1#ifndef __LINUX_CPUMASK_H
2#define __LINUX_CPUMASK_H
3
4/*
5 * Cpumasks provide a bitmap suitable for representing the
6 * set of CPU's in a system, one bit position per CPU number.
7 *
8 * See detailed comments in the file linux/bitmap.h describing the
9 * data type on which these cpumasks are based.
10 *
11 * For details of cpumask_scnprintf() and cpumask_parse(),
12 * see bitmap_scnprintf() and bitmap_parse() in lib/bitmap.c.
13 * For details of cpulist_scnprintf() and cpulist_parse(), see
14 * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c.
15 * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c
16 * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c.
17 *
18 * The available cpumask operations are:
19 *
20 * void cpu_set(cpu, mask)		turn on bit 'cpu' in mask
21 * void cpu_clear(cpu, mask)		turn off bit 'cpu' in mask
22 * void cpus_setall(mask)		set all bits
23 * void cpus_clear(mask)		clear all bits
24 * int cpu_isset(cpu, mask)		true iff bit 'cpu' set in mask
25 * int cpu_test_and_set(cpu, mask)	test and set bit 'cpu' in mask
26 *
27 * void cpus_and(dst, src1, src2)	dst = src1 & src2  [intersection]
28 * void cpus_or(dst, src1, src2)	dst = src1 | src2  [union]
29 * void cpus_xor(dst, src1, src2)	dst = src1 ^ src2
30 * void cpus_andnot(dst, src1, src2)	dst = src1 & ~src2
31 * void cpus_complement(dst, src)	dst = ~src
32 *
33 * int cpus_equal(mask1, mask2)		Does mask1 == mask2?
34 * int cpus_intersects(mask1, mask2)	Do mask1 and mask2 intersect?
35 * int cpus_subset(mask1, mask2)	Is mask1 a subset of mask2?
36 * int cpus_empty(mask)			Is mask empty (no bits sets)?
37 * int cpus_full(mask)			Is mask full (all bits sets)?
38 * int cpus_weight(mask)		Hamming weigh - number of set bits
39 *
40 * void cpus_shift_right(dst, src, n)	Shift right
41 * void cpus_shift_left(dst, src, n)	Shift left
42 *
43 * int first_cpu(mask)			Number lowest set bit, or NR_CPUS
44 * int next_cpu(cpu, mask)		Next cpu past 'cpu', or NR_CPUS
45 *
46 * cpumask_t cpumask_of_cpu(cpu)	Return cpumask with bit 'cpu' set
47 * CPU_MASK_ALL				Initializer - all bits set
48 * CPU_MASK_NONE			Initializer - no bits set
49 * unsigned long *cpus_addr(mask)	Array of unsigned long's in mask
50 *
51 * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing
52 * int cpumask_parse(ubuf, ulen, mask)	Parse ascii string as cpumask
53 * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing
54 * int cpulist_parse(buf, map)		Parse ascii string as cpulist
55 * int cpu_remap(oldbit, old, new)	newbit = map(old, new)(oldbit)
56 * int cpus_remap(dst, src, old, new)	*dst = map(old, new)(src)
57 *
58 * for_each_cpu_mask(cpu, mask)		for-loop cpu over mask
59 *
60 * int num_online_cpus()		Number of online CPUs
61 * int num_possible_cpus()		Number of all possible CPUs
62 * int num_present_cpus()		Number of present CPUs
63 *
64 * int cpu_online(cpu)			Is some cpu online?
65 * int cpu_possible(cpu)		Is some cpu possible?
66 * int cpu_present(cpu)			Is some cpu present (can schedule)?
67 *
68 * int any_online_cpu(mask)		First online cpu in mask
69 *
70 * for_each_possible_cpu(cpu)		for-loop cpu over cpu_possible_map
71 * for_each_online_cpu(cpu)		for-loop cpu over cpu_online_map
72 * for_each_present_cpu(cpu)		for-loop cpu over cpu_present_map
73 *
74 * Subtlety:
75 * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway)
76 *    to generate slightly worse code.  Note for example the additional
77 *    40 lines of assembly code compiling the "for each possible cpu"
78 *    loops buried in the disk_stat_read() macros calls when compiling
79 *    drivers/block/genhd.c (arch i386, CONFIG_SMP=y).  So use a simple
80 *    one-line #define for cpu_isset(), instead of wrapping an inline
81 *    inside a macro, the way we do the other calls.
82 */
83
84#include <linux/kernel.h>
85#include <linux/threads.h>
86#include <linux/bitmap.h>
87
88typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
89extern cpumask_t _unused_cpumask_arg_;
90
91#define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))
92static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)
93{
94	set_bit(cpu, dstp->bits);
95}
96
97#define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))
98static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)
99{
100	clear_bit(cpu, dstp->bits);
101}
102
103#define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)
104static inline void __cpus_setall(cpumask_t *dstp, int nbits)
105{
106	bitmap_fill(dstp->bits, nbits);
107}
108
109#define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)
110static inline void __cpus_clear(cpumask_t *dstp, int nbits)
111{
112	bitmap_zero(dstp->bits, nbits);
113}
114
115/* No static inline type checking - see Subtlety (1) above. */
116#define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)
117
118#define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))
119static inline int __cpu_test_and_set(int cpu, cpumask_t *addr)
120{
121	return test_and_set_bit(cpu, addr->bits);
122}
123
124#define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)
125static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,
126					const cpumask_t *src2p, int nbits)
127{
128	bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);
129}
130
131#define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)
132static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,
133					const cpumask_t *src2p, int nbits)
134{
135	bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);
136}
137
138#define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)
139static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,
140					const cpumask_t *src2p, int nbits)
141{
142	bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);
143}
144
145#define cpus_andnot(dst, src1, src2) \
146				__cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)
147static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,
148					const cpumask_t *src2p, int nbits)
149{
150	bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);
151}
152
153#define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)
154static inline void __cpus_complement(cpumask_t *dstp,
155					const cpumask_t *srcp, int nbits)
156{
157	bitmap_complement(dstp->bits, srcp->bits, nbits);
158}
159
160#define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)
161static inline int __cpus_equal(const cpumask_t *src1p,
162					const cpumask_t *src2p, int nbits)
163{
164	return bitmap_equal(src1p->bits, src2p->bits, nbits);
165}
166
167#define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)
168static inline int __cpus_intersects(const cpumask_t *src1p,
169					const cpumask_t *src2p, int nbits)
170{
171	return bitmap_intersects(src1p->bits, src2p->bits, nbits);
172}
173
174#define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)
175static inline int __cpus_subset(const cpumask_t *src1p,
176					const cpumask_t *src2p, int nbits)
177{
178	return bitmap_subset(src1p->bits, src2p->bits, nbits);
179}
180
181#define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)
182static inline int __cpus_empty(const cpumask_t *srcp, int nbits)
183{
184	return bitmap_empty(srcp->bits, nbits);
185}
186
187#define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)
188static inline int __cpus_full(const cpumask_t *srcp, int nbits)
189{
190	return bitmap_full(srcp->bits, nbits);
191}
192
193#define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)
194static inline int __cpus_weight(const cpumask_t *srcp, int nbits)
195{
196	return bitmap_weight(srcp->bits, nbits);
197}
198
199#define cpus_shift_right(dst, src, n) \
200			__cpus_shift_right(&(dst), &(src), (n), NR_CPUS)
201static inline void __cpus_shift_right(cpumask_t *dstp,
202					const cpumask_t *srcp, int n, int nbits)
203{
204	bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);
205}
206
207#define cpus_shift_left(dst, src, n) \
208			__cpus_shift_left(&(dst), &(src), (n), NR_CPUS)
209static inline void __cpus_shift_left(cpumask_t *dstp,
210					const cpumask_t *srcp, int n, int nbits)
211{
212	bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);
213}
214
215#ifdef CONFIG_SMP
216int __first_cpu(const cpumask_t *srcp);
217#define first_cpu(src) __first_cpu(&(src))
218int __next_cpu(int n, const cpumask_t *srcp);
219#define next_cpu(n, src) __next_cpu((n), &(src))
220#else
221#define first_cpu(src)		0
222#define next_cpu(n, src)	1
223#endif
224
225#define cpumask_of_cpu(cpu)						\
226({									\
227	typeof(_unused_cpumask_arg_) m;					\
228	if (sizeof(m) == sizeof(unsigned long)) {			\
229		m.bits[0] = 1UL<<(cpu);					\
230	} else {							\
231		cpus_clear(m);						\
232		cpu_set((cpu), m);					\
233	}								\
234	m;								\
235})
236
237#define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)
238
239#if NR_CPUS <= BITS_PER_LONG
240
241#define CPU_MASK_ALL							\
242(cpumask_t) { {								\
243	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\
244} }
245
246#else
247
248#define CPU_MASK_ALL							\
249(cpumask_t) { {								\
250	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,			\
251	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\
252} }
253
254#endif
255
256#define CPU_MASK_NONE							\
257(cpumask_t) { {								\
258	[0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL				\
259} }
260
261#define CPU_MASK_CPU0							\
262(cpumask_t) { {								\
263	[0] =  1UL							\
264} }
265
266#define cpus_addr(src) ((src).bits)
267
268#define cpumask_scnprintf(buf, len, src) \
269			__cpumask_scnprintf((buf), (len), &(src), NR_CPUS)
270static inline int __cpumask_scnprintf(char *buf, int len,
271					const cpumask_t *srcp, int nbits)
272{
273	return bitmap_scnprintf(buf, len, srcp->bits, nbits);
274}
275
276#define cpumask_parse(ubuf, ulen, dst) \
277			__cpumask_parse((ubuf), (ulen), &(dst), NR_CPUS)
278static inline int __cpumask_parse(const char __user *buf, int len,
279					cpumask_t *dstp, int nbits)
280{
281	return bitmap_parse(buf, len, dstp->bits, nbits);
282}
283
284#define cpulist_scnprintf(buf, len, src) \
285			__cpulist_scnprintf((buf), (len), &(src), NR_CPUS)
286static inline int __cpulist_scnprintf(char *buf, int len,
287					const cpumask_t *srcp, int nbits)
288{
289	return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);
290}
291
292#define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)
293static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits)
294{
295	return bitmap_parselist(buf, dstp->bits, nbits);
296}
297
298#define cpu_remap(oldbit, old, new) \
299		__cpu_remap((oldbit), &(old), &(new), NR_CPUS)
300static inline int __cpu_remap(int oldbit,
301		const cpumask_t *oldp, const cpumask_t *newp, int nbits)
302{
303	return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);
304}
305
306#define cpus_remap(dst, src, old, new) \
307		__cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)
308static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,
309		const cpumask_t *oldp, const cpumask_t *newp, int nbits)
310{
311	bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);
312}
313
314#if NR_CPUS > 1
315#define for_each_cpu_mask(cpu, mask)		\
316	for ((cpu) = first_cpu(mask);		\
317		(cpu) < NR_CPUS;		\
318		(cpu) = next_cpu((cpu), (mask)))
319#else /* NR_CPUS == 1 */
320#define for_each_cpu_mask(cpu, mask)		\
321	for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)
322#endif /* NR_CPUS */
323
324/*
325 * The following particular system cpumasks and operations manage
326 * possible, present and online cpus.  Each of them is a fixed size
327 * bitmap of size NR_CPUS.
328 *
329 *  #ifdef CONFIG_HOTPLUG_CPU
330 *     cpu_possible_map - has bit 'cpu' set iff cpu is populatable
331 *     cpu_present_map  - has bit 'cpu' set iff cpu is populated
332 *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
333 *  #else
334 *     cpu_possible_map - has bit 'cpu' set iff cpu is populated
335 *     cpu_present_map  - copy of cpu_possible_map
336 *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler
337 *  #endif
338 *
339 *  In either case, NR_CPUS is fixed at compile time, as the static
340 *  size of these bitmaps.  The cpu_possible_map is fixed at boot
341 *  time, as the set of CPU id's that it is possible might ever
342 *  be plugged in at anytime during the life of that system boot.
343 *  The cpu_present_map is dynamic(*), representing which CPUs
344 *  are currently plugged in.  And cpu_online_map is the dynamic
345 *  subset of cpu_present_map, indicating those CPUs available
346 *  for scheduling.
347 *
348 *  If HOTPLUG is enabled, then cpu_possible_map is forced to have
349 *  all NR_CPUS bits set, otherwise it is just the set of CPUs that
350 *  ACPI reports present at boot.
351 *
352 *  If HOTPLUG is enabled, then cpu_present_map varies dynamically,
353 *  depending on what ACPI reports as currently plugged in, otherwise
354 *  cpu_present_map is just a copy of cpu_possible_map.
355 *
356 *  (*) Well, cpu_present_map is dynamic in the hotplug case.  If not
357 *      hotplug, it's a copy of cpu_possible_map, hence fixed at boot.
358 *
359 * Subtleties:
360 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
361 *    assumption that their single CPU is online.  The UP
362 *    cpu_{online,possible,present}_maps are placebos.  Changing them
363 *    will have no useful affect on the following num_*_cpus()
364 *    and cpu_*() macros in the UP case.  This ugliness is a UP
365 *    optimization - don't waste any instructions or memory references
366 *    asking if you're online or how many CPUs there are if there is
367 *    only one CPU.
368 * 2) Most SMP arch's #define some of these maps to be some
369 *    other map specific to that arch.  Therefore, the following
370 *    must be #define macros, not inlines.  To see why, examine
371 *    the assembly code produced by the following.  Note that
372 *    set1() writes phys_x_map, but set2() writes x_map:
373 *        int x_map, phys_x_map;
374 *        #define set1(a) x_map = a
375 *        inline void set2(int a) { x_map = a; }
376 *        #define x_map phys_x_map
377 *        main(){ set1(3); set2(5); }
378 */
379
380extern cpumask_t cpu_possible_map;
381extern cpumask_t cpu_online_map;
382extern cpumask_t cpu_present_map;
383
384#if NR_CPUS > 1
385#define num_online_cpus()	cpus_weight(cpu_online_map)
386#define num_possible_cpus()	cpus_weight(cpu_possible_map)
387#define num_present_cpus()	cpus_weight(cpu_present_map)
388#define cpu_online(cpu)		cpu_isset((cpu), cpu_online_map)
389#define cpu_possible(cpu)	cpu_isset((cpu), cpu_possible_map)
390#define cpu_present(cpu)	cpu_isset((cpu), cpu_present_map)
391#else
392#define num_online_cpus()	1
393#define num_possible_cpus()	1
394#define num_present_cpus()	1
395#define cpu_online(cpu)		((cpu) == 0)
396#define cpu_possible(cpu)	((cpu) == 0)
397#define cpu_present(cpu)	((cpu) == 0)
398#endif
399
400#ifdef CONFIG_SMP
401int highest_possible_processor_id(void);
402#define any_online_cpu(mask) __any_online_cpu(&(mask))
403int __any_online_cpu(const cpumask_t *mask);
404#else
405#define highest_possible_processor_id()	0
406#define any_online_cpu(mask)		0
407#endif
408
409#define for_each_possible_cpu(cpu)  for_each_cpu_mask((cpu), cpu_possible_map)
410#define for_each_online_cpu(cpu)  for_each_cpu_mask((cpu), cpu_online_map)
411#define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)
412
413#endif /* __LINUX_CPUMASK_H */
414