1#ifndef _I386_BITOPS_H
2#define _I386_BITOPS_H
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8#ifndef _LINUX_BITOPS_H
9#error only <linux/bitops.h> can be included directly
10#endif
11
12#include <linux/compiler.h>
13#include <asm/alternative.h>
14
15/*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23#define ADDR (*(volatile long *) addr)
24
25/**
26 * set_bit - Atomically set a bit in memory
27 * @nr: the bit to set
28 * @addr: the address to start counting from
29 *
30 * This function is atomic and may not be reordered.  See __set_bit()
31 * if you do not require the atomic guarantees.
32 *
33 * Note: there are no guarantees that this function will not be reordered
34 * on non x86 architectures, so if you are writing portable code,
35 * make sure not to rely on its reordering guarantees.
36 *
37 * Note that @nr may be almost arbitrarily large; this function is not
38 * restricted to acting on a single-word quantity.
39 */
40static inline void set_bit(int nr, volatile unsigned long * addr)
41{
42	__asm__ __volatile__( LOCK_PREFIX
43		"btsl %1,%0"
44		:"+m" (ADDR)
45		:"Ir" (nr));
46}
47
48/**
49 * __set_bit - Set a bit in memory
50 * @nr: the bit to set
51 * @addr: the address to start counting from
52 *
53 * Unlike set_bit(), this function is non-atomic and may be reordered.
54 * If it's called on the same region of memory simultaneously, the effect
55 * may be that only one operation succeeds.
56 */
57static inline void __set_bit(int nr, volatile unsigned long * addr)
58{
59	__asm__(
60		"btsl %1,%0"
61		:"+m" (ADDR)
62		:"Ir" (nr));
63}
64
65/**
66 * clear_bit - Clears a bit in memory
67 * @nr: Bit to clear
68 * @addr: Address to start counting from
69 *
70 * clear_bit() is atomic and may not be reordered.  However, it does
71 * not contain a memory barrier, so if it is used for locking purposes,
72 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
73 * in order to ensure changes are visible on other processors.
74 */
75static inline void clear_bit(int nr, volatile unsigned long * addr)
76{
77	__asm__ __volatile__( LOCK_PREFIX
78		"btrl %1,%0"
79		:"+m" (ADDR)
80		:"Ir" (nr));
81}
82
83/*
84 * clear_bit_unlock - Clears a bit in memory
85 * @nr: Bit to clear
86 * @addr: Address to start counting from
87 *
88 * clear_bit() is atomic and implies release semantics before the memory
89 * operation. It can be used for an unlock.
90 */
91static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
92{
93	barrier();
94	clear_bit(nr, addr);
95}
96
97static inline void __clear_bit(int nr, volatile unsigned long * addr)
98{
99	__asm__ __volatile__(
100		"btrl %1,%0"
101		:"+m" (ADDR)
102		:"Ir" (nr));
103}
104
105/*
106 * __clear_bit_unlock - Clears a bit in memory
107 * @nr: Bit to clear
108 * @addr: Address to start counting from
109 *
110 * __clear_bit() is non-atomic and implies release semantics before the memory
111 * operation. It can be used for an unlock if no other CPUs can concurrently
112 * modify other bits in the word.
113 *
114 * No memory barrier is required here, because x86 cannot reorder stores past
115 * older loads. Same principle as spin_unlock.
116 */
117static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *addr)
118{
119	barrier();
120	__clear_bit(nr, addr);
121}
122
123#define smp_mb__before_clear_bit()	barrier()
124#define smp_mb__after_clear_bit()	barrier()
125
126/**
127 * __change_bit - Toggle a bit in memory
128 * @nr: the bit to change
129 * @addr: the address to start counting from
130 *
131 * Unlike change_bit(), this function is non-atomic and may be reordered.
132 * If it's called on the same region of memory simultaneously, the effect
133 * may be that only one operation succeeds.
134 */
135static inline void __change_bit(int nr, volatile unsigned long * addr)
136{
137	__asm__ __volatile__(
138		"btcl %1,%0"
139		:"+m" (ADDR)
140		:"Ir" (nr));
141}
142
143/**
144 * change_bit - Toggle a bit in memory
145 * @nr: Bit to change
146 * @addr: Address to start counting from
147 *
148 * change_bit() is atomic and may not be reordered. It may be
149 * reordered on other architectures than x86.
150 * Note that @nr may be almost arbitrarily large; this function is not
151 * restricted to acting on a single-word quantity.
152 */
153static inline void change_bit(int nr, volatile unsigned long * addr)
154{
155	__asm__ __volatile__( LOCK_PREFIX
156		"btcl %1,%0"
157		:"+m" (ADDR)
158		:"Ir" (nr));
159}
160
161/**
162 * test_and_set_bit - Set a bit and return its old value
163 * @nr: Bit to set
164 * @addr: Address to count from
165 *
166 * This operation is atomic and cannot be reordered.
167 * It may be reordered on other architectures than x86.
168 * It also implies a memory barrier.
169 */
170static inline int test_and_set_bit(int nr, volatile unsigned long * addr)
171{
172	int oldbit;
173
174	__asm__ __volatile__( LOCK_PREFIX
175		"btsl %2,%1\n\tsbbl %0,%0"
176		:"=r" (oldbit),"+m" (ADDR)
177		:"Ir" (nr) : "memory");
178	return oldbit;
179}
180
181/**
182 * test_and_set_bit_lock - Set a bit and return its old value for lock
183 * @nr: Bit to set
184 * @addr: Address to count from
185 *
186 * This is the same as test_and_set_bit on x86.
187 */
188static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
189{
190	return test_and_set_bit(nr, addr);
191}
192
193/**
194 * __test_and_set_bit - Set a bit and return its old value
195 * @nr: Bit to set
196 * @addr: Address to count from
197 *
198 * This operation is non-atomic and can be reordered.
199 * If two examples of this operation race, one can appear to succeed
200 * but actually fail.  You must protect multiple accesses with a lock.
201 */
202static inline int __test_and_set_bit(int nr, volatile unsigned long * addr)
203{
204	int oldbit;
205
206	__asm__(
207		"btsl %2,%1\n\tsbbl %0,%0"
208		:"=r" (oldbit),"+m" (ADDR)
209		:"Ir" (nr));
210	return oldbit;
211}
212
213/**
214 * test_and_clear_bit - Clear a bit and return its old value
215 * @nr: Bit to clear
216 * @addr: Address to count from
217 *
218 * This operation is atomic and cannot be reordered.
219 * It can be reorderdered on other architectures other than x86.
220 * It also implies a memory barrier.
221 */
222static inline int test_and_clear_bit(int nr, volatile unsigned long * addr)
223{
224	int oldbit;
225
226	__asm__ __volatile__( LOCK_PREFIX
227		"btrl %2,%1\n\tsbbl %0,%0"
228		:"=r" (oldbit),"+m" (ADDR)
229		:"Ir" (nr) : "memory");
230	return oldbit;
231}
232
233/**
234 * __test_and_clear_bit - Clear a bit and return its old value
235 * @nr: Bit to clear
236 * @addr: Address to count from
237 *
238 * This operation is non-atomic and can be reordered.
239 * If two examples of this operation race, one can appear to succeed
240 * but actually fail.  You must protect multiple accesses with a lock.
241 */
242static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
243{
244	int oldbit;
245
246	__asm__(
247		"btrl %2,%1\n\tsbbl %0,%0"
248		:"=r" (oldbit),"+m" (ADDR)
249		:"Ir" (nr));
250	return oldbit;
251}
252
253/* WARNING: non atomic and it can be reordered! */
254static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
255{
256	int oldbit;
257
258	__asm__ __volatile__(
259		"btcl %2,%1\n\tsbbl %0,%0"
260		:"=r" (oldbit),"+m" (ADDR)
261		:"Ir" (nr) : "memory");
262	return oldbit;
263}
264
265/**
266 * test_and_change_bit - Change a bit and return its old value
267 * @nr: Bit to change
268 * @addr: Address to count from
269 *
270 * This operation is atomic and cannot be reordered.
271 * It also implies a memory barrier.
272 */
273static inline int test_and_change_bit(int nr, volatile unsigned long* addr)
274{
275	int oldbit;
276
277	__asm__ __volatile__( LOCK_PREFIX
278		"btcl %2,%1\n\tsbbl %0,%0"
279		:"=r" (oldbit),"+m" (ADDR)
280		:"Ir" (nr) : "memory");
281	return oldbit;
282}
283
284#if 0 /* Fool kernel-doc since it doesn't do macros yet */
285/**
286 * test_bit - Determine whether a bit is set
287 * @nr: bit number to test
288 * @addr: Address to start counting from
289 */
290static int test_bit(int nr, const volatile void * addr);
291#endif
292
293static __always_inline int constant_test_bit(int nr, const volatile unsigned long *addr)
294{
295	return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0;
296}
297
298static inline int variable_test_bit(int nr, const volatile unsigned long * addr)
299{
300	int oldbit;
301
302	__asm__ __volatile__(
303		"btl %2,%1\n\tsbbl %0,%0"
304		:"=r" (oldbit)
305		:"m" (ADDR),"Ir" (nr));
306	return oldbit;
307}
308
309#define test_bit(nr,addr) \
310(__builtin_constant_p(nr) ? \
311 constant_test_bit((nr),(addr)) : \
312 variable_test_bit((nr),(addr)))
313
314#undef ADDR
315
316/**
317 * find_first_zero_bit - find the first zero bit in a memory region
318 * @addr: The address to start the search at
319 * @size: The maximum size to search
320 *
321 * Returns the bit-number of the first zero bit, not the number of the byte
322 * containing a bit.
323 */
324static inline int find_first_zero_bit(const unsigned long *addr, unsigned size)
325{
326	int d0, d1, d2;
327	int res;
328
329	if (!size)
330		return 0;
331	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
332	__asm__ __volatile__(
333		"movl $-1,%%eax\n\t"
334		"xorl %%edx,%%edx\n\t"
335		"repe; scasl\n\t"
336		"je 1f\n\t"
337		"xorl -4(%%edi),%%eax\n\t"
338		"subl $4,%%edi\n\t"
339		"bsfl %%eax,%%edx\n"
340		"1:\tsubl %%ebx,%%edi\n\t"
341		"shll $3,%%edi\n\t"
342		"addl %%edi,%%edx"
343		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
344		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
345	return res;
346}
347
348/**
349 * find_next_zero_bit - find the first zero bit in a memory region
350 * @addr: The address to base the search on
351 * @offset: The bitnumber to start searching at
352 * @size: The maximum size to search
353 */
354int find_next_zero_bit(const unsigned long *addr, int size, int offset);
355
356/**
357 * __ffs - find first bit in word.
358 * @word: The word to search
359 *
360 * Undefined if no bit exists, so code should check against 0 first.
361 */
362static inline unsigned long __ffs(unsigned long word)
363{
364	__asm__("bsfl %1,%0"
365		:"=r" (word)
366		:"rm" (word));
367	return word;
368}
369
370/**
371 * find_first_bit - find the first set bit in a memory region
372 * @addr: The address to start the search at
373 * @size: The maximum size to search
374 *
375 * Returns the bit-number of the first set bit, not the number of the byte
376 * containing a bit.
377 */
378static inline unsigned find_first_bit(const unsigned long *addr, unsigned size)
379{
380	unsigned x = 0;
381
382	while (x < size) {
383		unsigned long val = *addr++;
384		if (val)
385			return __ffs(val) + x;
386		x += (sizeof(*addr)<<3);
387	}
388	return x;
389}
390
391/**
392 * find_next_bit - find the first set bit in a memory region
393 * @addr: The address to base the search on
394 * @offset: The bitnumber to start searching at
395 * @size: The maximum size to search
396 */
397int find_next_bit(const unsigned long *addr, int size, int offset);
398
399/**
400 * ffz - find first zero in word.
401 * @word: The word to search
402 *
403 * Undefined if no zero exists, so code should check against ~0UL first.
404 */
405static inline unsigned long ffz(unsigned long word)
406{
407	__asm__("bsfl %1,%0"
408		:"=r" (word)
409		:"r" (~word));
410	return word;
411}
412
413#ifdef __KERNEL__
414
415#include <asm-generic/bitops/sched.h>
416
417/**
418 * ffs - find first bit set
419 * @x: the word to search
420 *
421 * This is defined the same way as
422 * the libc and compiler builtin ffs routines, therefore
423 * differs in spirit from the above ffz() (man ffs).
424 */
425static inline int ffs(int x)
426{
427	int r;
428
429	__asm__("bsfl %1,%0\n\t"
430		"jnz 1f\n\t"
431		"movl $-1,%0\n"
432		"1:" : "=r" (r) : "rm" (x));
433	return r+1;
434}
435
436/**
437 * fls - find last bit set
438 * @x: the word to search
439 *
440 * This is defined the same way as ffs().
441 */
442static inline int fls(int x)
443{
444	int r;
445
446	__asm__("bsrl %1,%0\n\t"
447		"jnz 1f\n\t"
448		"movl $-1,%0\n"
449		"1:" : "=r" (r) : "rm" (x));
450	return r+1;
451}
452
453#include <asm-generic/bitops/hweight.h>
454
455#endif /* __KERNEL__ */
456
457#include <asm-generic/bitops/fls64.h>
458
459#ifdef __KERNEL__
460
461#include <asm-generic/bitops/ext2-non-atomic.h>
462
463#define ext2_set_bit_atomic(lock,nr,addr) \
464        test_and_set_bit((nr),(unsigned long*)addr)
465#define ext2_clear_bit_atomic(lock,nr, addr) \
466	        test_and_clear_bit((nr),(unsigned long*)addr)
467
468#include <asm-generic/bitops/minix.h>
469
470#endif /* __KERNEL__ */
471
472#endif /* _I386_BITOPS_H */
473