1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_FUNCTORS_H
11#define EIGEN_FUNCTORS_H
12
13namespace Eigen {
14
15namespace internal {
16
17// associative functors:
18
19/** \internal
20  * \brief Template functor to compute the sum of two scalars
21  *
22  * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
23  */
24template<typename Scalar> struct scalar_sum_op {
25  EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
26  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
27  template<typename Packet>
28  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
29  { return internal::padd(a,b); }
30  template<typename Packet>
31  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
32  { return internal::predux(a); }
33};
34template<typename Scalar>
35struct functor_traits<scalar_sum_op<Scalar> > {
36  enum {
37    Cost = NumTraits<Scalar>::AddCost,
38    PacketAccess = packet_traits<Scalar>::HasAdd
39  };
40};
41
42/** \internal
43  * \brief Template functor to compute the product of two scalars
44  *
45  * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
46  */
47template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
48  enum {
49    // TODO vectorize mixed product
50    Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
51  };
52  typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
53  EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
54  EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
55  template<typename Packet>
56  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
57  { return internal::pmul(a,b); }
58  template<typename Packet>
59  EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
60  { return internal::predux_mul(a); }
61};
62template<typename LhsScalar,typename RhsScalar>
63struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
64  enum {
65    Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
66    PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
67  };
68};
69
70/** \internal
71  * \brief Template functor to compute the conjugate product of two scalars
72  *
73  * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
74  */
75template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
76
77  enum {
78    Conj = NumTraits<LhsScalar>::IsComplex
79  };
80
81  typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
82
83  EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
84  EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
85  { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
86
87  template<typename Packet>
88  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
89  { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
90};
91template<typename LhsScalar,typename RhsScalar>
92struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
93  enum {
94    Cost = NumTraits<LhsScalar>::MulCost,
95    PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
96  };
97};
98
99/** \internal
100  * \brief Template functor to compute the min of two scalars
101  *
102  * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
103  */
104template<typename Scalar> struct scalar_min_op {
105  EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
106  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
107  template<typename Packet>
108  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
109  { return internal::pmin(a,b); }
110  template<typename Packet>
111  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
112  { return internal::predux_min(a); }
113};
114template<typename Scalar>
115struct functor_traits<scalar_min_op<Scalar> > {
116  enum {
117    Cost = NumTraits<Scalar>::AddCost,
118    PacketAccess = packet_traits<Scalar>::HasMin
119  };
120};
121
122/** \internal
123  * \brief Template functor to compute the max of two scalars
124  *
125  * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
126  */
127template<typename Scalar> struct scalar_max_op {
128  EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
129  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
130  template<typename Packet>
131  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
132  { return internal::pmax(a,b); }
133  template<typename Packet>
134  EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
135  { return internal::predux_max(a); }
136};
137template<typename Scalar>
138struct functor_traits<scalar_max_op<Scalar> > {
139  enum {
140    Cost = NumTraits<Scalar>::AddCost,
141    PacketAccess = packet_traits<Scalar>::HasMax
142  };
143};
144
145/** \internal
146  * \brief Template functor to compute the hypot of two scalars
147  *
148  * \sa MatrixBase::stableNorm(), class Redux
149  */
150template<typename Scalar> struct scalar_hypot_op {
151  EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
152//   typedef typename NumTraits<Scalar>::Real result_type;
153  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
154  {
155    using std::max;
156    using std::min;
157    Scalar p = (max)(_x, _y);
158    Scalar q = (min)(_x, _y);
159    Scalar qp = q/p;
160    return p * sqrt(Scalar(1) + qp*qp);
161  }
162};
163template<typename Scalar>
164struct functor_traits<scalar_hypot_op<Scalar> > {
165  enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
166};
167
168/** \internal
169  * \brief Template functor to compute the pow of two scalars
170  */
171template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
172  EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
173  inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return internal::pow(a, b); }
174};
175template<typename Scalar, typename OtherScalar>
176struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
177  enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
178};
179
180// other binary functors:
181
182/** \internal
183  * \brief Template functor to compute the difference of two scalars
184  *
185  * \sa class CwiseBinaryOp, MatrixBase::operator-
186  */
187template<typename Scalar> struct scalar_difference_op {
188  EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
189  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
190  template<typename Packet>
191  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
192  { return internal::psub(a,b); }
193};
194template<typename Scalar>
195struct functor_traits<scalar_difference_op<Scalar> > {
196  enum {
197    Cost = NumTraits<Scalar>::AddCost,
198    PacketAccess = packet_traits<Scalar>::HasSub
199  };
200};
201
202/** \internal
203  * \brief Template functor to compute the quotient of two scalars
204  *
205  * \sa class CwiseBinaryOp, Cwise::operator/()
206  */
207template<typename Scalar> struct scalar_quotient_op {
208  EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
209  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
210  template<typename Packet>
211  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
212  { return internal::pdiv(a,b); }
213};
214template<typename Scalar>
215struct functor_traits<scalar_quotient_op<Scalar> > {
216  enum {
217    Cost = 2 * NumTraits<Scalar>::MulCost,
218    PacketAccess = packet_traits<Scalar>::HasDiv
219  };
220};
221
222/** \internal
223  * \brief Template functor to compute the and of two booleans
224  *
225  * \sa class CwiseBinaryOp, ArrayBase::operator&&
226  */
227struct scalar_boolean_and_op {
228  EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
229  EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
230};
231template<> struct functor_traits<scalar_boolean_and_op> {
232  enum {
233    Cost = NumTraits<bool>::AddCost,
234    PacketAccess = false
235  };
236};
237
238/** \internal
239  * \brief Template functor to compute the or of two booleans
240  *
241  * \sa class CwiseBinaryOp, ArrayBase::operator||
242  */
243struct scalar_boolean_or_op {
244  EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
245  EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
246};
247template<> struct functor_traits<scalar_boolean_or_op> {
248  enum {
249    Cost = NumTraits<bool>::AddCost,
250    PacketAccess = false
251  };
252};
253
254// unary functors:
255
256/** \internal
257  * \brief Template functor to compute the opposite of a scalar
258  *
259  * \sa class CwiseUnaryOp, MatrixBase::operator-
260  */
261template<typename Scalar> struct scalar_opposite_op {
262  EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
263  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
264  template<typename Packet>
265  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
266  { return internal::pnegate(a); }
267};
268template<typename Scalar>
269struct functor_traits<scalar_opposite_op<Scalar> >
270{ enum {
271    Cost = NumTraits<Scalar>::AddCost,
272    PacketAccess = packet_traits<Scalar>::HasNegate };
273};
274
275/** \internal
276  * \brief Template functor to compute the absolute value of a scalar
277  *
278  * \sa class CwiseUnaryOp, Cwise::abs
279  */
280template<typename Scalar> struct scalar_abs_op {
281  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
282  typedef typename NumTraits<Scalar>::Real result_type;
283  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs(a); }
284  template<typename Packet>
285  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
286  { return internal::pabs(a); }
287};
288template<typename Scalar>
289struct functor_traits<scalar_abs_op<Scalar> >
290{
291  enum {
292    Cost = NumTraits<Scalar>::AddCost,
293    PacketAccess = packet_traits<Scalar>::HasAbs
294  };
295};
296
297/** \internal
298  * \brief Template functor to compute the squared absolute value of a scalar
299  *
300  * \sa class CwiseUnaryOp, Cwise::abs2
301  */
302template<typename Scalar> struct scalar_abs2_op {
303  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
304  typedef typename NumTraits<Scalar>::Real result_type;
305  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs2(a); }
306  template<typename Packet>
307  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
308  { return internal::pmul(a,a); }
309};
310template<typename Scalar>
311struct functor_traits<scalar_abs2_op<Scalar> >
312{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
313
314/** \internal
315  * \brief Template functor to compute the conjugate of a complex value
316  *
317  * \sa class CwiseUnaryOp, MatrixBase::conjugate()
318  */
319template<typename Scalar> struct scalar_conjugate_op {
320  EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
321  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return internal::conj(a); }
322  template<typename Packet>
323  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
324};
325template<typename Scalar>
326struct functor_traits<scalar_conjugate_op<Scalar> >
327{
328  enum {
329    Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
330    PacketAccess = packet_traits<Scalar>::HasConj
331  };
332};
333
334/** \internal
335  * \brief Template functor to cast a scalar to another type
336  *
337  * \sa class CwiseUnaryOp, MatrixBase::cast()
338  */
339template<typename Scalar, typename NewType>
340struct scalar_cast_op {
341  EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
342  typedef NewType result_type;
343  EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
344};
345template<typename Scalar, typename NewType>
346struct functor_traits<scalar_cast_op<Scalar,NewType> >
347{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
348
349/** \internal
350  * \brief Template functor to extract the real part of a complex
351  *
352  * \sa class CwiseUnaryOp, MatrixBase::real()
353  */
354template<typename Scalar>
355struct scalar_real_op {
356  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
357  typedef typename NumTraits<Scalar>::Real result_type;
358  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::real(a); }
359};
360template<typename Scalar>
361struct functor_traits<scalar_real_op<Scalar> >
362{ enum { Cost = 0, PacketAccess = false }; };
363
364/** \internal
365  * \brief Template functor to extract the imaginary part of a complex
366  *
367  * \sa class CwiseUnaryOp, MatrixBase::imag()
368  */
369template<typename Scalar>
370struct scalar_imag_op {
371  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
372  typedef typename NumTraits<Scalar>::Real result_type;
373  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::imag(a); }
374};
375template<typename Scalar>
376struct functor_traits<scalar_imag_op<Scalar> >
377{ enum { Cost = 0, PacketAccess = false }; };
378
379/** \internal
380  * \brief Template functor to extract the real part of a complex as a reference
381  *
382  * \sa class CwiseUnaryOp, MatrixBase::real()
383  */
384template<typename Scalar>
385struct scalar_real_ref_op {
386  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
387  typedef typename NumTraits<Scalar>::Real result_type;
388  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::real_ref(*const_cast<Scalar*>(&a)); }
389};
390template<typename Scalar>
391struct functor_traits<scalar_real_ref_op<Scalar> >
392{ enum { Cost = 0, PacketAccess = false }; };
393
394/** \internal
395  * \brief Template functor to extract the imaginary part of a complex as a reference
396  *
397  * \sa class CwiseUnaryOp, MatrixBase::imag()
398  */
399template<typename Scalar>
400struct scalar_imag_ref_op {
401  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
402  typedef typename NumTraits<Scalar>::Real result_type;
403  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::imag_ref(*const_cast<Scalar*>(&a)); }
404};
405template<typename Scalar>
406struct functor_traits<scalar_imag_ref_op<Scalar> >
407{ enum { Cost = 0, PacketAccess = false }; };
408
409/** \internal
410  *
411  * \brief Template functor to compute the exponential of a scalar
412  *
413  * \sa class CwiseUnaryOp, Cwise::exp()
414  */
415template<typename Scalar> struct scalar_exp_op {
416  EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
417  inline const Scalar operator() (const Scalar& a) const { return internal::exp(a); }
418  typedef typename packet_traits<Scalar>::type Packet;
419  inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
420};
421template<typename Scalar>
422struct functor_traits<scalar_exp_op<Scalar> >
423{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
424
425/** \internal
426  *
427  * \brief Template functor to compute the logarithm of a scalar
428  *
429  * \sa class CwiseUnaryOp, Cwise::log()
430  */
431template<typename Scalar> struct scalar_log_op {
432  EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
433  inline const Scalar operator() (const Scalar& a) const { return internal::log(a); }
434  typedef typename packet_traits<Scalar>::type Packet;
435  inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
436};
437template<typename Scalar>
438struct functor_traits<scalar_log_op<Scalar> >
439{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
440
441/** \internal
442  * \brief Template functor to multiply a scalar by a fixed other one
443  *
444  * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
445  */
446/* NOTE why doing the pset1() in packetOp *is* an optimization ?
447 * indeed it seems better to declare m_other as a Packet and do the pset1() once
448 * in the constructor. However, in practice:
449 *  - GCC does not like m_other as a Packet and generate a load every time it needs it
450 *  - on the other hand GCC is able to moves the pset1() away the loop :)
451 *  - simpler code ;)
452 * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
453 */
454template<typename Scalar>
455struct scalar_multiple_op {
456  typedef typename packet_traits<Scalar>::type Packet;
457  // FIXME default copy constructors seems bugged with std::complex<>
458  EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
459  EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
460  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
461  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
462  { return internal::pmul(a, pset1<Packet>(m_other)); }
463  typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
464};
465template<typename Scalar>
466struct functor_traits<scalar_multiple_op<Scalar> >
467{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
468
469template<typename Scalar1, typename Scalar2>
470struct scalar_multiple2_op {
471  typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
472  EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
473  EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
474  EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
475  typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
476};
477template<typename Scalar1,typename Scalar2>
478struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
479{ enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
480
481template<typename Scalar, bool IsInteger>
482struct scalar_quotient1_impl {
483  typedef typename packet_traits<Scalar>::type Packet;
484  // FIXME default copy constructors seems bugged with std::complex<>
485  EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
486  EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
487  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
488  EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
489  { return internal::pmul(a, pset1<Packet>(m_other)); }
490  const Scalar m_other;
491};
492template<typename Scalar>
493struct functor_traits<scalar_quotient1_impl<Scalar,false> >
494{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
495
496template<typename Scalar>
497struct scalar_quotient1_impl<Scalar,true> {
498  // FIXME default copy constructors seems bugged with std::complex<>
499  EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
500  EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
501  EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
502  typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
503};
504template<typename Scalar>
505struct functor_traits<scalar_quotient1_impl<Scalar,true> >
506{ enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
507
508/** \internal
509  * \brief Template functor to divide a scalar by a fixed other one
510  *
511  * This functor is used to implement the quotient of a matrix by
512  * a scalar where the scalar type is not necessarily a floating point type.
513  *
514  * \sa class CwiseUnaryOp, MatrixBase::operator/
515  */
516template<typename Scalar>
517struct scalar_quotient1_op : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > {
518  EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other)
519    : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {}
520};
521template<typename Scalar>
522struct functor_traits<scalar_quotient1_op<Scalar> >
523: functor_traits<scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> >
524{};
525
526// nullary functors
527
528template<typename Scalar>
529struct scalar_constant_op {
530  typedef typename packet_traits<Scalar>::type Packet;
531  EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
532  EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
533  template<typename Index>
534  EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
535  template<typename Index>
536  EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
537  const Scalar m_other;
538};
539template<typename Scalar>
540struct functor_traits<scalar_constant_op<Scalar> >
541// FIXME replace this packet test by a safe one
542{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
543
544template<typename Scalar> struct scalar_identity_op {
545  EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
546  template<typename Index>
547  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
548};
549template<typename Scalar>
550struct functor_traits<scalar_identity_op<Scalar> >
551{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
552
553template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
554
555// linear access for packet ops:
556// 1) initialization
557//   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
558// 2) each step
559//   base += [size*step, ..., size*step]
560template <typename Scalar>
561struct linspaced_op_impl<Scalar,false>
562{
563  typedef typename packet_traits<Scalar>::type Packet;
564
565  linspaced_op_impl(Scalar low, Scalar step) :
566  m_low(low), m_step(step),
567  m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
568  m_base(padd(pset1<Packet>(low),pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
569
570  template<typename Index>
571  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
572  template<typename Index>
573  EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
574
575  const Scalar m_low;
576  const Scalar m_step;
577  const Packet m_packetStep;
578  mutable Packet m_base;
579};
580
581// random access for packet ops:
582// 1) each step
583//   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
584template <typename Scalar>
585struct linspaced_op_impl<Scalar,true>
586{
587  typedef typename packet_traits<Scalar>::type Packet;
588
589  linspaced_op_impl(Scalar low, Scalar step) :
590  m_low(low), m_step(step),
591  m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
592
593  template<typename Index>
594  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
595
596  template<typename Index>
597  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
598  { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
599
600  const Scalar m_low;
601  const Scalar m_step;
602  const Packet m_lowPacket;
603  const Packet m_stepPacket;
604  const Packet m_interPacket;
605};
606
607// ----- Linspace functor ----------------------------------------------------------------
608
609// Forward declaration (we default to random access which does not really give
610// us a speed gain when using packet access but it allows to use the functor in
611// nested expressions).
612template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
613template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
614{ enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
615template <typename Scalar, bool RandomAccess> struct linspaced_op
616{
617  typedef typename packet_traits<Scalar>::type Packet;
618  linspaced_op(Scalar low, Scalar high, int num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
619
620  template<typename Index>
621  EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
622
623  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
624  // there row==0 and col is used for the actual iteration.
625  template<typename Index>
626  EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
627  {
628    eigen_assert(col==0 || row==0);
629    return impl(col + row);
630  }
631
632  template<typename Index>
633  EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
634
635  // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
636  // there row==0 and col is used for the actual iteration.
637  template<typename Index>
638  EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
639  {
640    eigen_assert(col==0 || row==0);
641    return impl.packetOp(col + row);
642  }
643
644  // This proxy object handles the actual required temporaries, the different
645  // implementations (random vs. sequential access) as well as the
646  // correct piping to size 2/4 packet operations.
647  const linspaced_op_impl<Scalar,RandomAccess> impl;
648};
649
650// all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
651// to indicate whether a functor allows linear access, just always answering 'yes' except for
652// scalar_identity_op.
653// FIXME move this to functor_traits adding a functor_default
654template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
655template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
656
657// in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
658// where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
659// FIXME move this to functor_traits adding a functor_default
660template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
661template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
662template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
663
664
665/** \internal
666  * \brief Template functor to add a scalar to a fixed other one
667  * \sa class CwiseUnaryOp, Array::operator+
668  */
669/* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
670template<typename Scalar>
671struct scalar_add_op {
672  typedef typename packet_traits<Scalar>::type Packet;
673  // FIXME default copy constructors seems bugged with std::complex<>
674  inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
675  inline scalar_add_op(const Scalar& other) : m_other(other) { }
676  inline Scalar operator() (const Scalar& a) const { return a + m_other; }
677  inline const Packet packetOp(const Packet& a) const
678  { return internal::padd(a, pset1<Packet>(m_other)); }
679  const Scalar m_other;
680};
681template<typename Scalar>
682struct functor_traits<scalar_add_op<Scalar> >
683{ enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
684
685/** \internal
686  * \brief Template functor to compute the square root of a scalar
687  * \sa class CwiseUnaryOp, Cwise::sqrt()
688  */
689template<typename Scalar> struct scalar_sqrt_op {
690  EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
691  inline const Scalar operator() (const Scalar& a) const { return internal::sqrt(a); }
692  typedef typename packet_traits<Scalar>::type Packet;
693  inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
694};
695template<typename Scalar>
696struct functor_traits<scalar_sqrt_op<Scalar> >
697{ enum {
698    Cost = 5 * NumTraits<Scalar>::MulCost,
699    PacketAccess = packet_traits<Scalar>::HasSqrt
700  };
701};
702
703/** \internal
704  * \brief Template functor to compute the cosine of a scalar
705  * \sa class CwiseUnaryOp, ArrayBase::cos()
706  */
707template<typename Scalar> struct scalar_cos_op {
708  EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
709  inline Scalar operator() (const Scalar& a) const { return internal::cos(a); }
710  typedef typename packet_traits<Scalar>::type Packet;
711  inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
712};
713template<typename Scalar>
714struct functor_traits<scalar_cos_op<Scalar> >
715{
716  enum {
717    Cost = 5 * NumTraits<Scalar>::MulCost,
718    PacketAccess = packet_traits<Scalar>::HasCos
719  };
720};
721
722/** \internal
723  * \brief Template functor to compute the sine of a scalar
724  * \sa class CwiseUnaryOp, ArrayBase::sin()
725  */
726template<typename Scalar> struct scalar_sin_op {
727  EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
728  inline const Scalar operator() (const Scalar& a) const { return internal::sin(a); }
729  typedef typename packet_traits<Scalar>::type Packet;
730  inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
731};
732template<typename Scalar>
733struct functor_traits<scalar_sin_op<Scalar> >
734{
735  enum {
736    Cost = 5 * NumTraits<Scalar>::MulCost,
737    PacketAccess = packet_traits<Scalar>::HasSin
738  };
739};
740
741
742/** \internal
743  * \brief Template functor to compute the tan of a scalar
744  * \sa class CwiseUnaryOp, ArrayBase::tan()
745  */
746template<typename Scalar> struct scalar_tan_op {
747  EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
748  inline const Scalar operator() (const Scalar& a) const { return internal::tan(a); }
749  typedef typename packet_traits<Scalar>::type Packet;
750  inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
751};
752template<typename Scalar>
753struct functor_traits<scalar_tan_op<Scalar> >
754{
755  enum {
756    Cost = 5 * NumTraits<Scalar>::MulCost,
757    PacketAccess = packet_traits<Scalar>::HasTan
758  };
759};
760
761/** \internal
762  * \brief Template functor to compute the arc cosine of a scalar
763  * \sa class CwiseUnaryOp, ArrayBase::acos()
764  */
765template<typename Scalar> struct scalar_acos_op {
766  EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
767  inline const Scalar operator() (const Scalar& a) const { return internal::acos(a); }
768  typedef typename packet_traits<Scalar>::type Packet;
769  inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
770};
771template<typename Scalar>
772struct functor_traits<scalar_acos_op<Scalar> >
773{
774  enum {
775    Cost = 5 * NumTraits<Scalar>::MulCost,
776    PacketAccess = packet_traits<Scalar>::HasACos
777  };
778};
779
780/** \internal
781  * \brief Template functor to compute the arc sine of a scalar
782  * \sa class CwiseUnaryOp, ArrayBase::asin()
783  */
784template<typename Scalar> struct scalar_asin_op {
785  EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
786  inline const Scalar operator() (const Scalar& a) const { return internal::asin(a); }
787  typedef typename packet_traits<Scalar>::type Packet;
788  inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
789};
790template<typename Scalar>
791struct functor_traits<scalar_asin_op<Scalar> >
792{
793  enum {
794    Cost = 5 * NumTraits<Scalar>::MulCost,
795    PacketAccess = packet_traits<Scalar>::HasASin
796  };
797};
798
799/** \internal
800  * \brief Template functor to raise a scalar to a power
801  * \sa class CwiseUnaryOp, Cwise::pow
802  */
803template<typename Scalar>
804struct scalar_pow_op {
805  // FIXME default copy constructors seems bugged with std::complex<>
806  inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
807  inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
808  inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); }
809  const Scalar m_exponent;
810};
811template<typename Scalar>
812struct functor_traits<scalar_pow_op<Scalar> >
813{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
814
815/** \internal
816  * \brief Template functor to compute the quotient between a scalar and array entries.
817  * \sa class CwiseUnaryOp, Cwise::inverse()
818  */
819template<typename Scalar>
820struct scalar_inverse_mult_op {
821  scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
822  inline Scalar operator() (const Scalar& a) const { return m_other / a; }
823  template<typename Packet>
824  inline const Packet packetOp(const Packet& a) const
825  { return internal::pdiv(pset1<Packet>(m_other),a); }
826  Scalar m_other;
827};
828
829/** \internal
830  * \brief Template functor to compute the inverse of a scalar
831  * \sa class CwiseUnaryOp, Cwise::inverse()
832  */
833template<typename Scalar>
834struct scalar_inverse_op {
835  EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
836  inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
837  template<typename Packet>
838  inline const Packet packetOp(const Packet& a) const
839  { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
840};
841template<typename Scalar>
842struct functor_traits<scalar_inverse_op<Scalar> >
843{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
844
845/** \internal
846  * \brief Template functor to compute the square of a scalar
847  * \sa class CwiseUnaryOp, Cwise::square()
848  */
849template<typename Scalar>
850struct scalar_square_op {
851  EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
852  inline Scalar operator() (const Scalar& a) const { return a*a; }
853  template<typename Packet>
854  inline const Packet packetOp(const Packet& a) const
855  { return internal::pmul(a,a); }
856};
857template<typename Scalar>
858struct functor_traits<scalar_square_op<Scalar> >
859{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
860
861/** \internal
862  * \brief Template functor to compute the cube of a scalar
863  * \sa class CwiseUnaryOp, Cwise::cube()
864  */
865template<typename Scalar>
866struct scalar_cube_op {
867  EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
868  inline Scalar operator() (const Scalar& a) const { return a*a*a; }
869  template<typename Packet>
870  inline const Packet packetOp(const Packet& a) const
871  { return internal::pmul(a,pmul(a,a)); }
872};
873template<typename Scalar>
874struct functor_traits<scalar_cube_op<Scalar> >
875{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
876
877// default functor traits for STL functors:
878
879template<typename T>
880struct functor_traits<std::multiplies<T> >
881{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
882
883template<typename T>
884struct functor_traits<std::divides<T> >
885{ enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
886
887template<typename T>
888struct functor_traits<std::plus<T> >
889{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
890
891template<typename T>
892struct functor_traits<std::minus<T> >
893{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
894
895template<typename T>
896struct functor_traits<std::negate<T> >
897{ enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
898
899template<typename T>
900struct functor_traits<std::logical_or<T> >
901{ enum { Cost = 1, PacketAccess = false }; };
902
903template<typename T>
904struct functor_traits<std::logical_and<T> >
905{ enum { Cost = 1, PacketAccess = false }; };
906
907template<typename T>
908struct functor_traits<std::logical_not<T> >
909{ enum { Cost = 1, PacketAccess = false }; };
910
911template<typename T>
912struct functor_traits<std::greater<T> >
913{ enum { Cost = 1, PacketAccess = false }; };
914
915template<typename T>
916struct functor_traits<std::less<T> >
917{ enum { Cost = 1, PacketAccess = false }; };
918
919template<typename T>
920struct functor_traits<std::greater_equal<T> >
921{ enum { Cost = 1, PacketAccess = false }; };
922
923template<typename T>
924struct functor_traits<std::less_equal<T> >
925{ enum { Cost = 1, PacketAccess = false }; };
926
927template<typename T>
928struct functor_traits<std::equal_to<T> >
929{ enum { Cost = 1, PacketAccess = false }; };
930
931template<typename T>
932struct functor_traits<std::not_equal_to<T> >
933{ enum { Cost = 1, PacketAccess = false }; };
934
935template<typename T>
936struct functor_traits<std::binder2nd<T> >
937{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
938
939template<typename T>
940struct functor_traits<std::binder1st<T> >
941{ enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
942
943template<typename T>
944struct functor_traits<std::unary_negate<T> >
945{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
946
947template<typename T>
948struct functor_traits<std::binary_negate<T> >
949{ enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
950
951#ifdef EIGEN_STDEXT_SUPPORT
952
953template<typename T0,typename T1>
954struct functor_traits<std::project1st<T0,T1> >
955{ enum { Cost = 0, PacketAccess = false }; };
956
957template<typename T0,typename T1>
958struct functor_traits<std::project2nd<T0,T1> >
959{ enum { Cost = 0, PacketAccess = false }; };
960
961template<typename T0,typename T1>
962struct functor_traits<std::select2nd<std::pair<T0,T1> > >
963{ enum { Cost = 0, PacketAccess = false }; };
964
965template<typename T0,typename T1>
966struct functor_traits<std::select1st<std::pair<T0,T1> > >
967{ enum { Cost = 0, PacketAccess = false }; };
968
969template<typename T0,typename T1>
970struct functor_traits<std::unary_compose<T0,T1> >
971{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
972
973template<typename T0,typename T1,typename T2>
974struct functor_traits<std::binary_compose<T0,T1,T2> >
975{ enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
976
977#endif // EIGEN_STDEXT_SUPPORT
978
979// allow to add new functors and specializations of functor_traits from outside Eigen.
980// this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
981#ifdef EIGEN_FUNCTORS_PLUGIN
982#include EIGEN_FUNCTORS_PLUGIN
983#endif
984
985} // end namespace internal
986
987} // end namespace Eigen
988
989#endif // EIGEN_FUNCTORS_H
990