1/*	$NetBSD: sha2.c,v 1.4 2006/09/09 16:22:36 manu Exp $	*/
2
3/* Id: sha2.c,v 1.6 2004/09/21 14:35:25 ludvigm Exp */
4
5/*
6 * sha2.c
7 *
8 * Version 1.0.0beta1
9 *
10 * Written by Aaron D. Gifford <me@aarongifford.com>
11 *
12 * Copyright 2000 Aaron D. Gifford.  All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the copyright holder nor the names of contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 */
39
40#include "config.h"
41
42#include <sys/types.h>
43#include <sys/time.h>
44#ifndef __linux__
45#include <machine/endian.h>
46#endif
47#include <crypto/sha2/sha2.h>
48#include <openssl/evp.h>
49
50/* get openssl/ssleay version number */
51#include <openssl/opensslv.h>
52
53#include <err.h>
54#include <string.h>
55#define bcopy(a, b, c) memcpy((b), (a), (c))
56#define bzero(a, b) memset((a), 0, (b))
57#define panic(a) err(1, (a))
58
59#if OPENSSL_VERSION_NUMBER >= 0x00907000L
60#define HAVE_EVP_097
61#endif
62
63/*
64 * ASSERT NOTE:
65 * Some sanity checking code is included using assert().  On my FreeBSD
66 * system, this additional code can be removed by compiling with NDEBUG
67 * defined.  Check your own systems manpage on assert() to see how to
68 * compile WITHOUT the sanity checking code on your system.
69 *
70 * UNROLLED TRANSFORM LOOP NOTE:
71 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
72 * loop version for the hash transform rounds (defined using macros
73 * later in this file).  Either define on the command line, for example:
74 *
75 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
76 *
77 * or define below:
78 *
79 *   #define SHA2_UNROLL_TRANSFORM
80 *
81 */
82
83#define assert(x)
84
85
86/*** SHA-256/384/512 Machine Architecture Definitions *****************/
87/*
88 * BYTE_ORDER NOTE:
89 *
90 * Please make sure that your system defines BYTE_ORDER.  If your
91 * architecture is little-endian, make sure it also defines
92 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
93 * equivilent.
94 *
95 * If your system does not define the above, then you can do so by
96 * hand like this:
97 *
98 *   #define LITTLE_ENDIAN 1234
99 *   #define BIG_ENDIAN    4321
100 *
101 * And for little-endian machines, add:
102 *
103 *   #define BYTE_ORDER LITTLE_ENDIAN
104 *
105 * Or for big-endian machines:
106 *
107 *   #define BYTE_ORDER BIG_ENDIAN
108 *
109 * The FreeBSD machine this was written on defines BYTE_ORDER
110 * appropriately by including <sys/types.h> (which in turn includes
111 * <machine/endian.h> where the appropriate definitions are actually
112 * made).
113 */
114#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
115#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
116#endif
117
118/*
119 * Define the followingsha2_* types to types of the correct length on
120 * the native archtecture.   Most BSD systems and Linux define u_intXX_t
121 * types.  Machines with very recent ANSI C headers, can use the
122 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
123 * during compile or in the sha.h header file.
124 *
125 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
126 * will need to define these three typedefs below (and the appropriate
127 * ones in sha.h too) by hand according to their system architecture.
128 *
129 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
130 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
131 */
132#if 0 /*def SHA2_USE_INTTYPES_H*/
133
134typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
135typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
136typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
137
138#else /* SHA2_USE_INTTYPES_H */
139
140typedef u_int8_t  sha2_byte;	/* Exactly 1 byte */
141typedef u_int32_t sha2_word32;	/* Exactly 4 bytes */
142typedef u_int64_t sha2_word64;	/* Exactly 8 bytes */
143
144#endif /* SHA2_USE_INTTYPES_H */
145
146
147/*** SHA-256/384/512 Various Length Definitions ***********************/
148/* NOTE: Most of these are in sha2.h */
149#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
150#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
151#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
152
153
154/*** ENDIAN REVERSAL MACROS *******************************************/
155#if BYTE_ORDER == LITTLE_ENDIAN
156#define REVERSE32(w,x)	{ \
157	sha2_word32 tmp = (w); \
158	tmp = (tmp >> 16) | (tmp << 16); \
159	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
160}
161#define REVERSE64(w,x)	{ \
162	sha2_word64 tmp = (w); \
163	tmp = (tmp >> 32) | (tmp << 32); \
164	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
165	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
166	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
167	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
168}
169#endif /* BYTE_ORDER == LITTLE_ENDIAN */
170
171/*
172 * Macro for incrementally adding the unsigned 64-bit integer n to the
173 * unsigned 128-bit integer (represented using a two-element array of
174 * 64-bit words):
175 */
176#define ADDINC128(w,n)	{ \
177	(w)[0] += (sha2_word64)(n); \
178	if ((w)[0] < (n)) { \
179		(w)[1]++; \
180	} \
181}
182
183/*** THE SIX LOGICAL FUNCTIONS ****************************************/
184/*
185 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
186 *
187 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
188 *   S is a ROTATION) because the SHA-256/384/512 description document
189 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
190 *   same "backwards" definition.
191 */
192/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
193#define R(b,x) 		((x) >> (b))
194/* 32-bit Rotate-right (used in SHA-256): */
195#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
196/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
197#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
198
199/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
200#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
201#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
202
203/* Four of six logical functions used in SHA-256: */
204#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
205#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
206#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
207#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
208
209/* Four of six logical functions used in SHA-384 and SHA-512: */
210#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
211#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
212#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
213#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
214
215/*** INTERNAL FUNCTION PROTOTYPES *************************************/
216/* NOTE: These should not be accessed directly from outside this
217 * library -- they are intended for private internal visibility/use
218 * only.
219 */
220void SHA512_Last(SHA512_CTX*);
221void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
222void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
223
224
225/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
226/* Hash constant words K for SHA-256: */
227const static sha2_word32 K256[64] = {
228	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
229	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
230	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
231	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
232	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
233	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
234	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
235	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
236	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
237	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
238	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
239	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
240	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
241	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
242	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
243	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
244};
245
246/* Initial hash value H for SHA-256: */
247const static sha2_word32 sha256_initial_hash_value[8] = {
248	0x6a09e667UL,
249	0xbb67ae85UL,
250	0x3c6ef372UL,
251	0xa54ff53aUL,
252	0x510e527fUL,
253	0x9b05688cUL,
254	0x1f83d9abUL,
255	0x5be0cd19UL
256};
257
258/* Hash constant words K for SHA-384 and SHA-512: */
259const static sha2_word64 K512[80] = {
260	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
261	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
262	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
263	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
264	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
265	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
266	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
267	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
268	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
269	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
270	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
271	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
272	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
273	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
274	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
275	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
276	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
277	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
278	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
279	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
280	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
281	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
282	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
283	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
284	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
285	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
286	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
287	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
288	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
289	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
290	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
291	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
292	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
293	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
294	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
295	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
296	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
297	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
298	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
299	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
300};
301
302/* Initial hash value H for SHA-384 */
303const static sha2_word64 sha384_initial_hash_value[8] = {
304	0xcbbb9d5dc1059ed8ULL,
305	0x629a292a367cd507ULL,
306	0x9159015a3070dd17ULL,
307	0x152fecd8f70e5939ULL,
308	0x67332667ffc00b31ULL,
309	0x8eb44a8768581511ULL,
310	0xdb0c2e0d64f98fa7ULL,
311	0x47b5481dbefa4fa4ULL
312};
313
314/* Initial hash value H for SHA-512 */
315const static sha2_word64 sha512_initial_hash_value[8] = {
316	0x6a09e667f3bcc908ULL,
317	0xbb67ae8584caa73bULL,
318	0x3c6ef372fe94f82bULL,
319	0xa54ff53a5f1d36f1ULL,
320	0x510e527fade682d1ULL,
321	0x9b05688c2b3e6c1fULL,
322	0x1f83d9abfb41bd6bULL,
323	0x5be0cd19137e2179ULL
324};
325
326/*
327 * Constant used by SHA256/384/512_End() functions for converting the
328 * digest to a readable hexadecimal character string:
329 */
330static const char *sha2_hex_digits = "0123456789abcdef";
331
332
333/*** SHA-256: *********************************************************/
334void SHA256_Init(SHA256_CTX* context) {
335	if (context == (SHA256_CTX*)0) {
336		return;
337	}
338	bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
339	bzero(context->buffer, SHA256_BLOCK_LENGTH);
340	context->bitcount = 0;
341}
342
343#ifdef SHA2_UNROLL_TRANSFORM
344
345/* Unrolled SHA-256 round macros: */
346
347#if BYTE_ORDER == LITTLE_ENDIAN
348
349#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
350	REVERSE32(*data++, W256[j]); \
351	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
352             K256[j] + W256[j]; \
353	(d) += T1; \
354	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
355	j++
356
357
358#else /* BYTE_ORDER == LITTLE_ENDIAN */
359
360#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
361	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
362	     K256[j] + (W256[j] = *data++); \
363	(d) += T1; \
364	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
365	j++
366
367#endif /* BYTE_ORDER == LITTLE_ENDIAN */
368
369#define ROUND256(a,b,c,d,e,f,g,h)	\
370	s0 = W256[(j+1)&0x0f]; \
371	s0 = sigma0_256(s0); \
372	s1 = W256[(j+14)&0x0f]; \
373	s1 = sigma1_256(s1); \
374	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
375	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
376	(d) += T1; \
377	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
378	j++
379
380void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
381	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
382	sha2_word32	T1, *W256;
383	int		j;
384
385	W256 = (sha2_word32*)context->buffer;
386
387	/* Initialize registers with the prev. intermediate value */
388	a = context->state[0];
389	b = context->state[1];
390	c = context->state[2];
391	d = context->state[3];
392	e = context->state[4];
393	f = context->state[5];
394	g = context->state[6];
395	h = context->state[7];
396
397	j = 0;
398	do {
399		/* Rounds 0 to 15 (unrolled): */
400		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
401		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
402		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
403		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
404		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
405		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
406		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
407		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
408	} while (j < 16);
409
410	/* Now for the remaining rounds to 64: */
411	do {
412		ROUND256(a,b,c,d,e,f,g,h);
413		ROUND256(h,a,b,c,d,e,f,g);
414		ROUND256(g,h,a,b,c,d,e,f);
415		ROUND256(f,g,h,a,b,c,d,e);
416		ROUND256(e,f,g,h,a,b,c,d);
417		ROUND256(d,e,f,g,h,a,b,c);
418		ROUND256(c,d,e,f,g,h,a,b);
419		ROUND256(b,c,d,e,f,g,h,a);
420	} while (j < 64);
421
422	/* Compute the current intermediate hash value */
423	context->state[0] += a;
424	context->state[1] += b;
425	context->state[2] += c;
426	context->state[3] += d;
427	context->state[4] += e;
428	context->state[5] += f;
429	context->state[6] += g;
430	context->state[7] += h;
431
432	/* Clean up */
433	a = b = c = d = e = f = g = h = T1 = 0;
434}
435
436#else /* SHA2_UNROLL_TRANSFORM */
437
438void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
439	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
440	sha2_word32	T1, T2, *W256;
441	int		j;
442
443	W256 = (sha2_word32*)context->buffer;
444
445	/* Initialize registers with the prev. intermediate value */
446	a = context->state[0];
447	b = context->state[1];
448	c = context->state[2];
449	d = context->state[3];
450	e = context->state[4];
451	f = context->state[5];
452	g = context->state[6];
453	h = context->state[7];
454
455	j = 0;
456	do {
457#if BYTE_ORDER == LITTLE_ENDIAN
458		/* Copy data while converting to host byte order */
459		REVERSE32(*data++,W256[j]);
460		/* Apply the SHA-256 compression function to update a..h */
461		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
462#else /* BYTE_ORDER == LITTLE_ENDIAN */
463		/* Apply the SHA-256 compression function to update a..h with copy */
464		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
465#endif /* BYTE_ORDER == LITTLE_ENDIAN */
466		T2 = Sigma0_256(a) + Maj(a, b, c);
467		h = g;
468		g = f;
469		f = e;
470		e = d + T1;
471		d = c;
472		c = b;
473		b = a;
474		a = T1 + T2;
475
476		j++;
477	} while (j < 16);
478
479	do {
480		/* Part of the message block expansion: */
481		s0 = W256[(j+1)&0x0f];
482		s0 = sigma0_256(s0);
483		s1 = W256[(j+14)&0x0f];
484		s1 = sigma1_256(s1);
485
486		/* Apply the SHA-256 compression function to update a..h */
487		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
488		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
489		T2 = Sigma0_256(a) + Maj(a, b, c);
490		h = g;
491		g = f;
492		f = e;
493		e = d + T1;
494		d = c;
495		c = b;
496		b = a;
497		a = T1 + T2;
498
499		j++;
500	} while (j < 64);
501
502	/* Compute the current intermediate hash value */
503	context->state[0] += a;
504	context->state[1] += b;
505	context->state[2] += c;
506	context->state[3] += d;
507	context->state[4] += e;
508	context->state[5] += f;
509	context->state[6] += g;
510	context->state[7] += h;
511
512	/* Clean up */
513	a = b = c = d = e = f = g = h = T1 = T2 = 0;
514}
515
516#endif /* SHA2_UNROLL_TRANSFORM */
517
518void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
519	unsigned int	freespace, usedspace;
520
521	if (len == 0) {
522		/* Calling with no data is valid - we do nothing */
523		return;
524	}
525
526	/* Sanity check: */
527	assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
528
529	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
530	if (usedspace > 0) {
531		/* Calculate how much free space is available in the buffer */
532		freespace = SHA256_BLOCK_LENGTH - usedspace;
533
534		if (len >= freespace) {
535			/* Fill the buffer completely and process it */
536			bcopy(data, &context->buffer[usedspace], freespace);
537			context->bitcount += freespace << 3;
538			len -= freespace;
539			data += freespace;
540			SHA256_Transform(context, (sha2_word32*)context->buffer);
541		} else {
542			/* The buffer is not yet full */
543			bcopy(data, &context->buffer[usedspace], len);
544			context->bitcount += len << 3;
545			/* Clean up: */
546			usedspace = freespace = 0;
547			return;
548		}
549	}
550	while (len >= SHA256_BLOCK_LENGTH) {
551		/* Process as many complete blocks as we can */
552		SHA256_Transform(context, (const sha2_word32*)data);
553		context->bitcount += SHA256_BLOCK_LENGTH << 3;
554		len -= SHA256_BLOCK_LENGTH;
555		data += SHA256_BLOCK_LENGTH;
556	}
557	if (len > 0) {
558		/* There's left-overs, so save 'em */
559		bcopy(data, context->buffer, len);
560		context->bitcount += len << 3;
561	}
562	/* Clean up: */
563	usedspace = freespace = 0;
564}
565
566void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
567	sha2_word32	*d = (sha2_word32*)digest;
568	unsigned int	usedspace;
569
570	/* Sanity check: */
571	assert(context != (SHA256_CTX*)0);
572
573	/* If no digest buffer is passed, we don't bother doing this: */
574	if (digest != (sha2_byte*)0) {
575		usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
576#if BYTE_ORDER == LITTLE_ENDIAN
577		/* Convert FROM host byte order */
578		REVERSE64(context->bitcount,context->bitcount);
579#endif
580		if (usedspace > 0) {
581			/* Begin padding with a 1 bit: */
582			context->buffer[usedspace++] = 0x80;
583
584			if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
585				/* Set-up for the last transform: */
586				bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
587			} else {
588				if (usedspace < SHA256_BLOCK_LENGTH) {
589					bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
590				}
591				/* Do second-to-last transform: */
592				SHA256_Transform(context, (sha2_word32*)context->buffer);
593
594				/* And set-up for the last transform: */
595				bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
596			}
597		} else {
598			/* Set-up for the last transform: */
599			bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
600
601			/* Begin padding with a 1 bit: */
602			*context->buffer = 0x80;
603		}
604		/* Set the bit count: */
605		*(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
606
607		/* Final transform: */
608		SHA256_Transform(context, (sha2_word32*)context->buffer);
609
610#if BYTE_ORDER == LITTLE_ENDIAN
611		{
612			/* Convert TO host byte order */
613			int	j;
614			for (j = 0; j < 8; j++) {
615				REVERSE32(context->state[j],context->state[j]);
616				*d++ = context->state[j];
617			}
618		}
619#else
620		bcopy(context->state, d, SHA256_DIGEST_LENGTH);
621#endif
622	}
623
624	/* Clean up state data: */
625	bzero(context, sizeof(*context));
626	usedspace = 0;
627}
628
629char *SHA256_End(SHA256_CTX* context, char buffer[]) {
630	sha2_byte	digest[SHA256_DIGEST_LENGTH], *d = digest;
631	int		i;
632
633	/* Sanity check: */
634	assert(context != (SHA256_CTX*)0);
635
636	if (buffer != (char*)0) {
637		SHA256_Final(digest, context);
638
639		for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
640			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
641			*buffer++ = sha2_hex_digits[*d & 0x0f];
642			d++;
643		}
644		*buffer = (char)0;
645	} else {
646		bzero(context, sizeof(*context));
647	}
648	bzero(digest, SHA256_DIGEST_LENGTH);
649	return buffer;
650}
651
652char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
653	SHA256_CTX	context;
654
655	SHA256_Init(&context);
656	SHA256_Update(&context, data, len);
657	return SHA256_End(&context, digest);
658}
659
660
661/*** SHA-512: *********************************************************/
662void SHA512_Init(SHA512_CTX* context) {
663	if (context == (SHA512_CTX*)0) {
664		return;
665	}
666	bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
667	bzero(context->buffer, SHA512_BLOCK_LENGTH);
668	context->bitcount[0] = context->bitcount[1] =  0;
669}
670
671#ifdef SHA2_UNROLL_TRANSFORM
672
673/* Unrolled SHA-512 round macros: */
674#if BYTE_ORDER == LITTLE_ENDIAN
675
676#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
677	REVERSE64(*data++, W512[j]); \
678	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
679             K512[j] + W512[j]; \
680	(d) += T1, \
681	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
682	j++
683
684
685#else /* BYTE_ORDER == LITTLE_ENDIAN */
686
687#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
688	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
689             K512[j] + (W512[j] = *data++); \
690	(d) += T1; \
691	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
692	j++
693
694#endif /* BYTE_ORDER == LITTLE_ENDIAN */
695
696#define ROUND512(a,b,c,d,e,f,g,h)	\
697	s0 = W512[(j+1)&0x0f]; \
698	s0 = sigma0_512(s0); \
699	s1 = W512[(j+14)&0x0f]; \
700	s1 = sigma1_512(s1); \
701	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
702             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
703	(d) += T1; \
704	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
705	j++
706
707void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
708	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
709	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
710	int		j;
711
712	/* Initialize registers with the prev. intermediate value */
713	a = context->state[0];
714	b = context->state[1];
715	c = context->state[2];
716	d = context->state[3];
717	e = context->state[4];
718	f = context->state[5];
719	g = context->state[6];
720	h = context->state[7];
721
722	j = 0;
723	do {
724		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
725		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
726		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
727		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
728		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
729		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
730		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
731		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
732	} while (j < 16);
733
734	/* Now for the remaining rounds up to 79: */
735	do {
736		ROUND512(a,b,c,d,e,f,g,h);
737		ROUND512(h,a,b,c,d,e,f,g);
738		ROUND512(g,h,a,b,c,d,e,f);
739		ROUND512(f,g,h,a,b,c,d,e);
740		ROUND512(e,f,g,h,a,b,c,d);
741		ROUND512(d,e,f,g,h,a,b,c);
742		ROUND512(c,d,e,f,g,h,a,b);
743		ROUND512(b,c,d,e,f,g,h,a);
744	} while (j < 80);
745
746	/* Compute the current intermediate hash value */
747	context->state[0] += a;
748	context->state[1] += b;
749	context->state[2] += c;
750	context->state[3] += d;
751	context->state[4] += e;
752	context->state[5] += f;
753	context->state[6] += g;
754	context->state[7] += h;
755
756	/* Clean up */
757	a = b = c = d = e = f = g = h = T1 = 0;
758}
759
760#else /* SHA2_UNROLL_TRANSFORM */
761
762void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
763	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
764	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
765	int		j;
766
767	/* Initialize registers with the prev. intermediate value */
768	a = context->state[0];
769	b = context->state[1];
770	c = context->state[2];
771	d = context->state[3];
772	e = context->state[4];
773	f = context->state[5];
774	g = context->state[6];
775	h = context->state[7];
776
777	j = 0;
778	do {
779#if BYTE_ORDER == LITTLE_ENDIAN
780		/* Convert TO host byte order */
781		REVERSE64(*data++, W512[j]);
782		/* Apply the SHA-512 compression function to update a..h */
783		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
784#else /* BYTE_ORDER == LITTLE_ENDIAN */
785		/* Apply the SHA-512 compression function to update a..h with copy */
786		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
787#endif /* BYTE_ORDER == LITTLE_ENDIAN */
788		T2 = Sigma0_512(a) + Maj(a, b, c);
789		h = g;
790		g = f;
791		f = e;
792		e = d + T1;
793		d = c;
794		c = b;
795		b = a;
796		a = T1 + T2;
797
798		j++;
799	} while (j < 16);
800
801	do {
802		/* Part of the message block expansion: */
803		s0 = W512[(j+1)&0x0f];
804		s0 = sigma0_512(s0);
805		s1 = W512[(j+14)&0x0f];
806		s1 =  sigma1_512(s1);
807
808		/* Apply the SHA-512 compression function to update a..h */
809		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
810		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
811		T2 = Sigma0_512(a) + Maj(a, b, c);
812		h = g;
813		g = f;
814		f = e;
815		e = d + T1;
816		d = c;
817		c = b;
818		b = a;
819		a = T1 + T2;
820
821		j++;
822	} while (j < 80);
823
824	/* Compute the current intermediate hash value */
825	context->state[0] += a;
826	context->state[1] += b;
827	context->state[2] += c;
828	context->state[3] += d;
829	context->state[4] += e;
830	context->state[5] += f;
831	context->state[6] += g;
832	context->state[7] += h;
833
834	/* Clean up */
835	a = b = c = d = e = f = g = h = T1 = T2 = 0;
836}
837
838#endif /* SHA2_UNROLL_TRANSFORM */
839
840void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
841	unsigned int	freespace, usedspace;
842
843	if (len == 0) {
844		/* Calling with no data is valid - we do nothing */
845		return;
846	}
847
848	/* Sanity check: */
849	assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
850
851	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
852	if (usedspace > 0) {
853		/* Calculate how much free space is available in the buffer */
854		freespace = SHA512_BLOCK_LENGTH - usedspace;
855
856		if (len >= freespace) {
857			/* Fill the buffer completely and process it */
858			bcopy(data, &context->buffer[usedspace], freespace);
859			ADDINC128(context->bitcount, freespace << 3);
860			len -= freespace;
861			data += freespace;
862			SHA512_Transform(context, (sha2_word64*)context->buffer);
863		} else {
864			/* The buffer is not yet full */
865			bcopy(data, &context->buffer[usedspace], len);
866			ADDINC128(context->bitcount, len << 3);
867			/* Clean up: */
868			usedspace = freespace = 0;
869			return;
870		}
871	}
872	while (len >= SHA512_BLOCK_LENGTH) {
873		/* Process as many complete blocks as we can */
874		SHA512_Transform(context, (const sha2_word64*)data);
875		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
876		len -= SHA512_BLOCK_LENGTH;
877		data += SHA512_BLOCK_LENGTH;
878	}
879	if (len > 0) {
880		/* There's left-overs, so save 'em */
881		bcopy(data, context->buffer, len);
882		ADDINC128(context->bitcount, len << 3);
883	}
884	/* Clean up: */
885	usedspace = freespace = 0;
886}
887
888void SHA512_Last(SHA512_CTX* context) {
889	unsigned int	usedspace;
890
891	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
892#if BYTE_ORDER == LITTLE_ENDIAN
893	/* Convert FROM host byte order */
894	REVERSE64(context->bitcount[0],context->bitcount[0]);
895	REVERSE64(context->bitcount[1],context->bitcount[1]);
896#endif
897	if (usedspace > 0) {
898		/* Begin padding with a 1 bit: */
899		context->buffer[usedspace++] = 0x80;
900
901		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
902			/* Set-up for the last transform: */
903			bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
904		} else {
905			if (usedspace < SHA512_BLOCK_LENGTH) {
906				bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
907			}
908			/* Do second-to-last transform: */
909			SHA512_Transform(context, (sha2_word64*)context->buffer);
910
911			/* And set-up for the last transform: */
912			bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
913		}
914	} else {
915		/* Prepare for final transform: */
916		bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
917
918		/* Begin padding with a 1 bit: */
919		*context->buffer = 0x80;
920	}
921	/* Store the length of input data (in bits): */
922	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
923	*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
924
925	/* Final transform: */
926	SHA512_Transform(context, (sha2_word64*)context->buffer);
927}
928
929void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
930	sha2_word64	*d = (sha2_word64*)digest;
931
932	/* Sanity check: */
933	assert(context != (SHA512_CTX*)0);
934
935	/* If no digest buffer is passed, we don't bother doing this: */
936	if (digest != (sha2_byte*)0) {
937		SHA512_Last(context);
938
939		/* Save the hash data for output: */
940#if BYTE_ORDER == LITTLE_ENDIAN
941		{
942			/* Convert TO host byte order */
943			int	j;
944			for (j = 0; j < 8; j++) {
945				REVERSE64(context->state[j],context->state[j]);
946				*d++ = context->state[j];
947			}
948		}
949#else
950		bcopy(context->state, d, SHA512_DIGEST_LENGTH);
951#endif
952	}
953
954	/* Zero out state data */
955	bzero(context, sizeof(*context));
956}
957
958char *SHA512_End(SHA512_CTX* context, char buffer[]) {
959	sha2_byte	digest[SHA512_DIGEST_LENGTH], *d = digest;
960	int		i;
961
962	/* Sanity check: */
963	assert(context != (SHA512_CTX*)0);
964
965	if (buffer != (char*)0) {
966		SHA512_Final(digest, context);
967
968		for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
969			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
970			*buffer++ = sha2_hex_digits[*d & 0x0f];
971			d++;
972		}
973		*buffer = (char)0;
974	} else {
975		bzero(context, sizeof(*context));
976	}
977	bzero(digest, SHA512_DIGEST_LENGTH);
978	return buffer;
979}
980
981char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
982	SHA512_CTX	context;
983
984	SHA512_Init(&context);
985	SHA512_Update(&context, data, len);
986	return SHA512_End(&context, digest);
987}
988
989
990/*** SHA-384: *********************************************************/
991void SHA384_Init(SHA384_CTX* context) {
992	if (context == (SHA384_CTX*)0) {
993		return;
994	}
995	bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
996	bzero(context->buffer, SHA384_BLOCK_LENGTH);
997	context->bitcount[0] = context->bitcount[1] = 0;
998}
999
1000void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1001	SHA512_Update((SHA512_CTX*)context, data, len);
1002}
1003
1004void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1005	sha2_word64	*d = (sha2_word64*)digest;
1006
1007	/* Sanity check: */
1008	assert(context != (SHA384_CTX*)0);
1009
1010	/* If no digest buffer is passed, we don't bother doing this: */
1011	if (digest != (sha2_byte*)0) {
1012		SHA512_Last((SHA512_CTX*)context);
1013
1014		/* Save the hash data for output: */
1015#if BYTE_ORDER == LITTLE_ENDIAN
1016		{
1017			/* Convert TO host byte order */
1018			int	j;
1019			for (j = 0; j < 6; j++) {
1020				REVERSE64(context->state[j],context->state[j]);
1021				*d++ = context->state[j];
1022			}
1023		}
1024#else
1025		bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1026#endif
1027	}
1028
1029	/* Zero out state data */
1030	bzero(context, sizeof(*context));
1031}
1032
1033char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1034	sha2_byte	digest[SHA384_DIGEST_LENGTH], *d = digest;
1035	int		i;
1036
1037	/* Sanity check: */
1038	assert(context != (SHA384_CTX*)0);
1039
1040	if (buffer != (char*)0) {
1041		SHA384_Final(digest, context);
1042
1043		for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1044			*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1045			*buffer++ = sha2_hex_digits[*d & 0x0f];
1046			d++;
1047		}
1048		*buffer = (char)0;
1049	} else {
1050		bzero(context, sizeof(*context));
1051	}
1052	bzero(digest, SHA384_DIGEST_LENGTH);
1053	return buffer;
1054}
1055
1056char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1057	SHA384_CTX	context;
1058
1059	SHA384_Init(&context);
1060	SHA384_Update(&context, data, len);
1061	return SHA384_End(&context, digest);
1062}
1063
1064/*glue*/
1065#ifdef HAVE_EVP_097
1066
1067/* SHA256 */
1068#define data(ctx) ((SHA256_CTX *)(ctx)->md_data)
1069static int sha256_init(EVP_MD_CTX *ctx)
1070{
1071  SHA256_Init(data(ctx));
1072  return 1;
1073}
1074static int sha256_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
1075{
1076  SHA256_Update(data(ctx), data, count);
1077  return 1;
1078}
1079static int sha256_final(EVP_MD_CTX *ctx, unsigned char *md)
1080{
1081  SHA256_Final(md, data(ctx));
1082  return 1;
1083}
1084#undef data
1085
1086/* SHA384 */
1087#define data(ctx) ((SHA384_CTX *)(ctx)->md_data)
1088static int sha384_init(EVP_MD_CTX *ctx)
1089{
1090  SHA384_Init(data(ctx));
1091  return 1;
1092}
1093static int sha384_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
1094{
1095  SHA384_Update(data(ctx), data, count);
1096  return 1;
1097}
1098static int sha384_final(EVP_MD_CTX *ctx, unsigned char *md)
1099{
1100  SHA384_Final(md, data(ctx));
1101  return 1;
1102}
1103#undef data
1104
1105/* SHA512 */
1106#define data(ctx) ((SHA512_CTX *)(ctx)->md_data)
1107static int sha512_init(EVP_MD_CTX *ctx)
1108{
1109  SHA512_Init(data(ctx));
1110  return 1;
1111}
1112static int sha512_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
1113{
1114  SHA512_Update(data(ctx), data, count);
1115  return 1;
1116}
1117static int sha512_final(EVP_MD_CTX *ctx, unsigned char *md)
1118{
1119  SHA512_Final(md, data(ctx));
1120  return 1;
1121}
1122#undef data
1123#endif
1124
1125static struct env_md_st sha2_256_md = {
1126	0, /*NID_sha1*/
1127	0, /*NID_sha1WithRSAEncryption*/
1128	SHA256_DIGEST_LENGTH,
1129#ifdef HAVE_EVP_097
1130	0,			/* flags */
1131	sha256_init,
1132	sha256_update,
1133	sha256_final,
1134	NULL,			/* copy */
1135	NULL,			/* cleanup */
1136#else
1137	SHA256_Init,
1138	SHA256_Update,
1139	SHA256_Final,
1140#endif
1141	NULL, NULL, {0, 0, 0, 0},
1142	SHA256_BLOCK_LENGTH,
1143	sizeof(struct env_md_st *) + sizeof(SHA256_CTX),
1144};
1145
1146struct env_md_st *EVP_sha2_256(void)
1147{
1148	return(&sha2_256_md);
1149}
1150
1151static struct env_md_st sha2_384_md = {
1152	0, /*NID_sha1*/
1153	0, /*NID_sha1WithRSAEncryption*/
1154	SHA384_DIGEST_LENGTH,
1155#ifdef HAVE_EVP_097
1156	0,			/* flags */
1157	sha384_init,
1158	sha384_update,
1159	sha384_final,
1160	NULL,			/* copy */
1161	NULL,			/* cleanup */
1162#else
1163	SHA384_Init,
1164	SHA384_Update,
1165	SHA384_Final,
1166#endif
1167	NULL, NULL, {0, 0, 0, 0},
1168	SHA384_BLOCK_LENGTH,
1169	sizeof(struct env_md_st *) + sizeof(SHA384_CTX),
1170};
1171
1172struct env_md_st *EVP_sha2_384(void)
1173{
1174	return(&sha2_384_md);
1175}
1176
1177static struct env_md_st sha2_512_md = {
1178	0, /*NID_sha1*/
1179	0, /*NID_sha1WithRSAEncryption*/
1180	SHA512_DIGEST_LENGTH,
1181#ifdef HAVE_EVP_097
1182	0,			/* flags */
1183	sha512_init,
1184	sha512_update,
1185	sha512_final,
1186	NULL,			/* copy */
1187	NULL,			/* cleanup */
1188#else
1189	SHA512_Init,
1190	SHA512_Update,
1191	SHA512_Final,
1192#endif
1193	NULL, NULL, {0, 0, 0, 0}, /*EVP_PKEY_RSA_method*/
1194	SHA512_BLOCK_LENGTH,
1195	sizeof(struct env_md_st *) + sizeof(SHA512_CTX),
1196};
1197
1198struct env_md_st *EVP_sha2_512(void)
1199{
1200	return(&sha2_512_md);
1201}
1202