1657 1658 if (const TemplateSpecializationType *TST 1659 = T->getAs<TemplateSpecializationType>()) { 1660 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1661 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) 1662 T = Context.getTypeDeclType(Parent); 1663 else 1664 T = QualType(); 1665 continue; 1666 } 1667 } 1668 1669 // Look one step prior in a dependent template specialization type. 1670 if (const DependentTemplateSpecializationType *DependentTST 1671 = T->getAs<DependentTemplateSpecializationType>()) { 1672 if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) 1673 T = QualType(NNS->getAsType(), 0); 1674 else 1675 T = QualType(); 1676 continue; 1677 } 1678 1679 // Look one step prior in a dependent name type. 1680 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ 1681 if (NestedNameSpecifier *NNS = DependentName->getQualifier()) 1682 T = QualType(NNS->getAsType(), 0); 1683 else 1684 T = QualType(); 1685 continue; 1686 } 1687 1688 // Retrieve the parent of an enumeration type. 1689 if (const EnumType *EnumT = T->getAs<EnumType>()) { 1690 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization 1691 // check here. 1692 EnumDecl *Enum = EnumT->getDecl(); 1693 1694 // Get to the parent type. 1695 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) 1696 T = Context.getTypeDeclType(Parent); 1697 else 1698 T = QualType(); 1699 continue; 1700 } 1701 1702 T = QualType(); 1703 } 1704 // Reverse the nested types list, since we want to traverse from the outermost 1705 // to the innermost while checking template-parameter-lists. 1706 std::reverse(NestedTypes.begin(), NestedTypes.end()); 1707 1708 // C++0x [temp.expl.spec]p17: 1709 // A member or a member template may be nested within many 1710 // enclosing class templates. In an explicit specialization for 1711 // such a member, the member declaration shall be preceded by a 1712 // template<> for each enclosing class template that is 1713 // explicitly specialized. 1714 bool SawNonEmptyTemplateParameterList = false; 1715 unsigned ParamIdx = 0; 1716 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; 1717 ++TypeIdx) { 1718 T = NestedTypes[TypeIdx]; 1719 1720 // Whether we expect a 'template<>' header. 1721 bool NeedEmptyTemplateHeader = false; 1722 1723 // Whether we expect a template header with parameters. 1724 bool NeedNonemptyTemplateHeader = false; 1725 1726 // For a dependent type, the set of template parameters that we 1727 // expect to see. 1728 TemplateParameterList *ExpectedTemplateParams = 0; 1729 1730 // C++0x [temp.expl.spec]p15: 1731 // A member or a member template may be nested within many enclosing 1732 // class templates. In an explicit specialization for such a member, the 1733 // member declaration shall be preceded by a template<> for each 1734 // enclosing class template that is explicitly specialized. 1735 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { 1736 if (ClassTemplatePartialSpecializationDecl *Partial 1737 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { 1738 ExpectedTemplateParams = Partial->getTemplateParameters(); 1739 NeedNonemptyTemplateHeader = true; 1740 } else if (Record->isDependentType()) { 1741 if (Record->getDescribedClassTemplate()) { 1742 ExpectedTemplateParams = Record->getDescribedClassTemplate() 1743 ->getTemplateParameters(); 1744 NeedNonemptyTemplateHeader = true; 1745 } 1746 } else if (ClassTemplateSpecializationDecl *Spec 1747 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { 1748 // C++0x [temp.expl.spec]p4: 1749 // Members of an explicitly specialized class template are defined 1750 // in the same manner as members of normal classes, and not using 1751 // the template<> syntax. 1752 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) 1753 NeedEmptyTemplateHeader = true; 1754 else 1755 continue; 1756 } else if (Record->getTemplateSpecializationKind()) { 1757 if (Record->getTemplateSpecializationKind() 1758 != TSK_ExplicitSpecialization && 1759 TypeIdx == NumTypes - 1) 1760 IsExplicitSpecialization = true; 1761 1762 continue; 1763 } 1764 } else if (const TemplateSpecializationType *TST 1765 = T->getAs<TemplateSpecializationType>()) { 1766 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { 1767 ExpectedTemplateParams = Template->getTemplateParameters(); 1768 NeedNonemptyTemplateHeader = true; 1769 } 1770 } else if (T->getAs<DependentTemplateSpecializationType>()) { 1771 // FIXME: We actually could/should check the template arguments here 1772 // against the corresponding template parameter list. 1773 NeedNonemptyTemplateHeader = false; 1774 } 1775 1776 // C++ [temp.expl.spec]p16: 1777 // In an explicit specialization declaration for a member of a class 1778 // template or a member template that ap- pears in namespace scope, the 1779 // member template and some of its enclosing class templates may remain 1780 // unspecialized, except that the declaration shall not explicitly 1781 // specialize a class member template if its en- closing class templates 1782 // are not explicitly specialized as well. 1783 if (ParamIdx < NumParamLists) { 1784 if (ParamLists[ParamIdx]->size() == 0) { 1785 if (SawNonEmptyTemplateParameterList) { 1786 Diag(DeclLoc, diag::err_specialize_member_of_template) 1787 << ParamLists[ParamIdx]->getSourceRange(); 1788 Invalid = true; 1789 IsExplicitSpecialization = false; 1790 return 0; 1791 } 1792 } else 1793 SawNonEmptyTemplateParameterList = true; 1794 } 1795 1796 if (NeedEmptyTemplateHeader) { 1797 // If we're on the last of the types, and we need a 'template<>' header 1798 // here, then it's an explicit specialization. 1799 if (TypeIdx == NumTypes - 1) 1800 IsExplicitSpecialization = true; 1801 1802 if (ParamIdx < NumParamLists) { 1803 if (ParamLists[ParamIdx]->size() > 0) { 1804 // The header has template parameters when it shouldn't. Complain. 1805 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1806 diag::err_template_param_list_matches_nontemplate) 1807 << T 1808 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), 1809 ParamLists[ParamIdx]->getRAngleLoc()) 1810 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1811 Invalid = true; 1812 return 0; 1813 } 1814 1815 // Consume this template header. 1816 ++ParamIdx; 1817 continue; 1818 } 1819 1820 if (!IsFriend) { 1821 // We don't have a template header, but we should. 1822 SourceLocation ExpectedTemplateLoc; 1823 if (NumParamLists > 0) 1824 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); 1825 else 1826 ExpectedTemplateLoc = DeclStartLoc; 1827 1828 Diag(DeclLoc, diag::err_template_spec_needs_header) 1829 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS) 1830 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); 1831 } 1832 1833 continue; 1834 } 1835 1836 if (NeedNonemptyTemplateHeader) { 1837 // In friend declarations we can have template-ids which don't 1838 // depend on the corresponding template parameter lists. But 1839 // assume that empty parameter lists are supposed to match this 1840 // template-id. 1841 if (IsFriend && T->isDependentType()) { 1842 if (ParamIdx < NumParamLists && 1843 DependsOnTemplateParameters(T, ParamLists[ParamIdx])) 1844 ExpectedTemplateParams = 0; 1845 else 1846 continue; 1847 } 1848 1849 if (ParamIdx < NumParamLists) { 1850 // Check the template parameter list, if we can. 1851 if (ExpectedTemplateParams && 1852 !TemplateParameterListsAreEqual(ParamLists[ParamIdx], 1853 ExpectedTemplateParams, 1854 true, TPL_TemplateMatch)) 1855 Invalid = true; 1856 1857 if (!Invalid && 1858 CheckTemplateParameterList(ParamLists[ParamIdx], 0, 1859 TPC_ClassTemplateMember)) 1860 Invalid = true; 1861 1862 ++ParamIdx; 1863 continue; 1864 } 1865 1866 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) 1867 << T 1868 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); 1869 Invalid = true; 1870 continue; 1871 } 1872 } 1873 1874 // If there were at least as many template-ids as there were template 1875 // parameter lists, then there are no template parameter lists remaining for 1876 // the declaration itself. 1877 if (ParamIdx >= NumParamLists) 1878 return 0; 1879 1880 // If there were too many template parameter lists, complain about that now. 1881 if (ParamIdx < NumParamLists - 1) { 1882 bool HasAnyExplicitSpecHeader = false; 1883 bool AllExplicitSpecHeaders = true; 1884 for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) { 1885 if (ParamLists[I]->size() == 0) 1886 HasAnyExplicitSpecHeader = true; 1887 else 1888 AllExplicitSpecHeaders = false; 1889 } 1890 1891 Diag(ParamLists[ParamIdx]->getTemplateLoc(), 1892 AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers 1893 : diag::err_template_spec_extra_headers) 1894 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), 1895 ParamLists[NumParamLists - 2]->getRAngleLoc()); 1896 1897 // If there was a specialization somewhere, such that 'template<>' is 1898 // not required, and there were any 'template<>' headers, note where the 1899 // specialization occurred. 1900 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader) 1901 Diag(ExplicitSpecLoc, 1902 diag::note_explicit_template_spec_does_not_need_header) 1903 << NestedTypes.back(); 1904 1905 // We have a template parameter list with no corresponding scope, which 1906 // means that the resulting template declaration can't be instantiated 1907 // properly (we'll end up with dependent nodes when we shouldn't). 1908 if (!AllExplicitSpecHeaders) 1909 Invalid = true; 1910 } 1911 1912 // C++ [temp.expl.spec]p16: 1913 // In an explicit specialization declaration for a member of a class 1914 // template or a member template that ap- pears in namespace scope, the 1915 // member template and some of its enclosing class templates may remain 1916 // unspecialized, except that the declaration shall not explicitly 1917 // specialize a class member template if its en- closing class templates 1918 // are not explicitly specialized as well. 1919 if (ParamLists[NumParamLists - 1]->size() == 0 && 1920 SawNonEmptyTemplateParameterList) { 1921 Diag(DeclLoc, diag::err_specialize_member_of_template) 1922 << ParamLists[ParamIdx]->getSourceRange(); 1923 Invalid = true; 1924 IsExplicitSpecialization = false; 1925 return 0; 1926 } 1927 1928 // Return the last template parameter list, which corresponds to the 1929 // entity being declared. 1930 return ParamLists[NumParamLists - 1]; 1931} 1932 1933void Sema::NoteAllFoundTemplates(TemplateName Name) { 1934 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 1935 Diag(Template->getLocation(), diag::note_template_declared_here) 1936 << (isa<FunctionTemplateDecl>(Template)? 0 1937 : isa<ClassTemplateDecl>(Template)? 1 1938 : isa<TypeAliasTemplateDecl>(Template)? 2 1939 : 3) 1940 << Template->getDeclName(); 1941 return; 1942 } 1943 1944 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { 1945 for (OverloadedTemplateStorage::iterator I = OST->begin(), 1946 IEnd = OST->end(); 1947 I != IEnd; ++I) 1948 Diag((*I)->getLocation(), diag::note_template_declared_here) 1949 << 0 << (*I)->getDeclName(); 1950 1951 return; 1952 } 1953} 1954 1955QualType Sema::CheckTemplateIdType(TemplateName Name, 1956 SourceLocation TemplateLoc, 1957 TemplateArgumentListInfo &TemplateArgs) { 1958 DependentTemplateName *DTN 1959 = Name.getUnderlying().getAsDependentTemplateName(); 1960 if (DTN && DTN->isIdentifier()) 1961 // When building a template-id where the template-name is dependent, 1962 // assume the template is a type template. Either our assumption is 1963 // correct, or the code is ill-formed and will be diagnosed when the 1964 // dependent name is substituted. 1965 return Context.getDependentTemplateSpecializationType(ETK_None, 1966 DTN->getQualifier(), 1967 DTN->getIdentifier(), 1968 TemplateArgs); 1969 1970 TemplateDecl *Template = Name.getAsTemplateDecl(); 1971 if (!Template || isa<FunctionTemplateDecl>(Template)) { 1972 // We might have a substituted template template parameter pack. If so, 1973 // build a template specialization type for it. 1974 if (Name.getAsSubstTemplateTemplateParmPack()) 1975 return Context.getTemplateSpecializationType(Name, TemplateArgs); 1976 1977 Diag(TemplateLoc, diag::err_template_id_not_a_type) 1978 << Name; 1979 NoteAllFoundTemplates(Name); 1980 return QualType(); 1981 } 1982 1983 // Check that the template argument list is well-formed for this 1984 // template. 1985 SmallVector<TemplateArgument, 4> Converted; 1986 bool ExpansionIntoFixedList = false; 1987 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, 1988 false, Converted, &ExpansionIntoFixedList)) 1989 return QualType(); 1990 1991 QualType CanonType; 1992 1993 bool InstantiationDependent = false; 1994 TypeAliasTemplateDecl *AliasTemplate = 0; 1995 if (!ExpansionIntoFixedList && 1996 (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) { 1997 // Find the canonical type for this type alias template specialization. 1998 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); 1999 if (Pattern->isInvalidDecl()) 2000 return QualType(); 2001 2002 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2003 Converted.data(), Converted.size()); 2004 2005 // Only substitute for the innermost template argument list. 2006 MultiLevelTemplateArgumentList TemplateArgLists; 2007 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); 2008 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth(); 2009 for (unsigned I = 0; I < Depth; ++I) 2010 TemplateArgLists.addOuterTemplateArguments(0, 0); 2011 2012 LocalInstantiationScope Scope(*this); 2013 InstantiatingTemplate Inst(*this, TemplateLoc, Template); 2014 if (Inst) 2015 return QualType(); 2016 2017 CanonType = SubstType(Pattern->getUnderlyingType(), 2018 TemplateArgLists, AliasTemplate->getLocation(), 2019 AliasTemplate->getDeclName()); 2020 if (CanonType.isNull()) 2021 return QualType(); 2022 } else if (Name.isDependent() || 2023 TemplateSpecializationType::anyDependentTemplateArguments( 2024 TemplateArgs, InstantiationDependent)) { 2025 // This class template specialization is a dependent 2026 // type. Therefore, its canonical type is another class template 2027 // specialization type that contains all of the converted 2028 // arguments in canonical form. This ensures that, e.g., A<T> and 2029 // A<T, T> have identical types when A is declared as: 2030 // 2031 // template<typename T, typename U = T> struct A; 2032 TemplateName CanonName = Context.getCanonicalTemplateName(Name); 2033 CanonType = Context.getTemplateSpecializationType(CanonName, 2034 Converted.data(), 2035 Converted.size()); 2036 2037 // FIXME: CanonType is not actually the canonical type, and unfortunately 2038 // it is a TemplateSpecializationType that we will never use again. 2039 // In the future, we need to teach getTemplateSpecializationType to only 2040 // build the canonical type and return that to us. 2041 CanonType = Context.getCanonicalType(CanonType); 2042 2043 // This might work out to be a current instantiation, in which 2044 // case the canonical type needs to be the InjectedClassNameType. 2045 // 2046 // TODO: in theory this could be a simple hashtable lookup; most 2047 // changes to CurContext don't change the set of current 2048 // instantiations. 2049 if (isa<ClassTemplateDecl>(Template)) { 2050 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { 2051 // If we get out to a namespace, we're done. 2052 if (Ctx->isFileContext()) break; 2053 2054 // If this isn't a record, keep looking. 2055 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); 2056 if (!Record) continue; 2057 2058 // Look for one of the two cases with InjectedClassNameTypes 2059 // and check whether it's the same template. 2060 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && 2061 !Record->getDescribedClassTemplate()) 2062 continue; 2063 2064 // Fetch the injected class name type and check whether its 2065 // injected type is equal to the type we just built. 2066 QualType ICNT = Context.getTypeDeclType(Record); 2067 QualType Injected = cast<InjectedClassNameType>(ICNT) 2068 ->getInjectedSpecializationType(); 2069 2070 if (CanonType != Injected->getCanonicalTypeInternal()) 2071 continue; 2072 2073 // If so, the canonical type of this TST is the injected 2074 // class name type of the record we just found. 2075 assert(ICNT.isCanonical()); 2076 CanonType = ICNT; 2077 break; 2078 } 2079 } 2080 } else if (ClassTemplateDecl *ClassTemplate 2081 = dyn_cast<ClassTemplateDecl>(Template)) { 2082 // Find the class template specialization declaration that 2083 // corresponds to these arguments. 2084 void *InsertPos = 0; 2085 ClassTemplateSpecializationDecl *Decl 2086 = ClassTemplate->findSpecialization(Converted.data(), Converted.size(), 2087 InsertPos); 2088 if (!Decl) { 2089 // This is the first time we have referenced this class template 2090 // specialization. Create the canonical declaration and add it to 2091 // the set of specializations. 2092 Decl = ClassTemplateSpecializationDecl::Create(Context, 2093 ClassTemplate->getTemplatedDecl()->getTagKind(), 2094 ClassTemplate->getDeclContext(), 2095 ClassTemplate->getTemplatedDecl()->getLocStart(), 2096 ClassTemplate->getLocation(), 2097 ClassTemplate, 2098 Converted.data(), 2099 Converted.size(), 0); 2100 ClassTemplate->AddSpecialization(Decl, InsertPos); 2101 if (ClassTemplate->isOutOfLine()) 2102 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); 2103 } 2104 2105 CanonType = Context.getTypeDeclType(Decl); 2106 assert(isa<RecordType>(CanonType) && 2107 "type of non-dependent specialization is not a RecordType"); 2108 } 2109 2110 // Build the fully-sugared type for this class template 2111 // specialization, which refers back to the class template 2112 // specialization we created or found. 2113 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); 2114} 2115 2116TypeResult 2117Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc, 2118 TemplateTy TemplateD, SourceLocation TemplateLoc, 2119 SourceLocation LAngleLoc, 2120 ASTTemplateArgsPtr TemplateArgsIn, 2121 SourceLocation RAngleLoc, 2122 bool IsCtorOrDtorName) { 2123 if (SS.isInvalid()) 2124 return true; 2125 2126 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2127 2128 // Translate the parser's template argument list in our AST format. 2129 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2130 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2131 2132 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2133 QualType T 2134 = Context.getDependentTemplateSpecializationType(ETK_None, 2135 DTN->getQualifier(), 2136 DTN->getIdentifier(), 2137 TemplateArgs); 2138 // Build type-source information. 2139 TypeLocBuilder TLB; 2140 DependentTemplateSpecializationTypeLoc SpecTL 2141 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2142 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 2143 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2144 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2145 SpecTL.setTemplateNameLoc(TemplateLoc); 2146 SpecTL.setLAngleLoc(LAngleLoc); 2147 SpecTL.setRAngleLoc(RAngleLoc); 2148 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2149 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2150 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2151 } 2152 2153 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2154 2155 if (Result.isNull()) 2156 return true; 2157 2158 // Build type-source information. 2159 TypeLocBuilder TLB; 2160 TemplateSpecializationTypeLoc SpecTL 2161 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2162 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2163 SpecTL.setTemplateNameLoc(TemplateLoc); 2164 SpecTL.setLAngleLoc(LAngleLoc); 2165 SpecTL.setRAngleLoc(RAngleLoc); 2166 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2167 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2168 2169 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a 2170 // constructor or destructor name (in such a case, the scope specifier 2171 // will be attached to the enclosing Decl or Expr node). 2172 if (SS.isNotEmpty() && !IsCtorOrDtorName) { 2173 // Create an elaborated-type-specifier containing the nested-name-specifier. 2174 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); 2175 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2176 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 2177 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2178 } 2179 2180 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2181} 2182 2183TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, 2184 TypeSpecifierType TagSpec, 2185 SourceLocation TagLoc, 2186 CXXScopeSpec &SS, 2187 SourceLocation TemplateKWLoc, 2188 TemplateTy TemplateD, 2189 SourceLocation TemplateLoc, 2190 SourceLocation LAngleLoc, 2191 ASTTemplateArgsPtr TemplateArgsIn, 2192 SourceLocation RAngleLoc) { 2193 TemplateName Template = TemplateD.getAsVal<TemplateName>(); 2194 2195 // Translate the parser's template argument list in our AST format. 2196 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 2197 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 2198 2199 // Determine the tag kind 2200 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 2201 ElaboratedTypeKeyword Keyword 2202 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); 2203 2204 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 2205 QualType T = Context.getDependentTemplateSpecializationType(Keyword, 2206 DTN->getQualifier(), 2207 DTN->getIdentifier(), 2208 TemplateArgs); 2209 2210 // Build type-source information. 2211 TypeLocBuilder TLB; 2212 DependentTemplateSpecializationTypeLoc SpecTL 2213 = TLB.push<DependentTemplateSpecializationTypeLoc>(T); 2214 SpecTL.setElaboratedKeywordLoc(TagLoc); 2215 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2216 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2217 SpecTL.setTemplateNameLoc(TemplateLoc); 2218 SpecTL.setLAngleLoc(LAngleLoc); 2219 SpecTL.setRAngleLoc(RAngleLoc); 2220 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) 2221 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 2222 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); 2223 } 2224 2225 if (TypeAliasTemplateDecl *TAT = 2226 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { 2227 // C++0x [dcl.type.elab]p2: 2228 // If the identifier resolves to a typedef-name or the simple-template-id 2229 // resolves to an alias template specialization, the 2230 // elaborated-type-specifier is ill-formed. 2231 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4; 2232 Diag(TAT->getLocation(), diag::note_declared_at); 2233 } 2234 2235 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); 2236 if (Result.isNull()) 2237 return TypeResult(true); 2238 2239 // Check the tag kind 2240 if (const RecordType *RT = Result->getAs<RecordType>()) { 2241 RecordDecl *D = RT->getDecl(); 2242 2243 IdentifierInfo *Id = D->getIdentifier(); 2244 assert(Id && "templated class must have an identifier"); 2245 2246 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, 2247 TagLoc, *Id)) { 2248 Diag(TagLoc, diag::err_use_with_wrong_tag) 2249 << Result 2250 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); 2251 Diag(D->getLocation(), diag::note_previous_use); 2252 } 2253 } 2254 2255 // Provide source-location information for the template specialization. 2256 TypeLocBuilder TLB; 2257 TemplateSpecializationTypeLoc SpecTL 2258 = TLB.push<TemplateSpecializationTypeLoc>(Result); 2259 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 2260 SpecTL.setTemplateNameLoc(TemplateLoc); 2261 SpecTL.setLAngleLoc(LAngleLoc); 2262 SpecTL.setRAngleLoc(RAngleLoc); 2263 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) 2264 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); 2265 2266 // Construct an elaborated type containing the nested-name-specifier (if any) 2267 // and tag keyword. 2268 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); 2269 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); 2270 ElabTL.setElaboratedKeywordLoc(TagLoc); 2271 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 2272 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 2273} 2274 2275ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, 2276 SourceLocation TemplateKWLoc, 2277 LookupResult &R, 2278 bool RequiresADL, 2279 const TemplateArgumentListInfo *TemplateArgs) { 2280 // FIXME: Can we do any checking at this point? I guess we could check the 2281 // template arguments that we have against the template name, if the template 2282 // name refers to a single template. That's not a terribly common case, 2283 // though. 2284 // foo<int> could identify a single function unambiguously 2285 // This approach does NOT work, since f<int>(1); 2286 // gets resolved prior to resorting to overload resolution 2287 // i.e., template<class T> void f(double); 2288 // vs template<class T, class U> void f(U); 2289 2290 // These should be filtered out by our callers. 2291 assert(!R.empty() && "empty lookup results when building templateid"); 2292 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); 2293 2294 // We don't want lookup warnings at this point. 2295 R.suppressDiagnostics(); 2296 2297 UnresolvedLookupExpr *ULE 2298 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), 2299 SS.getWithLocInContext(Context), 2300 TemplateKWLoc, 2301 R.getLookupNameInfo(), 2302 RequiresADL, TemplateArgs, 2303 R.begin(), R.end()); 2304 2305 return Owned(ULE); 2306} 2307 2308// We actually only call this from template instantiation. 2309ExprResult 2310Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, 2311 SourceLocation TemplateKWLoc, 2312 const DeclarationNameInfo &NameInfo, 2313 const TemplateArgumentListInfo *TemplateArgs) { 2314 assert(TemplateArgs || TemplateKWLoc.isValid()); 2315 DeclContext *DC; 2316 if (!(DC = computeDeclContext(SS, false)) || 2317 DC->isDependentContext() || 2318 RequireCompleteDeclContext(SS, DC)) 2319 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); 2320 2321 bool MemberOfUnknownSpecialization; 2322 LookupResult R(*this, NameInfo, LookupOrdinaryName); 2323 LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false, 2324 MemberOfUnknownSpecialization); 2325 2326 if (R.isAmbiguous()) 2327 return ExprError(); 2328 2329 if (R.empty()) { 2330 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template) 2331 << NameInfo.getName() << SS.getRange(); 2332 return ExprError(); 2333 } 2334 2335 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { 2336 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) 2337 << (NestedNameSpecifier*) SS.getScopeRep() 2338 << NameInfo.getName() << SS.getRange(); 2339 Diag(Temp->getLocation(), diag::note_referenced_class_template); 2340 return ExprError(); 2341 } 2342 2343 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); 2344} 2345 2346/// \brief Form a dependent template name. 2347/// 2348/// This action forms a dependent template name given the template 2349/// name and its (presumably dependent) scope specifier. For 2350/// example, given "MetaFun::template apply", the scope specifier \p 2351/// SS will be "MetaFun::", \p TemplateKWLoc contains the location 2352/// of the "template" keyword, and "apply" is the \p Name. 2353TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S, 2354 CXXScopeSpec &SS, 2355 SourceLocation TemplateKWLoc, 2356 UnqualifiedId &Name, 2357 ParsedType ObjectType, 2358 bool EnteringContext, 2359 TemplateTy &Result) { 2360 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) 2361 Diag(TemplateKWLoc, 2362 getLangOpts().CPlusPlus11 ? 2363 diag::warn_cxx98_compat_template_outside_of_template : 2364 diag::ext_template_outside_of_template) 2365 << FixItHint::CreateRemoval(TemplateKWLoc); 2366 2367 DeclContext *LookupCtx = 0; 2368 if (SS.isSet()) 2369 LookupCtx = computeDeclContext(SS, EnteringContext); 2370 if (!LookupCtx && ObjectType) 2371 LookupCtx = computeDeclContext(ObjectType.get()); 2372 if (LookupCtx) { 2373 // C++0x [temp.names]p5: 2374 // If a name prefixed by the keyword template is not the name of 2375 // a template, the program is ill-formed. [Note: the keyword 2376 // template may not be applied to non-template members of class 2377 // templates. -end note ] [ Note: as is the case with the 2378 // typename prefix, the template prefix is allowed in cases 2379 // where it is not strictly necessary; i.e., when the 2380 // nested-name-specifier or the expression on the left of the -> 2381 // or . is not dependent on a template-parameter, or the use 2382 // does not appear in the scope of a template. -end note] 2383 // 2384 // Note: C++03 was more strict here, because it banned the use of 2385 // the "template" keyword prior to a template-name that was not a 2386 // dependent name. C++ DR468 relaxed this requirement (the 2387 // "template" keyword is now permitted). We follow the C++0x 2388 // rules, even in C++03 mode with a warning, retroactively applying the DR. 2389 bool MemberOfUnknownSpecialization; 2390 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, 2391 ObjectType, EnteringContext, Result, 2392 MemberOfUnknownSpecialization); 2393 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() && 2394 isa<CXXRecordDecl>(LookupCtx) && 2395 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 2396 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) { 2397 // This is a dependent template. Handle it below. 2398 } else if (TNK == TNK_Non_template) { 2399 Diag(Name.getLocStart(), 2400 diag::err_template_kw_refers_to_non_template) 2401 << GetNameFromUnqualifiedId(Name).getName() 2402 << Name.getSourceRange() 2403 << TemplateKWLoc; 2404 return TNK_Non_template; 2405 } else { 2406 // We found something; return it. 2407 return TNK; 2408 } 2409 } 2410 2411 NestedNameSpecifier *Qualifier 2412 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 2413 2414 switch (Name.getKind()) { 2415 case UnqualifiedId::IK_Identifier: 2416 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2417 Name.Identifier)); 2418 return TNK_Dependent_template_name; 2419 2420 case UnqualifiedId::IK_OperatorFunctionId: 2421 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier, 2422 Name.OperatorFunctionId.Operator)); 2423 return TNK_Dependent_template_name; 2424 2425 case UnqualifiedId::IK_LiteralOperatorId: 2426 llvm_unreachable( 2427 "We don't support these; Parse shouldn't have allowed propagation"); 2428 2429 default: 2430 break; 2431 } 2432 2433 Diag(Name.getLocStart(), 2434 diag::err_template_kw_refers_to_non_template) 2435 << GetNameFromUnqualifiedId(Name).getName() 2436 << Name.getSourceRange() 2437 << TemplateKWLoc; 2438 return TNK_Non_template; 2439} 2440 2441bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, 2442 const TemplateArgumentLoc &AL, 2443 SmallVectorImpl<TemplateArgument> &Converted) { 2444 const TemplateArgument &Arg = AL.getArgument(); 2445 2446 // Check template type parameter. 2447 switch(Arg.getKind()) { 2448 case TemplateArgument::Type: 2449 // C++ [temp.arg.type]p1: 2450 // A template-argument for a template-parameter which is a 2451 // type shall be a type-id. 2452 break; 2453 case TemplateArgument::Template: { 2454 // We have a template type parameter but the template argument 2455 // is a template without any arguments. 2456 SourceRange SR = AL.getSourceRange(); 2457 TemplateName Name = Arg.getAsTemplate(); 2458 Diag(SR.getBegin(), diag::err_template_missing_args) 2459 << Name << SR; 2460 if (TemplateDecl *Decl = Name.getAsTemplateDecl()) 2461 Diag(Decl->getLocation(), diag::note_template_decl_here); 2462 2463 return true; 2464 } 2465 case TemplateArgument::Expression: { 2466 // We have a template type parameter but the template argument is an 2467 // expression; see if maybe it is missing the "typename" keyword. 2468 CXXScopeSpec SS; 2469 DeclarationNameInfo NameInfo; 2470 2471 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) { 2472 SS.Adopt(ArgExpr->getQualifierLoc()); 2473 NameInfo = ArgExpr->getNameInfo(); 2474 } else if (DependentScopeDeclRefExpr *ArgExpr = 2475 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { 2476 SS.Adopt(ArgExpr->getQualifierLoc()); 2477 NameInfo = ArgExpr->getNameInfo(); 2478 } else if (CXXDependentScopeMemberExpr *ArgExpr = 2479 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { 2480 if (ArgExpr->isImplicitAccess()) { 2481 SS.Adopt(ArgExpr->getQualifierLoc()); 2482 NameInfo = ArgExpr->getMemberNameInfo(); 2483 } 2484 } 2485 2486 if (NameInfo.getName().isIdentifier()) { 2487 LookupResult Result(*this, NameInfo, LookupOrdinaryName); 2488 LookupParsedName(Result, CurScope, &SS); 2489 2490 if (Result.getAsSingle<TypeDecl>() || 2491 Result.getResultKind() == 2492 LookupResult::NotFoundInCurrentInstantiation) { 2493 // FIXME: Add a FixIt and fix up the template argument for recovery. 2494 SourceLocation Loc = AL.getSourceRange().getBegin(); 2495 Diag(Loc, diag::err_template_arg_must_be_type_suggest); 2496 Diag(Param->getLocation(), diag::note_template_param_here); 2497 return true; 2498 } 2499 } 2500 // fallthrough 2501 } 2502 default: { 2503 // We have a template type parameter but the template argument 2504 // is not a type. 2505 SourceRange SR = AL.getSourceRange(); 2506 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; 2507 Diag(Param->getLocation(), diag::note_template_param_here); 2508 2509 return true; 2510 } 2511 } 2512 2513 if (CheckTemplateArgument(Param, AL.getTypeSourceInfo())) 2514 return true; 2515 2516 // Add the converted template type argument. 2517 QualType ArgType = Context.getCanonicalType(Arg.getAsType()); 2518 2519 // Objective-C ARC: 2520 // If an explicitly-specified template argument type is a lifetime type 2521 // with no lifetime qualifier, the __strong lifetime qualifier is inferred. 2522 if (getLangOpts().ObjCAutoRefCount && 2523 ArgType->isObjCLifetimeType() && 2524 !ArgType.getObjCLifetime()) { 2525 Qualifiers Qs; 2526 Qs.setObjCLifetime(Qualifiers::OCL_Strong); 2527 ArgType = Context.getQualifiedType(ArgType, Qs); 2528 } 2529 2530 Converted.push_back(TemplateArgument(ArgType)); 2531 return false; 2532} 2533 2534/// \brief Substitute template arguments into the default template argument for 2535/// the given template type parameter. 2536/// 2537/// \param SemaRef the semantic analysis object for which we are performing 2538/// the substitution. 2539/// 2540/// \param Template the template that we are synthesizing template arguments 2541/// for. 2542/// 2543/// \param TemplateLoc the location of the template name that started the 2544/// template-id we are checking. 2545/// 2546/// \param RAngleLoc the location of the right angle bracket ('>') that 2547/// terminates the template-id. 2548/// 2549/// \param Param the template template parameter whose default we are 2550/// substituting into. 2551/// 2552/// \param Converted the list of template arguments provided for template 2553/// parameters that precede \p Param in the template parameter list. 2554/// \returns the substituted template argument, or NULL if an error occurred. 2555static TypeSourceInfo * 2556SubstDefaultTemplateArgument(Sema &SemaRef, 2557 TemplateDecl *Template, 2558 SourceLocation TemplateLoc, 2559 SourceLocation RAngleLoc, 2560 TemplateTypeParmDecl *Param, 2561 SmallVectorImpl<TemplateArgument> &Converted) { 2562 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); 2563 2564 // If the argument type is dependent, instantiate it now based 2565 // on the previously-computed template arguments. 2566 if (ArgType->getType()->isDependentType()) { 2567 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2568 Converted.data(), Converted.size()); 2569 2570 MultiLevelTemplateArgumentList AllTemplateArgs 2571 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2572 2573 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2574 Template, Converted, 2575 SourceRange(TemplateLoc, RAngleLoc)); 2576 if (Inst) 2577 return 0; 2578 2579 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2580 ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs, 2581 Param->getDefaultArgumentLoc(), 2582 Param->getDeclName()); 2583 } 2584 2585 return ArgType; 2586} 2587 2588/// \brief Substitute template arguments into the default template argument for 2589/// the given non-type template parameter. 2590/// 2591/// \param SemaRef the semantic analysis object for which we are performing 2592/// the substitution. 2593/// 2594/// \param Template the template that we are synthesizing template arguments 2595/// for. 2596/// 2597/// \param TemplateLoc the location of the template name that started the 2598/// template-id we are checking. 2599/// 2600/// \param RAngleLoc the location of the right angle bracket ('>') that 2601/// terminates the template-id. 2602/// 2603/// \param Param the non-type template parameter whose default we are 2604/// substituting into. 2605/// 2606/// \param Converted the list of template arguments provided for template 2607/// parameters that precede \p Param in the template parameter list. 2608/// 2609/// \returns the substituted template argument, or NULL if an error occurred. 2610static ExprResult 2611SubstDefaultTemplateArgument(Sema &SemaRef, 2612 TemplateDecl *Template, 2613 SourceLocation TemplateLoc, 2614 SourceLocation RAngleLoc, 2615 NonTypeTemplateParmDecl *Param, 2616 SmallVectorImpl<TemplateArgument> &Converted) { 2617 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2618 Converted.data(), Converted.size()); 2619 2620 MultiLevelTemplateArgumentList AllTemplateArgs 2621 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2622 2623 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2624 Template, Converted, 2625 SourceRange(TemplateLoc, RAngleLoc)); 2626 if (Inst) 2627 return ExprError(); 2628 2629 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2630 EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated); 2631 return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs); 2632} 2633 2634/// \brief Substitute template arguments into the default template argument for 2635/// the given template template parameter. 2636/// 2637/// \param SemaRef the semantic analysis object for which we are performing 2638/// the substitution. 2639/// 2640/// \param Template the template that we are synthesizing template arguments 2641/// for. 2642/// 2643/// \param TemplateLoc the location of the template name that started the 2644/// template-id we are checking. 2645/// 2646/// \param RAngleLoc the location of the right angle bracket ('>') that 2647/// terminates the template-id. 2648/// 2649/// \param Param the template template parameter whose default we are 2650/// substituting into. 2651/// 2652/// \param Converted the list of template arguments provided for template 2653/// parameters that precede \p Param in the template parameter list. 2654/// 2655/// \param QualifierLoc Will be set to the nested-name-specifier (with 2656/// source-location information) that precedes the template name. 2657/// 2658/// \returns the substituted template argument, or NULL if an error occurred. 2659static TemplateName 2660SubstDefaultTemplateArgument(Sema &SemaRef, 2661 TemplateDecl *Template, 2662 SourceLocation TemplateLoc, 2663 SourceLocation RAngleLoc, 2664 TemplateTemplateParmDecl *Param, 2665 SmallVectorImpl<TemplateArgument> &Converted, 2666 NestedNameSpecifierLoc &QualifierLoc) { 2667 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2668 Converted.data(), Converted.size()); 2669 2670 MultiLevelTemplateArgumentList AllTemplateArgs 2671 = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs); 2672 2673 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, 2674 Template, Converted, 2675 SourceRange(TemplateLoc, RAngleLoc)); 2676 if (Inst) 2677 return TemplateName(); 2678 2679 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); 2680 // Substitute into the nested-name-specifier first, 2681 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); 2682 if (QualifierLoc) { 2683 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, 2684 AllTemplateArgs); 2685 if (!QualifierLoc) 2686 return TemplateName(); 2687 } 2688 2689 return SemaRef.SubstTemplateName(QualifierLoc, 2690 Param->getDefaultArgument().getArgument().getAsTemplate(), 2691 Param->getDefaultArgument().getTemplateNameLoc(), 2692 AllTemplateArgs); 2693} 2694 2695/// \brief If the given template parameter has a default template 2696/// argument, substitute into that default template argument and 2697/// return the corresponding template argument. 2698TemplateArgumentLoc 2699Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, 2700 SourceLocation TemplateLoc, 2701 SourceLocation RAngleLoc, 2702 Decl *Param, 2703 SmallVectorImpl<TemplateArgument> &Converted) { 2704 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { 2705 if (!TypeParm->hasDefaultArgument()) 2706 return TemplateArgumentLoc(); 2707 2708 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, 2709 TemplateLoc, 2710 RAngleLoc, 2711 TypeParm, 2712 Converted); 2713 if (DI) 2714 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); 2715 2716 return TemplateArgumentLoc(); 2717 } 2718 2719 if (NonTypeTemplateParmDecl *NonTypeParm 2720 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2721 if (!NonTypeParm->hasDefaultArgument()) 2722 return TemplateArgumentLoc(); 2723 2724 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, 2725 TemplateLoc, 2726 RAngleLoc, 2727 NonTypeParm, 2728 Converted); 2729 if (Arg.isInvalid()) 2730 return TemplateArgumentLoc(); 2731 2732 Expr *ArgE = Arg.takeAs<Expr>(); 2733 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); 2734 } 2735 2736 TemplateTemplateParmDecl *TempTempParm 2737 = cast<TemplateTemplateParmDecl>(Param); 2738 if (!TempTempParm->hasDefaultArgument()) 2739 return TemplateArgumentLoc(); 2740 2741 2742 NestedNameSpecifierLoc QualifierLoc; 2743 TemplateName TName = SubstDefaultTemplateArgument(*this, Template, 2744 TemplateLoc, 2745 RAngleLoc, 2746 TempTempParm, 2747 Converted, 2748 QualifierLoc); 2749 if (TName.isNull()) 2750 return TemplateArgumentLoc(); 2751 2752 return TemplateArgumentLoc(TemplateArgument(TName), 2753 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), 2754 TempTempParm->getDefaultArgument().getTemplateNameLoc()); 2755} 2756 2757/// \brief Check that the given template argument corresponds to the given 2758/// template parameter. 2759/// 2760/// \param Param The template parameter against which the argument will be 2761/// checked. 2762/// 2763/// \param Arg The template argument. 2764/// 2765/// \param Template The template in which the template argument resides. 2766/// 2767/// \param TemplateLoc The location of the template name for the template 2768/// whose argument list we're matching. 2769/// 2770/// \param RAngleLoc The location of the right angle bracket ('>') that closes 2771/// the template argument list. 2772/// 2773/// \param ArgumentPackIndex The index into the argument pack where this 2774/// argument will be placed. Only valid if the parameter is a parameter pack. 2775/// 2776/// \param Converted The checked, converted argument will be added to the 2777/// end of this small vector. 2778/// 2779/// \param CTAK Describes how we arrived at this particular template argument: 2780/// explicitly written, deduced, etc. 2781/// 2782/// \returns true on error, false otherwise. 2783bool Sema::CheckTemplateArgument(NamedDecl *Param, 2784 const TemplateArgumentLoc &Arg, 2785 NamedDecl *Template, 2786 SourceLocation TemplateLoc, 2787 SourceLocation RAngleLoc, 2788 unsigned ArgumentPackIndex, 2789 SmallVectorImpl<TemplateArgument> &Converted, 2790 CheckTemplateArgumentKind CTAK) { 2791 // Check template type parameters. 2792 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) 2793 return CheckTemplateTypeArgument(TTP, Arg, Converted); 2794 2795 // Check non-type template parameters. 2796 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2797 // Do substitution on the type of the non-type template parameter 2798 // with the template arguments we've seen thus far. But if the 2799 // template has a dependent context then we cannot substitute yet. 2800 QualType NTTPType = NTTP->getType(); 2801 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) 2802 NTTPType = NTTP->getExpansionType(ArgumentPackIndex); 2803 2804 if (NTTPType->isDependentType() && 2805 !isa<TemplateTemplateParmDecl>(Template) && 2806 !Template->getDeclContext()->isDependentContext()) { 2807 // Do substitution on the type of the non-type template parameter. 2808 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2809 NTTP, Converted, 2810 SourceRange(TemplateLoc, RAngleLoc)); 2811 if (Inst) 2812 return true; 2813 2814 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2815 Converted.data(), Converted.size()); 2816 NTTPType = SubstType(NTTPType, 2817 MultiLevelTemplateArgumentList(TemplateArgs), 2818 NTTP->getLocation(), 2819 NTTP->getDeclName()); 2820 // If that worked, check the non-type template parameter type 2821 // for validity. 2822 if (!NTTPType.isNull()) 2823 NTTPType = CheckNonTypeTemplateParameterType(NTTPType, 2824 NTTP->getLocation()); 2825 if (NTTPType.isNull()) 2826 return true; 2827 } 2828 2829 switch (Arg.getArgument().getKind()) { 2830 case TemplateArgument::Null: 2831 llvm_unreachable("Should never see a NULL template argument here"); 2832 2833 case TemplateArgument::Expression: { 2834 TemplateArgument Result; 2835 ExprResult Res = 2836 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), 2837 Result, CTAK); 2838 if (Res.isInvalid()) 2839 return true; 2840 2841 Converted.push_back(Result); 2842 break; 2843 } 2844 2845 case TemplateArgument::Declaration: 2846 case TemplateArgument::Integral: 2847 case TemplateArgument::NullPtr: 2848 // We've already checked this template argument, so just copy 2849 // it to the list of converted arguments. 2850 Converted.push_back(Arg.getArgument()); 2851 break; 2852 2853 case TemplateArgument::Template: 2854 case TemplateArgument::TemplateExpansion: 2855 // We were given a template template argument. It may not be ill-formed; 2856 // see below. 2857 if (DependentTemplateName *DTN 2858 = Arg.getArgument().getAsTemplateOrTemplatePattern() 2859 .getAsDependentTemplateName()) { 2860 // We have a template argument such as \c T::template X, which we 2861 // parsed as a template template argument. However, since we now 2862 // know that we need a non-type template argument, convert this 2863 // template name into an expression. 2864 2865 DeclarationNameInfo NameInfo(DTN->getIdentifier(), 2866 Arg.getTemplateNameLoc()); 2867 2868 CXXScopeSpec SS; 2869 SS.Adopt(Arg.getTemplateQualifierLoc()); 2870 // FIXME: the template-template arg was a DependentTemplateName, 2871 // so it was provided with a template keyword. However, its source 2872 // location is not stored in the template argument structure. 2873 SourceLocation TemplateKWLoc; 2874 ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context, 2875 SS.getWithLocInContext(Context), 2876 TemplateKWLoc, 2877 NameInfo, 0)); 2878 2879 // If we parsed the template argument as a pack expansion, create a 2880 // pack expansion expression. 2881 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ 2882 E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc()); 2883 if (E.isInvalid()) 2884 return true; 2885 } 2886 2887 TemplateArgument Result; 2888 E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result); 2889 if (E.isInvalid()) 2890 return true; 2891 2892 Converted.push_back(Result); 2893 break; 2894 } 2895 2896 // We have a template argument that actually does refer to a class 2897 // template, alias template, or template template parameter, and 2898 // therefore cannot be a non-type template argument. 2899 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) 2900 << Arg.getSourceRange(); 2901 2902 Diag(Param->getLocation(), diag::note_template_param_here); 2903 return true; 2904 2905 case TemplateArgument::Type: { 2906 // We have a non-type template parameter but the template 2907 // argument is a type. 2908 2909 // C++ [temp.arg]p2: 2910 // In a template-argument, an ambiguity between a type-id and 2911 // an expression is resolved to a type-id, regardless of the 2912 // form of the corresponding template-parameter. 2913 // 2914 // We warn specifically about this case, since it can be rather 2915 // confusing for users. 2916 QualType T = Arg.getArgument().getAsType(); 2917 SourceRange SR = Arg.getSourceRange(); 2918 if (T->isFunctionType()) 2919 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; 2920 else 2921 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; 2922 Diag(Param->getLocation(), diag::note_template_param_here); 2923 return true; 2924 } 2925 2926 case TemplateArgument::Pack: 2927 llvm_unreachable("Caller must expand template argument packs"); 2928 } 2929 2930 return false; 2931 } 2932 2933 2934 // Check template template parameters. 2935 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); 2936 2937 // Substitute into the template parameter list of the template 2938 // template parameter, since previously-supplied template arguments 2939 // may appear within the template template parameter. 2940 { 2941 // Set up a template instantiation context. 2942 LocalInstantiationScope Scope(*this); 2943 InstantiatingTemplate Inst(*this, TemplateLoc, Template, 2944 TempParm, Converted, 2945 SourceRange(TemplateLoc, RAngleLoc)); 2946 if (Inst) 2947 return true; 2948 2949 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2950 Converted.data(), Converted.size()); 2951 TempParm = cast_or_null<TemplateTemplateParmDecl>( 2952 SubstDecl(TempParm, CurContext, 2953 MultiLevelTemplateArgumentList(TemplateArgs))); 2954 if (!TempParm) 2955 return true; 2956 } 2957 2958 switch (Arg.getArgument().getKind()) { 2959 case TemplateArgument::Null: 2960 llvm_unreachable("Should never see a NULL template argument here"); 2961 2962 case TemplateArgument::Template: 2963 case TemplateArgument::TemplateExpansion: 2964 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex)) 2965 return true; 2966 2967 Converted.push_back(Arg.getArgument()); 2968 break; 2969 2970 case TemplateArgument::Expression: 2971 case TemplateArgument::Type: 2972 // We have a template template parameter but the template 2973 // argument does not refer to a template. 2974 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) 2975 << getLangOpts().CPlusPlus11; 2976 return true; 2977 2978 case TemplateArgument::Declaration: 2979 llvm_unreachable("Declaration argument with template template parameter"); 2980 case TemplateArgument::Integral: 2981 llvm_unreachable("Integral argument with template template parameter"); 2982 case TemplateArgument::NullPtr: 2983 llvm_unreachable("Null pointer argument with template template parameter"); 2984 2985 case TemplateArgument::Pack: 2986 llvm_unreachable("Caller must expand template argument packs"); 2987 } 2988 2989 return false; 2990} 2991 2992/// \brief Diagnose an arity mismatch in the 2993static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template, 2994 SourceLocation TemplateLoc, 2995 TemplateArgumentListInfo &TemplateArgs) { 2996 TemplateParameterList *Params = Template->getTemplateParameters(); 2997 unsigned NumParams = Params->size(); 2998 unsigned NumArgs = TemplateArgs.size(); 2999 3000 SourceRange Range; 3001 if (NumArgs > NumParams) 3002 Range = SourceRange(TemplateArgs[NumParams].getLocation(), 3003 TemplateArgs.getRAngleLoc()); 3004 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3005 << (NumArgs > NumParams) 3006 << (isa<ClassTemplateDecl>(Template)? 0 : 3007 isa<FunctionTemplateDecl>(Template)? 1 : 3008 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3009 << Template << Range; 3010 S.Diag(Template->getLocation(), diag::note_template_decl_here) 3011 << Params->getSourceRange(); 3012 return true; 3013} 3014 3015/// \brief Check whether the template parameter is a pack expansion, and if so, 3016/// determine the number of parameters produced by that expansion. For instance: 3017/// 3018/// \code 3019/// template<typename ...Ts> struct A { 3020/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B; 3021/// }; 3022/// \endcode 3023/// 3024/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us 3025/// is not a pack expansion, so returns an empty Optional. 3026static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) { 3027 if (NonTypeTemplateParmDecl *NTTP 3028 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 3029 if (NTTP->isExpandedParameterPack()) 3030 return NTTP->getNumExpansionTypes(); 3031 } 3032 3033 if (TemplateTemplateParmDecl *TTP 3034 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 3035 if (TTP->isExpandedParameterPack()) 3036 return TTP->getNumExpansionTemplateParameters(); 3037 } 3038 3039 return None; 3040} 3041 3042/// \brief Check that the given template argument list is well-formed 3043/// for specializing the given template. 3044bool Sema::CheckTemplateArgumentList(TemplateDecl *Template, 3045 SourceLocation TemplateLoc, 3046 TemplateArgumentListInfo &TemplateArgs, 3047 bool PartialTemplateArgs, 3048 SmallVectorImpl<TemplateArgument> &Converted, 3049 bool *ExpansionIntoFixedList) { 3050 if (ExpansionIntoFixedList) 3051 *ExpansionIntoFixedList = false; 3052 3053 TemplateParameterList *Params = Template->getTemplateParameters(); 3054 3055 SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc(); 3056 3057 // C++ [temp.arg]p1: 3058 // [...] The type and form of each template-argument specified in 3059 // a template-id shall match the type and form specified for the 3060 // corresponding parameter declared by the template in its 3061 // template-parameter-list. 3062 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); 3063 SmallVector<TemplateArgument, 2> ArgumentPack; 3064 unsigned ArgIdx = 0, NumArgs = TemplateArgs.size(); 3065 LocalInstantiationScope InstScope(*this, true); 3066 for (TemplateParameterList::iterator Param = Params->begin(), 3067 ParamEnd = Params->end(); 3068 Param != ParamEnd; /* increment in loop */) { 3069 // If we have an expanded parameter pack, make sure we don't have too 3070 // many arguments. 3071 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { 3072 if (*Expansions == ArgumentPack.size()) { 3073 // We're done with this parameter pack. Pack up its arguments and add 3074 // them to the list. 3075 Converted.push_back( 3076 TemplateArgument::CreatePackCopy(Context, 3077 ArgumentPack.data(), 3078 ArgumentPack.size())); 3079 ArgumentPack.clear(); 3080 3081 // This argument is assigned to the next parameter. 3082 ++Param; 3083 continue; 3084 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { 3085 // Not enough arguments for this parameter pack. 3086 Diag(TemplateLoc, diag::err_template_arg_list_different_arity) 3087 << false 3088 << (isa<ClassTemplateDecl>(Template)? 0 : 3089 isa<FunctionTemplateDecl>(Template)? 1 : 3090 isa<TemplateTemplateParmDecl>(Template)? 2 : 3) 3091 << Template; 3092 Diag(Template->getLocation(), diag::note_template_decl_here) 3093 << Params->getSourceRange(); 3094 return true; 3095 } 3096 } 3097 3098 if (ArgIdx < NumArgs) { 3099 // Check the template argument we were given. 3100 if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template, 3101 TemplateLoc, RAngleLoc, 3102 ArgumentPack.size(), Converted)) 3103 return true; 3104 3105 // We're now done with this argument. 3106 ++ArgIdx; 3107 3108 if ((*Param)->isTemplateParameterPack()) { 3109 // The template parameter was a template parameter pack, so take the 3110 // deduced argument and place it on the argument pack. Note that we 3111 // stay on the same template parameter so that we can deduce more 3112 // arguments. 3113 ArgumentPack.push_back(Converted.back()); 3114 Converted.pop_back(); 3115 } else { 3116 // Move to the next template parameter. 3117 ++Param; 3118 } 3119 3120 // If we just saw a pack expansion, then directly convert the remaining 3121 // arguments, because we don't know what parameters they'll match up 3122 // with. 3123 if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) { 3124 bool InFinalParameterPack = Param != ParamEnd && 3125 Param + 1 == ParamEnd && 3126 (*Param)->isTemplateParameterPack() && 3127 !getExpandedPackSize(*Param); 3128 3129 if (!InFinalParameterPack && !ArgumentPack.empty()) { 3130 // If we were part way through filling in an expanded parameter pack, 3131 // fall back to just producing individual arguments. 3132 Converted.insert(Converted.end(), 3133 ArgumentPack.begin(), ArgumentPack.end()); 3134 ArgumentPack.clear(); 3135 } 3136 3137 while (ArgIdx < NumArgs) { 3138 if (InFinalParameterPack) 3139 ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument()); 3140 else 3141 Converted.push_back(TemplateArgs[ArgIdx].getArgument()); 3142 ++ArgIdx; 3143 } 3144 3145 // Push the argument pack onto the list of converted arguments. 3146 if (InFinalParameterPack) { 3147 Converted.push_back( 3148 TemplateArgument::CreatePackCopy(Context, 3149 ArgumentPack.data(), 3150 ArgumentPack.size())); 3151 ArgumentPack.clear(); 3152 } else if (ExpansionIntoFixedList) { 3153 // We have expanded a pack into a fixed list. 3154 *ExpansionIntoFixedList = true; 3155 } 3156 3157 return false; 3158 } 3159 3160 continue; 3161 } 3162 3163 // If we're checking a partial template argument list, we're done. 3164 if (PartialTemplateArgs) { 3165 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) 3166 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3167 ArgumentPack.data(), 3168 ArgumentPack.size())); 3169 3170 return false; 3171 } 3172 3173 // If we have a template parameter pack with no more corresponding 3174 // arguments, just break out now and we'll fill in the argument pack below. 3175 if ((*Param)->isTemplateParameterPack()) { 3176 assert(!getExpandedPackSize(*Param) && 3177 "Should have dealt with this already"); 3178 3179 // A non-expanded parameter pack before the end of the parameter list 3180 // only occurs for an ill-formed template parameter list, unless we've 3181 // got a partial argument list for a function template, so just bail out. 3182 if (Param + 1 != ParamEnd) 3183 return true; 3184 3185 Converted.push_back(TemplateArgument::CreatePackCopy(Context, 3186 ArgumentPack.data(), 3187 ArgumentPack.size())); 3188 ArgumentPack.clear(); 3189 3190 ++Param; 3191 continue; 3192 } 3193 3194 // Check whether we have a default argument. 3195 TemplateArgumentLoc Arg; 3196 3197 // Retrieve the default template argument from the template 3198 // parameter. For each kind of template parameter, we substitute the 3199 // template arguments provided thus far and any "outer" template arguments 3200 // (when the template parameter was part of a nested template) into 3201 // the default argument. 3202 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { 3203 if (!TTP->hasDefaultArgument()) 3204 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3205 TemplateArgs); 3206 3207 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, 3208 Template, 3209 TemplateLoc, 3210 RAngleLoc, 3211 TTP, 3212 Converted); 3213 if (!ArgType) 3214 return true; 3215 3216 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), 3217 ArgType); 3218 } else if (NonTypeTemplateParmDecl *NTTP 3219 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { 3220 if (!NTTP->hasDefaultArgument()) 3221 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3222 TemplateArgs); 3223 3224 ExprResult E = SubstDefaultTemplateArgument(*this, Template, 3225 TemplateLoc, 3226 RAngleLoc, 3227 NTTP, 3228 Converted); 3229 if (E.isInvalid()) 3230 return true; 3231 3232 Expr *Ex = E.takeAs<Expr>(); 3233 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); 3234 } else { 3235 TemplateTemplateParmDecl *TempParm 3236 = cast<TemplateTemplateParmDecl>(*Param); 3237 3238 if (!TempParm->hasDefaultArgument()) 3239 return diagnoseArityMismatch(*this, Template, TemplateLoc, 3240 TemplateArgs); 3241 3242 NestedNameSpecifierLoc QualifierLoc; 3243 TemplateName Name = SubstDefaultTemplateArgument(*this, Template, 3244 TemplateLoc, 3245 RAngleLoc, 3246 TempParm, 3247 Converted, 3248 QualifierLoc); 3249 if (Name.isNull()) 3250 return true; 3251 3252 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc, 3253 TempParm->getDefaultArgument().getTemplateNameLoc()); 3254 } 3255 3256 // Introduce an instantiation record that describes where we are using 3257 // the default template argument. 3258 InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, 3259 *Param, Converted, 3260 SourceRange(TemplateLoc, RAngleLoc)); 3261 if (Instantiating) 3262 return true; 3263 3264 // Check the default template argument. 3265 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, 3266 RAngleLoc, 0, Converted)) 3267 return true; 3268 3269 // Core issue 150 (assumed resolution): if this is a template template 3270 // parameter, keep track of the default template arguments from the 3271 // template definition. 3272 if (isTemplateTemplateParameter) 3273 TemplateArgs.addArgument(Arg); 3274 3275 // Move to the next template parameter and argument. 3276 ++Param; 3277 ++ArgIdx; 3278 } 3279 3280 // If we have any leftover arguments, then there were too many arguments. 3281 // Complain and fail. 3282 if (ArgIdx < NumArgs) 3283 return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs); 3284 3285 return false; 3286} 3287 3288namespace { 3289 class UnnamedLocalNoLinkageFinder 3290 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> 3291 { 3292 Sema &S; 3293 SourceRange SR; 3294 3295 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; 3296 3297 public: 3298 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } 3299 3300 bool Visit(QualType T) { 3301 return inherited::Visit(T.getTypePtr()); 3302 } 3303 3304#define TYPE(Class, Parent) \ 3305 bool Visit##Class##Type(const Class##Type *); 3306#define ABSTRACT_TYPE(Class, Parent) \ 3307 bool Visit##Class##Type(const Class##Type *) { return false; } 3308#define NON_CANONICAL_TYPE(Class, Parent) \ 3309 bool Visit##Class##Type(const Class##Type *) { return false; } 3310#include "clang/AST/TypeNodes.def" 3311 3312 bool VisitTagDecl(const TagDecl *Tag); 3313 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); 3314 }; 3315} 3316 3317bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { 3318 return false; 3319} 3320 3321bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { 3322 return Visit(T->getElementType()); 3323} 3324 3325bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { 3326 return Visit(T->getPointeeType()); 3327} 3328 3329bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( 3330 const BlockPointerType* T) { 3331 return Visit(T->getPointeeType()); 3332} 3333 3334bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( 3335 const LValueReferenceType* T) { 3336 return Visit(T->getPointeeType()); 3337} 3338 3339bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( 3340 const RValueReferenceType* T) { 3341 return Visit(T->getPointeeType()); 3342} 3343 3344bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( 3345 const MemberPointerType* T) { 3346 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); 3347} 3348 3349bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( 3350 const ConstantArrayType* T) { 3351 return Visit(T->getElementType()); 3352} 3353 3354bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( 3355 const IncompleteArrayType* T) { 3356 return Visit(T->getElementType()); 3357} 3358 3359bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( 3360 const VariableArrayType* T) { 3361 return Visit(T->getElementType()); 3362} 3363 3364bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( 3365 const DependentSizedArrayType* T) { 3366 return Visit(T->getElementType()); 3367} 3368 3369bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( 3370 const DependentSizedExtVectorType* T) { 3371 return Visit(T->getElementType()); 3372} 3373 3374bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { 3375 return Visit(T->getElementType()); 3376} 3377 3378bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { 3379 return Visit(T->getElementType()); 3380} 3381 3382bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( 3383 const FunctionProtoType* T) { 3384 for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), 3385 AEnd = T->arg_type_end(); 3386 A != AEnd; ++A) { 3387 if (Visit(*A)) 3388 return true; 3389 } 3390 3391 return Visit(T->getResultType()); 3392} 3393 3394bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( 3395 const FunctionNoProtoType* T) { 3396 return Visit(T->getResultType()); 3397} 3398 3399bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( 3400 const UnresolvedUsingType*) { 3401 return false; 3402} 3403 3404bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { 3405 return false; 3406} 3407 3408bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { 3409 return Visit(T->getUnderlyingType()); 3410} 3411 3412bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { 3413 return false; 3414} 3415 3416bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( 3417 const UnaryTransformType*) { 3418 return false; 3419} 3420 3421bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { 3422 return Visit(T->getDeducedType()); 3423} 3424 3425bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { 3426 return VisitTagDecl(T->getDecl()); 3427} 3428 3429bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { 3430 return VisitTagDecl(T->getDecl()); 3431} 3432 3433bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( 3434 const TemplateTypeParmType*) { 3435 return false; 3436} 3437 3438bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( 3439 const SubstTemplateTypeParmPackType *) { 3440 return false; 3441} 3442 3443bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( 3444 const TemplateSpecializationType*) { 3445 return false; 3446} 3447 3448bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( 3449 const InjectedClassNameType* T) { 3450 return VisitTagDecl(T->getDecl()); 3451} 3452 3453bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( 3454 const DependentNameType* T) { 3455 return VisitNestedNameSpecifier(T->getQualifier()); 3456} 3457 3458bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( 3459 const DependentTemplateSpecializationType* T) { 3460 return VisitNestedNameSpecifier(T->getQualifier()); 3461} 3462 3463bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( 3464 const PackExpansionType* T) { 3465 return Visit(T->getPattern()); 3466} 3467 3468bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { 3469 return false; 3470} 3471 3472bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( 3473 const ObjCInterfaceType *) { 3474 return false; 3475} 3476 3477bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( 3478 const ObjCObjectPointerType *) { 3479 return false; 3480} 3481 3482bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { 3483 return Visit(T->getValueType()); 3484} 3485 3486bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { 3487 if (Tag->getDeclContext()->isFunctionOrMethod()) { 3488 S.Diag(SR.getBegin(), 3489 S.getLangOpts().CPlusPlus11 ? 3490 diag::warn_cxx98_compat_template_arg_local_type : 3491 diag::ext_template_arg_local_type) 3492 << S.Context.getTypeDeclType(Tag) << SR; 3493 return true; 3494 } 3495 3496 if (!Tag->hasNameForLinkage()) { 3497 S.Diag(SR.getBegin(), 3498 S.getLangOpts().CPlusPlus11 ? 3499 diag::warn_cxx98_compat_template_arg_unnamed_type : 3500 diag::ext_template_arg_unnamed_type) << SR; 3501 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); 3502 return true; 3503 } 3504 3505 return false; 3506} 3507 3508bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( 3509 NestedNameSpecifier *NNS) { 3510 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) 3511 return true; 3512 3513 switch (NNS->getKind()) { 3514 case NestedNameSpecifier::Identifier: 3515 case NestedNameSpecifier::Namespace: 3516 case NestedNameSpecifier::NamespaceAlias: 3517 case NestedNameSpecifier::Global: 3518 return false; 3519 3520 case NestedNameSpecifier::TypeSpec: 3521 case NestedNameSpecifier::TypeSpecWithTemplate: 3522 return Visit(QualType(NNS->getAsType(), 0)); 3523 } 3524 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 3525} 3526 3527 3528/// \brief Check a template argument against its corresponding 3529/// template type parameter. 3530/// 3531/// This routine implements the semantics of C++ [temp.arg.type]. It 3532/// returns true if an error occurred, and false otherwise. 3533bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param, 3534 TypeSourceInfo *ArgInfo) { 3535 assert(ArgInfo && "invalid TypeSourceInfo"); 3536 QualType Arg = ArgInfo->getType(); 3537 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); 3538 3539 if (Arg->isVariablyModifiedType()) { 3540 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; 3541 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { 3542 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; 3543 } 3544 3545 // C++03 [temp.arg.type]p2: 3546 // A local type, a type with no linkage, an unnamed type or a type 3547 // compounded from any of these types shall not be used as a 3548 // template-argument for a template type-parameter. 3549 // 3550 // C++11 allows these, and even in C++03 we allow them as an extension with 3551 // a warning. 3552 if (LangOpts.CPlusPlus11 ? 3553 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type, 3554 SR.getBegin()) != DiagnosticsEngine::Ignored || 3555 Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type, 3556 SR.getBegin()) != DiagnosticsEngine::Ignored : 3557 Arg->hasUnnamedOrLocalType()) { 3558 UnnamedLocalNoLinkageFinder Finder(*this, SR); 3559 (void)Finder.Visit(Context.getCanonicalType(Arg)); 3560 } 3561 3562 return false; 3563} 3564 3565enum NullPointerValueKind { 3566 NPV_NotNullPointer, 3567 NPV_NullPointer, 3568 NPV_Error 3569}; 3570 3571/// \brief Determine whether the given template argument is a null pointer 3572/// value of the appropriate type. 3573static NullPointerValueKind 3574isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, 3575 QualType ParamType, Expr *Arg) { 3576 if (Arg->isValueDependent() || Arg->isTypeDependent()) 3577 return NPV_NotNullPointer; 3578 3579 if (!S.getLangOpts().CPlusPlus11) 3580 return NPV_NotNullPointer; 3581 3582 // Determine whether we have a constant expression. 3583 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); 3584 if (ArgRV.isInvalid()) 3585 return NPV_Error; 3586 Arg = ArgRV.take(); 3587 3588 Expr::EvalResult EvalResult; 3589 SmallVector<PartialDiagnosticAt, 8> Notes; 3590 EvalResult.Diag = &Notes; 3591 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || 3592 EvalResult.HasSideEffects) { 3593 SourceLocation DiagLoc = Arg->getExprLoc(); 3594 3595 // If our only note is the usual "invalid subexpression" note, just point 3596 // the caret at its location rather than producing an essentially 3597 // redundant note. 3598 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 3599 diag::note_invalid_subexpr_in_const_expr) { 3600 DiagLoc = Notes[0].first; 3601 Notes.clear(); 3602 } 3603 3604 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) 3605 << Arg->getType() << Arg->getSourceRange(); 3606 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 3607 S.Diag(Notes[I].first, Notes[I].second); 3608 3609 S.Diag(Param->getLocation(), diag::note_template_param_here); 3610 return NPV_Error; 3611 } 3612 3613 // C++11 [temp.arg.nontype]p1: 3614 // - an address constant expression of type std::nullptr_t 3615 if (Arg->getType()->isNullPtrType()) 3616 return NPV_NullPointer; 3617 3618 // - a constant expression that evaluates to a null pointer value (4.10); or 3619 // - a constant expression that evaluates to a null member pointer value 3620 // (4.11); or 3621 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || 3622 (EvalResult.Val.isMemberPointer() && 3623 !EvalResult.Val.getMemberPointerDecl())) { 3624 // If our expression has an appropriate type, we've succeeded. 3625 bool ObjCLifetimeConversion; 3626 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || 3627 S.IsQualificationConversion(Arg->getType(), ParamType, false, 3628 ObjCLifetimeConversion)) 3629 return NPV_NullPointer; 3630 3631 // The types didn't match, but we know we got a null pointer; complain, 3632 // then recover as if the types were correct. 3633 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) 3634 << Arg->getType() << ParamType << Arg->getSourceRange(); 3635 S.Diag(Param->getLocation(), diag::note_template_param_here); 3636 return NPV_NullPointer; 3637 } 3638 3639 // If we don't have a null pointer value, but we do have a NULL pointer 3640 // constant, suggest a cast to the appropriate type. 3641 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { 3642 std::string Code = "static_cast<" + ParamType.getAsString() + ">("; 3643 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) 3644 << ParamType 3645 << FixItHint::CreateInsertion(Arg->getLocStart(), Code) 3646 << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()), 3647 ")"); 3648 S.Diag(Param->getLocation(), diag::note_template_param_here); 3649 return NPV_NullPointer; 3650 } 3651 3652 // FIXME: If we ever want to support general, address-constant expressions 3653 // as non-type template arguments, we should return the ExprResult here to 3654 // be interpreted by the caller. 3655 return NPV_NotNullPointer; 3656} 3657 3658/// \brief Checks whether the given template argument is the address 3659/// of an object or function according to C++ [temp.arg.nontype]p1. 3660static bool 3661CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, 3662 NonTypeTemplateParmDecl *Param, 3663 QualType ParamType, 3664 Expr *ArgIn, 3665 TemplateArgument &Converted) { 3666 bool Invalid = false; 3667 Expr *Arg = ArgIn; 3668 QualType ArgType = Arg->getType(); 3669 3670 // If our parameter has pointer type, check for a null template value. 3671 if (ParamType->isPointerType() || ParamType->isNullPtrType()) { 3672 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3673 case NPV_NullPointer: 3674 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3675 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 3676 return false; 3677 3678 case NPV_Error: 3679 return true; 3680 3681 case NPV_NotNullPointer: 3682 break; 3683 } 3684 } 3685 3686 // See through any implicit casts we added to fix the type. 3687 Arg = Arg->IgnoreImpCasts(); 3688 3689 // C++ [temp.arg.nontype]p1: 3690 // 3691 // A template-argument for a non-type, non-template 3692 // template-parameter shall be one of: [...] 3693 // 3694 // -- the address of an object or function with external 3695 // linkage, including function templates and function 3696 // template-ids but excluding non-static class members, 3697 // expressed as & id-expression where the & is optional if 3698 // the name refers to a function or array, or if the 3699 // corresponding template-parameter is a reference; or 3700 3701 // In C++98/03 mode, give an extension warning on any extra parentheses. 3702 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 3703 bool ExtraParens = false; 3704 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 3705 if (!Invalid && !ExtraParens) { 3706 S.Diag(Arg->getLocStart(), 3707 S.getLangOpts().CPlusPlus11 ? 3708 diag::warn_cxx98_compat_template_arg_extra_parens : 3709 diag::ext_template_arg_extra_parens) 3710 << Arg->getSourceRange(); 3711 ExtraParens = true; 3712 } 3713 3714 Arg = Parens->getSubExpr(); 3715 } 3716 3717 while (SubstNonTypeTemplateParmExpr *subst = 3718 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3719 Arg = subst->getReplacement()->IgnoreImpCasts(); 3720 3721 bool AddressTaken = false; 3722 SourceLocation AddrOpLoc; 3723 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 3724 if (UnOp->getOpcode() == UO_AddrOf) { 3725 Arg = UnOp->getSubExpr(); 3726 AddressTaken = true; 3727 AddrOpLoc = UnOp->getOperatorLoc(); 3728 } 3729 } 3730 3731 if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) { 3732 Converted = TemplateArgument(ArgIn); 3733 return false; 3734 } 3735 3736 while (SubstNonTypeTemplateParmExpr *subst = 3737 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 3738 Arg = subst->getReplacement()->IgnoreImpCasts(); 3739 3740 // Stop checking the precise nature of the argument if it is value dependent, 3741 // it should be checked when instantiated. 3742 if (Arg->isValueDependent()) { 3743 Converted = TemplateArgument(ArgIn); 3744 return false; 3745 } 3746 3747 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg); 3748 if (!DRE) { 3749 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref) 3750 << Arg->getSourceRange(); 3751 S.Diag(Param->getLocation(), diag::note_template_param_here); 3752 return true; 3753 } 3754 3755 if (!isa<ValueDecl>(DRE->getDecl())) { 3756 S.Diag(Arg->getLocStart(), 3757 diag::err_template_arg_not_object_or_func_form) 3758 << Arg->getSourceRange(); 3759 S.Diag(Param->getLocation(), diag::note_template_param_here); 3760 return true; 3761 } 3762 3763 ValueDecl *Entity = DRE->getDecl(); 3764 3765 // Cannot refer to non-static data members 3766 if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) { 3767 S.Diag(Arg->getLocStart(), diag::err_template_arg_field) 3768 << Field << Arg->getSourceRange(); 3769 S.Diag(Param->getLocation(), diag::note_template_param_here); 3770 return true; 3771 } 3772 3773 // Cannot refer to non-static member functions 3774 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { 3775 if (!Method->isStatic()) { 3776 S.Diag(Arg->getLocStart(), diag::err_template_arg_method) 3777 << Method << Arg->getSourceRange(); 3778 S.Diag(Param->getLocation(), diag::note_template_param_here); 3779 return true; 3780 } 3781 } 3782 3783 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); 3784 VarDecl *Var = dyn_cast<VarDecl>(Entity); 3785 3786 // A non-type template argument must refer to an object or function. 3787 if (!Func && !Var) { 3788 // We found something, but we don't know specifically what it is. 3789 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func) 3790 << Arg->getSourceRange(); 3791 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 3792 return true; 3793 } 3794 3795 // Address / reference template args must have external linkage in C++98. 3796 if (Entity->getLinkage() == InternalLinkage) { 3797 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ? 3798 diag::warn_cxx98_compat_template_arg_object_internal : 3799 diag::ext_template_arg_object_internal) 3800 << !Func << Entity << Arg->getSourceRange(); 3801 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3802 << !Func; 3803 } else if (Entity->getLinkage() == NoLinkage) { 3804 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage) 3805 << !Func << Entity << Arg->getSourceRange(); 3806 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) 3807 << !Func; 3808 return true; 3809 } 3810 3811 if (Func) { 3812 // If the template parameter has pointer type, the function decays. 3813 if (ParamType->isPointerType() && !AddressTaken) 3814 ArgType = S.Context.getPointerType(Func->getType()); 3815 else if (AddressTaken && ParamType->isReferenceType()) { 3816 // If we originally had an address-of operator, but the 3817 // parameter has reference type, complain and (if things look 3818 // like they will work) drop the address-of operator. 3819 if (!S.Context.hasSameUnqualifiedType(Func->getType(), 3820 ParamType.getNonReferenceType())) { 3821 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3822 << ParamType; 3823 S.Diag(Param->getLocation(), diag::note_template_param_here); 3824 return true; 3825 } 3826 3827 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3828 << ParamType 3829 << FixItHint::CreateRemoval(AddrOpLoc); 3830 S.Diag(Param->getLocation(), diag::note_template_param_here); 3831 3832 ArgType = Func->getType(); 3833 } 3834 } else { 3835 // A value of reference type is not an object. 3836 if (Var->getType()->isReferenceType()) { 3837 S.Diag(Arg->getLocStart(), 3838 diag::err_template_arg_reference_var) 3839 << Var->getType() << Arg->getSourceRange(); 3840 S.Diag(Param->getLocation(), diag::note_template_param_here); 3841 return true; 3842 } 3843 3844 // A template argument must have static storage duration. 3845 // FIXME: Ensure this works for thread_local as well as __thread. 3846 if (Var->isThreadSpecified()) { 3847 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local) 3848 << Arg->getSourceRange(); 3849 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); 3850 return true; 3851 } 3852 3853 // If the template parameter has pointer type, we must have taken 3854 // the address of this object. 3855 if (ParamType->isReferenceType()) { 3856 if (AddressTaken) { 3857 // If we originally had an address-of operator, but the 3858 // parameter has reference type, complain and (if things look 3859 // like they will work) drop the address-of operator. 3860 if (!S.Context.hasSameUnqualifiedType(Var->getType(), 3861 ParamType.getNonReferenceType())) { 3862 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3863 << ParamType; 3864 S.Diag(Param->getLocation(), diag::note_template_param_here); 3865 return true; 3866 } 3867 3868 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) 3869 << ParamType 3870 << FixItHint::CreateRemoval(AddrOpLoc); 3871 S.Diag(Param->getLocation(), diag::note_template_param_here); 3872 3873 ArgType = Var->getType(); 3874 } 3875 } else if (!AddressTaken && ParamType->isPointerType()) { 3876 if (Var->getType()->isArrayType()) { 3877 // Array-to-pointer decay. 3878 ArgType = S.Context.getArrayDecayedType(Var->getType()); 3879 } else { 3880 // If the template parameter has pointer type but the address of 3881 // this object was not taken, complain and (possibly) recover by 3882 // taking the address of the entity. 3883 ArgType = S.Context.getPointerType(Var->getType()); 3884 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { 3885 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3886 << ParamType; 3887 S.Diag(Param->getLocation(), diag::note_template_param_here); 3888 return true; 3889 } 3890 3891 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of) 3892 << ParamType 3893 << FixItHint::CreateInsertion(Arg->getLocStart(), "&"); 3894 3895 S.Diag(Param->getLocation(), diag::note_template_param_here); 3896 } 3897 } 3898 } 3899 3900 bool ObjCLifetimeConversion; 3901 if (ParamType->isPointerType() && 3902 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() && 3903 S.IsQualificationConversion(ArgType, ParamType, false, 3904 ObjCLifetimeConversion)) { 3905 // For pointer-to-object types, qualification conversions are 3906 // permitted. 3907 } else { 3908 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { 3909 if (!ParamRef->getPointeeType()->isFunctionType()) { 3910 // C++ [temp.arg.nontype]p5b3: 3911 // For a non-type template-parameter of type reference to 3912 // object, no conversions apply. The type referred to by the 3913 // reference may be more cv-qualified than the (otherwise 3914 // identical) type of the template- argument. The 3915 // template-parameter is bound directly to the 3916 // template-argument, which shall be an lvalue. 3917 3918 // FIXME: Other qualifiers? 3919 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); 3920 unsigned ArgQuals = ArgType.getCVRQualifiers(); 3921 3922 if ((ParamQuals | ArgQuals) != ParamQuals) { 3923 S.Diag(Arg->getLocStart(), 3924 diag::err_template_arg_ref_bind_ignores_quals) 3925 << ParamType << Arg->getType() 3926 << Arg->getSourceRange(); 3927 S.Diag(Param->getLocation(), diag::note_template_param_here); 3928 return true; 3929 } 3930 } 3931 } 3932 3933 // At this point, the template argument refers to an object or 3934 // function with external linkage. We now need to check whether the 3935 // argument and parameter types are compatible. 3936 if (!S.Context.hasSameUnqualifiedType(ArgType, 3937 ParamType.getNonReferenceType())) { 3938 // We can't perform this conversion or binding. 3939 if (ParamType->isReferenceType()) 3940 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind) 3941 << ParamType << ArgIn->getType() << Arg->getSourceRange(); 3942 else 3943 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3944 << ArgIn->getType() << ParamType << Arg->getSourceRange(); 3945 S.Diag(Param->getLocation(), diag::note_template_param_here); 3946 return true; 3947 } 3948 } 3949 3950 // Create the template argument. 3951 Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), 3952 ParamType->isReferenceType()); 3953 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false); 3954 return false; 3955} 3956 3957/// \brief Checks whether the given template argument is a pointer to 3958/// member constant according to C++ [temp.arg.nontype]p1. 3959static bool CheckTemplateArgumentPointerToMember(Sema &S, 3960 NonTypeTemplateParmDecl *Param, 3961 QualType ParamType, 3962 Expr *&ResultArg, 3963 TemplateArgument &Converted) { 3964 bool Invalid = false; 3965 3966 // Check for a null pointer value. 3967 Expr *Arg = ResultArg; 3968 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) { 3969 case NPV_Error: 3970 return true; 3971 case NPV_NullPointer: 3972 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 3973 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 3974 return false; 3975 case NPV_NotNullPointer: 3976 break; 3977 } 3978 3979 bool ObjCLifetimeConversion; 3980 if (S.IsQualificationConversion(Arg->getType(), 3981 ParamType.getNonReferenceType(), 3982 false, ObjCLifetimeConversion)) { 3983 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp, 3984 Arg->getValueKind()).take(); 3985 ResultArg = Arg; 3986 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(), 3987 ParamType.getNonReferenceType())) { 3988 // We can't perform this conversion. 3989 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible) 3990 << Arg->getType() << ParamType << Arg->getSourceRange(); 3991 S.Diag(Param->getLocation(), diag::note_template_param_here); 3992 return true; 3993 } 3994 3995 // See through any implicit casts we added to fix the type. 3996 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg)) 3997 Arg = Cast->getSubExpr(); 3998 3999 // C++ [temp.arg.nontype]p1: 4000 // 4001 // A template-argument for a non-type, non-template 4002 // template-parameter shall be one of: [...] 4003 // 4004 // -- a pointer to member expressed as described in 5.3.1. 4005 DeclRefExpr *DRE = 0; 4006 4007 // In C++98/03 mode, give an extension warning on any extra parentheses. 4008 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 4009 bool ExtraParens = false; 4010 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { 4011 if (!Invalid && !ExtraParens) { 4012 S.Diag(Arg->getLocStart(), 4013 S.getLangOpts().CPlusPlus11 ? 4014 diag::warn_cxx98_compat_template_arg_extra_parens : 4015 diag::ext_template_arg_extra_parens) 4016 << Arg->getSourceRange(); 4017 ExtraParens = true; 4018 } 4019 4020 Arg = Parens->getSubExpr(); 4021 } 4022 4023 while (SubstNonTypeTemplateParmExpr *subst = 4024 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) 4025 Arg = subst->getReplacement()->IgnoreImpCasts(); 4026 4027 // A pointer-to-member constant written &Class::member. 4028 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { 4029 if (UnOp->getOpcode() == UO_AddrOf) { 4030 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); 4031 if (DRE && !DRE->getQualifier()) 4032 DRE = 0; 4033 } 4034 } 4035 // A constant of pointer-to-member type. 4036 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { 4037 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) { 4038 if (VD->getType()->isMemberPointerType()) { 4039 if (isa<NonTypeTemplateParmDecl>(VD) || 4040 (isa<VarDecl>(VD) && 4041 S.Context.getCanonicalType(VD->getType()).isConstQualified())) { 4042 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4043 Converted = TemplateArgument(Arg); 4044 } else { 4045 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 4046 Converted = TemplateArgument(VD, /*isReferenceParam*/false); 4047 } 4048 return Invalid; 4049 } 4050 } 4051 } 4052 4053 DRE = 0; 4054 } 4055 4056 if (!DRE) 4057 return S.Diag(Arg->getLocStart(), 4058 diag::err_template_arg_not_pointer_to_member_form) 4059 << Arg->getSourceRange(); 4060 4061 if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) { 4062 assert((isa<FieldDecl>(DRE->getDecl()) || 4063 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && 4064 "Only non-static member pointers can make it here"); 4065 4066 // Okay: this is the address of a non-static member, and therefore 4067 // a member pointer constant. 4068 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4069 Converted = TemplateArgument(Arg); 4070 } else { 4071 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); 4072 Converted = TemplateArgument(D, /*isReferenceParam*/false); 4073 } 4074 return Invalid; 4075 } 4076 4077 // We found something else, but we don't know specifically what it is. 4078 S.Diag(Arg->getLocStart(), 4079 diag::err_template_arg_not_pointer_to_member_form) 4080 << Arg->getSourceRange(); 4081 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); 4082 return true; 4083} 4084 4085/// \brief Check a template argument against its corresponding 4086/// non-type template parameter. 4087/// 4088/// This routine implements the semantics of C++ [temp.arg.nontype]. 4089/// If an error occurred, it returns ExprError(); otherwise, it 4090/// returns the converted template argument. \p 4091/// InstantiatedParamType is the type of the non-type template 4092/// parameter after it has been instantiated. 4093ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, 4094 QualType InstantiatedParamType, Expr *Arg, 4095 TemplateArgument &Converted, 4096 CheckTemplateArgumentKind CTAK) { 4097 SourceLocation StartLoc = Arg->getLocStart(); 4098 4099 // If either the parameter has a dependent type or the argument is 4100 // type-dependent, there's nothing we can check now. 4101 if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) { 4102 // FIXME: Produce a cloned, canonical expression? 4103 Converted = TemplateArgument(Arg); 4104 return Owned(Arg); 4105 } 4106 4107 // C++ [temp.arg.nontype]p5: 4108 // The following conversions are performed on each expression used 4109 // as a non-type template-argument. If a non-type 4110 // template-argument cannot be converted to the type of the 4111 // corresponding template-parameter then the program is 4112 // ill-formed. 4113 QualType ParamType = InstantiatedParamType; 4114 if (ParamType->isIntegralOrEnumerationType()) { 4115 // C++11: 4116 // -- for a non-type template-parameter of integral or 4117 // enumeration type, conversions permitted in a converted 4118 // constant expression are applied. 4119 // 4120 // C++98: 4121 // -- for a non-type template-parameter of integral or 4122 // enumeration type, integral promotions (4.5) and integral 4123 // conversions (4.7) are applied. 4124 4125 if (CTAK == CTAK_Deduced && 4126 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) { 4127 // C++ [temp.deduct.type]p17: 4128 // If, in the declaration of a function template with a non-type 4129 // template-parameter, the non-type template-parameter is used 4130 // in an expression in the function parameter-list and, if the 4131 // corresponding template-argument is deduced, the 4132 // template-argument type shall match the type of the 4133 // template-parameter exactly, except that a template-argument 4134 // deduced from an array bound may be of any integral type. 4135 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) 4136 << Arg->getType().getUnqualifiedType() 4137 << ParamType.getUnqualifiedType(); 4138 Diag(Param->getLocation(), diag::note_template_param_here); 4139 return ExprError(); 4140 } 4141 4142 if (getLangOpts().CPlusPlus11) { 4143 // We can't check arbitrary value-dependent arguments. 4144 // FIXME: If there's no viable conversion to the template parameter type, 4145 // we should be able to diagnose that prior to instantiation. 4146 if (Arg->isValueDependent()) { 4147 Converted = TemplateArgument(Arg); 4148 return Owned(Arg); 4149 } 4150 4151 // C++ [temp.arg.nontype]p1: 4152 // A template-argument for a non-type, non-template template-parameter 4153 // shall be one of: 4154 // 4155 // -- for a non-type template-parameter of integral or enumeration 4156 // type, a converted constant expression of the type of the 4157 // template-parameter; or 4158 llvm::APSInt Value; 4159 ExprResult ArgResult = 4160 CheckConvertedConstantExpression(Arg, ParamType, Value, 4161 CCEK_TemplateArg); 4162 if (ArgResult.isInvalid()) 4163 return ExprError(); 4164 4165 // Widen the argument value to sizeof(parameter type). This is almost 4166 // always a no-op, except when the parameter type is bool. In 4167 // that case, this may extend the argument from 1 bit to 8 bits. 4168 QualType IntegerType = ParamType; 4169 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4170 IntegerType = Enum->getDecl()->getIntegerType(); 4171 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType)); 4172 4173 Converted = TemplateArgument(Context, Value, 4174 Context.getCanonicalType(ParamType)); 4175 return ArgResult; 4176 } 4177 4178 ExprResult ArgResult = DefaultLvalueConversion(Arg); 4179 if (ArgResult.isInvalid()) 4180 return ExprError(); 4181 Arg = ArgResult.take(); 4182 4183 QualType ArgType = Arg->getType(); 4184 4185 // C++ [temp.arg.nontype]p1: 4186 // A template-argument for a non-type, non-template 4187 // template-parameter shall be one of: 4188 // 4189 // -- an integral constant-expression of integral or enumeration 4190 // type; or 4191 // -- the name of a non-type template-parameter; or 4192 SourceLocation NonConstantLoc; 4193 llvm::APSInt Value; 4194 if (!ArgType->isIntegralOrEnumerationType()) { 4195 Diag(Arg->getLocStart(), 4196 diag::err_template_arg_not_integral_or_enumeral) 4197 << ArgType << Arg->getSourceRange(); 4198 Diag(Param->getLocation(), diag::note_template_param_here); 4199 return ExprError(); 4200 } else if (!Arg->isValueDependent()) { 4201 class TmplArgICEDiagnoser : public VerifyICEDiagnoser { 4202 QualType T; 4203 4204 public: 4205 TmplArgICEDiagnoser(QualType T) : T(T) { } 4206 4207 virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, 4208 SourceRange SR) { 4209 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR; 4210 } 4211 } Diagnoser(ArgType); 4212 4213 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser, 4214 false).take(); 4215 if (!Arg) 4216 return ExprError(); 4217 } 4218 4219 // From here on out, all we care about are the unqualified forms 4220 // of the parameter and argument types. 4221 ParamType = ParamType.getUnqualifiedType(); 4222 ArgType = ArgType.getUnqualifiedType(); 4223 4224 // Try to convert the argument to the parameter's type. 4225 if (Context.hasSameType(ParamType, ArgType)) { 4226 // Okay: no conversion necessary 4227 } else if (ParamType->isBooleanType()) { 4228 // This is an integral-to-boolean conversion. 4229 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take(); 4230 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || 4231 !ParamType->isEnumeralType()) { 4232 // This is an integral promotion or conversion. 4233 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take(); 4234 } else { 4235 // We can't perform this conversion. 4236 Diag(Arg->getLocStart(), 4237 diag::err_template_arg_not_convertible) 4238 << Arg->getType() << InstantiatedParamType << Arg->getSourceRange(); 4239 Diag(Param->getLocation(), diag::note_template_param_here); 4240 return ExprError(); 4241 } 4242 4243 // Add the value of this argument to the list of converted 4244 // arguments. We use the bitwidth and signedness of the template 4245 // parameter. 4246 if (Arg->isValueDependent()) { 4247 // The argument is value-dependent. Create a new 4248 // TemplateArgument with the converted expression. 4249 Converted = TemplateArgument(Arg); 4250 return Owned(Arg); 4251 } 4252 4253 QualType IntegerType = Context.getCanonicalType(ParamType); 4254 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) 4255 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); 4256 4257 if (ParamType->isBooleanType()) { 4258 // Value must be zero or one. 4259 Value = Value != 0; 4260 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4261 if (Value.getBitWidth() != AllowedBits) 4262 Value = Value.extOrTrunc(AllowedBits); 4263 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4264 } else { 4265 llvm::APSInt OldValue = Value; 4266 4267 // Coerce the template argument's value to the value it will have 4268 // based on the template parameter's type. 4269 unsigned AllowedBits = Context.getTypeSize(IntegerType); 4270 if (Value.getBitWidth() != AllowedBits) 4271 Value = Value.extOrTrunc(AllowedBits); 4272 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); 4273 4274 // Complain if an unsigned parameter received a negative value. 4275 if (IntegerType->isUnsignedIntegerOrEnumerationType() 4276 && (OldValue.isSigned() && OldValue.isNegative())) { 4277 Diag(Arg->getLocStart(), diag::warn_template_arg_negative) 4278 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4279 << Arg->getSourceRange(); 4280 Diag(Param->getLocation(), diag::note_template_param_here); 4281 } 4282 4283 // Complain if we overflowed the template parameter's type. 4284 unsigned RequiredBits; 4285 if (IntegerType->isUnsignedIntegerOrEnumerationType()) 4286 RequiredBits = OldValue.getActiveBits(); 4287 else if (OldValue.isUnsigned()) 4288 RequiredBits = OldValue.getActiveBits() + 1; 4289 else 4290 RequiredBits = OldValue.getMinSignedBits(); 4291 if (RequiredBits > AllowedBits) { 4292 Diag(Arg->getLocStart(), 4293 diag::warn_template_arg_too_large) 4294 << OldValue.toString(10) << Value.toString(10) << Param->getType() 4295 << Arg->getSourceRange(); 4296 Diag(Param->getLocation(), diag::note_template_param_here); 4297 } 4298 } 4299 4300 Converted = TemplateArgument(Context, Value, 4301 ParamType->isEnumeralType() 4302 ? Context.getCanonicalType(ParamType) 4303 : IntegerType); 4304 return Owned(Arg); 4305 } 4306 4307 QualType ArgType = Arg->getType(); 4308 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction 4309 4310 // Handle pointer-to-function, reference-to-function, and 4311 // pointer-to-member-function all in (roughly) the same way. 4312 if (// -- For a non-type template-parameter of type pointer to 4313 // function, only the function-to-pointer conversion (4.3) is 4314 // applied. If the template-argument represents a set of 4315 // overloaded functions (or a pointer to such), the matching 4316 // function is selected from the set (13.4). 4317 (ParamType->isPointerType() && 4318 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) || 4319 // -- For a non-type template-parameter of type reference to 4320 // function, no conversions apply. If the template-argument 4321 // represents a set of overloaded functions, the matching 4322 // function is selected from the set (13.4). 4323 (ParamType->isReferenceType() && 4324 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) || 4325 // -- For a non-type template-parameter of type pointer to 4326 // member function, no conversions apply. If the 4327 // template-argument represents a set of overloaded member 4328 // functions, the matching member function is selected from 4329 // the set (13.4). 4330 (ParamType->isMemberPointerType() && 4331 ParamType->getAs<MemberPointerType>()->getPointeeType() 4332 ->isFunctionType())) { 4333 4334 if (Arg->getType() == Context.OverloadTy) { 4335 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, 4336 true, 4337 FoundResult)) { 4338 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4339 return ExprError(); 4340 4341 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4342 ArgType = Arg->getType(); 4343 } else 4344 return ExprError(); 4345 } 4346 4347 if (!ParamType->isMemberPointerType()) { 4348 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4349 ParamType, 4350 Arg, Converted)) 4351 return ExprError(); 4352 return Owned(Arg); 4353 } 4354 4355 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4356 Converted)) 4357 return ExprError(); 4358 return Owned(Arg); 4359 } 4360 4361 if (ParamType->isPointerType()) { 4362 // -- for a non-type template-parameter of type pointer to 4363 // object, qualification conversions (4.4) and the 4364 // array-to-pointer conversion (4.2) are applied. 4365 // C++0x also allows a value of std::nullptr_t. 4366 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && 4367 "Only object pointers allowed here"); 4368 4369 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4370 ParamType, 4371 Arg, Converted)) 4372 return ExprError(); 4373 return Owned(Arg); 4374 } 4375 4376 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { 4377 // -- For a non-type template-parameter of type reference to 4378 // object, no conversions apply. The type referred to by the 4379 // reference may be more cv-qualified than the (otherwise 4380 // identical) type of the template-argument. The 4381 // template-parameter is bound directly to the 4382 // template-argument, which must be an lvalue. 4383 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && 4384 "Only object references allowed here"); 4385 4386 if (Arg->getType() == Context.OverloadTy) { 4387 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, 4388 ParamRefType->getPointeeType(), 4389 true, 4390 FoundResult)) { 4391 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart())) 4392 return ExprError(); 4393 4394 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); 4395 ArgType = Arg->getType(); 4396 } else 4397 return ExprError(); 4398 } 4399 4400 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, 4401 ParamType, 4402 Arg, Converted)) 4403 return ExprError(); 4404 return Owned(Arg); 4405 } 4406 4407 // Deal with parameters of type std::nullptr_t. 4408 if (ParamType->isNullPtrType()) { 4409 if (Arg->isTypeDependent() || Arg->isValueDependent()) { 4410 Converted = TemplateArgument(Arg); 4411 return Owned(Arg); 4412 } 4413 4414 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { 4415 case NPV_NotNullPointer: 4416 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) 4417 << Arg->getType() << ParamType; 4418 Diag(Param->getLocation(), diag::note_template_param_here); 4419 return ExprError(); 4420 4421 case NPV_Error: 4422 return ExprError(); 4423 4424 case NPV_NullPointer: 4425 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); 4426 Converted = TemplateArgument(ParamType, /*isNullPtr*/true); 4427 return Owned(Arg); 4428 } 4429 } 4430 4431 // -- For a non-type template-parameter of type pointer to data 4432 // member, qualification conversions (4.4) are applied. 4433 assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); 4434 4435 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, 4436 Converted)) 4437 return ExprError(); 4438 return Owned(Arg); 4439} 4440 4441/// \brief Check a template argument against its corresponding 4442/// template template parameter. 4443/// 4444/// This routine implements the semantics of C++ [temp.arg.template]. 4445/// It returns true if an error occurred, and false otherwise. 4446bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param, 4447 const TemplateArgumentLoc &Arg, 4448 unsigned ArgumentPackIndex) { 4449 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); 4450 TemplateDecl *Template = Name.getAsTemplateDecl(); 4451 if (!Template) { 4452 // Any dependent template name is fine. 4453 assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); 4454 return false; 4455 } 4456 4457 // C++0x [temp.arg.template]p1: 4458 // A template-argument for a template template-parameter shall be 4459 // the name of a class template or an alias template, expressed as an 4460 // id-expression. When the template-argument names a class template, only 4461 // primary class templates are considered when matching the 4462 // template template argument with the corresponding parameter; 4463 // partial specializations are not considered even if their 4464 // parameter lists match that of the template template parameter. 4465 // 4466 // Note that we also allow template template parameters here, which 4467 // will happen when we are dealing with, e.g., class template 4468 // partial specializations. 4469 if (!isa<ClassTemplateDecl>(Template) && 4470 !isa<TemplateTemplateParmDecl>(Template) && 4471 !isa<TypeAliasTemplateDecl>(Template)) { 4472 assert(isa<FunctionTemplateDecl>(Template) && 4473 "Only function templates are possible here"); 4474 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template); 4475 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) 4476 << Template; 4477 } 4478 4479 TemplateParameterList *Params = Param->getTemplateParameters(); 4480 if (Param->isExpandedParameterPack()) 4481 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex); 4482 4483 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), 4484 Params, 4485 true, 4486 TPL_TemplateTemplateArgumentMatch, 4487 Arg.getLocation()); 4488} 4489 4490/// \brief Given a non-type template argument that refers to a 4491/// declaration and the type of its corresponding non-type template 4492/// parameter, produce an expression that properly refers to that 4493/// declaration. 4494ExprResult 4495Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, 4496 QualType ParamType, 4497 SourceLocation Loc) { 4498 // C++ [temp.param]p8: 4499 // 4500 // A non-type template-parameter of type "array of T" or 4501 // "function returning T" is adjusted to be of type "pointer to 4502 // T" or "pointer to function returning T", respectively. 4503 if (ParamType->isArrayType()) 4504 ParamType = Context.getArrayDecayedType(ParamType); 4505 else if (ParamType->isFunctionType()) 4506 ParamType = Context.getPointerType(ParamType); 4507 4508 // For a NULL non-type template argument, return nullptr casted to the 4509 // parameter's type. 4510 if (Arg.getKind() == TemplateArgument::NullPtr) { 4511 return ImpCastExprToType( 4512 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), 4513 ParamType, 4514 ParamType->getAs<MemberPointerType>() 4515 ? CK_NullToMemberPointer 4516 : CK_NullToPointer); 4517 } 4518 assert(Arg.getKind() == TemplateArgument::Declaration && 4519 "Only declaration template arguments permitted here"); 4520 4521 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl()); 4522 4523 if (VD->getDeclContext()->isRecord() && 4524 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) { 4525 // If the value is a class member, we might have a pointer-to-member. 4526 // Determine whether the non-type template template parameter is of 4527 // pointer-to-member type. If so, we need to build an appropriate 4528 // expression for a pointer-to-member, since a "normal" DeclRefExpr 4529 // would refer to the member itself. 4530 if (ParamType->isMemberPointerType()) { 4531 QualType ClassType 4532 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); 4533 NestedNameSpecifier *Qualifier 4534 = NestedNameSpecifier::Create(Context, 0, false, 4535 ClassType.getTypePtr()); 4536 CXXScopeSpec SS; 4537 SS.MakeTrivial(Context, Qualifier, Loc); 4538 4539 // The actual value-ness of this is unimportant, but for 4540 // internal consistency's sake, references to instance methods 4541 // are r-values. 4542 ExprValueKind VK = VK_LValue; 4543 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance()) 4544 VK = VK_RValue; 4545 4546 ExprResult RefExpr = BuildDeclRefExpr(VD, 4547 VD->getType().getNonReferenceType(), 4548 VK, 4549 Loc, 4550 &SS); 4551 if (RefExpr.isInvalid()) 4552 return ExprError(); 4553 4554 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4555 4556 // We might need to perform a trailing qualification conversion, since 4557 // the element type on the parameter could be more qualified than the 4558 // element type in the expression we constructed. 4559 bool ObjCLifetimeConversion; 4560 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(), 4561 ParamType.getUnqualifiedType(), false, 4562 ObjCLifetimeConversion)) 4563 RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp); 4564 4565 assert(!RefExpr.isInvalid() && 4566 Context.hasSameType(((Expr*) RefExpr.get())->getType(), 4567 ParamType.getUnqualifiedType())); 4568 return RefExpr; 4569 } 4570 } 4571 4572 QualType T = VD->getType().getNonReferenceType(); 4573 4574 if (ParamType->isPointerType()) { 4575 // When the non-type template parameter is a pointer, take the 4576 // address of the declaration. 4577 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc); 4578 if (RefExpr.isInvalid()) 4579 return ExprError(); 4580 4581 if (T->isFunctionType() || T->isArrayType()) { 4582 // Decay functions and arrays. 4583 RefExpr = DefaultFunctionArrayConversion(RefExpr.take()); 4584 if (RefExpr.isInvalid()) 4585 return ExprError(); 4586 4587 return RefExpr; 4588 } 4589 4590 // Take the address of everything else 4591 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); 4592 } 4593 4594 ExprValueKind VK = VK_RValue; 4595 4596 // If the non-type template parameter has reference type, qualify the 4597 // resulting declaration reference with the extra qualifiers on the 4598 // type that the reference refers to. 4599 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) { 4600 VK = VK_LValue; 4601 T = Context.getQualifiedType(T, 4602 TargetRef->getPointeeType().getQualifiers()); 4603 } else if (isa<FunctionDecl>(VD)) { 4604 // References to functions are always lvalues. 4605 VK = VK_LValue; 4606 } 4607 4608 return BuildDeclRefExpr(VD, T, VK, Loc); 4609} 4610 4611/// \brief Construct a new expression that refers to the given 4612/// integral template argument with the given source-location 4613/// information. 4614/// 4615/// This routine takes care of the mapping from an integral template 4616/// argument (which may have any integral type) to the appropriate 4617/// literal value. 4618ExprResult 4619Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, 4620 SourceLocation Loc) { 4621 assert(Arg.getKind() == TemplateArgument::Integral && 4622 "Operation is only valid for integral template arguments"); 4623 QualType OrigT = Arg.getIntegralType(); 4624 4625 // If this is an enum type that we're instantiating, we need to use an integer 4626 // type the same size as the enumerator. We don't want to build an 4627 // IntegerLiteral with enum type. The integer type of an enum type can be of 4628 // any integral type with C++11 enum classes, make sure we create the right 4629 // type of literal for it. 4630 QualType T = OrigT; 4631 if (const EnumType *ET = OrigT->getAs<EnumType>()) 4632 T = ET->getDecl()->getIntegerType(); 4633 4634 Expr *E; 4635 if (T->isAnyCharacterType()) { 4636 CharacterLiteral::CharacterKind Kind; 4637 if (T->isWideCharType()) 4638 Kind = CharacterLiteral::Wide; 4639 else if (T->isChar16Type()) 4640 Kind = CharacterLiteral::UTF16; 4641 else if (T->isChar32Type()) 4642 Kind = CharacterLiteral::UTF32; 4643 else 4644 Kind = CharacterLiteral::Ascii; 4645 4646 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), 4647 Kind, T, Loc); 4648 } else if (T->isBooleanType()) { 4649 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), 4650 T, Loc); 4651 } else if (T->isNullPtrType()) { 4652 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 4653 } else { 4654 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); 4655 } 4656 4657 if (OrigT->isEnumeralType()) { 4658 // FIXME: This is a hack. We need a better way to handle substituted 4659 // non-type template parameters. 4660 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0, 4661 Context.getTrivialTypeSourceInfo(OrigT, Loc), 4662 Loc, Loc); 4663 } 4664 4665 return Owned(E); 4666} 4667 4668/// \brief Match two template parameters within template parameter lists. 4669static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, 4670 bool Complain, 4671 Sema::TemplateParameterListEqualKind Kind, 4672 SourceLocation TemplateArgLoc) { 4673 // Check the actual kind (type, non-type, template). 4674 if (Old->getKind() != New->getKind()) { 4675 if (Complain) { 4676 unsigned NextDiag = diag::err_template_param_different_kind; 4677 if (TemplateArgLoc.isValid()) { 4678 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4679 NextDiag = diag::note_template_param_different_kind; 4680 } 4681 S.Diag(New->getLocation(), NextDiag) 4682 << (Kind != Sema::TPL_TemplateMatch); 4683 S.Diag(Old->getLocation(), diag::note_template_prev_declaration) 4684 << (Kind != Sema::TPL_TemplateMatch); 4685 } 4686 4687 return false; 4688 } 4689 4690 // Check that both are parameter packs are neither are parameter packs. 4691 // However, if we are matching a template template argument to a 4692 // template template parameter, the template template parameter can have 4693 // a parameter pack where the template template argument does not. 4694 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && 4695 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4696 Old->isTemplateParameterPack())) { 4697 if (Complain) { 4698 unsigned NextDiag = diag::err_template_parameter_pack_non_pack; 4699 if (TemplateArgLoc.isValid()) { 4700 S.Diag(TemplateArgLoc, 4701 diag::err_template_arg_template_params_mismatch); 4702 NextDiag = diag::note_template_parameter_pack_non_pack; 4703 } 4704 4705 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 4706 : isa<NonTypeTemplateParmDecl>(New)? 1 4707 : 2; 4708 S.Diag(New->getLocation(), NextDiag) 4709 << ParamKind << New->isParameterPack(); 4710 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) 4711 << ParamKind << Old->isParameterPack(); 4712 } 4713 4714 return false; 4715 } 4716 4717 // For non-type template parameters, check the type of the parameter. 4718 if (NonTypeTemplateParmDecl *OldNTTP 4719 = dyn_cast<NonTypeTemplateParmDecl>(Old)) { 4720 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); 4721 4722 // If we are matching a template template argument to a template 4723 // template parameter and one of the non-type template parameter types 4724 // is dependent, then we must wait until template instantiation time 4725 // to actually compare the arguments. 4726 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch && 4727 (OldNTTP->getType()->isDependentType() || 4728 NewNTTP->getType()->isDependentType())) 4729 return true; 4730 4731 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { 4732 if (Complain) { 4733 unsigned NextDiag = diag::err_template_nontype_parm_different_type; 4734 if (TemplateArgLoc.isValid()) { 4735 S.Diag(TemplateArgLoc, 4736 diag::err_template_arg_template_params_mismatch); 4737 NextDiag = diag::note_template_nontype_parm_different_type; 4738 } 4739 S.Diag(NewNTTP->getLocation(), NextDiag) 4740 << NewNTTP->getType() 4741 << (Kind != Sema::TPL_TemplateMatch); 4742 S.Diag(OldNTTP->getLocation(), 4743 diag::note_template_nontype_parm_prev_declaration) 4744 << OldNTTP->getType(); 4745 } 4746 4747 return false; 4748 } 4749 4750 return true; 4751 } 4752 4753 // For template template parameters, check the template parameter types. 4754 // The template parameter lists of template template 4755 // parameters must agree. 4756 if (TemplateTemplateParmDecl *OldTTP 4757 = dyn_cast<TemplateTemplateParmDecl>(Old)) { 4758 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); 4759 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), 4760 OldTTP->getTemplateParameters(), 4761 Complain, 4762 (Kind == Sema::TPL_TemplateMatch 4763 ? Sema::TPL_TemplateTemplateParmMatch 4764 : Kind), 4765 TemplateArgLoc); 4766 } 4767 4768 return true; 4769} 4770 4771/// \brief Diagnose a known arity mismatch when comparing template argument 4772/// lists. 4773static 4774void DiagnoseTemplateParameterListArityMismatch(Sema &S, 4775 TemplateParameterList *New, 4776 TemplateParameterList *Old, 4777 Sema::TemplateParameterListEqualKind Kind, 4778 SourceLocation TemplateArgLoc) { 4779 unsigned NextDiag = diag::err_template_param_list_different_arity; 4780 if (TemplateArgLoc.isValid()) { 4781 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); 4782 NextDiag = diag::note_template_param_list_different_arity; 4783 } 4784 S.Diag(New->getTemplateLoc(), NextDiag) 4785 << (New->size() > Old->size()) 4786 << (Kind != Sema::TPL_TemplateMatch) 4787 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); 4788 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) 4789 << (Kind != Sema::TPL_TemplateMatch) 4790 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); 4791} 4792 4793/// \brief Determine whether the given template parameter lists are 4794/// equivalent. 4795/// 4796/// \param New The new template parameter list, typically written in the 4797/// source code as part of a new template declaration. 4798/// 4799/// \param Old The old template parameter list, typically found via 4800/// name lookup of the template declared with this template parameter 4801/// list. 4802/// 4803/// \param Complain If true, this routine will produce a diagnostic if 4804/// the template parameter lists are not equivalent. 4805/// 4806/// \param Kind describes how we are to match the template parameter lists. 4807/// 4808/// \param TemplateArgLoc If this source location is valid, then we 4809/// are actually checking the template parameter list of a template 4810/// argument (New) against the template parameter list of its 4811/// corresponding template template parameter (Old). We produce 4812/// slightly different diagnostics in this scenario. 4813/// 4814/// \returns True if the template parameter lists are equal, false 4815/// otherwise. 4816bool 4817Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, 4818 TemplateParameterList *Old, 4819 bool Complain, 4820 TemplateParameterListEqualKind Kind, 4821 SourceLocation TemplateArgLoc) { 4822 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { 4823 if (Complain) 4824 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4825 TemplateArgLoc); 4826 4827 return false; 4828 } 4829 4830 // C++0x [temp.arg.template]p3: 4831 // A template-argument matches a template template-parameter (call it P) 4832 // when each of the template parameters in the template-parameter-list of 4833 // the template-argument's corresponding class template or alias template 4834 // (call it A) matches the corresponding template parameter in the 4835 // template-parameter-list of P. [...] 4836 TemplateParameterList::iterator NewParm = New->begin(); 4837 TemplateParameterList::iterator NewParmEnd = New->end(); 4838 for (TemplateParameterList::iterator OldParm = Old->begin(), 4839 OldParmEnd = Old->end(); 4840 OldParm != OldParmEnd; ++OldParm) { 4841 if (Kind != TPL_TemplateTemplateArgumentMatch || 4842 !(*OldParm)->isTemplateParameterPack()) { 4843 if (NewParm == NewParmEnd) { 4844 if (Complain) 4845 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4846 TemplateArgLoc); 4847 4848 return false; 4849 } 4850 4851 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4852 Kind, TemplateArgLoc)) 4853 return false; 4854 4855 ++NewParm; 4856 continue; 4857 } 4858 4859 // C++0x [temp.arg.template]p3: 4860 // [...] When P's template- parameter-list contains a template parameter 4861 // pack (14.5.3), the template parameter pack will match zero or more 4862 // template parameters or template parameter packs in the 4863 // template-parameter-list of A with the same type and form as the 4864 // template parameter pack in P (ignoring whether those template 4865 // parameters are template parameter packs). 4866 for (; NewParm != NewParmEnd; ++NewParm) { 4867 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, 4868 Kind, TemplateArgLoc)) 4869 return false; 4870 } 4871 } 4872 4873 // Make sure we exhausted all of the arguments. 4874 if (NewParm != NewParmEnd) { 4875 if (Complain) 4876 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, 4877 TemplateArgLoc); 4878 4879 return false; 4880 } 4881 4882 return true; 4883} 4884 4885/// \brief Check whether a template can be declared within this scope. 4886/// 4887/// If the template declaration is valid in this scope, returns 4888/// false. Otherwise, issues a diagnostic and returns true. 4889bool 4890Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { 4891 if (!S) 4892 return false; 4893 4894 // Find the nearest enclosing declaration scope. 4895 while ((S->getFlags() & Scope::DeclScope) == 0 || 4896 (S->getFlags() & Scope::TemplateParamScope) != 0) 4897 S = S->getParent(); 4898 4899 // C++ [temp]p2: 4900 // A template-declaration can appear only as a namespace scope or 4901 // class scope declaration. 4902 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity()); 4903 if (Ctx && isa<LinkageSpecDecl>(Ctx) && 4904 cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx) 4905 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) 4906 << TemplateParams->getSourceRange(); 4907 4908 while (Ctx && isa<LinkageSpecDecl>(Ctx)) 4909 Ctx = Ctx->getParent(); 4910 4911 if (Ctx && (Ctx->isFileContext() || Ctx->isRecord())) 4912 return false; 4913 4914 return Diag(TemplateParams->getTemplateLoc(), 4915 diag::err_template_outside_namespace_or_class_scope) 4916 << TemplateParams->getSourceRange(); 4917} 4918 4919/// \brief Determine what kind of template specialization the given declaration 4920/// is. 4921static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { 4922 if (!D) 4923 return TSK_Undeclared; 4924 4925 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) 4926 return Record->getTemplateSpecializationKind(); 4927 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 4928 return Function->getTemplateSpecializationKind(); 4929 if (VarDecl *Var = dyn_cast<VarDecl>(D)) 4930 return Var->getTemplateSpecializationKind(); 4931 4932 return TSK_Undeclared; 4933} 4934 4935/// \brief Check whether a specialization is well-formed in the current 4936/// context. 4937/// 4938/// This routine determines whether a template specialization can be declared 4939/// in the current context (C++ [temp.expl.spec]p2). 4940/// 4941/// \param S the semantic analysis object for which this check is being 4942/// performed. 4943/// 4944/// \param Specialized the entity being specialized or instantiated, which 4945/// may be a kind of template (class template, function template, etc.) or 4946/// a member of a class template (member function, static data member, 4947/// member class). 4948/// 4949/// \param PrevDecl the previous declaration of this entity, if any. 4950/// 4951/// \param Loc the location of the explicit specialization or instantiation of 4952/// this entity. 4953/// 4954/// \param IsPartialSpecialization whether this is a partial specialization of 4955/// a class template. 4956/// 4957/// \returns true if there was an error that we cannot recover from, false 4958/// otherwise. 4959static bool CheckTemplateSpecializationScope(Sema &S, 4960 NamedDecl *Specialized, 4961 NamedDecl *PrevDecl, 4962 SourceLocation Loc, 4963 bool IsPartialSpecialization) { 4964 // Keep these "kind" numbers in sync with the %select statements in the 4965 // various diagnostics emitted by this routine. 4966 int EntityKind = 0; 4967 if (isa<ClassTemplateDecl>(Specialized)) 4968 EntityKind = IsPartialSpecialization? 1 : 0; 4969 else if (isa<FunctionTemplateDecl>(Specialized)) 4970 EntityKind = 2; 4971 else if (isa<CXXMethodDecl>(Specialized)) 4972 EntityKind = 3; 4973 else if (isa<VarDecl>(Specialized)) 4974 EntityKind = 4; 4975 else if (isa<RecordDecl>(Specialized)) 4976 EntityKind = 5; 4977 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) 4978 EntityKind = 6; 4979 else { 4980 S.Diag(Loc, diag::err_template_spec_unknown_kind) 4981 << S.getLangOpts().CPlusPlus11; 4982 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 4983 return true; 4984 } 4985 4986 // C++ [temp.expl.spec]p2: 4987 // An explicit specialization shall be declared in the namespace 4988 // of which the template is a member, or, for member templates, in 4989 // the namespace of which the enclosing class or enclosing class 4990 // template is a member. An explicit specialization of a member 4991 // function, member class or static data member of a class 4992 // template shall be declared in the namespace of which the class 4993 // template is a member. Such a declaration may also be a 4994 // definition. If the declaration is not a definition, the 4995 // specialization may be defined later in the name- space in which 4996 // the explicit specialization was declared, or in a namespace 4997 // that encloses the one in which the explicit specialization was 4998 // declared. 4999 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { 5000 S.Diag(Loc, diag::err_template_spec_decl_function_scope) 5001 << Specialized; 5002 return true; 5003 } 5004 5005 if (S.CurContext->isRecord() && !IsPartialSpecialization) { 5006 if (S.getLangOpts().MicrosoftExt) { 5007 // Do not warn for class scope explicit specialization during 5008 // instantiation, warning was already emitted during pattern 5009 // semantic analysis. 5010 if (!S.ActiveTemplateInstantiations.size()) 5011 S.Diag(Loc, diag::ext_function_specialization_in_class) 5012 << Specialized; 5013 } else { 5014 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5015 << Specialized; 5016 return true; 5017 } 5018 } 5019 5020 if (S.CurContext->isRecord() && 5021 !S.CurContext->Equals(Specialized->getDeclContext())) { 5022 // Make sure that we're specializing in the right record context. 5023 // Otherwise, things can go horribly wrong. 5024 S.Diag(Loc, diag::err_template_spec_decl_class_scope) 5025 << Specialized; 5026 return true; 5027 } 5028 5029 // C++ [temp.class.spec]p6: 5030 // A class template partial specialization may be declared or redeclared 5031 // in any namespace scope in which its definition may be defined (14.5.1 5032 // and 14.5.2). 5033 bool ComplainedAboutScope = false; 5034 DeclContext *SpecializedContext 5035 = Specialized->getDeclContext()->getEnclosingNamespaceContext(); 5036 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext(); 5037 if ((!PrevDecl || 5038 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared || 5039 getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){ 5040 // C++ [temp.exp.spec]p2: 5041 // An explicit specialization shall be declared in the namespace of which 5042 // the template is a member, or, for member templates, in the namespace 5043 // of which the enclosing class or enclosing class template is a member. 5044 // An explicit specialization of a member function, member class or 5045 // static data member of a class template shall be declared in the 5046 // namespace of which the class template is a member. 5047 // 5048 // C++0x [temp.expl.spec]p2: 5049 // An explicit specialization shall be declared in a namespace enclosing 5050 // the specialized template. 5051 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) { 5052 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext); 5053 if (isa<TranslationUnitDecl>(SpecializedContext)) { 5054 assert(!IsCPlusPlus11Extension && 5055 "DC encloses TU but isn't in enclosing namespace set"); 5056 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global) 5057 << EntityKind << Specialized; 5058 } else if (isa<NamespaceDecl>(SpecializedContext)) { 5059 int Diag; 5060 if (!IsCPlusPlus11Extension) 5061 Diag = diag::err_template_spec_decl_out_of_scope; 5062 else if (!S.getLangOpts().CPlusPlus11) 5063 Diag = diag::ext_template_spec_decl_out_of_scope; 5064 else 5065 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope; 5066 S.Diag(Loc, Diag) 5067 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext); 5068 } 5069 5070 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5071 ComplainedAboutScope = 5072 !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11); 5073 } 5074 } 5075 5076 // Make sure that this redeclaration (or definition) occurs in an enclosing 5077 // namespace. 5078 // Note that HandleDeclarator() performs this check for explicit 5079 // specializations of function templates, static data members, and member 5080 // functions, so we skip the check here for those kinds of entities. 5081 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though. 5082 // Should we refactor that check, so that it occurs later? 5083 if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) && 5084 !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) || 5085 isa<FunctionDecl>(Specialized))) { 5086 if (isa<TranslationUnitDecl>(SpecializedContext)) 5087 S.Diag(Loc, diag::err_template_spec_redecl_global_scope) 5088 << EntityKind << Specialized; 5089 else if (isa<NamespaceDecl>(SpecializedContext)) 5090 S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope) 5091 << EntityKind << Specialized 5092 << cast<NamedDecl>(SpecializedContext); 5093 5094 S.Diag(Specialized->getLocation(), diag::note_specialized_entity); 5095 } 5096 5097 // FIXME: check for specialization-after-instantiation errors and such. 5098 5099 return false; 5100} 5101 5102/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs 5103/// that checks non-type template partial specialization arguments. 5104static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S, 5105 NonTypeTemplateParmDecl *Param, 5106 const TemplateArgument *Args, 5107 unsigned NumArgs) { 5108 for (unsigned I = 0; I != NumArgs; ++I) { 5109 if (Args[I].getKind() == TemplateArgument::Pack) { 5110 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5111 Args[I].pack_begin(), 5112 Args[I].pack_size())) 5113 return true; 5114 5115 continue; 5116 } 5117 5118 if (Args[I].getKind() != TemplateArgument::Expression) 5119 continue; 5120 5121 Expr *ArgExpr = Args[I].getAsExpr(); 5122 5123 // We can have a pack expansion of any of the bullets below. 5124 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) 5125 ArgExpr = Expansion->getPattern(); 5126 5127 // Strip off any implicit casts we added as part of type checking. 5128 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 5129 ArgExpr = ICE->getSubExpr(); 5130 5131 // C++ [temp.class.spec]p8: 5132 // A non-type argument is non-specialized if it is the name of a 5133 // non-type parameter. All other non-type arguments are 5134 // specialized. 5135 // 5136 // Below, we check the two conditions that only apply to 5137 // specialized non-type arguments, so skip any non-specialized 5138 // arguments. 5139 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) 5140 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) 5141 continue; 5142 5143 // C++ [temp.class.spec]p9: 5144 // Within the argument list of a class template partial 5145 // specialization, the following restrictions apply: 5146 // -- A partially specialized non-type argument expression 5147 // shall not involve a template parameter of the partial 5148 // specialization except when the argument expression is a 5149 // simple identifier. 5150 if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) { 5151 S.Diag(ArgExpr->getLocStart(), 5152 diag::err_dependent_non_type_arg_in_partial_spec) 5153 << ArgExpr->getSourceRange(); 5154 return true; 5155 } 5156 5157 // -- The type of a template parameter corresponding to a 5158 // specialized non-type argument shall not be dependent on a 5159 // parameter of the specialization. 5160 if (Param->getType()->isDependentType()) { 5161 S.Diag(ArgExpr->getLocStart(), 5162 diag::err_dependent_typed_non_type_arg_in_partial_spec) 5163 << Param->getType() 5164 << ArgExpr->getSourceRange(); 5165 S.Diag(Param->getLocation(), diag::note_template_param_here); 5166 return true; 5167 } 5168 } 5169 5170 return false; 5171} 5172 5173/// \brief Check the non-type template arguments of a class template 5174/// partial specialization according to C++ [temp.class.spec]p9. 5175/// 5176/// \param TemplateParams the template parameters of the primary class 5177/// template. 5178/// 5179/// \param TemplateArgs the template arguments of the class template 5180/// partial specialization. 5181/// 5182/// \returns true if there was an error, false otherwise. 5183static bool CheckClassTemplatePartialSpecializationArgs(Sema &S, 5184 TemplateParameterList *TemplateParams, 5185 SmallVectorImpl<TemplateArgument> &TemplateArgs) { 5186 const TemplateArgument *ArgList = TemplateArgs.data(); 5187 5188 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5189 NonTypeTemplateParmDecl *Param 5190 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); 5191 if (!Param) 5192 continue; 5193 5194 if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param, 5195 &ArgList[I], 1)) 5196 return true; 5197 } 5198 5199 return false; 5200} 5201 5202DeclResult 5203Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, 5204 TagUseKind TUK, 5205 SourceLocation KWLoc, 5206 SourceLocation ModulePrivateLoc, 5207 CXXScopeSpec &SS, 5208 TemplateTy TemplateD, 5209 SourceLocation TemplateNameLoc, 5210 SourceLocation LAngleLoc, 5211 ASTTemplateArgsPtr TemplateArgsIn, 5212 SourceLocation RAngleLoc, 5213 AttributeList *Attr, 5214 MultiTemplateParamsArg TemplateParameterLists) { 5215 assert(TUK != TUK_Reference && "References are not specializations"); 5216 5217 // NOTE: KWLoc is the location of the tag keyword. This will instead 5218 // store the location of the outermost template keyword in the declaration. 5219 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 5220 ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation(); 5221 5222 // Find the class template we're specializing 5223 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 5224 ClassTemplateDecl *ClassTemplate 5225 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); 5226 5227 if (!ClassTemplate) { 5228 Diag(TemplateNameLoc, diag::err_not_class_template_specialization) 5229 << (Name.getAsTemplateDecl() && 5230 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); 5231 return true; 5232 } 5233 5234 bool isExplicitSpecialization = false; 5235 bool isPartialSpecialization = false; 5236 5237 // Check the validity of the template headers that introduce this 5238 // template. 5239 // FIXME: We probably shouldn't complain about these headers for 5240 // friend declarations. 5241 bool Invalid = false; 5242 TemplateParameterList *TemplateParams 5243 = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, 5244 TemplateNameLoc, 5245 SS, 5246 TemplateParameterLists.data(), 5247 TemplateParameterLists.size(), 5248 TUK == TUK_Friend, 5249 isExplicitSpecialization, 5250 Invalid); 5251 if (Invalid) 5252 return true; 5253 5254 if (TemplateParams && TemplateParams->size() > 0) { 5255 isPartialSpecialization = true; 5256 5257 if (TUK == TUK_Friend) { 5258 Diag(KWLoc, diag::err_partial_specialization_friend) 5259 << SourceRange(LAngleLoc, RAngleLoc); 5260 return true; 5261 } 5262 5263 // C++ [temp.class.spec]p10: 5264 // The template parameter list of a specialization shall not 5265 // contain default template argument values. 5266 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 5267 Decl *Param = TemplateParams->getParam(I); 5268 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { 5269 if (TTP->hasDefaultArgument()) { 5270 Diag(TTP->getDefaultArgumentLoc(), 5271 diag::err_default_arg_in_partial_spec); 5272 TTP->removeDefaultArgument(); 5273 } 5274 } else if (NonTypeTemplateParmDecl *NTTP 5275 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 5276 if (Expr *DefArg = NTTP->getDefaultArgument()) { 5277 Diag(NTTP->getDefaultArgumentLoc(), 5278 diag::err_default_arg_in_partial_spec) 5279 << DefArg->getSourceRange(); 5280 NTTP->removeDefaultArgument(); 5281 } 5282 } else { 5283 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); 5284 if (TTP->hasDefaultArgument()) { 5285 Diag(TTP->getDefaultArgument().getLocation(), 5286 diag::err_default_arg_in_partial_spec) 5287 << TTP->getDefaultArgument().getSourceRange(); 5288 TTP->removeDefaultArgument(); 5289 } 5290 } 5291 } 5292 } else if (TemplateParams) { 5293 if (TUK == TUK_Friend) 5294 Diag(KWLoc, diag::err_template_spec_friend) 5295 << FixItHint::CreateRemoval( 5296 SourceRange(TemplateParams->getTemplateLoc(), 5297 TemplateParams->getRAngleLoc())) 5298 << SourceRange(LAngleLoc, RAngleLoc); 5299 else 5300 isExplicitSpecialization = true; 5301 } else if (TUK != TUK_Friend) { 5302 Diag(KWLoc, diag::err_template_spec_needs_header) 5303 << FixItHint::CreateInsertion(KWLoc, "template<> "); 5304 isExplicitSpecialization = true; 5305 } 5306 5307 // Check that the specialization uses the same tag kind as the 5308 // original template. 5309 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 5310 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); 5311 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 5312 Kind, TUK == TUK_Definition, KWLoc, 5313 *ClassTemplate->getIdentifier())) { 5314 Diag(KWLoc, diag::err_use_with_wrong_tag) 5315 << ClassTemplate 5316 << FixItHint::CreateReplacement(KWLoc, 5317 ClassTemplate->getTemplatedDecl()->getKindName()); 5318 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 5319 diag::note_previous_use); 5320 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 5321 } 5322 5323 // Translate the parser's template argument list in our AST format. 5324 TemplateArgumentListInfo TemplateArgs; 5325 TemplateArgs.setLAngleLoc(LAngleLoc); 5326 TemplateArgs.setRAngleLoc(RAngleLoc); 5327 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 5328 5329 // Check for unexpanded parameter packs in any of the template arguments. 5330 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5331 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], 5332 UPPC_PartialSpecialization)) 5333 return true; 5334 5335 // Check that the template argument list is well-formed for this 5336 // template. 5337 SmallVector<TemplateArgument, 4> Converted; 5338 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 5339 TemplateArgs, false, Converted)) 5340 return true; 5341 5342 // Find the class template (partial) specialization declaration that 5343 // corresponds to these arguments. 5344 if (isPartialSpecialization) { 5345 if (CheckClassTemplatePartialSpecializationArgs(*this, 5346 ClassTemplate->getTemplateParameters(), 5347 Converted)) 5348 return true; 5349 5350 bool InstantiationDependent; 5351 if (!Name.isDependent() && 5352 !TemplateSpecializationType::anyDependentTemplateArguments( 5353 TemplateArgs.getArgumentArray(), 5354 TemplateArgs.size(), 5355 InstantiationDependent)) { 5356 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) 5357 << ClassTemplate->getDeclName(); 5358 isPartialSpecialization = false; 5359 } 5360 } 5361 5362 void *InsertPos = 0; 5363 ClassTemplateSpecializationDecl *PrevDecl = 0; 5364 5365 if (isPartialSpecialization) 5366 // FIXME: Template parameter list matters, too 5367 PrevDecl 5368 = ClassTemplate->findPartialSpecialization(Converted.data(), 5369 Converted.size(), 5370 InsertPos); 5371 else 5372 PrevDecl 5373 = ClassTemplate->findSpecialization(Converted.data(), 5374 Converted.size(), InsertPos); 5375 5376 ClassTemplateSpecializationDecl *Specialization = 0; 5377 5378 // Check whether we can declare a class template specialization in 5379 // the current scope. 5380 if (TUK != TUK_Friend && 5381 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, 5382 TemplateNameLoc, 5383 isPartialSpecialization)) 5384 return true; 5385 5386 // The canonical type 5387 QualType CanonType; 5388 if (PrevDecl && 5389 (PrevDecl->getSpecializationKind() == TSK_Undeclared || 5390 TUK == TUK_Friend)) { 5391 // Since the only prior class template specialization with these 5392 // arguments was referenced but not declared, or we're only 5393 // referencing this specialization as a friend, reuse that 5394 // declaration node as our own, updating its source location and 5395 // the list of outer template parameters to reflect our new declaration. 5396 Specialization = PrevDecl; 5397 Specialization->setLocation(TemplateNameLoc); 5398 if (TemplateParameterLists.size() > 0) { 5399 Specialization->setTemplateParameterListsInfo(Context, 5400 TemplateParameterLists.size(), 5401 TemplateParameterLists.data()); 5402 } 5403 PrevDecl = 0; 5404 CanonType = Context.getTypeDeclType(Specialization); 5405 } else if (isPartialSpecialization) { 5406 // Build the canonical type that describes the converted template 5407 // arguments of the class template partial specialization. 5408 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 5409 CanonType = Context.getTemplateSpecializationType(CanonTemplate, 5410 Converted.data(), 5411 Converted.size()); 5412 5413 if (Context.hasSameType(CanonType, 5414 ClassTemplate->getInjectedClassNameSpecialization())) { 5415 // C++ [temp.class.spec]p9b3: 5416 // 5417 // -- The argument list of the specialization shall not be identical 5418 // to the implicit argument list of the primary template. 5419 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) 5420 << (TUK == TUK_Definition) 5421 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); 5422 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, 5423 ClassTemplate->getIdentifier(), 5424 TemplateNameLoc, 5425 Attr, 5426 TemplateParams, 5427 AS_none, /*ModulePrivateLoc=*/SourceLocation(), 5428 TemplateParameterLists.size() - 1, 5429 TemplateParameterLists.data()); 5430 } 5431 5432 // Create a new class template partial specialization declaration node. 5433 ClassTemplatePartialSpecializationDecl *PrevPartial 5434 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); 5435 unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber() 5436 : ClassTemplate->getNextPartialSpecSequenceNumber(); 5437 ClassTemplatePartialSpecializationDecl *Partial 5438 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, 5439 ClassTemplate->getDeclContext(), 5440 KWLoc, TemplateNameLoc, 5441 TemplateParams, 5442 ClassTemplate, 5443 Converted.data(), 5444 Converted.size(), 5445 TemplateArgs, 5446 CanonType, 5447 PrevPartial, 5448 SequenceNumber); 5449 SetNestedNameSpecifier(Partial, SS); 5450 if (TemplateParameterLists.size() > 1 && SS.isSet()) { 5451 Partial->setTemplateParameterListsInfo(Context, 5452 TemplateParameterLists.size() - 1, 5453 TemplateParameterLists.data()); 5454 } 5455 5456 if (!PrevPartial) 5457 ClassTemplate->AddPartialSpecialization(Partial, InsertPos); 5458 Specialization = Partial; 5459 5460 // If we are providing an explicit specialization of a member class 5461 // template specialization, make a note of that. 5462 if (PrevPartial && PrevPartial->getInstantiatedFromMember()) 5463 PrevPartial->setMemberSpecialization(); 5464 5465 // Check that all of the template parameters of the class template 5466 // partial specialization are deducible from the template 5467 // arguments. If not, this class template partial specialization 5468 // will never be used. 5469 llvm::SmallBitVector DeducibleParams(TemplateParams->size()); 5470 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, 5471 TemplateParams->getDepth(), 5472 DeducibleParams); 5473 5474 if (!DeducibleParams.all()) { 5475 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count(); 5476 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible) 5477 << (NumNonDeducible > 1) 5478 << SourceRange(TemplateNameLoc, RAngleLoc); 5479 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { 5480 if (!DeducibleParams[I]) { 5481 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I)); 5482 if (Param->getDeclName()) 5483 Diag(Param->getLocation(), 5484 diag::note_partial_spec_unused_parameter) 5485 << Param->getDeclName(); 5486 else 5487 Diag(Param->getLocation(), 5488 diag::note_partial_spec_unused_parameter) 5489 << "<anonymous>"; 5490 } 5491 } 5492 } 5493 } else { 5494 // Create a new class template specialization declaration node for 5495 // this explicit specialization or friend declaration. 5496 Specialization 5497 = ClassTemplateSpecializationDecl::Create(Context, Kind, 5498 ClassTemplate->getDeclContext(), 5499 KWLoc, TemplateNameLoc, 5500 ClassTemplate, 5501 Converted.data(), 5502 Converted.size(), 5503 PrevDecl); 5504 SetNestedNameSpecifier(Specialization, SS); 5505 if (TemplateParameterLists.size() > 0) { 5506 Specialization->setTemplateParameterListsInfo(Context, 5507 TemplateParameterLists.size(), 5508 TemplateParameterLists.data()); 5509 } 5510 5511 if (!PrevDecl) 5512 ClassTemplate->AddSpecialization(Specialization, InsertPos); 5513 5514 CanonType = Context.getTypeDeclType(Specialization); 5515 } 5516 5517 // C++ [temp.expl.spec]p6: 5518 // If a template, a member template or the member of a class template is 5519 // explicitly specialized then that specialization shall be declared 5520 // before the first use of that specialization that would cause an implicit 5521 // instantiation to take place, in every translation unit in which such a 5522 // use occurs; no diagnostic is required. 5523 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { 5524 bool Okay = false; 5525 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5526 // Is there any previous explicit specialization declaration? 5527 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5528 Okay = true; 5529 break; 5530 } 5531 } 5532 5533 if (!Okay) { 5534 SourceRange Range(TemplateNameLoc, RAngleLoc); 5535 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) 5536 << Context.getTypeDeclType(Specialization) << Range; 5537 5538 Diag(PrevDecl->getPointOfInstantiation(), 5539 diag::note_instantiation_required_here) 5540 << (PrevDecl->getTemplateSpecializationKind() 5541 != TSK_ImplicitInstantiation); 5542 return true; 5543 } 5544 } 5545 5546 // If this is not a friend, note that this is an explicit specialization. 5547 if (TUK != TUK_Friend) 5548 Specialization->setSpecializationKind(TSK_ExplicitSpecialization); 5549 5550 // Check that this isn't a redefinition of this specialization. 5551 if (TUK == TUK_Definition) { 5552 if (RecordDecl *Def = Specialization->getDefinition()) { 5553 SourceRange Range(TemplateNameLoc, RAngleLoc); 5554 Diag(TemplateNameLoc, diag::err_redefinition) 5555 << Context.getTypeDeclType(Specialization) << Range; 5556 Diag(Def->getLocation(), diag::note_previous_definition); 5557 Specialization->setInvalidDecl(); 5558 return true; 5559 } 5560 } 5561 5562 if (Attr) 5563 ProcessDeclAttributeList(S, Specialization, Attr); 5564 5565 // Add alignment attributes if necessary; these attributes are checked when 5566 // the ASTContext lays out the structure. 5567 if (TUK == TUK_Definition) { 5568 AddAlignmentAttributesForRecord(Specialization); 5569 AddMsStructLayoutForRecord(Specialization); 5570 } 5571 5572 if (ModulePrivateLoc.isValid()) 5573 Diag(Specialization->getLocation(), diag::err_module_private_specialization) 5574 << (isPartialSpecialization? 1 : 0) 5575 << FixItHint::CreateRemoval(ModulePrivateLoc); 5576 5577 // Build the fully-sugared type for this class template 5578 // specialization as the user wrote in the specialization 5579 // itself. This means that we'll pretty-print the type retrieved 5580 // from the specialization's declaration the way that the user 5581 // actually wrote the specialization, rather than formatting the 5582 // name based on the "canonical" representation used to store the 5583 // template arguments in the specialization. 5584 TypeSourceInfo *WrittenTy 5585 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 5586 TemplateArgs, CanonType); 5587 if (TUK != TUK_Friend) { 5588 Specialization->setTypeAsWritten(WrittenTy); 5589 Specialization->setTemplateKeywordLoc(TemplateKWLoc); 5590 } 5591 5592 // C++ [temp.expl.spec]p9: 5593 // A template explicit specialization is in the scope of the 5594 // namespace in which the template was defined. 5595 // 5596 // We actually implement this paragraph where we set the semantic 5597 // context (in the creation of the ClassTemplateSpecializationDecl), 5598 // but we also maintain the lexical context where the actual 5599 // definition occurs. 5600 Specialization->setLexicalDeclContext(CurContext); 5601 5602 // We may be starting the definition of this specialization. 5603 if (TUK == TUK_Definition) 5604 Specialization->startDefinition(); 5605 5606 if (TUK == TUK_Friend) { 5607 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, 5608 TemplateNameLoc, 5609 WrittenTy, 5610 /*FIXME:*/KWLoc); 5611 Friend->setAccess(AS_public); 5612 CurContext->addDecl(Friend); 5613 } else { 5614 // Add the specialization into its lexical context, so that it can 5615 // be seen when iterating through the list of declarations in that 5616 // context. However, specializations are not found by name lookup. 5617 CurContext->addDecl(Specialization); 5618 } 5619 return Specialization; 5620} 5621 5622Decl *Sema::ActOnTemplateDeclarator(Scope *S, 5623 MultiTemplateParamsArg TemplateParameterLists, 5624 Declarator &D) { 5625 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); 5626 ActOnDocumentableDecl(NewDecl); 5627 return NewDecl; 5628} 5629 5630Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope, 5631 MultiTemplateParamsArg TemplateParameterLists, 5632 Declarator &D) { 5633 assert(getCurFunctionDecl() == 0 && "Function parsing confused"); 5634 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 5635 5636 if (FTI.hasPrototype) { 5637 // FIXME: Diagnose arguments without names in C. 5638 } 5639 5640 Scope *ParentScope = FnBodyScope->getParent(); 5641 5642 D.setFunctionDefinitionKind(FDK_Definition); 5643 Decl *DP = HandleDeclarator(ParentScope, D, 5644 TemplateParameterLists); 5645 return ActOnStartOfFunctionDef(FnBodyScope, DP); 5646} 5647 5648/// \brief Strips various properties off an implicit instantiation 5649/// that has just been explicitly specialized. 5650static void StripImplicitInstantiation(NamedDecl *D) { 5651 D->dropAttrs(); 5652 5653 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 5654 FD->setInlineSpecified(false); 5655 5656 for (FunctionDecl::param_iterator I = FD->param_begin(), 5657 E = FD->param_end(); 5658 I != E; ++I) 5659 (*I)->dropAttrs(); 5660 } 5661} 5662 5663/// \brief Compute the diagnostic location for an explicit instantiation 5664// declaration or definition. 5665static SourceLocation DiagLocForExplicitInstantiation( 5666 NamedDecl* D, SourceLocation PointOfInstantiation) { 5667 // Explicit instantiations following a specialization have no effect and 5668 // hence no PointOfInstantiation. In that case, walk decl backwards 5669 // until a valid name loc is found. 5670 SourceLocation PrevDiagLoc = PointOfInstantiation; 5671 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); 5672 Prev = Prev->getPreviousDecl()) { 5673 PrevDiagLoc = Prev->getLocation(); 5674 } 5675 assert(PrevDiagLoc.isValid() && 5676 "Explicit instantiation without point of instantiation?"); 5677 return PrevDiagLoc; 5678} 5679 5680/// \brief Diagnose cases where we have an explicit template specialization 5681/// before/after an explicit template instantiation, producing diagnostics 5682/// for those cases where they are required and determining whether the 5683/// new specialization/instantiation will have any effect. 5684/// 5685/// \param NewLoc the location of the new explicit specialization or 5686/// instantiation. 5687/// 5688/// \param NewTSK the kind of the new explicit specialization or instantiation. 5689/// 5690/// \param PrevDecl the previous declaration of the entity. 5691/// 5692/// \param PrevTSK the kind of the old explicit specialization or instantiatin. 5693/// 5694/// \param PrevPointOfInstantiation if valid, indicates where the previus 5695/// declaration was instantiated (either implicitly or explicitly). 5696/// 5697/// \param HasNoEffect will be set to true to indicate that the new 5698/// specialization or instantiation has no effect and should be ignored. 5699/// 5700/// \returns true if there was an error that should prevent the introduction of 5701/// the new declaration into the AST, false otherwise. 5702bool 5703Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, 5704 TemplateSpecializationKind NewTSK, 5705 NamedDecl *PrevDecl, 5706 TemplateSpecializationKind PrevTSK, 5707 SourceLocation PrevPointOfInstantiation, 5708 bool &HasNoEffect) { 5709 HasNoEffect = false; 5710 5711 switch (NewTSK) { 5712 case TSK_Undeclared: 5713 case TSK_ImplicitInstantiation: 5714 llvm_unreachable("Don't check implicit instantiations here"); 5715 5716 case TSK_ExplicitSpecialization: 5717 switch (PrevTSK) { 5718 case TSK_Undeclared: 5719 case TSK_ExplicitSpecialization: 5720 // Okay, we're just specializing something that is either already 5721 // explicitly specialized or has merely been mentioned without any 5722 // instantiation. 5723 return false; 5724 5725 case TSK_ImplicitInstantiation: 5726 if (PrevPointOfInstantiation.isInvalid()) { 5727 // The declaration itself has not actually been instantiated, so it is 5728 // still okay to specialize it. 5729 StripImplicitInstantiation(PrevDecl); 5730 return false; 5731 } 5732 // Fall through 5733 5734 case TSK_ExplicitInstantiationDeclaration: 5735 case TSK_ExplicitInstantiationDefinition: 5736 assert((PrevTSK == TSK_ImplicitInstantiation || 5737 PrevPointOfInstantiation.isValid()) && 5738 "Explicit instantiation without point of instantiation?"); 5739 5740 // C++ [temp.expl.spec]p6: 5741 // If a template, a member template or the member of a class template 5742 // is explicitly specialized then that specialization shall be declared 5743 // before the first use of that specialization that would cause an 5744 // implicit instantiation to take place, in every translation unit in 5745 // which such a use occurs; no diagnostic is required. 5746 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5747 // Is there any previous explicit specialization declaration? 5748 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) 5749 return false; 5750 } 5751 5752 Diag(NewLoc, diag::err_specialization_after_instantiation) 5753 << PrevDecl; 5754 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) 5755 << (PrevTSK != TSK_ImplicitInstantiation); 5756 5757 return true; 5758 } 5759 5760 case TSK_ExplicitInstantiationDeclaration: 5761 switch (PrevTSK) { 5762 case TSK_ExplicitInstantiationDeclaration: 5763 // This explicit instantiation declaration is redundant (that's okay). 5764 HasNoEffect = true; 5765 return false; 5766 5767 case TSK_Undeclared: 5768 case TSK_ImplicitInstantiation: 5769 // We're explicitly instantiating something that may have already been 5770 // implicitly instantiated; that's fine. 5771 return false; 5772 5773 case TSK_ExplicitSpecialization: 5774 // C++0x [temp.explicit]p4: 5775 // For a given set of template parameters, if an explicit instantiation 5776 // of a template appears after a declaration of an explicit 5777 // specialization for that template, the explicit instantiation has no 5778 // effect. 5779 HasNoEffect = true; 5780 return false; 5781 5782 case TSK_ExplicitInstantiationDefinition: 5783 // C++0x [temp.explicit]p10: 5784 // If an entity is the subject of both an explicit instantiation 5785 // declaration and an explicit instantiation definition in the same 5786 // translation unit, the definition shall follow the declaration. 5787 Diag(NewLoc, 5788 diag::err_explicit_instantiation_declaration_after_definition); 5789 5790 // Explicit instantiations following a specialization have no effect and 5791 // hence no PrevPointOfInstantiation. In that case, walk decl backwards 5792 // until a valid name loc is found. 5793 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5794 diag::note_explicit_instantiation_definition_here); 5795 HasNoEffect = true; 5796 return false; 5797 } 5798 5799 case TSK_ExplicitInstantiationDefinition: 5800 switch (PrevTSK) { 5801 case TSK_Undeclared: 5802 case TSK_ImplicitInstantiation: 5803 // We're explicitly instantiating something that may have already been 5804 // implicitly instantiated; that's fine. 5805 return false; 5806 5807 case TSK_ExplicitSpecialization: 5808 // C++ DR 259, C++0x [temp.explicit]p4: 5809 // For a given set of template parameters, if an explicit 5810 // instantiation of a template appears after a declaration of 5811 // an explicit specialization for that template, the explicit 5812 // instantiation has no effect. 5813 // 5814 // In C++98/03 mode, we only give an extension warning here, because it 5815 // is not harmful to try to explicitly instantiate something that 5816 // has been explicitly specialized. 5817 Diag(NewLoc, getLangOpts().CPlusPlus11 ? 5818 diag::warn_cxx98_compat_explicit_instantiation_after_specialization : 5819 diag::ext_explicit_instantiation_after_specialization) 5820 << PrevDecl; 5821 Diag(PrevDecl->getLocation(), 5822 diag::note_previous_template_specialization); 5823 HasNoEffect = true; 5824 return false; 5825 5826 case TSK_ExplicitInstantiationDeclaration: 5827 // We're explicity instantiating a definition for something for which we 5828 // were previously asked to suppress instantiations. That's fine. 5829 5830 // C++0x [temp.explicit]p4: 5831 // For a given set of template parameters, if an explicit instantiation 5832 // of a template appears after a declaration of an explicit 5833 // specialization for that template, the explicit instantiation has no 5834 // effect. 5835 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { 5836 // Is there any previous explicit specialization declaration? 5837 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { 5838 HasNoEffect = true; 5839 break; 5840 } 5841 } 5842 5843 return false; 5844 5845 case TSK_ExplicitInstantiationDefinition: 5846 // C++0x [temp.spec]p5: 5847 // For a given template and a given set of template-arguments, 5848 // - an explicit instantiation definition shall appear at most once 5849 // in a program, 5850 Diag(NewLoc, diag::err_explicit_instantiation_duplicate) 5851 << PrevDecl; 5852 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), 5853 diag::note_previous_explicit_instantiation); 5854 HasNoEffect = true; 5855 return false; 5856 } 5857 } 5858 5859 llvm_unreachable("Missing specialization/instantiation case?"); 5860} 5861 5862/// \brief Perform semantic analysis for the given dependent function 5863/// template specialization. 5864/// 5865/// The only possible way to get a dependent function template specialization 5866/// is with a friend declaration, like so: 5867/// 5868/// \code 5869/// template \<class T> void foo(T); 5870/// template \<class T> class A { 5871/// friend void foo<>(T); 5872/// }; 5873/// \endcode 5874/// 5875/// There really isn't any useful analysis we can do here, so we 5876/// just store the information. 5877bool 5878Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, 5879 const TemplateArgumentListInfo &ExplicitTemplateArgs, 5880 LookupResult &Previous) { 5881 // Remove anything from Previous that isn't a function template in 5882 // the correct context. 5883 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5884 LookupResult::Filter F = Previous.makeFilter(); 5885 while (F.hasNext()) { 5886 NamedDecl *D = F.next()->getUnderlyingDecl(); 5887 if (!isa<FunctionTemplateDecl>(D) || 5888 !FDLookupContext->InEnclosingNamespaceSetOf( 5889 D->getDeclContext()->getRedeclContext())) 5890 F.erase(); 5891 } 5892 F.done(); 5893 5894 // Should this be diagnosed here? 5895 if (Previous.empty()) return true; 5896 5897 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), 5898 ExplicitTemplateArgs); 5899 return false; 5900} 5901 5902/// \brief Perform semantic analysis for the given function template 5903/// specialization. 5904/// 5905/// This routine performs all of the semantic analysis required for an 5906/// explicit function template specialization. On successful completion, 5907/// the function declaration \p FD will become a function template 5908/// specialization. 5909/// 5910/// \param FD the function declaration, which will be updated to become a 5911/// function template specialization. 5912/// 5913/// \param ExplicitTemplateArgs the explicitly-provided template arguments, 5914/// if any. Note that this may be valid info even when 0 arguments are 5915/// explicitly provided as in, e.g., \c void sort<>(char*, char*); 5916/// as it anyway contains info on the angle brackets locations. 5917/// 5918/// \param Previous the set of declarations that may be specialized by 5919/// this function specialization. 5920bool 5921Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD, 5922 TemplateArgumentListInfo *ExplicitTemplateArgs, 5923 LookupResult &Previous) { 5924 // The set of function template specializations that could match this 5925 // explicit function template specialization. 5926 UnresolvedSet<8> Candidates; 5927 5928 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); 5929 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 5930 I != E; ++I) { 5931 NamedDecl *Ovl = (*I)->getUnderlyingDecl(); 5932 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { 5933 // Only consider templates found within the same semantic lookup scope as 5934 // FD. 5935 if (!FDLookupContext->InEnclosingNamespaceSetOf( 5936 Ovl->getDeclContext()->getRedeclContext())) 5937 continue; 5938 5939 // When matching a constexpr member function template specialization 5940 // against the primary template, we don't yet know whether the 5941 // specialization has an implicit 'const' (because we don't know whether 5942 // it will be a static member function until we know which template it 5943 // specializes), so adjust it now assuming it specializes this template. 5944 QualType FT = FD->getType(); 5945 if (FD->isConstexpr()) { 5946 CXXMethodDecl *OldMD = 5947 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); 5948 if (OldMD && OldMD->isConst()) { 5949 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); 5950 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 5951 EPI.TypeQuals |= Qualifiers::Const; 5952 FT = Context.getFunctionType(FPT->getResultType(), 5953 ArrayRef<QualType>(FPT->arg_type_begin(), 5954 FPT->getNumArgs()), 5955 EPI); 5956 } 5957 } 5958 5959 // C++ [temp.expl.spec]p11: 5960 // A trailing template-argument can be left unspecified in the 5961 // template-id naming an explicit function template specialization 5962 // provided it can be deduced from the function argument type. 5963 // Perform template argument deduction to determine whether we may be 5964 // specializing this template. 5965 // FIXME: It is somewhat wasteful to build 5966 TemplateDeductionInfo Info(FD->getLocation()); 5967 FunctionDecl *Specialization = 0; 5968 if (TemplateDeductionResult TDK 5969 = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT, 5970 Specialization, Info)) { 5971 // FIXME: Template argument deduction failed; record why it failed, so 5972 // that we can provide nifty diagnostics. 5973 (void)TDK; 5974 continue; 5975 } 5976 5977 // Record this candidate. 5978 Candidates.addDecl(Specialization, I.getAccess()); 5979 } 5980 } 5981 5982 // Find the most specialized function template. 5983 UnresolvedSetIterator Result 5984 = getMostSpecialized(Candidates.begin(), Candidates.end(), 5985 TPOC_Other, 0, FD->getLocation(), 5986 PDiag(diag::err_function_template_spec_no_match) 5987 << FD->getDeclName(), 5988 PDiag(diag::err_function_template_spec_ambiguous) 5989 << FD->getDeclName() << (ExplicitTemplateArgs != 0), 5990 PDiag(diag::note_function_template_spec_matched)); 5991 if (Result == Candidates.end()) 5992 return true; 5993 5994 // Ignore access information; it doesn't figure into redeclaration checking. 5995 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 5996 5997 FunctionTemplateSpecializationInfo *SpecInfo 5998 = Specialization->getTemplateSpecializationInfo(); 5999 assert(SpecInfo && "Function template specialization info missing?"); 6000 6001 // Note: do not overwrite location info if previous template 6002 // specialization kind was explicit. 6003 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); 6004 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { 6005 Specialization->setLocation(FD->getLocation()); 6006 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr 6007 // function can differ from the template declaration with respect to 6008 // the constexpr specifier. 6009 Specialization->setConstexpr(FD->isConstexpr()); 6010 } 6011 6012 // FIXME: Check if the prior specialization has a point of instantiation. 6013 // If so, we have run afoul of . 6014 6015 // If this is a friend declaration, then we're not really declaring 6016 // an explicit specialization. 6017 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); 6018 6019 // Check the scope of this explicit specialization. 6020 if (!isFriend && 6021 CheckTemplateSpecializationScope(*this, 6022 Specialization->getPrimaryTemplate(), 6023 Specialization, FD->getLocation(), 6024 false)) 6025 return true; 6026 6027 // C++ [temp.expl.spec]p6: 6028 // If a template, a member template or the member of a class template is 6029 // explicitly specialized then that specialization shall be declared 6030 // before the first use of that specialization that would cause an implicit 6031 // instantiation to take place, in every translation unit in which such a 6032 // use occurs; no diagnostic is required. 6033 bool HasNoEffect = false; 6034 if (!isFriend && 6035 CheckSpecializationInstantiationRedecl(FD->getLocation(), 6036 TSK_ExplicitSpecialization, 6037 Specialization, 6038 SpecInfo->getTemplateSpecializationKind(), 6039 SpecInfo->getPointOfInstantiation(), 6040 HasNoEffect)) 6041 return true; 6042 6043 // Mark the prior declaration as an explicit specialization, so that later 6044 // clients know that this is an explicit specialization. 6045 if (!isFriend) { 6046 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); 6047 MarkUnusedFileScopedDecl(Specialization); 6048 } 6049 6050 // Turn the given function declaration into a function template 6051 // specialization, with the template arguments from the previous 6052 // specialization. 6053 // Take copies of (semantic and syntactic) template argument lists. 6054 const TemplateArgumentList* TemplArgs = new (Context) 6055 TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); 6056 FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(), 6057 TemplArgs, /*InsertPos=*/0, 6058 SpecInfo->getTemplateSpecializationKind(), 6059 ExplicitTemplateArgs); 6060 FD->setStorageClass(Specialization->getStorageClass()); 6061 6062 // The "previous declaration" for this function template specialization is 6063 // the prior function template specialization. 6064 Previous.clear(); 6065 Previous.addDecl(Specialization); 6066 return false; 6067} 6068 6069/// \brief Perform semantic analysis for the given non-template member 6070/// specialization. 6071/// 6072/// This routine performs all of the semantic analysis required for an 6073/// explicit member function specialization. On successful completion, 6074/// the function declaration \p FD will become a member function 6075/// specialization. 6076/// 6077/// \param Member the member declaration, which will be updated to become a 6078/// specialization. 6079/// 6080/// \param Previous the set of declarations, one of which may be specialized 6081/// by this function specialization; the set will be modified to contain the 6082/// redeclared member. 6083bool 6084Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { 6085 assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); 6086 6087 // Try to find the member we are instantiating. 6088 NamedDecl *Instantiation = 0; 6089 NamedDecl *InstantiatedFrom = 0; 6090 MemberSpecializationInfo *MSInfo = 0; 6091 6092 if (Previous.empty()) { 6093 // Nowhere to look anyway. 6094 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { 6095 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 6096 I != E; ++I) { 6097 NamedDecl *D = (*I)->getUnderlyingDecl(); 6098 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 6099 if (Context.hasSameType(Function->getType(), Method->getType())) { 6100 Instantiation = Method; 6101 InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); 6102 MSInfo = Method->getMemberSpecializationInfo(); 6103 break; 6104 } 6105 } 6106 } 6107 } else if (isa<VarDecl>(Member)) { 6108 VarDecl *PrevVar; 6109 if (Previous.isSingleResult() && 6110 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) 6111 if (PrevVar->isStaticDataMember()) { 6112 Instantiation = PrevVar; 6113 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); 6114 MSInfo = PrevVar->getMemberSpecializationInfo(); 6115 } 6116 } else if (isa<RecordDecl>(Member)) { 6117 CXXRecordDecl *PrevRecord; 6118 if (Previous.isSingleResult() && 6119 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { 6120 Instantiation = PrevRecord; 6121 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); 6122 MSInfo = PrevRecord->getMemberSpecializationInfo(); 6123 } 6124 } else if (isa<EnumDecl>(Member)) { 6125 EnumDecl *PrevEnum; 6126 if (Previous.isSingleResult() && 6127 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { 6128 Instantiation = PrevEnum; 6129 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); 6130 MSInfo = PrevEnum->getMemberSpecializationInfo(); 6131 } 6132 } 6133 6134 if (!Instantiation) { 6135 // There is no previous declaration that matches. Since member 6136 // specializations are always out-of-line, the caller will complain about 6137 // this mismatch later. 6138 return false; 6139 } 6140 6141 // If this is a friend, just bail out here before we start turning 6142 // things into explicit specializations. 6143 if (Member->getFriendObjectKind() != Decl::FOK_None) { 6144 // Preserve instantiation information. 6145 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { 6146 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( 6147 cast<CXXMethodDecl>(InstantiatedFrom), 6148 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); 6149 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { 6150 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6151 cast<CXXRecordDecl>(InstantiatedFrom), 6152 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); 6153 } 6154 6155 Previous.clear(); 6156 Previous.addDecl(Instantiation); 6157 return false; 6158 } 6159 6160 // Make sure that this is a specialization of a member. 6161 if (!InstantiatedFrom) { 6162 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) 6163 << Member; 6164 Diag(Instantiation->getLocation(), diag::note_specialized_decl); 6165 return true; 6166 } 6167 6168 // C++ [temp.expl.spec]p6: 6169 // If a template, a member template or the member of a class template is 6170 // explicitly specialized then that specialization shall be declared 6171 // before the first use of that specialization that would cause an implicit 6172 // instantiation to take place, in every translation unit in which such a 6173 // use occurs; no diagnostic is required. 6174 assert(MSInfo && "Member specialization info missing?"); 6175 6176 bool HasNoEffect = false; 6177 if (CheckSpecializationInstantiationRedecl(Member->getLocation(), 6178 TSK_ExplicitSpecialization, 6179 Instantiation, 6180 MSInfo->getTemplateSpecializationKind(), 6181 MSInfo->getPointOfInstantiation(), 6182 HasNoEffect)) 6183 return true; 6184 6185 // Check the scope of this explicit specialization. 6186 if (CheckTemplateSpecializationScope(*this, 6187 InstantiatedFrom, 6188 Instantiation, Member->getLocation(), 6189 false)) 6190 return true; 6191 6192 // Note that this is an explicit instantiation of a member. 6193 // the original declaration to note that it is an explicit specialization 6194 // (if it was previously an implicit instantiation). This latter step 6195 // makes bookkeeping easier. 6196 if (isa<FunctionDecl>(Member)) { 6197 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); 6198 if (InstantiationFunction->getTemplateSpecializationKind() == 6199 TSK_ImplicitInstantiation) { 6200 InstantiationFunction->setTemplateSpecializationKind( 6201 TSK_ExplicitSpecialization); 6202 InstantiationFunction->setLocation(Member->getLocation()); 6203 } 6204 6205 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction( 6206 cast<CXXMethodDecl>(InstantiatedFrom), 6207 TSK_ExplicitSpecialization); 6208 MarkUnusedFileScopedDecl(InstantiationFunction); 6209 } else if (isa<VarDecl>(Member)) { 6210 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation); 6211 if (InstantiationVar->getTemplateSpecializationKind() == 6212 TSK_ImplicitInstantiation) { 6213 InstantiationVar->setTemplateSpecializationKind( 6214 TSK_ExplicitSpecialization); 6215 InstantiationVar->setLocation(Member->getLocation()); 6216 } 6217 6218 Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member), 6219 cast<VarDecl>(InstantiatedFrom), 6220 TSK_ExplicitSpecialization); 6221 MarkUnusedFileScopedDecl(InstantiationVar); 6222 } else if (isa<CXXRecordDecl>(Member)) { 6223 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation); 6224 if (InstantiationClass->getTemplateSpecializationKind() == 6225 TSK_ImplicitInstantiation) { 6226 InstantiationClass->setTemplateSpecializationKind( 6227 TSK_ExplicitSpecialization); 6228 InstantiationClass->setLocation(Member->getLocation()); 6229 } 6230 6231 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( 6232 cast<CXXRecordDecl>(InstantiatedFrom), 6233 TSK_ExplicitSpecialization); 6234 } else { 6235 assert(isa<EnumDecl>(Member) && "Only member enums remain"); 6236 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation); 6237 if (InstantiationEnum->getTemplateSpecializationKind() == 6238 TSK_ImplicitInstantiation) { 6239 InstantiationEnum->setTemplateSpecializationKind( 6240 TSK_ExplicitSpecialization); 6241 InstantiationEnum->setLocation(Member->getLocation()); 6242 } 6243 6244 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum( 6245 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); 6246 } 6247 6248 // Save the caller the trouble of having to figure out which declaration 6249 // this specialization matches. 6250 Previous.clear(); 6251 Previous.addDecl(Instantiation); 6252 return false; 6253} 6254 6255/// \brief Check the scope of an explicit instantiation. 6256/// 6257/// \returns true if a serious error occurs, false otherwise. 6258static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, 6259 SourceLocation InstLoc, 6260 bool WasQualifiedName) { 6261 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); 6262 DeclContext *CurContext = S.CurContext->getRedeclContext(); 6263 6264 if (CurContext->isRecord()) { 6265 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) 6266 << D; 6267 return true; 6268 } 6269 6270 // C++11 [temp.explicit]p3: 6271 // An explicit instantiation shall appear in an enclosing namespace of its 6272 // template. If the name declared in the explicit instantiation is an 6273 // unqualified name, the explicit instantiation shall appear in the 6274 // namespace where its template is declared or, if that namespace is inline 6275 // (7.3.1), any namespace from its enclosing namespace set. 6276 // 6277 // This is DR275, which we do not retroactively apply to C++98/03. 6278 if (WasQualifiedName) { 6279 if (CurContext->Encloses(OrigContext)) 6280 return false; 6281 } else { 6282 if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) 6283 return false; 6284 } 6285 6286 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { 6287 if (WasQualifiedName) 6288 S.Diag(InstLoc, 6289 S.getLangOpts().CPlusPlus11? 6290 diag::err_explicit_instantiation_out_of_scope : 6291 diag::warn_explicit_instantiation_out_of_scope_0x) 6292 << D << NS; 6293 else 6294 S.Diag(InstLoc, 6295 S.getLangOpts().CPlusPlus11? 6296 diag::err_explicit_instantiation_unqualified_wrong_namespace : 6297 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) 6298 << D << NS; 6299 } else 6300 S.Diag(InstLoc, 6301 S.getLangOpts().CPlusPlus11? 6302 diag::err_explicit_instantiation_must_be_global : 6303 diag::warn_explicit_instantiation_must_be_global_0x) 6304 << D; 6305 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); 6306 return false; 6307} 6308 6309/// \brief Determine whether the given scope specifier has a template-id in it. 6310static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { 6311 if (!SS.isSet()) 6312 return false; 6313 6314 // C++11 [temp.explicit]p3: 6315 // If the explicit instantiation is for a member function, a member class 6316 // or a static data member of a class template specialization, the name of 6317 // the class template specialization in the qualified-id for the member 6318 // name shall be a simple-template-id. 6319 // 6320 // C++98 has the same restriction, just worded differently. 6321 for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep(); 6322 NNS; NNS = NNS->getPrefix()) 6323 if (const Type *T = NNS->getAsType()) 6324 if (isa<TemplateSpecializationType>(T)) 6325 return true; 6326 6327 return false; 6328} 6329 6330// Explicit instantiation of a class template specialization 6331DeclResult 6332Sema::ActOnExplicitInstantiation(Scope *S, 6333 SourceLocation ExternLoc, 6334 SourceLocation TemplateLoc, 6335 unsigned TagSpec, 6336 SourceLocation KWLoc, 6337 const CXXScopeSpec &SS, 6338 TemplateTy TemplateD, 6339 SourceLocation TemplateNameLoc, 6340 SourceLocation LAngleLoc, 6341 ASTTemplateArgsPtr TemplateArgsIn, 6342 SourceLocation RAngleLoc, 6343 AttributeList *Attr) { 6344 // Find the class template we're specializing 6345 TemplateName Name = TemplateD.getAsVal<TemplateName>(); 6346 ClassTemplateDecl *ClassTemplate 6347 = cast<ClassTemplateDecl>(Name.getAsTemplateDecl()); 6348 6349 // Check that the specialization uses the same tag kind as the 6350 // original template. 6351 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6352 assert(Kind != TTK_Enum && 6353 "Invalid enum tag in class template explicit instantiation!"); 6354 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), 6355 Kind, /*isDefinition*/false, KWLoc, 6356 *ClassTemplate->getIdentifier())) { 6357 Diag(KWLoc, diag::err_use_with_wrong_tag) 6358 << ClassTemplate 6359 << FixItHint::CreateReplacement(KWLoc, 6360 ClassTemplate->getTemplatedDecl()->getKindName()); 6361 Diag(ClassTemplate->getTemplatedDecl()->getLocation(), 6362 diag::note_previous_use); 6363 Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); 6364 } 6365 6366 // C++0x [temp.explicit]p2: 6367 // There are two forms of explicit instantiation: an explicit instantiation 6368 // definition and an explicit instantiation declaration. An explicit 6369 // instantiation declaration begins with the extern keyword. [...] 6370 TemplateSpecializationKind TSK 6371 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6372 : TSK_ExplicitInstantiationDeclaration; 6373 6374 // Translate the parser's template argument list in our AST format. 6375 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6376 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6377 6378 // Check that the template argument list is well-formed for this 6379 // template. 6380 SmallVector<TemplateArgument, 4> Converted; 6381 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, 6382 TemplateArgs, false, Converted)) 6383 return true; 6384 6385 // Find the class template specialization declaration that 6386 // corresponds to these arguments. 6387 void *InsertPos = 0; 6388 ClassTemplateSpecializationDecl *PrevDecl 6389 = ClassTemplate->findSpecialization(Converted.data(), 6390 Converted.size(), InsertPos); 6391 6392 TemplateSpecializationKind PrevDecl_TSK 6393 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; 6394 6395 // C++0x [temp.explicit]p2: 6396 // [...] An explicit instantiation shall appear in an enclosing 6397 // namespace of its template. [...] 6398 // 6399 // This is C++ DR 275. 6400 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc, 6401 SS.isSet())) 6402 return true; 6403 6404 ClassTemplateSpecializationDecl *Specialization = 0; 6405 6406 bool HasNoEffect = false; 6407 if (PrevDecl) { 6408 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, 6409 PrevDecl, PrevDecl_TSK, 6410 PrevDecl->getPointOfInstantiation(), 6411 HasNoEffect)) 6412 return PrevDecl; 6413 6414 // Even though HasNoEffect == true means that this explicit instantiation 6415 // has no effect on semantics, we go on to put its syntax in the AST. 6416 6417 if (PrevDecl_TSK == TSK_ImplicitInstantiation || 6418 PrevDecl_TSK == TSK_Undeclared) { 6419 // Since the only prior class template specialization with these 6420 // arguments was referenced but not declared, reuse that 6421 // declaration node as our own, updating the source location 6422 // for the template name to reflect our new declaration. 6423 // (Other source locations will be updated later.) 6424 Specialization = PrevDecl; 6425 Specialization->setLocation(TemplateNameLoc); 6426 PrevDecl = 0; 6427 } 6428 } 6429 6430 if (!Specialization) { 6431 // Create a new class template specialization declaration node for 6432 // this explicit specialization. 6433 Specialization 6434 = ClassTemplateSpecializationDecl::Create(Context, Kind, 6435 ClassTemplate->getDeclContext(), 6436 KWLoc, TemplateNameLoc, 6437 ClassTemplate, 6438 Converted.data(), 6439 Converted.size(), 6440 PrevDecl); 6441 SetNestedNameSpecifier(Specialization, SS); 6442 6443 if (!HasNoEffect && !PrevDecl) { 6444 // Insert the new specialization. 6445 ClassTemplate->AddSpecialization(Specialization, InsertPos); 6446 } 6447 } 6448 6449 // Build the fully-sugared type for this explicit instantiation as 6450 // the user wrote in the explicit instantiation itself. This means 6451 // that we'll pretty-print the type retrieved from the 6452 // specialization's declaration the way that the user actually wrote 6453 // the explicit instantiation, rather than formatting the name based 6454 // on the "canonical" representation used to store the template 6455 // arguments in the specialization. 6456 TypeSourceInfo *WrittenTy 6457 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, 6458 TemplateArgs, 6459 Context.getTypeDeclType(Specialization)); 6460 Specialization->setTypeAsWritten(WrittenTy); 6461 6462 // Set source locations for keywords. 6463 Specialization->setExternLoc(ExternLoc); 6464 Specialization->setTemplateKeywordLoc(TemplateLoc); 6465 6466 if (Attr) 6467 ProcessDeclAttributeList(S, Specialization, Attr); 6468 6469 // Add the explicit instantiation into its lexical context. However, 6470 // since explicit instantiations are never found by name lookup, we 6471 // just put it into the declaration context directly. 6472 Specialization->setLexicalDeclContext(CurContext); 6473 CurContext->addDecl(Specialization); 6474 6475 // Syntax is now OK, so return if it has no other effect on semantics. 6476 if (HasNoEffect) { 6477 // Set the template specialization kind. 6478 Specialization->setTemplateSpecializationKind(TSK); 6479 return Specialization; 6480 } 6481 6482 // C++ [temp.explicit]p3: 6483 // A definition of a class template or class member template 6484 // shall be in scope at the point of the explicit instantiation of 6485 // the class template or class member template. 6486 // 6487 // This check comes when we actually try to perform the 6488 // instantiation. 6489 ClassTemplateSpecializationDecl *Def 6490 = cast_or_null<ClassTemplateSpecializationDecl>( 6491 Specialization->getDefinition()); 6492 if (!Def) 6493 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); 6494 else if (TSK == TSK_ExplicitInstantiationDefinition) { 6495 MarkVTableUsed(TemplateNameLoc, Specialization, true); 6496 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); 6497 } 6498 6499 // Instantiate the members of this class template specialization. 6500 Def = cast_or_null<ClassTemplateSpecializationDecl>( 6501 Specialization->getDefinition()); 6502 if (Def) { 6503 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); 6504 6505 // Fix a TSK_ExplicitInstantiationDeclaration followed by a 6506 // TSK_ExplicitInstantiationDefinition 6507 if (Old_TSK == TSK_ExplicitInstantiationDeclaration && 6508 TSK == TSK_ExplicitInstantiationDefinition) 6509 Def->setTemplateSpecializationKind(TSK); 6510 6511 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); 6512 } 6513 6514 // Set the template specialization kind. 6515 Specialization->setTemplateSpecializationKind(TSK); 6516 return Specialization; 6517} 6518 6519// Explicit instantiation of a member class of a class template. 6520DeclResult 6521Sema::ActOnExplicitInstantiation(Scope *S, 6522 SourceLocation ExternLoc, 6523 SourceLocation TemplateLoc, 6524 unsigned TagSpec, 6525 SourceLocation KWLoc, 6526 CXXScopeSpec &SS, 6527 IdentifierInfo *Name, 6528 SourceLocation NameLoc, 6529 AttributeList *Attr) { 6530 6531 bool Owned = false; 6532 bool IsDependent = false; 6533 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, 6534 KWLoc, SS, Name, NameLoc, Attr, AS_none, 6535 /*ModulePrivateLoc=*/SourceLocation(), 6536 MultiTemplateParamsArg(), Owned, IsDependent, 6537 SourceLocation(), false, TypeResult()); 6538 assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); 6539 6540 if (!TagD) 6541 return true; 6542 6543 TagDecl *Tag = cast<TagDecl>(TagD); 6544 assert(!Tag->isEnum() && "shouldn't see enumerations here"); 6545 6546 if (Tag->isInvalidDecl()) 6547 return true; 6548 6549 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); 6550 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); 6551 if (!Pattern) { 6552 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) 6553 << Context.getTypeDeclType(Record); 6554 Diag(Record->getLocation(), diag::note_nontemplate_decl_here); 6555 return true; 6556 } 6557 6558 // C++0x [temp.explicit]p2: 6559 // If the explicit instantiation is for a class or member class, the 6560 // elaborated-type-specifier in the declaration shall include a 6561 // simple-template-id. 6562 // 6563 // C++98 has the same restriction, just worded differently. 6564 if (!ScopeSpecifierHasTemplateId(SS)) 6565 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) 6566 << Record << SS.getRange(); 6567 6568 // C++0x [temp.explicit]p2: 6569 // There are two forms of explicit instantiation: an explicit instantiation 6570 // definition and an explicit instantiation declaration. An explicit 6571 // instantiation declaration begins with the extern keyword. [...] 6572 TemplateSpecializationKind TSK 6573 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6574 : TSK_ExplicitInstantiationDeclaration; 6575 6576 // C++0x [temp.explicit]p2: 6577 // [...] An explicit instantiation shall appear in an enclosing 6578 // namespace of its template. [...] 6579 // 6580 // This is C++ DR 275. 6581 CheckExplicitInstantiationScope(*this, Record, NameLoc, true); 6582 6583 // Verify that it is okay to explicitly instantiate here. 6584 CXXRecordDecl *PrevDecl 6585 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); 6586 if (!PrevDecl && Record->getDefinition()) 6587 PrevDecl = Record; 6588 if (PrevDecl) { 6589 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); 6590 bool HasNoEffect = false; 6591 assert(MSInfo && "No member specialization information?"); 6592 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, 6593 PrevDecl, 6594 MSInfo->getTemplateSpecializationKind(), 6595 MSInfo->getPointOfInstantiation(), 6596 HasNoEffect)) 6597 return true; 6598 if (HasNoEffect) 6599 return TagD; 6600 } 6601 6602 CXXRecordDecl *RecordDef 6603 = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6604 if (!RecordDef) { 6605 // C++ [temp.explicit]p3: 6606 // A definition of a member class of a class template shall be in scope 6607 // at the point of an explicit instantiation of the member class. 6608 CXXRecordDecl *Def 6609 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); 6610 if (!Def) { 6611 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) 6612 << 0 << Record->getDeclName() << Record->getDeclContext(); 6613 Diag(Pattern->getLocation(), diag::note_forward_declaration) 6614 << Pattern; 6615 return true; 6616 } else { 6617 if (InstantiateClass(NameLoc, Record, Def, 6618 getTemplateInstantiationArgs(Record), 6619 TSK)) 6620 return true; 6621 6622 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); 6623 if (!RecordDef) 6624 return true; 6625 } 6626 } 6627 6628 // Instantiate all of the members of the class. 6629 InstantiateClassMembers(NameLoc, RecordDef, 6630 getTemplateInstantiationArgs(Record), TSK); 6631 6632 if (TSK == TSK_ExplicitInstantiationDefinition) 6633 MarkVTableUsed(NameLoc, RecordDef, true); 6634 6635 // FIXME: We don't have any representation for explicit instantiations of 6636 // member classes. Such a representation is not needed for compilation, but it 6637 // should be available for clients that want to see all of the declarations in 6638 // the source code. 6639 return TagD; 6640} 6641 6642DeclResult Sema::ActOnExplicitInstantiation(Scope *S, 6643 SourceLocation ExternLoc, 6644 SourceLocation TemplateLoc, 6645 Declarator &D) { 6646 // Explicit instantiations always require a name. 6647 // TODO: check if/when DNInfo should replace Name. 6648 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 6649 DeclarationName Name = NameInfo.getName(); 6650 if (!Name) { 6651 if (!D.isInvalidType()) 6652 Diag(D.getDeclSpec().getLocStart(), 6653 diag::err_explicit_instantiation_requires_name) 6654 << D.getDeclSpec().getSourceRange() 6655 << D.getSourceRange(); 6656 6657 return true; 6658 } 6659 6660 // The scope passed in may not be a decl scope. Zip up the scope tree until 6661 // we find one that is. 6662 while ((S->getFlags() & Scope::DeclScope) == 0 || 6663 (S->getFlags() & Scope::TemplateParamScope) != 0) 6664 S = S->getParent(); 6665 6666 // Determine the type of the declaration. 6667 TypeSourceInfo *T = GetTypeForDeclarator(D, S); 6668 QualType R = T->getType(); 6669 if (R.isNull()) 6670 return true; 6671 6672 // C++ [dcl.stc]p1: 6673 // A storage-class-specifier shall not be specified in [...] an explicit 6674 // instantiation (14.7.2) directive. 6675 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 6676 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) 6677 << Name; 6678 return true; 6679 } else if (D.getDeclSpec().getStorageClassSpec() 6680 != DeclSpec::SCS_unspecified) { 6681 // Complain about then remove the storage class specifier. 6682 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) 6683 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6684 6685 D.getMutableDeclSpec().ClearStorageClassSpecs(); 6686 } 6687 6688 // C++0x [temp.explicit]p1: 6689 // [...] An explicit instantiation of a function template shall not use the 6690 // inline or constexpr specifiers. 6691 // Presumably, this also applies to member functions of class templates as 6692 // well. 6693 if (D.getDeclSpec().isInlineSpecified()) 6694 Diag(D.getDeclSpec().getInlineSpecLoc(), 6695 getLangOpts().CPlusPlus11 ? 6696 diag::err_explicit_instantiation_inline : 6697 diag::warn_explicit_instantiation_inline_0x) 6698 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6699 if (D.getDeclSpec().isConstexprSpecified()) 6700 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is 6701 // not already specified. 6702 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6703 diag::err_explicit_instantiation_constexpr); 6704 6705 // C++0x [temp.explicit]p2: 6706 // There are two forms of explicit instantiation: an explicit instantiation 6707 // definition and an explicit instantiation declaration. An explicit 6708 // instantiation declaration begins with the extern keyword. [...] 6709 TemplateSpecializationKind TSK 6710 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition 6711 : TSK_ExplicitInstantiationDeclaration; 6712 6713 LookupResult Previous(*this, NameInfo, LookupOrdinaryName); 6714 LookupParsedName(Previous, S, &D.getCXXScopeSpec()); 6715 6716 if (!R->isFunctionType()) { 6717 // C++ [temp.explicit]p1: 6718 // A [...] static data member of a class template can be explicitly 6719 // instantiated from the member definition associated with its class 6720 // template. 6721 if (Previous.isAmbiguous()) 6722 return true; 6723 6724 VarDecl *Prev = Previous.getAsSingle<VarDecl>(); 6725 if (!Prev || !Prev->isStaticDataMember()) { 6726 // We expect to see a data data member here. 6727 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) 6728 << Name; 6729 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6730 P != PEnd; ++P) 6731 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); 6732 return true; 6733 } 6734 6735 if (!Prev->getInstantiatedFromStaticDataMember()) { 6736 // FIXME: Check for explicit specialization? 6737 Diag(D.getIdentifierLoc(), 6738 diag::err_explicit_instantiation_data_member_not_instantiated) 6739 << Prev; 6740 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); 6741 // FIXME: Can we provide a note showing where this was declared? 6742 return true; 6743 } 6744 6745 // C++0x [temp.explicit]p2: 6746 // If the explicit instantiation is for a member function, a member class 6747 // or a static data member of a class template specialization, the name of 6748 // the class template specialization in the qualified-id for the member 6749 // name shall be a simple-template-id. 6750 // 6751 // C++98 has the same restriction, just worded differently. 6752 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6753 Diag(D.getIdentifierLoc(), 6754 diag::ext_explicit_instantiation_without_qualified_id) 6755 << Prev << D.getCXXScopeSpec().getRange(); 6756 6757 // Check the scope of this explicit instantiation. 6758 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true); 6759 6760 // Verify that it is okay to explicitly instantiate here. 6761 MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo(); 6762 assert(MSInfo && "Missing static data member specialization info?"); 6763 bool HasNoEffect = false; 6764 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, 6765 MSInfo->getTemplateSpecializationKind(), 6766 MSInfo->getPointOfInstantiation(), 6767 HasNoEffect)) 6768 return true; 6769 if (HasNoEffect) 6770 return (Decl*) 0; 6771 6772 // Instantiate static data member. 6773 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6774 if (TSK == TSK_ExplicitInstantiationDefinition) 6775 InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev); 6776 6777 // FIXME: Create an ExplicitInstantiation node? 6778 return (Decl*) 0; 6779 } 6780 6781 // If the declarator is a template-id, translate the parser's template 6782 // argument list into our AST format. 6783 bool HasExplicitTemplateArgs = false; 6784 TemplateArgumentListInfo TemplateArgs; 6785 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) { 6786 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 6787 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 6788 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 6789 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 6790 TemplateId->NumArgs); 6791 translateTemplateArguments(TemplateArgsPtr, TemplateArgs); 6792 HasExplicitTemplateArgs = true; 6793 } 6794 6795 // C++ [temp.explicit]p1: 6796 // A [...] function [...] can be explicitly instantiated from its template. 6797 // A member function [...] of a class template can be explicitly 6798 // instantiated from the member definition associated with its class 6799 // template. 6800 UnresolvedSet<8> Matches; 6801 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); 6802 P != PEnd; ++P) { 6803 NamedDecl *Prev = *P; 6804 if (!HasExplicitTemplateArgs) { 6805 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { 6806 if (Context.hasSameUnqualifiedType(Method->getType(), R)) { 6807 Matches.clear(); 6808 6809 Matches.addDecl(Method, P.getAccess()); 6810 if (Method->getTemplateSpecializationKind() == TSK_Undeclared) 6811 break; 6812 } 6813 } 6814 } 6815 6816 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); 6817 if (!FunTmpl) 6818 continue; 6819 6820 TemplateDeductionInfo Info(D.getIdentifierLoc()); 6821 FunctionDecl *Specialization = 0; 6822 if (TemplateDeductionResult TDK 6823 = DeduceTemplateArguments(FunTmpl, 6824 (HasExplicitTemplateArgs ? &TemplateArgs : 0), 6825 R, Specialization, Info)) { 6826 // FIXME: Keep track of almost-matches? 6827 (void)TDK; 6828 continue; 6829 } 6830 6831 Matches.addDecl(Specialization, P.getAccess()); 6832 } 6833 6834 // Find the most specialized function template specialization. 6835 UnresolvedSetIterator Result 6836 = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0, 6837 D.getIdentifierLoc(), 6838 PDiag(diag::err_explicit_instantiation_not_known) << Name, 6839 PDiag(diag::err_explicit_instantiation_ambiguous) << Name, 6840 PDiag(diag::note_explicit_instantiation_candidate)); 6841 6842 if (Result == Matches.end()) 6843 return true; 6844 6845 // Ignore access control bits, we don't need them for redeclaration checking. 6846 FunctionDecl *Specialization = cast<FunctionDecl>(*Result); 6847 6848 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { 6849 Diag(D.getIdentifierLoc(), 6850 diag::err_explicit_instantiation_member_function_not_instantiated) 6851 << Specialization 6852 << (Specialization->getTemplateSpecializationKind() == 6853 TSK_ExplicitSpecialization); 6854 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); 6855 return true; 6856 } 6857 6858 FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); 6859 if (!PrevDecl && Specialization->isThisDeclarationADefinition()) 6860 PrevDecl = Specialization; 6861 6862 if (PrevDecl) { 6863 bool HasNoEffect = false; 6864 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, 6865 PrevDecl, 6866 PrevDecl->getTemplateSpecializationKind(), 6867 PrevDecl->getPointOfInstantiation(), 6868 HasNoEffect)) 6869 return true; 6870 6871 // FIXME: We may still want to build some representation of this 6872 // explicit specialization. 6873 if (HasNoEffect) 6874 return (Decl*) 0; 6875 } 6876 6877 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); 6878 AttributeList *Attr = D.getDeclSpec().getAttributes().getList(); 6879 if (Attr) 6880 ProcessDeclAttributeList(S, Specialization, Attr); 6881 6882 if (TSK == TSK_ExplicitInstantiationDefinition) 6883 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); 6884 6885 // C++0x [temp.explicit]p2: 6886 // If the explicit instantiation is for a member function, a member class 6887 // or a static data member of a class template specialization, the name of 6888 // the class template specialization in the qualified-id for the member 6889 // name shall be a simple-template-id. 6890 // 6891 // C++98 has the same restriction, just worded differently. 6892 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); 6893 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl && 6894 D.getCXXScopeSpec().isSet() && 6895 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) 6896 Diag(D.getIdentifierLoc(), 6897 diag::ext_explicit_instantiation_without_qualified_id) 6898 << Specialization << D.getCXXScopeSpec().getRange(); 6899 6900 CheckExplicitInstantiationScope(*this, 6901 FunTmpl? (NamedDecl *)FunTmpl 6902 : Specialization->getInstantiatedFromMemberFunction(), 6903 D.getIdentifierLoc(), 6904 D.getCXXScopeSpec().isSet()); 6905 6906 // FIXME: Create some kind of ExplicitInstantiationDecl here. 6907 return (Decl*) 0; 6908} 6909 6910TypeResult 6911Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 6912 const CXXScopeSpec &SS, IdentifierInfo *Name, 6913 SourceLocation TagLoc, SourceLocation NameLoc) { 6914 // This has to hold, because SS is expected to be defined. 6915 assert(Name && "Expected a name in a dependent tag"); 6916 6917 NestedNameSpecifier *NNS 6918 = static_cast<NestedNameSpecifier *>(SS.getScopeRep()); 6919 if (!NNS) 6920 return true; 6921 6922 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 6923 6924 if (TUK == TUK_Declaration || TUK == TUK_Definition) { 6925 Diag(NameLoc, diag::err_dependent_tag_decl) 6926 << (TUK == TUK_Definition) << Kind << SS.getRange(); 6927 return true; 6928 } 6929 6930 // Create the resulting type. 6931 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); 6932 QualType Result = Context.getDependentNameType(Kwd, NNS, Name); 6933 6934 // Create type-source location information for this type. 6935 TypeLocBuilder TLB; 6936 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); 6937 TL.setElaboratedKeywordLoc(TagLoc); 6938 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 6939 TL.setNameLoc(NameLoc); 6940 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); 6941} 6942 6943TypeResult 6944Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, 6945 const CXXScopeSpec &SS, const IdentifierInfo &II, 6946 SourceLocation IdLoc) { 6947 if (SS.isInvalid()) 6948 return true; 6949 6950 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6951 Diag(TypenameLoc, 6952 getLangOpts().CPlusPlus11 ? 6953 diag::warn_cxx98_compat_typename_outside_of_template : 6954 diag::ext_typename_outside_of_template) 6955 << FixItHint::CreateRemoval(TypenameLoc); 6956 6957 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 6958 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, 6959 TypenameLoc, QualifierLoc, II, IdLoc); 6960 if (T.isNull()) 6961 return true; 6962 6963 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); 6964 if (isa<DependentNameType>(T)) { 6965 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); 6966 TL.setElaboratedKeywordLoc(TypenameLoc); 6967 TL.setQualifierLoc(QualifierLoc); 6968 TL.setNameLoc(IdLoc); 6969 } else { 6970 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); 6971 TL.setElaboratedKeywordLoc(TypenameLoc); 6972 TL.setQualifierLoc(QualifierLoc); 6973 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); 6974 } 6975 6976 return CreateParsedType(T, TSI); 6977} 6978 6979TypeResult 6980Sema::ActOnTypenameType(Scope *S, 6981 SourceLocation TypenameLoc, 6982 const CXXScopeSpec &SS, 6983 SourceLocation TemplateKWLoc, 6984 TemplateTy TemplateIn, 6985 SourceLocation TemplateNameLoc, 6986 SourceLocation LAngleLoc, 6987 ASTTemplateArgsPtr TemplateArgsIn, 6988 SourceLocation RAngleLoc) { 6989 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) 6990 Diag(TypenameLoc, 6991 getLangOpts().CPlusPlus11 ? 6992 diag::warn_cxx98_compat_typename_outside_of_template : 6993 diag::ext_typename_outside_of_template) 6994 << FixItHint::CreateRemoval(TypenameLoc); 6995 6996 // Translate the parser's template argument list in our AST format. 6997 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 6998 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 6999 7000 TemplateName Template = TemplateIn.get(); 7001 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { 7002 // Construct a dependent template specialization type. 7003 assert(DTN && "dependent template has non-dependent name?"); 7004 assert(DTN->getQualifier() 7005 == static_cast<NestedNameSpecifier*>(SS.getScopeRep())); 7006 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, 7007 DTN->getQualifier(), 7008 DTN->getIdentifier(), 7009 TemplateArgs); 7010 7011 // Create source-location information for this type. 7012 TypeLocBuilder Builder; 7013 DependentTemplateSpecializationTypeLoc SpecTL 7014 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 7015 SpecTL.setElaboratedKeywordLoc(TypenameLoc); 7016 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 7017 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7018 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7019 SpecTL.setLAngleLoc(LAngleLoc); 7020 SpecTL.setRAngleLoc(RAngleLoc); 7021 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7022 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7023 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 7024 } 7025 7026 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs); 7027 if (T.isNull()) 7028 return true; 7029 7030 // Provide source-location information for the template specialization type. 7031 TypeLocBuilder Builder; 7032 TemplateSpecializationTypeLoc SpecTL 7033 = Builder.push<TemplateSpecializationTypeLoc>(T); 7034 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 7035 SpecTL.setTemplateNameLoc(TemplateNameLoc); 7036 SpecTL.setLAngleLoc(LAngleLoc); 7037 SpecTL.setRAngleLoc(RAngleLoc); 7038 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 7039 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 7040 7041 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); 7042 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); 7043 TL.setElaboratedKeywordLoc(TypenameLoc); 7044 TL.setQualifierLoc(SS.getWithLocInContext(Context)); 7045 7046 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); 7047 return CreateParsedType(T, TSI); 7048} 7049 7050 7051/// Determine whether this failed name lookup should be treated as being 7052/// disabled by a usage of std::enable_if. 7053static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, 7054 SourceRange &CondRange) { 7055 // We must be looking for a ::type... 7056 if (!II.isStr("type")) 7057 return false; 7058 7059 // ... within an explicitly-written template specialization... 7060 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) 7061 return false; 7062 TypeLoc EnableIfTy = NNS.getTypeLoc(); 7063 TemplateSpecializationTypeLoc EnableIfTSTLoc = 7064 EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); 7065 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) 7066 return false; 7067 const TemplateSpecializationType *EnableIfTST = 7068 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr()); 7069 7070 // ... which names a complete class template declaration... 7071 const TemplateDecl *EnableIfDecl = 7072 EnableIfTST->getTemplateName().getAsTemplateDecl(); 7073 if (!EnableIfDecl || EnableIfTST->isIncompleteType()) 7074 return false; 7075 7076 // ... called "enable_if". 7077 const IdentifierInfo *EnableIfII = 7078 EnableIfDecl->getDeclName().getAsIdentifierInfo(); 7079 if (!EnableIfII || !EnableIfII->isStr("enable_if")) 7080 return false; 7081 7082 // Assume the first template argument is the condition. 7083 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); 7084 return true; 7085} 7086 7087/// \brief Build the type that describes a C++ typename specifier, 7088/// e.g., "typename T::type". 7089QualType 7090Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, 7091 SourceLocation KeywordLoc, 7092 NestedNameSpecifierLoc QualifierLoc, 7093 const IdentifierInfo &II, 7094 SourceLocation IILoc) { 7095 CXXScopeSpec SS; 7096 SS.Adopt(QualifierLoc); 7097 7098 DeclContext *Ctx = computeDeclContext(SS); 7099 if (!Ctx) { 7100 // If the nested-name-specifier is dependent and couldn't be 7101 // resolved to a type, build a typename type. 7102 assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); 7103 return Context.getDependentNameType(Keyword, 7104 QualifierLoc.getNestedNameSpecifier(), 7105 &II); 7106 } 7107 7108 // If the nested-name-specifier refers to the current instantiation, 7109 // the "typename" keyword itself is superfluous. In C++03, the 7110 // program is actually ill-formed. However, DR 382 (in C++0x CD1) 7111 // allows such extraneous "typename" keywords, and we retroactively 7112 // apply this DR to C++03 code with only a warning. In any case we continue. 7113 7114 if (RequireCompleteDeclContext(SS, Ctx)) 7115 return QualType(); 7116 7117 DeclarationName Name(&II); 7118 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); 7119 LookupQualifiedName(Result, Ctx); 7120 unsigned DiagID = 0; 7121 Decl *Referenced = 0; 7122 switch (Result.getResultKind()) { 7123 case LookupResult::NotFound: { 7124 // If we're looking up 'type' within a template named 'enable_if', produce 7125 // a more specific diagnostic. 7126 SourceRange CondRange; 7127 if (isEnableIf(QualifierLoc, II, CondRange)) { 7128 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if) 7129 << Ctx << CondRange; 7130 return QualType(); 7131 } 7132 7133 DiagID = diag::err_typename_nested_not_found; 7134 break; 7135 } 7136 7137 case LookupResult::FoundUnresolvedValue: { 7138 // We found a using declaration that is a value. Most likely, the using 7139 // declaration itself is meant to have the 'typename' keyword. 7140 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7141 IILoc); 7142 Diag(IILoc, diag::err_typename_refers_to_using_value_decl) 7143 << Name << Ctx << FullRange; 7144 if (UnresolvedUsingValueDecl *Using 7145 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ 7146 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); 7147 Diag(Loc, diag::note_using_value_decl_missing_typename) 7148 << FixItHint::CreateInsertion(Loc, "typename "); 7149 } 7150 } 7151 // Fall through to create a dependent typename type, from which we can recover 7152 // better. 7153 7154 case LookupResult::NotFoundInCurrentInstantiation: 7155 // Okay, it's a member of an unknown instantiation. 7156 return Context.getDependentNameType(Keyword, 7157 QualifierLoc.getNestedNameSpecifier(), 7158 &II); 7159 7160 case LookupResult::Found: 7161 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { 7162 // We found a type. Build an ElaboratedType, since the 7163 // typename-specifier was just sugar. 7164 return Context.getElaboratedType(ETK_Typename, 7165 QualifierLoc.getNestedNameSpecifier(), 7166 Context.getTypeDeclType(Type)); 7167 } 7168 7169 DiagID = diag::err_typename_nested_not_type; 7170 Referenced = Result.getFoundDecl(); 7171 break; 7172 7173 case LookupResult::FoundOverloaded: 7174 DiagID = diag::err_typename_nested_not_type; 7175 Referenced = *Result.begin(); 7176 break; 7177 7178 case LookupResult::Ambiguous: 7179 return QualType(); 7180 } 7181 7182 // If we get here, it's because name lookup did not find a 7183 // type. Emit an appropriate diagnostic and return an error. 7184 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), 7185 IILoc); 7186 Diag(IILoc, DiagID) << FullRange << Name << Ctx; 7187 if (Referenced) 7188 Diag(Referenced->getLocation(), diag::note_typename_refers_here) 7189 << Name; 7190 return QualType(); 7191} 7192 7193namespace { 7194 // See Sema::RebuildTypeInCurrentInstantiation 7195 class CurrentInstantiationRebuilder 7196 : public TreeTransform<CurrentInstantiationRebuilder> { 7197 SourceLocation Loc; 7198 DeclarationName Entity; 7199 7200 public: 7201 typedef TreeTransform<CurrentInstantiationRebuilder> inherited; 7202 7203 CurrentInstantiationRebuilder(Sema &SemaRef, 7204 SourceLocation Loc, 7205 DeclarationName Entity) 7206 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), 7207 Loc(Loc), Entity(Entity) { } 7208 7209 /// \brief Determine whether the given type \p T has already been 7210 /// transformed. 7211 /// 7212 /// For the purposes of type reconstruction, a type has already been 7213 /// transformed if it is NULL or if it is not dependent. 7214 bool AlreadyTransformed(QualType T) { 7215 return T.isNull() || !T->isDependentType(); 7216 } 7217 7218 /// \brief Returns the location of the entity whose type is being 7219 /// rebuilt. 7220 SourceLocation getBaseLocation() { return Loc; } 7221 7222 /// \brief Returns the name of the entity whose type is being rebuilt. 7223 DeclarationName getBaseEntity() { return Entity; } 7224 7225 /// \brief Sets the "base" location and entity when that 7226 /// information is known based on another transformation. 7227 void setBase(SourceLocation Loc, DeclarationName Entity) { 7228 this->Loc = Loc; 7229 this->Entity = Entity; 7230 } 7231 7232 ExprResult TransformLambdaExpr(LambdaExpr *E) { 7233 // Lambdas never need to be transformed. 7234 return E; 7235 } 7236 }; 7237} 7238 7239/// \brief Rebuilds a type within the context of the current instantiation. 7240/// 7241/// The type \p T is part of the type of an out-of-line member definition of 7242/// a class template (or class template partial specialization) that was parsed 7243/// and constructed before we entered the scope of the class template (or 7244/// partial specialization thereof). This routine will rebuild that type now 7245/// that we have entered the declarator's scope, which may produce different 7246/// canonical types, e.g., 7247/// 7248/// \code 7249/// template<typename T> 7250/// struct X { 7251/// typedef T* pointer; 7252/// pointer data(); 7253/// }; 7254/// 7255/// template<typename T> 7256/// typename X<T>::pointer X<T>::data() { ... } 7257/// \endcode 7258/// 7259/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, 7260/// since we do not know that we can look into X<T> when we parsed the type. 7261/// This function will rebuild the type, performing the lookup of "pointer" 7262/// in X<T> and returning an ElaboratedType whose canonical type is the same 7263/// as the canonical type of T*, allowing the return types of the out-of-line 7264/// definition and the declaration to match. 7265TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, 7266 SourceLocation Loc, 7267 DeclarationName Name) { 7268 if (!T || !T->getType()->isDependentType()) 7269 return T; 7270 7271 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); 7272 return Rebuilder.TransformType(T); 7273} 7274 7275ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { 7276 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), 7277 DeclarationName()); 7278 return Rebuilder.TransformExpr(E); 7279} 7280 7281bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { 7282 if (SS.isInvalid()) 7283 return true; 7284 7285 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); 7286 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), 7287 DeclarationName()); 7288 NestedNameSpecifierLoc Rebuilt 7289 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); 7290 if (!Rebuilt) 7291 return true; 7292 7293 SS.Adopt(Rebuilt); 7294 return false; 7295} 7296 7297/// \brief Rebuild the template parameters now that we know we're in a current 7298/// instantiation. 7299bool Sema::RebuildTemplateParamsInCurrentInstantiation( 7300 TemplateParameterList *Params) { 7301 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7302 Decl *Param = Params->getParam(I); 7303 7304 // There is nothing to rebuild in a type parameter. 7305 if (isa<TemplateTypeParmDecl>(Param)) 7306 continue; 7307 7308 // Rebuild the template parameter list of a template template parameter. 7309 if (TemplateTemplateParmDecl *TTP 7310 = dyn_cast<TemplateTemplateParmDecl>(Param)) { 7311 if (RebuildTemplateParamsInCurrentInstantiation( 7312 TTP->getTemplateParameters())) 7313 return true; 7314 7315 continue; 7316 } 7317 7318 // Rebuild the type of a non-type template parameter. 7319 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); 7320 TypeSourceInfo *NewTSI 7321 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), 7322 NTTP->getLocation(), 7323 NTTP->getDeclName()); 7324 if (!NewTSI) 7325 return true; 7326 7327 if (NewTSI != NTTP->getTypeSourceInfo()) { 7328 NTTP->setTypeSourceInfo(NewTSI); 7329 NTTP->setType(NewTSI->getType()); 7330 } 7331 } 7332 7333 return false; 7334} 7335 7336/// \brief Produces a formatted string that describes the binding of 7337/// template parameters to template arguments. 7338std::string 7339Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7340 const TemplateArgumentList &Args) { 7341 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); 7342} 7343 7344std::string 7345Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, 7346 const TemplateArgument *Args, 7347 unsigned NumArgs) { 7348 SmallString<128> Str; 7349 llvm::raw_svector_ostream Out(Str); 7350 7351 if (!Params || Params->size() == 0 || NumArgs == 0) 7352 return std::string(); 7353 7354 for (unsigned I = 0, N = Params->size(); I != N; ++I) { 7355 if (I >= NumArgs) 7356 break; 7357 7358 if (I == 0) 7359 Out << "[with "; 7360 else 7361 Out << ", "; 7362 7363 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { 7364 Out << Id->getName(); 7365 } else { 7366 Out << '$' << I; 7367 } 7368 7369 Out << " = "; 7370 Args[I].print(getPrintingPolicy(), Out); 7371 } 7372 7373 Out << ']'; 7374 return Out.str(); 7375} 7376 7377void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) { 7378 if (!FD) 7379 return; 7380 FD->setLateTemplateParsed(Flag); 7381} 7382 7383bool Sema::IsInsideALocalClassWithinATemplateFunction() { 7384 DeclContext *DC = CurContext; 7385 7386 while (DC) { 7387 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { 7388 const FunctionDecl *FD = RD->isLocalClass(); 7389 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); 7390 } else if (DC->isTranslationUnit() || DC->isNamespace()) 7391 return false; 7392 7393 DC = DC->getParent(); 7394 } 7395 return false; 7396} 7397