1#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb_ch9.h>
6
7#define USB_MAJOR			180
8#define USB_DEVICE_MAJOR		189
9
10
11#ifdef __KERNEL__
12
13#include <linux/errno.h>        /* for -ENODEV */
14#include <linux/delay.h>	/* for mdelay() */
15#include <linux/interrupt.h>	/* for in_interrupt() */
16#include <linux/list.h>		/* for struct list_head */
17#include <linux/kref.h>		/* for struct kref */
18#include <linux/device.h>	/* for struct device */
19#include <linux/fs.h>		/* for struct file_operations */
20#include <linux/completion.h>	/* for struct completion */
21#include <linux/sched.h>	/* for current && schedule_timeout */
22
23struct usb_device;
24struct usb_driver;
25
26/*-------------------------------------------------------------------------*/
27
28/*
29 * Host-side wrappers for standard USB descriptors ... these are parsed
30 * from the data provided by devices.  Parsing turns them from a flat
31 * sequence of descriptors into a hierarchy:
32 *
33 *  - devices have one (usually) or more configs;
34 *  - configs have one (often) or more interfaces;
35 *  - interfaces have one (usually) or more settings;
36 *  - each interface setting has zero or (usually) more endpoints.
37 *
38 * And there might be other descriptors mixed in with those.
39 *
40 * Devices may also have class-specific or vendor-specific descriptors.
41 */
42
43struct ep_device;
44
45/**
46 * struct usb_host_endpoint - host-side endpoint descriptor and queue
47 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
48 * @urb_list: urbs queued to this endpoint; maintained by usbcore
49 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
50 *	with one or more transfer descriptors (TDs) per urb
51 * @ep_dev: ep_device for sysfs info
52 * @extra: descriptors following this endpoint in the configuration
53 * @extralen: how many bytes of "extra" are valid
54 *
55 * USB requests are always queued to a given endpoint, identified by a
56 * descriptor within an active interface in a given USB configuration.
57 */
58struct usb_host_endpoint {
59	struct usb_endpoint_descriptor	desc;
60	struct list_head		urb_list;
61	void				*hcpriv;
62	struct ep_device 		*ep_dev;	/* For sysfs info */
63
64	unsigned char *extra;   /* Extra descriptors */
65	int extralen;
66};
67
68/* host-side wrapper for one interface setting's parsed descriptors */
69struct usb_host_interface {
70	struct usb_interface_descriptor	desc;
71
72	/* array of desc.bNumEndpoint endpoints associated with this
73	 * interface setting.  these will be in no particular order.
74	 */
75	struct usb_host_endpoint *endpoint;
76
77	char *string;		/* iInterface string, if present */
78	unsigned char *extra;   /* Extra descriptors */
79	int extralen;
80};
81
82enum usb_interface_condition {
83	USB_INTERFACE_UNBOUND = 0,
84	USB_INTERFACE_BINDING,
85	USB_INTERFACE_BOUND,
86	USB_INTERFACE_UNBINDING,
87};
88
89/**
90 * struct usb_interface - what usb device drivers talk to
91 * @altsetting: array of interface structures, one for each alternate
92 * 	setting that may be selected.  Each one includes a set of
93 * 	endpoint configurations.  They will be in no particular order.
94 * @num_altsetting: number of altsettings defined.
95 * @cur_altsetting: the current altsetting.
96 * @driver: the USB driver that is bound to this interface.
97 * @minor: the minor number assigned to this interface, if this
98 *	interface is bound to a driver that uses the USB major number.
99 *	If this interface does not use the USB major, this field should
100 *	be unused.  The driver should set this value in the probe()
101 *	function of the driver, after it has been assigned a minor
102 *	number from the USB core by calling usb_register_dev().
103 * @condition: binding state of the interface: not bound, binding
104 *	(in probe()), bound to a driver, or unbinding (in disconnect())
105 * @dev: driver model's view of this device
106 * @class_dev: driver model's class view of this device.
107 *
108 * USB device drivers attach to interfaces on a physical device.  Each
109 * interface encapsulates a single high level function, such as feeding
110 * an audio stream to a speaker or reporting a change in a volume control.
111 * Many USB devices only have one interface.  The protocol used to talk to
112 * an interface's endpoints can be defined in a usb "class" specification,
113 * or by a product's vendor.  The (default) control endpoint is part of
114 * every interface, but is never listed among the interface's descriptors.
115 *
116 * The driver that is bound to the interface can use standard driver model
117 * calls such as dev_get_drvdata() on the dev member of this structure.
118 *
119 * Each interface may have alternate settings.  The initial configuration
120 * of a device sets altsetting 0, but the device driver can change
121 * that setting using usb_set_interface().  Alternate settings are often
122 * used to control the the use of periodic endpoints, such as by having
123 * different endpoints use different amounts of reserved USB bandwidth.
124 * All standards-conformant USB devices that use isochronous endpoints
125 * will use them in non-default settings.
126 *
127 * The USB specification says that alternate setting numbers must run from
128 * 0 to one less than the total number of alternate settings.  But some
129 * devices manage to mess this up, and the structures aren't necessarily
130 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
131 * look up an alternate setting in the altsetting array based on its number.
132 */
133struct usb_interface {
134	/* array of alternate settings for this interface,
135	 * stored in no particular order */
136	struct usb_host_interface *altsetting;
137
138	struct usb_host_interface *cur_altsetting;	/* the currently
139					 * active alternate setting */
140	unsigned num_altsetting;	/* number of alternate settings */
141
142	int minor;			/* minor number this interface is
143					 * bound to */
144	enum usb_interface_condition condition;		/* state of binding */
145	struct device dev;		/* interface specific device info */
146	struct class_device *class_dev;
147};
148#define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
149#define	interface_to_usbdev(intf) \
150	container_of(intf->dev.parent, struct usb_device, dev)
151
152static inline void *usb_get_intfdata (struct usb_interface *intf)
153{
154	return dev_get_drvdata (&intf->dev);
155}
156
157static inline void usb_set_intfdata (struct usb_interface *intf, void *data)
158{
159	dev_set_drvdata(&intf->dev, data);
160}
161
162struct usb_interface *usb_get_intf(struct usb_interface *intf);
163void usb_put_intf(struct usb_interface *intf);
164
165/* this maximum is arbitrary */
166#define USB_MAXINTERFACES	32
167
168/**
169 * struct usb_interface_cache - long-term representation of a device interface
170 * @num_altsetting: number of altsettings defined.
171 * @ref: reference counter.
172 * @altsetting: variable-length array of interface structures, one for
173 *	each alternate setting that may be selected.  Each one includes a
174 *	set of endpoint configurations.  They will be in no particular order.
175 *
176 * These structures persist for the lifetime of a usb_device, unlike
177 * struct usb_interface (which persists only as long as its configuration
178 * is installed).  The altsetting arrays can be accessed through these
179 * structures at any time, permitting comparison of configurations and
180 * providing support for the /proc/bus/usb/devices pseudo-file.
181 */
182struct usb_interface_cache {
183	unsigned num_altsetting;	/* number of alternate settings */
184	struct kref ref;		/* reference counter */
185
186	/* variable-length array of alternate settings for this interface,
187	 * stored in no particular order */
188	struct usb_host_interface altsetting[0];
189};
190#define	ref_to_usb_interface_cache(r) \
191		container_of(r, struct usb_interface_cache, ref)
192#define	altsetting_to_usb_interface_cache(a) \
193		container_of(a, struct usb_interface_cache, altsetting[0])
194
195/**
196 * struct usb_host_config - representation of a device's configuration
197 * @desc: the device's configuration descriptor.
198 * @string: pointer to the cached version of the iConfiguration string, if
199 *	present for this configuration.
200 * @interface: array of pointers to usb_interface structures, one for each
201 *	interface in the configuration.  The number of interfaces is stored
202 *	in desc.bNumInterfaces.  These pointers are valid only while the
203 *	the configuration is active.
204 * @intf_cache: array of pointers to usb_interface_cache structures, one
205 *	for each interface in the configuration.  These structures exist
206 *	for the entire life of the device.
207 * @extra: pointer to buffer containing all extra descriptors associated
208 *	with this configuration (those preceding the first interface
209 *	descriptor).
210 * @extralen: length of the extra descriptors buffer.
211 *
212 * USB devices may have multiple configurations, but only one can be active
213 * at any time.  Each encapsulates a different operational environment;
214 * for example, a dual-speed device would have separate configurations for
215 * full-speed and high-speed operation.  The number of configurations
216 * available is stored in the device descriptor as bNumConfigurations.
217 *
218 * A configuration can contain multiple interfaces.  Each corresponds to
219 * a different function of the USB device, and all are available whenever
220 * the configuration is active.  The USB standard says that interfaces
221 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
222 * of devices get this wrong.  In addition, the interface array is not
223 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
224 * look up an interface entry based on its number.
225 *
226 * Device drivers should not attempt to activate configurations.  The choice
227 * of which configuration to install is a policy decision based on such
228 * considerations as available power, functionality provided, and the user's
229 * desires (expressed through userspace tools).  However, drivers can call
230 * usb_reset_configuration() to reinitialize the current configuration and
231 * all its interfaces.
232 */
233struct usb_host_config {
234	struct usb_config_descriptor	desc;
235
236	char *string;		/* iConfiguration string, if present */
237	/* the interfaces associated with this configuration,
238	 * stored in no particular order */
239	struct usb_interface *interface[USB_MAXINTERFACES];
240
241	/* Interface information available even when this is not the
242	 * active configuration */
243	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
244
245	unsigned char *extra;   /* Extra descriptors */
246	int extralen;
247};
248
249int __usb_get_extra_descriptor(char *buffer, unsigned size,
250	unsigned char type, void **ptr);
251#define usb_get_extra_descriptor(ifpoint,type,ptr)\
252	__usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\
253		type,(void**)ptr)
254
255/* ----------------------------------------------------------------------- */
256
257struct usb_operations;
258
259/* USB device number allocation bitmap */
260struct usb_devmap {
261	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
262};
263
264/*
265 * Allocated per bus (tree of devices) we have:
266 */
267struct usb_bus {
268	struct device *controller;	/* host/master side hardware */
269	int busnum;			/* Bus number (in order of reg) */
270	char *bus_name;			/* stable id (PCI slot_name etc) */
271	u8 otg_port;			/* 0, or number of OTG/HNP port */
272	unsigned is_b_host:1;		/* true during some HNP roleswitches */
273	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
274
275	int devnum_next;		/* Next open device number in
276					 * round-robin allocation */
277
278	struct usb_devmap devmap;	/* device address allocation map */
279	struct usb_operations *op;	/* Operations (specific to the HC) */
280	struct usb_device *root_hub;	/* Root hub */
281	struct list_head bus_list;	/* list of busses */
282	void *hcpriv;                   /* Host Controller private data */
283
284	int bandwidth_allocated;	/* on this bus: how much of the time
285					 * reserved for periodic (intr/iso)
286					 * requests is used, on average?
287					 * Units: microseconds/frame.
288					 * Limits: Full/low speed reserve 90%,
289					 * while high speed reserves 80%.
290					 */
291	int bandwidth_int_reqs;		/* number of Interrupt requests */
292	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
293
294	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
295
296	struct class_device *class_dev;	/* class device for this bus */
297	struct kref kref;		/* reference counting for this bus */
298	void (*release)(struct usb_bus *bus);
299
300#if defined(CONFIG_USB_MON)
301	struct mon_bus *mon_bus;	/* non-null when associated */
302	int monitored;			/* non-zero when monitored */
303#endif
304};
305
306/* ----------------------------------------------------------------------- */
307
308/* This is arbitrary.
309 * From USB 2.0 spec Table 11-13, offset 7, a hub can
310 * have up to 255 ports. The most yet reported is 10.
311 */
312#define USB_MAXCHILDREN		(16)
313
314struct usb_tt;
315
316/*
317 * struct usb_device - kernel's representation of a USB device
318 *
319 * FIXME: Write the kerneldoc!
320 *
321 * Usbcore drivers should not set usbdev->state directly.  Instead use
322 * usb_set_device_state().
323 */
324struct usb_device {
325	int		devnum;		/* Address on USB bus */
326	char		devpath [16];	/* Use in messages: /port/port/... */
327	enum usb_device_state	state;	/* configured, not attached, etc */
328	enum usb_device_speed	speed;	/* high/full/low (or error) */
329
330	struct usb_tt	*tt; 		/* low/full speed dev, highspeed hub */
331	int		ttport;		/* device port on that tt hub */
332
333	unsigned int toggle[2];		/* one bit for each endpoint
334					 * ([0] = IN, [1] = OUT) */
335
336	struct usb_device *parent;	/* our hub, unless we're the root */
337	struct usb_bus *bus;		/* Bus we're part of */
338	struct usb_host_endpoint ep0;
339
340	struct device dev;		/* Generic device interface */
341
342	struct usb_device_descriptor descriptor;/* Descriptor */
343	struct usb_host_config *config;	/* All of the configs */
344
345	struct usb_host_config *actconfig;/* the active configuration */
346	struct usb_host_endpoint *ep_in[16];
347	struct usb_host_endpoint *ep_out[16];
348
349	char **rawdescriptors;		/* Raw descriptors for each config */
350
351	unsigned short bus_mA;		/* Current available from the bus */
352	u8 portnum;			/* Parent port number (origin 1) */
353
354	int have_langid;		/* whether string_langid is valid */
355	int string_langid;		/* language ID for strings */
356
357	/* static strings from the device */
358	char *product;			/* iProduct string, if present */
359	char *manufacturer;		/* iManufacturer string, if present */
360	char *serial;			/* iSerialNumber string, if present */
361
362	struct list_head filelist;
363	struct class_device *class_dev;
364	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the device */
365
366	/*
367	 * Child devices - these can be either new devices
368	 * (if this is a hub device), or different instances
369	 * of this same device.
370	 *
371	 * Each instance needs its own set of data structures.
372	 */
373
374	int maxchild;			/* Number of ports if hub */
375	struct usb_device *children[USB_MAXCHILDREN];
376};
377#define	to_usb_device(d) container_of(d, struct usb_device, dev)
378
379extern struct usb_device *usb_get_dev(struct usb_device *dev);
380extern void usb_put_dev(struct usb_device *dev);
381
382/* USB device locking */
383#define usb_lock_device(udev)		down(&(udev)->dev.sem)
384#define usb_unlock_device(udev)		up(&(udev)->dev.sem)
385#define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
386extern int usb_lock_device_for_reset(struct usb_device *udev,
387		struct usb_interface *iface);
388
389/* USB port reset for device reinitialization */
390extern int usb_reset_device(struct usb_device *dev);
391extern int usb_reset_composite_device(struct usb_device *dev,
392		struct usb_interface *iface);
393
394extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
395
396/*-------------------------------------------------------------------------*/
397
398/* for drivers using iso endpoints */
399extern int usb_get_current_frame_number (struct usb_device *usb_dev);
400
401/* used these for multi-interface device registration */
402extern int usb_driver_claim_interface(struct usb_driver *driver,
403			struct usb_interface *iface, void* priv);
404
405/**
406 * usb_interface_claimed - returns true iff an interface is claimed
407 * @iface: the interface being checked
408 *
409 * Returns true (nonzero) iff the interface is claimed, else false (zero).
410 * Callers must own the driver model's usb bus readlock.  So driver
411 * probe() entries don't need extra locking, but other call contexts
412 * may need to explicitly claim that lock.
413 *
414 */
415static inline int usb_interface_claimed(struct usb_interface *iface) {
416	return (iface->dev.driver != NULL);
417}
418
419extern void usb_driver_release_interface(struct usb_driver *driver,
420			struct usb_interface *iface);
421const struct usb_device_id *usb_match_id(struct usb_interface *interface,
422					 const struct usb_device_id *id);
423
424extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
425		int minor);
426extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev,
427		unsigned ifnum);
428extern struct usb_host_interface *usb_altnum_to_altsetting(
429		struct usb_interface *intf, unsigned int altnum);
430
431
432/**
433 * usb_make_path - returns stable device path in the usb tree
434 * @dev: the device whose path is being constructed
435 * @buf: where to put the string
436 * @size: how big is "buf"?
437 *
438 * Returns length of the string (> 0) or negative if size was too small.
439 *
440 * This identifier is intended to be "stable", reflecting physical paths in
441 * hardware such as physical bus addresses for host controllers or ports on
442 * USB hubs.  That makes it stay the same until systems are physically
443 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
444 * controllers.  Adding and removing devices, including virtual root hubs
445 * in host controller driver modules, does not change these path identifers;
446 * neither does rebooting or re-enumerating.  These are more useful identifiers
447 * than changeable ("unstable") ones like bus numbers or device addresses.
448 *
449 * With a partial exception for devices connected to USB 2.0 root hubs, these
450 * identifiers are also predictable.  So long as the device tree isn't changed,
451 * plugging any USB device into a given hub port always gives it the same path.
452 * Because of the use of "companion" controllers, devices connected to ports on
453 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
454 * high speed, and a different one if they are full or low speed.
455 */
456static inline int usb_make_path (struct usb_device *dev, char *buf,
457		size_t size)
458{
459	int actual;
460	actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name,
461			dev->devpath);
462	return (actual >= (int)size) ? -1 : actual;
463}
464
465/*-------------------------------------------------------------------------*/
466
467#define USB_DEVICE_ID_MATCH_DEVICE \
468		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
469#define USB_DEVICE_ID_MATCH_DEV_RANGE \
470		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
471#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
472		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
473#define USB_DEVICE_ID_MATCH_DEV_INFO \
474		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
475		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
476		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
477#define USB_DEVICE_ID_MATCH_INT_INFO \
478		(USB_DEVICE_ID_MATCH_INT_CLASS | \
479		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
480		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
481
482/**
483 * USB_DEVICE - macro used to describe a specific usb device
484 * @vend: the 16 bit USB Vendor ID
485 * @prod: the 16 bit USB Product ID
486 *
487 * This macro is used to create a struct usb_device_id that matches a
488 * specific device.
489 */
490#define USB_DEVICE(vend,prod) \
491	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \
492			.idProduct = (prod)
493/**
494 * USB_DEVICE_VER - macro used to describe a specific usb device with a
495 *		version range
496 * @vend: the 16 bit USB Vendor ID
497 * @prod: the 16 bit USB Product ID
498 * @lo: the bcdDevice_lo value
499 * @hi: the bcdDevice_hi value
500 *
501 * This macro is used to create a struct usb_device_id that matches a
502 * specific device, with a version range.
503 */
504#define USB_DEVICE_VER(vend,prod,lo,hi) \
505	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
506	.idVendor = (vend), .idProduct = (prod), \
507	.bcdDevice_lo = (lo), .bcdDevice_hi = (hi)
508
509/**
510 * USB_DEVICE_INFO - macro used to describe a class of usb devices
511 * @cl: bDeviceClass value
512 * @sc: bDeviceSubClass value
513 * @pr: bDeviceProtocol value
514 *
515 * This macro is used to create a struct usb_device_id that matches a
516 * specific class of devices.
517 */
518#define USB_DEVICE_INFO(cl,sc,pr) \
519	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \
520	.bDeviceSubClass = (sc), .bDeviceProtocol = (pr)
521
522/**
523 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
524 * @cl: bInterfaceClass value
525 * @sc: bInterfaceSubClass value
526 * @pr: bInterfaceProtocol value
527 *
528 * This macro is used to create a struct usb_device_id that matches a
529 * specific class of interfaces.
530 */
531#define USB_INTERFACE_INFO(cl,sc,pr) \
532	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \
533	.bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr)
534
535/* ----------------------------------------------------------------------- */
536
537struct usb_dynids {
538	spinlock_t lock;
539	struct list_head list;
540};
541
542/**
543 * struct usb_driver - identifies USB driver to usbcore
544 * @name: The driver name should be unique among USB drivers,
545 *	and should normally be the same as the module name.
546 * @probe: Called to see if the driver is willing to manage a particular
547 *	interface on a device.  If it is, probe returns zero and uses
548 *	dev_set_drvdata() to associate driver-specific data with the
549 *	interface.  It may also use usb_set_interface() to specify the
550 *	appropriate altsetting.  If unwilling to manage the interface,
551 *	return a negative errno value.
552 * @disconnect: Called when the interface is no longer accessible, usually
553 *	because its device has been (or is being) disconnected or the
554 *	driver module is being unloaded.
555 * @ioctl: Used for drivers that want to talk to userspace through
556 *	the "usbfs" filesystem.  This lets devices provide ways to
557 *	expose information to user space regardless of where they
558 *	do (or don't) show up otherwise in the filesystem.
559 * @suspend: Called when the device is going to be suspended by the system.
560 * @resume: Called when the device is being resumed by the system.
561 * @pre_reset: Called by usb_reset_composite_device() when the device
562 *	is about to be reset.
563 * @post_reset: Called by usb_reset_composite_device() after the device
564 *	has been reset.
565 * @id_table: USB drivers use ID table to support hotplugging.
566 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
567 *	or your driver's probe function will never get called.
568 * @dynids: used internally to hold the list of dynamically added device
569 *	ids for this driver.
570 * @driver: the driver model core driver structure.
571 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
572 *	added to this driver by preventing the sysfs file from being created.
573 *
574 * USB drivers must provide a name, probe() and disconnect() methods,
575 * and an id_table.  Other driver fields are optional.
576 *
577 * The id_table is used in hotplugging.  It holds a set of descriptors,
578 * and specialized data may be associated with each entry.  That table
579 * is used by both user and kernel mode hotplugging support.
580 *
581 * The probe() and disconnect() methods are called in a context where
582 * they can sleep, but they should avoid abusing the privilege.  Most
583 * work to connect to a device should be done when the device is opened,
584 * and undone at the last close.  The disconnect code needs to address
585 * concurrency issues with respect to open() and close() methods, as
586 * well as forcing all pending I/O requests to complete (by unlinking
587 * them as necessary, and blocking until the unlinks complete).
588 */
589struct usb_driver {
590	const char *name;
591
592	int (*probe) (struct usb_interface *intf,
593		      const struct usb_device_id *id);
594
595	void (*disconnect) (struct usb_interface *intf);
596
597	int (*ioctl) (struct usb_interface *intf, unsigned int code,
598			void *buf);
599
600	int (*suspend) (struct usb_interface *intf, pm_message_t message);
601	int (*resume) (struct usb_interface *intf);
602
603	void (*pre_reset) (struct usb_interface *intf);
604	void (*post_reset) (struct usb_interface *intf);
605
606	const struct usb_device_id *id_table;
607
608	struct usb_dynids dynids;
609	struct device_driver driver;
610	unsigned int no_dynamic_id:1;
611};
612#define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
613
614extern struct bus_type usb_bus_type;
615
616/**
617 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
618 * @name: the usb class device name for this driver.  Will show up in sysfs.
619 * @fops: pointer to the struct file_operations of this driver.
620 * @minor_base: the start of the minor range for this driver.
621 *
622 * This structure is used for the usb_register_dev() and
623 * usb_unregister_dev() functions, to consolidate a number of the
624 * parameters used for them.
625 */
626struct usb_class_driver {
627	char *name;
628	const struct file_operations *fops;
629	int minor_base;
630};
631
632/*
633 * use these in module_init()/module_exit()
634 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
635 */
636int usb_register_driver(struct usb_driver *, struct module *);
637static inline int usb_register(struct usb_driver *driver)
638{
639	return usb_register_driver(driver, THIS_MODULE);
640}
641extern void usb_deregister(struct usb_driver *);
642
643extern int usb_register_dev(struct usb_interface *intf,
644			    struct usb_class_driver *class_driver);
645extern void usb_deregister_dev(struct usb_interface *intf,
646			       struct usb_class_driver *class_driver);
647
648extern int usb_disabled(void);
649
650/* ----------------------------------------------------------------------- */
651
652/*
653 * URB support, for asynchronous request completions
654 */
655
656/*
657 * urb->transfer_flags:
658 */
659#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
660#define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
661					 * ignored */
662#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
663#define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
664#define URB_NO_FSBR		0x0020	/* UHCI-specific */
665#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
666#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
667					 * needed */
668
669struct usb_iso_packet_descriptor {
670	unsigned int offset;
671	unsigned int length;		/* expected length */
672	unsigned int actual_length;
673	unsigned int status;
674};
675
676struct urb;
677struct pt_regs;
678
679typedef void (*usb_complete_t)(struct urb *, struct pt_regs *);
680
681/**
682 * struct urb - USB Request Block
683 * @urb_list: For use by current owner of the URB.
684 * @pipe: Holds endpoint number, direction, type, and more.
685 *	Create these values with the eight macros available;
686 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
687 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
688 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
689 *	numbers range from zero to fifteen.  Note that "in" endpoint two
690 *	is a different endpoint (and pipe) from "out" endpoint two.
691 *	The current configuration controls the existence, type, and
692 *	maximum packet size of any given endpoint.
693 * @dev: Identifies the USB device to perform the request.
694 * @status: This is read in non-iso completion functions to get the
695 *	status of the particular request.  ISO requests only use it
696 *	to tell whether the URB was unlinked; detailed status for
697 *	each frame is in the fields of the iso_frame-desc.
698 * @transfer_flags: A variety of flags may be used to affect how URB
699 *	submission, unlinking, or operation are handled.  Different
700 *	kinds of URB can use different flags.
701 * @transfer_buffer:  This identifies the buffer to (or from) which
702 * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
703 *	is set).  This buffer must be suitable for DMA; allocate it with
704 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
705 *	of this buffer will be modified.  This buffer is used for the data
706 *	stage of control transfers.
707 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
708 *	the device driver is saying that it provided this DMA address,
709 *	which the host controller driver should use in preference to the
710 *	transfer_buffer.
711 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
712 *	be broken up into chunks according to the current maximum packet
713 *	size for the endpoint, which is a function of the configuration
714 *	and is encoded in the pipe.  When the length is zero, neither
715 *	transfer_buffer nor transfer_dma is used.
716 * @actual_length: This is read in non-iso completion functions, and
717 *	it tells how many bytes (out of transfer_buffer_length) were
718 *	transferred.  It will normally be the same as requested, unless
719 *	either an error was reported or a short read was performed.
720 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
721 *	short reads be reported as errors.
722 * @setup_packet: Only used for control transfers, this points to eight bytes
723 *	of setup data.  Control transfers always start by sending this data
724 *	to the device.  Then transfer_buffer is read or written, if needed.
725 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
726 *	device driver has provided this DMA address for the setup packet.
727 *	The host controller driver should use this in preference to
728 *	setup_packet.
729 * @start_frame: Returns the initial frame for isochronous transfers.
730 * @number_of_packets: Lists the number of ISO transfer buffers.
731 * @interval: Specifies the polling interval for interrupt or isochronous
732 *	transfers.  The units are frames (milliseconds) for for full and low
733 *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
734 * @error_count: Returns the number of ISO transfers that reported errors.
735 * @context: For use in completion functions.  This normally points to
736 *	request-specific driver context.
737 * @complete: Completion handler. This URB is passed as the parameter to the
738 *	completion function.  The completion function may then do what
739 *	it likes with the URB, including resubmitting or freeing it.
740 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
741 *	collect the transfer status for each buffer.
742 *
743 * This structure identifies USB transfer requests.  URBs must be allocated by
744 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
745 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
746 * are submitted using usb_submit_urb(), and pending requests may be canceled
747 * using usb_unlink_urb() or usb_kill_urb().
748 *
749 * Data Transfer Buffers:
750 *
751 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
752 * taken from the general page pool.  That is provided by transfer_buffer
753 * (control requests also use setup_packet), and host controller drivers
754 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
755 * mapping operations can be expensive on some platforms (perhaps using a dma
756 * bounce buffer or talking to an IOMMU),
757 * although they're cheap on commodity x86 and ppc hardware.
758 *
759 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
760 * which tell the host controller driver that no such mapping is needed since
761 * the device driver is DMA-aware.  For example, a device driver might
762 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
763 * When these transfer flags are provided, host controller drivers will
764 * attempt to use the dma addresses found in the transfer_dma and/or
765 * setup_dma fields rather than determining a dma address themselves.  (Note
766 * that transfer_buffer and setup_packet must still be set because not all
767 * host controllers use DMA, nor do virtual root hubs).
768 *
769 * Initialization:
770 *
771 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
772 * zero), and complete fields.  All URBs must also initialize
773 * transfer_buffer and transfer_buffer_length.  They may provide the
774 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
775 * to be treated as errors; that flag is invalid for write requests.
776 *
777 * Bulk URBs may
778 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
779 * should always terminate with a short packet, even if it means adding an
780 * extra zero length packet.
781 *
782 * Control URBs must provide a setup_packet.  The setup_packet and
783 * transfer_buffer may each be mapped for DMA or not, independently of
784 * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
785 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
786 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
787 *
788 * Interrupt URBs must provide an interval, saying how often (in milliseconds
789 * or, for highspeed devices, 125 microsecond units)
790 * to poll for transfers.  After the URB has been submitted, the interval
791 * field reflects how the transfer was actually scheduled.
792 * The polling interval may be more frequent than requested.
793 * For example, some controllers have a maximum interval of 32 milliseconds,
794 * while others support intervals of up to 1024 milliseconds.
795 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
796 * endpoints, as well as high speed interrupt endpoints, the encoding of
797 * the transfer interval in the endpoint descriptor is logarithmic.
798 * Device drivers must convert that value to linear units themselves.)
799 *
800 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
801 * the host controller to schedule the transfer as soon as bandwidth
802 * utilization allows, and then set start_frame to reflect the actual frame
803 * selected during submission.  Otherwise drivers must specify the start_frame
804 * and handle the case where the transfer can't begin then.  However, drivers
805 * won't know how bandwidth is currently allocated, and while they can
806 * find the current frame using usb_get_current_frame_number () they can't
807 * know the range for that frame number.  (Ranges for frame counter values
808 * are HC-specific, and can go from 256 to 65536 frames from "now".)
809 *
810 * Isochronous URBs have a different data transfer model, in part because
811 * the quality of service is only "best effort".  Callers provide specially
812 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
813 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
814 * URBs are normally queued, submitted by drivers to arrange that
815 * transfers are at least double buffered, and then explicitly resubmitted
816 * in completion handlers, so
817 * that data (such as audio or video) streams at as constant a rate as the
818 * host controller scheduler can support.
819 *
820 * Completion Callbacks:
821 *
822 * The completion callback is made in_interrupt(), and one of the first
823 * things that a completion handler should do is check the status field.
824 * The status field is provided for all URBs.  It is used to report
825 * unlinked URBs, and status for all non-ISO transfers.  It should not
826 * be examined before the URB is returned to the completion handler.
827 *
828 * The context field is normally used to link URBs back to the relevant
829 * driver or request state.
830 *
831 * When the completion callback is invoked for non-isochronous URBs, the
832 * actual_length field tells how many bytes were transferred.  This field
833 * is updated even when the URB terminated with an error or was unlinked.
834 *
835 * ISO transfer status is reported in the status and actual_length fields
836 * of the iso_frame_desc array, and the number of errors is reported in
837 * error_count.  Completion callbacks for ISO transfers will normally
838 * (re)submit URBs to ensure a constant transfer rate.
839 *
840 * Note that even fields marked "public" should not be touched by the driver
841 * when the urb is owned by the hcd, that is, since the call to
842 * usb_submit_urb() till the entry into the completion routine.
843 */
844struct urb
845{
846	/* private: usb core and host controller only fields in the urb */
847	struct kref kref;		/* reference count of the URB */
848	spinlock_t lock;		/* lock for the URB */
849	void *hcpriv;			/* private data for host controller */
850	int bandwidth;			/* bandwidth for INT/ISO request */
851	atomic_t use_count;		/* concurrent submissions counter */
852	u8 reject;			/* submissions will fail */
853
854	/* public: documented fields in the urb that can be used by drivers */
855	struct list_head urb_list;	/* list head for use by the urb's
856					 * current owner */
857	struct usb_device *dev; 	/* (in) pointer to associated device */
858	unsigned int pipe;		/* (in) pipe information */
859	int status;			/* (return) non-ISO status */
860	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
861	void *transfer_buffer;		/* (in) associated data buffer */
862	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
863	int transfer_buffer_length;	/* (in) data buffer length */
864	int actual_length;		/* (return) actual transfer length */
865	unsigned char *setup_packet;	/* (in) setup packet (control only) */
866	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
867	int start_frame;		/* (modify) start frame (ISO) */
868	int number_of_packets;		/* (in) number of ISO packets */
869	int interval;			/* (modify) transfer interval
870					 * (INT/ISO) */
871	int error_count;		/* (return) number of ISO errors */
872	void *context;			/* (in) context for completion */
873	usb_complete_t complete;	/* (in) completion routine */
874	struct usb_iso_packet_descriptor iso_frame_desc[0];
875					/* (in) ISO ONLY */
876};
877
878/* ----------------------------------------------------------------------- */
879
880/**
881 * usb_fill_control_urb - initializes a control urb
882 * @urb: pointer to the urb to initialize.
883 * @dev: pointer to the struct usb_device for this urb.
884 * @pipe: the endpoint pipe
885 * @setup_packet: pointer to the setup_packet buffer
886 * @transfer_buffer: pointer to the transfer buffer
887 * @buffer_length: length of the transfer buffer
888 * @complete: pointer to the usb_complete_t function
889 * @context: what to set the urb context to.
890 *
891 * Initializes a control urb with the proper information needed to submit
892 * it to a device.
893 */
894static inline void usb_fill_control_urb (struct urb *urb,
895					 struct usb_device *dev,
896					 unsigned int pipe,
897					 unsigned char *setup_packet,
898					 void *transfer_buffer,
899					 int buffer_length,
900					 usb_complete_t complete,
901					 void *context)
902{
903	spin_lock_init(&urb->lock);
904	urb->dev = dev;
905	urb->pipe = pipe;
906	urb->setup_packet = setup_packet;
907	urb->transfer_buffer = transfer_buffer;
908	urb->transfer_buffer_length = buffer_length;
909	urb->complete = complete;
910	urb->context = context;
911}
912
913/**
914 * usb_fill_bulk_urb - macro to help initialize a bulk urb
915 * @urb: pointer to the urb to initialize.
916 * @dev: pointer to the struct usb_device for this urb.
917 * @pipe: the endpoint pipe
918 * @transfer_buffer: pointer to the transfer buffer
919 * @buffer_length: length of the transfer buffer
920 * @complete: pointer to the usb_complete_t function
921 * @context: what to set the urb context to.
922 *
923 * Initializes a bulk urb with the proper information needed to submit it
924 * to a device.
925 */
926static inline void usb_fill_bulk_urb (struct urb *urb,
927				      struct usb_device *dev,
928				      unsigned int pipe,
929				      void *transfer_buffer,
930				      int buffer_length,
931				      usb_complete_t complete,
932				      void *context)
933{
934	spin_lock_init(&urb->lock);
935	urb->dev = dev;
936	urb->pipe = pipe;
937	urb->transfer_buffer = transfer_buffer;
938	urb->transfer_buffer_length = buffer_length;
939	urb->complete = complete;
940	urb->context = context;
941}
942
943/**
944 * usb_fill_int_urb - macro to help initialize a interrupt urb
945 * @urb: pointer to the urb to initialize.
946 * @dev: pointer to the struct usb_device for this urb.
947 * @pipe: the endpoint pipe
948 * @transfer_buffer: pointer to the transfer buffer
949 * @buffer_length: length of the transfer buffer
950 * @complete: pointer to the usb_complete_t function
951 * @context: what to set the urb context to.
952 * @interval: what to set the urb interval to, encoded like
953 *	the endpoint descriptor's bInterval value.
954 *
955 * Initializes a interrupt urb with the proper information needed to submit
956 * it to a device.
957 * Note that high speed interrupt endpoints use a logarithmic encoding of
958 * the endpoint interval, and express polling intervals in microframes
959 * (eight per millisecond) rather than in frames (one per millisecond).
960 */
961static inline void usb_fill_int_urb (struct urb *urb,
962				     struct usb_device *dev,
963				     unsigned int pipe,
964				     void *transfer_buffer,
965				     int buffer_length,
966				     usb_complete_t complete,
967				     void *context,
968				     int interval)
969{
970	spin_lock_init(&urb->lock);
971	urb->dev = dev;
972	urb->pipe = pipe;
973	urb->transfer_buffer = transfer_buffer;
974	urb->transfer_buffer_length = buffer_length;
975	urb->complete = complete;
976	urb->context = context;
977	if (dev->speed == USB_SPEED_HIGH)
978		urb->interval = 1 << (interval - 1);
979	else
980		urb->interval = interval;
981	urb->start_frame = -1;
982}
983
984extern void usb_init_urb(struct urb *urb);
985extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
986extern void usb_free_urb(struct urb *urb);
987#define usb_put_urb usb_free_urb
988extern struct urb *usb_get_urb(struct urb *urb);
989extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
990extern int usb_unlink_urb(struct urb *urb);
991extern void usb_kill_urb(struct urb *urb);
992
993#define HAVE_USB_BUFFERS
994void *usb_buffer_alloc (struct usb_device *dev, size_t size,
995	gfp_t mem_flags, dma_addr_t *dma);
996void usb_buffer_free (struct usb_device *dev, size_t size,
997	void *addr, dma_addr_t dma);
998
999#if 0
1000struct urb *usb_buffer_map (struct urb *urb);
1001void usb_buffer_dmasync (struct urb *urb);
1002void usb_buffer_unmap (struct urb *urb);
1003#endif
1004
1005struct scatterlist;
1006int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1007		struct scatterlist *sg, int nents);
1008#if 0
1009void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1010		struct scatterlist *sg, int n_hw_ents);
1011#endif
1012void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1013		struct scatterlist *sg, int n_hw_ents);
1014
1015/*-------------------------------------------------------------------*
1016 *                         SYNCHRONOUS CALL SUPPORT                  *
1017 *-------------------------------------------------------------------*/
1018
1019extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1020	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1021	void *data, __u16 size, int timeout);
1022extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1023	void *data, int len, int *actual_length, int timeout);
1024extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1025	void *data, int len, int *actual_length,
1026	int timeout);
1027
1028/* wrappers around usb_control_msg() for the most common standard requests */
1029extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1030	unsigned char descindex, void *buf, int size);
1031extern int usb_get_status(struct usb_device *dev,
1032	int type, int target, void *data);
1033extern int usb_string(struct usb_device *dev, int index,
1034	char *buf, size_t size);
1035
1036/* wrappers that also update important state inside usbcore */
1037extern int usb_clear_halt(struct usb_device *dev, int pipe);
1038extern int usb_reset_configuration(struct usb_device *dev);
1039extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1040
1041/*
1042 * timeouts, in milliseconds, used for sending/receiving control messages
1043 * they typically complete within a few frames (msec) after they're issued
1044 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1045 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1046 */
1047#define USB_CTRL_GET_TIMEOUT	5000
1048#define USB_CTRL_SET_TIMEOUT	5000
1049
1050
1051/**
1052 * struct usb_sg_request - support for scatter/gather I/O
1053 * @status: zero indicates success, else negative errno
1054 * @bytes: counts bytes transferred.
1055 *
1056 * These requests are initialized using usb_sg_init(), and then are used
1057 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1058 * members of the request object aren't for driver access.
1059 *
1060 * The status and bytecount values are valid only after usb_sg_wait()
1061 * returns.  If the status is zero, then the bytecount matches the total
1062 * from the request.
1063 *
1064 * After an error completion, drivers may need to clear a halt condition
1065 * on the endpoint.
1066 */
1067struct usb_sg_request {
1068	int			status;
1069	size_t			bytes;
1070
1071	/*
1072	 * members below are private: to usbcore,
1073	 * and are not provided for driver access!
1074	 */
1075	spinlock_t		lock;
1076
1077	struct usb_device	*dev;
1078	int			pipe;
1079	struct scatterlist	*sg;
1080	int			nents;
1081
1082	int			entries;
1083	struct urb		**urbs;
1084
1085	int			count;
1086	struct completion	complete;
1087};
1088
1089int usb_sg_init (
1090	struct usb_sg_request	*io,
1091	struct usb_device	*dev,
1092	unsigned		pipe,
1093	unsigned		period,
1094	struct scatterlist	*sg,
1095	int			nents,
1096	size_t			length,
1097	gfp_t			mem_flags
1098);
1099void usb_sg_cancel (struct usb_sg_request *io);
1100void usb_sg_wait (struct usb_sg_request *io);
1101
1102
1103/* ----------------------------------------------------------------------- */
1104
1105/*
1106 * For various legacy reasons, Linux has a small cookie that's paired with
1107 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1108 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1109 * an unsigned int encoded as:
1110 *
1111 *  - direction:	bit 7		(0 = Host-to-Device [Out],
1112 *					 1 = Device-to-Host [In] ...
1113 *					like endpoint bEndpointAddress)
1114 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1115 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1116 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1117 *					 10 = control, 11 = bulk)
1118 *
1119 * Given the device address and endpoint descriptor, pipes are redundant.
1120 */
1121
1122/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1123/* (yet ... they're the values used by usbfs) */
1124#define PIPE_ISOCHRONOUS		0
1125#define PIPE_INTERRUPT			1
1126#define PIPE_CONTROL			2
1127#define PIPE_BULK			3
1128
1129#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1130#define usb_pipeout(pipe)	(!usb_pipein(pipe))
1131
1132#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1133#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1134
1135#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1136#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1137#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1138#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1139#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1140
1141/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1142#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1143#define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1144#define usb_settoggle(dev, ep, out, bit) \
1145		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1146		 ((bit) << (ep)))
1147
1148
1149static inline unsigned int __create_pipe(struct usb_device *dev,
1150		unsigned int endpoint)
1151{
1152	return (dev->devnum << 8) | (endpoint << 15);
1153}
1154
1155/* Create various pipes... */
1156#define usb_sndctrlpipe(dev,endpoint)	\
1157	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint))
1158#define usb_rcvctrlpipe(dev,endpoint)	\
1159	((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1160#define usb_sndisocpipe(dev,endpoint)	\
1161	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint))
1162#define usb_rcvisocpipe(dev,endpoint)	\
1163	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1164#define usb_sndbulkpipe(dev,endpoint)	\
1165	((PIPE_BULK << 30) | __create_pipe(dev,endpoint))
1166#define usb_rcvbulkpipe(dev,endpoint)	\
1167	((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1168#define usb_sndintpipe(dev,endpoint)	\
1169	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint))
1170#define usb_rcvintpipe(dev,endpoint)	\
1171	((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN)
1172
1173/*-------------------------------------------------------------------------*/
1174
1175static inline __u16
1176usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1177{
1178	struct usb_host_endpoint	*ep;
1179	unsigned			epnum = usb_pipeendpoint(pipe);
1180
1181	if (is_out) {
1182		WARN_ON(usb_pipein(pipe));
1183		ep = udev->ep_out[epnum];
1184	} else {
1185		WARN_ON(usb_pipeout(pipe));
1186		ep = udev->ep_in[epnum];
1187	}
1188	if (!ep)
1189		return 0;
1190
1191	/* NOTE:  only 0x07ff bits are for packet size... */
1192	return le16_to_cpu(ep->desc.wMaxPacketSize);
1193}
1194
1195/* ----------------------------------------------------------------------- */
1196
1197/* Events from the usb core */
1198#define USB_DEVICE_ADD		0x0001
1199#define USB_DEVICE_REMOVE	0x0002
1200#define USB_BUS_ADD		0x0003
1201#define USB_BUS_REMOVE		0x0004
1202extern void usb_register_notify(struct notifier_block *nb);
1203extern void usb_unregister_notify(struct notifier_block *nb);
1204
1205#ifdef DEBUG
1206#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1207	__FILE__ , ## arg)
1208#else
1209#define dbg(format, arg...) do {} while (0)
1210#endif
1211
1212#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1213	__FILE__ , ## arg)
1214#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1215	__FILE__ , ## arg)
1216#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1217	__FILE__ , ## arg)
1218
1219
1220#endif  /* __KERNEL__ */
1221
1222#endif
1223