1//===- ELF.h - ELF object file implementation -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file declares the ELFObjectFile template class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_OBJECT_ELF_H
15#define LLVM_OBJECT_ELF_H
16
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringSwitch.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/Object/ObjectFile.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <limits>
31#include <utility>
32
33#include <ctype.h>
34
35namespace llvm {
36namespace object {
37
38using support::endianness;
39
40template<endianness target_endianness, std::size_t max_alignment, bool is64Bits>
41struct ELFType {
42  static const endianness TargetEndianness = target_endianness;
43  static const std::size_t MaxAlignment = max_alignment;
44  static const bool Is64Bits = is64Bits;
45};
46
47template<typename T, int max_align>
48struct MaximumAlignment {
49  enum {value = AlignOf<T>::Alignment > max_align ? max_align
50                                                  : AlignOf<T>::Alignment};
51};
52
53// Subclasses of ELFObjectFile may need this for template instantiation
54inline std::pair<unsigned char, unsigned char>
55getElfArchType(MemoryBuffer *Object) {
56  if (Object->getBufferSize() < ELF::EI_NIDENT)
57    return std::make_pair((uint8_t)ELF::ELFCLASSNONE,(uint8_t)ELF::ELFDATANONE);
58  return std::make_pair( (uint8_t)Object->getBufferStart()[ELF::EI_CLASS]
59                       , (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
60}
61
62// Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
63template<endianness target_endianness, std::size_t max_alignment>
64struct ELFDataTypeTypedefHelperCommon {
65  typedef support::detail::packed_endian_specific_integral
66    <uint16_t, target_endianness,
67     MaximumAlignment<uint16_t, max_alignment>::value> Elf_Half;
68  typedef support::detail::packed_endian_specific_integral
69    <uint32_t, target_endianness,
70     MaximumAlignment<uint32_t, max_alignment>::value> Elf_Word;
71  typedef support::detail::packed_endian_specific_integral
72    <int32_t, target_endianness,
73     MaximumAlignment<int32_t, max_alignment>::value> Elf_Sword;
74  typedef support::detail::packed_endian_specific_integral
75    <uint64_t, target_endianness,
76     MaximumAlignment<uint64_t, max_alignment>::value> Elf_Xword;
77  typedef support::detail::packed_endian_specific_integral
78    <int64_t, target_endianness,
79     MaximumAlignment<int64_t, max_alignment>::value> Elf_Sxword;
80};
81
82template<class ELFT>
83struct ELFDataTypeTypedefHelper;
84
85/// ELF 32bit types.
86template<template<endianness, std::size_t, bool> class ELFT,
87         endianness TargetEndianness, std::size_t MaxAlign>
88struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, false> >
89  : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
90  typedef uint32_t value_type;
91  typedef support::detail::packed_endian_specific_integral
92    <value_type, TargetEndianness,
93     MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
94  typedef support::detail::packed_endian_specific_integral
95    <value_type, TargetEndianness,
96     MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
97};
98
99/// ELF 64bit types.
100template<template<endianness, std::size_t, bool> class ELFT,
101         endianness TargetEndianness, std::size_t MaxAlign>
102struct ELFDataTypeTypedefHelper<ELFT<TargetEndianness, MaxAlign, true> >
103  : ELFDataTypeTypedefHelperCommon<TargetEndianness, MaxAlign> {
104  typedef uint64_t value_type;
105  typedef support::detail::packed_endian_specific_integral
106    <value_type, TargetEndianness,
107     MaximumAlignment<value_type, MaxAlign>::value> Elf_Addr;
108  typedef support::detail::packed_endian_specific_integral
109    <value_type, TargetEndianness,
110     MaximumAlignment<value_type, MaxAlign>::value> Elf_Off;
111};
112
113// I really don't like doing this, but the alternative is copypasta.
114#define LLVM_ELF_IMPORT_TYPES(ELFT) \
115typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Addr Elf_Addr; \
116typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Off Elf_Off; \
117typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Half Elf_Half; \
118typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Word Elf_Word; \
119typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sword Elf_Sword; \
120typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Xword Elf_Xword; \
121typedef typename ELFDataTypeTypedefHelper <ELFT>::Elf_Sxword Elf_Sxword;
122
123// This is required to get template types into a macro :(
124#define LLVM_ELF_COMMA ,
125
126  // Section header.
127template<class ELFT>
128struct Elf_Shdr_Base;
129
130template<template<endianness, std::size_t, bool> class ELFT,
131         endianness TargetEndianness, std::size_t MaxAlign>
132struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, false> > {
133  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
134                             MaxAlign LLVM_ELF_COMMA false>)
135  Elf_Word sh_name;     // Section name (index into string table)
136  Elf_Word sh_type;     // Section type (SHT_*)
137  Elf_Word sh_flags;    // Section flags (SHF_*)
138  Elf_Addr sh_addr;     // Address where section is to be loaded
139  Elf_Off  sh_offset;   // File offset of section data, in bytes
140  Elf_Word sh_size;     // Size of section, in bytes
141  Elf_Word sh_link;     // Section type-specific header table index link
142  Elf_Word sh_info;     // Section type-specific extra information
143  Elf_Word sh_addralign;// Section address alignment
144  Elf_Word sh_entsize;  // Size of records contained within the section
145};
146
147template<template<endianness, std::size_t, bool> class ELFT,
148         endianness TargetEndianness, std::size_t MaxAlign>
149struct Elf_Shdr_Base<ELFT<TargetEndianness, MaxAlign, true> > {
150  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
151                             MaxAlign LLVM_ELF_COMMA true>)
152  Elf_Word  sh_name;     // Section name (index into string table)
153  Elf_Word  sh_type;     // Section type (SHT_*)
154  Elf_Xword sh_flags;    // Section flags (SHF_*)
155  Elf_Addr  sh_addr;     // Address where section is to be loaded
156  Elf_Off   sh_offset;   // File offset of section data, in bytes
157  Elf_Xword sh_size;     // Size of section, in bytes
158  Elf_Word  sh_link;     // Section type-specific header table index link
159  Elf_Word  sh_info;     // Section type-specific extra information
160  Elf_Xword sh_addralign;// Section address alignment
161  Elf_Xword sh_entsize;  // Size of records contained within the section
162};
163
164template<class ELFT>
165struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
166  using Elf_Shdr_Base<ELFT>::sh_entsize;
167  using Elf_Shdr_Base<ELFT>::sh_size;
168
169  /// @brief Get the number of entities this section contains if it has any.
170  unsigned getEntityCount() const {
171    if (sh_entsize == 0)
172      return 0;
173    return sh_size / sh_entsize;
174  }
175};
176
177template<class ELFT>
178struct Elf_Sym_Base;
179
180template<template<endianness, std::size_t, bool> class ELFT,
181         endianness TargetEndianness, std::size_t MaxAlign>
182struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, false> > {
183  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
184                             MaxAlign LLVM_ELF_COMMA false>)
185  Elf_Word      st_name;  // Symbol name (index into string table)
186  Elf_Addr      st_value; // Value or address associated with the symbol
187  Elf_Word      st_size;  // Size of the symbol
188  unsigned char st_info;  // Symbol's type and binding attributes
189  unsigned char st_other; // Must be zero; reserved
190  Elf_Half      st_shndx; // Which section (header table index) it's defined in
191};
192
193template<template<endianness, std::size_t, bool> class ELFT,
194         endianness TargetEndianness, std::size_t MaxAlign>
195struct Elf_Sym_Base<ELFT<TargetEndianness, MaxAlign, true> > {
196  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
197                             MaxAlign LLVM_ELF_COMMA true>)
198  Elf_Word      st_name;  // Symbol name (index into string table)
199  unsigned char st_info;  // Symbol's type and binding attributes
200  unsigned char st_other; // Must be zero; reserved
201  Elf_Half      st_shndx; // Which section (header table index) it's defined in
202  Elf_Addr      st_value; // Value or address associated with the symbol
203  Elf_Xword     st_size;  // Size of the symbol
204};
205
206template<class ELFT>
207struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
208  using Elf_Sym_Base<ELFT>::st_info;
209
210  // These accessors and mutators correspond to the ELF32_ST_BIND,
211  // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
212  unsigned char getBinding() const { return st_info >> 4; }
213  unsigned char getType() const { return st_info & 0x0f; }
214  void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
215  void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
216  void setBindingAndType(unsigned char b, unsigned char t) {
217    st_info = (b << 4) + (t & 0x0f);
218  }
219};
220
221/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
222/// (.gnu.version). This structure is identical for ELF32 and ELF64.
223template<class ELFT>
224struct Elf_Versym_Impl {
225  LLVM_ELF_IMPORT_TYPES(ELFT)
226  Elf_Half vs_index;   // Version index with flags (e.g. VERSYM_HIDDEN)
227};
228
229template<class ELFT>
230struct Elf_Verdaux_Impl;
231
232/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
233/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
234template<class ELFT>
235struct Elf_Verdef_Impl {
236  LLVM_ELF_IMPORT_TYPES(ELFT)
237  typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
238  Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
239  Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
240  Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
241  Elf_Half vd_cnt;     // Number of Verdaux entries
242  Elf_Word vd_hash;    // Hash of name
243  Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
244  Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
245
246  /// Get the first Verdaux entry for this Verdef.
247  const Elf_Verdaux *getAux() const {
248    return reinterpret_cast<const Elf_Verdaux*>((const char*)this + vd_aux);
249  }
250};
251
252/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
253/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
254template<class ELFT>
255struct Elf_Verdaux_Impl {
256  LLVM_ELF_IMPORT_TYPES(ELFT)
257  Elf_Word vda_name; // Version name (offset in string table)
258  Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
259};
260
261/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
262/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
263template<class ELFT>
264struct Elf_Verneed_Impl {
265  LLVM_ELF_IMPORT_TYPES(ELFT)
266  Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
267  Elf_Half vn_cnt;     // Number of associated Vernaux entries
268  Elf_Word vn_file;    // Library name (string table offset)
269  Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
270  Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
271};
272
273/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
274/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
275template<class ELFT>
276struct Elf_Vernaux_Impl {
277  LLVM_ELF_IMPORT_TYPES(ELFT)
278  Elf_Word vna_hash;  // Hash of dependency name
279  Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
280  Elf_Half vna_other; // Version index, used in .gnu.version entries
281  Elf_Word vna_name;  // Dependency name
282  Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
283};
284
285/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
286///               table section (.dynamic) look like.
287template<class ELFT>
288struct Elf_Dyn_Base;
289
290template<template<endianness, std::size_t, bool> class ELFT,
291         endianness TargetEndianness, std::size_t MaxAlign>
292struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, false> > {
293  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
294                             MaxAlign LLVM_ELF_COMMA false>)
295  Elf_Sword d_tag;
296  union {
297    Elf_Word d_val;
298    Elf_Addr d_ptr;
299  } d_un;
300};
301
302template<template<endianness, std::size_t, bool> class ELFT,
303         endianness TargetEndianness, std::size_t MaxAlign>
304struct Elf_Dyn_Base<ELFT<TargetEndianness, MaxAlign, true> > {
305  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
306                             MaxAlign LLVM_ELF_COMMA true>)
307  Elf_Sxword d_tag;
308  union {
309    Elf_Xword d_val;
310    Elf_Addr d_ptr;
311  } d_un;
312};
313
314/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters and setters.
315template<class ELFT>
316struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
317  using Elf_Dyn_Base<ELFT>::d_tag;
318  using Elf_Dyn_Base<ELFT>::d_un;
319  int64_t getTag() const { return d_tag; }
320  uint64_t getVal() const { return d_un.d_val; }
321  uint64_t getPtr() const { return d_un.ptr; }
322};
323
324// Elf_Rel: Elf Relocation
325template<class ELFT, bool isRela>
326struct Elf_Rel_Base;
327
328template<template<endianness, std::size_t, bool> class ELFT,
329         endianness TargetEndianness, std::size_t MaxAlign>
330struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, false> {
331  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
332                             MaxAlign LLVM_ELF_COMMA false>)
333  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
334  Elf_Word      r_info;  // Symbol table index and type of relocation to apply
335};
336
337template<template<endianness, std::size_t, bool> class ELFT,
338         endianness TargetEndianness, std::size_t MaxAlign>
339struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, false> {
340  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
341                             MaxAlign LLVM_ELF_COMMA true>)
342  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
343  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
344};
345
346template<template<endianness, std::size_t, bool> class ELFT,
347         endianness TargetEndianness, std::size_t MaxAlign>
348struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, true> {
349  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
350                             MaxAlign LLVM_ELF_COMMA false>)
351  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
352  Elf_Word      r_info;   // Symbol table index and type of relocation to apply
353  Elf_Sword     r_addend; // Compute value for relocatable field by adding this
354};
355
356template<template<endianness, std::size_t, bool> class ELFT,
357         endianness TargetEndianness, std::size_t MaxAlign>
358struct Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, true> {
359  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
360                             MaxAlign LLVM_ELF_COMMA true>)
361  Elf_Addr      r_offset; // Location (file byte offset, or program virtual addr)
362  Elf_Xword     r_info;   // Symbol table index and type of relocation to apply
363  Elf_Sxword    r_addend; // Compute value for relocatable field by adding this.
364};
365
366template<class ELFT, bool isRela>
367struct Elf_Rel_Impl;
368
369template<template<endianness, std::size_t, bool> class ELFT,
370         endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
371struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, true>, isRela>
372       : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela> {
373  using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, true>, isRela>::r_info;
374  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
375                             MaxAlign LLVM_ELF_COMMA true>)
376
377  // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
378  // and ELF64_R_INFO macros defined in the ELF specification:
379  uint32_t getSymbol() const { return (uint32_t) (r_info >> 32); }
380  uint32_t getType() const {
381    return (uint32_t) (r_info & 0xffffffffL);
382  }
383  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
384  void setType(uint32_t t) { setSymbolAndType(getSymbol(), t); }
385  void setSymbolAndType(uint32_t s, uint32_t t) {
386    r_info = ((uint64_t)s << 32) + (t&0xffffffffL);
387  }
388};
389
390template<template<endianness, std::size_t, bool> class ELFT,
391         endianness TargetEndianness, std::size_t MaxAlign, bool isRela>
392struct Elf_Rel_Impl<ELFT<TargetEndianness, MaxAlign, false>, isRela>
393       : Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela> {
394  using Elf_Rel_Base<ELFT<TargetEndianness, MaxAlign, false>, isRela>::r_info;
395  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
396                             MaxAlign LLVM_ELF_COMMA false>)
397
398  // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
399  // and ELF32_R_INFO macros defined in the ELF specification:
400  uint32_t getSymbol() const { return (r_info >> 8); }
401  unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
402  void setSymbol(uint32_t s) { setSymbolAndType(s, getType()); }
403  void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
404  void setSymbolAndType(uint32_t s, unsigned char t) {
405    r_info = (s << 8) + t;
406  }
407};
408
409template<class ELFT>
410struct Elf_Ehdr_Impl {
411  LLVM_ELF_IMPORT_TYPES(ELFT)
412  unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
413  Elf_Half e_type;     // Type of file (see ET_*)
414  Elf_Half e_machine;  // Required architecture for this file (see EM_*)
415  Elf_Word e_version;  // Must be equal to 1
416  Elf_Addr e_entry;    // Address to jump to in order to start program
417  Elf_Off  e_phoff;    // Program header table's file offset, in bytes
418  Elf_Off  e_shoff;    // Section header table's file offset, in bytes
419  Elf_Word e_flags;    // Processor-specific flags
420  Elf_Half e_ehsize;   // Size of ELF header, in bytes
421  Elf_Half e_phentsize;// Size of an entry in the program header table
422  Elf_Half e_phnum;    // Number of entries in the program header table
423  Elf_Half e_shentsize;// Size of an entry in the section header table
424  Elf_Half e_shnum;    // Number of entries in the section header table
425  Elf_Half e_shstrndx; // Section header table index of section name
426                                 // string table
427  bool checkMagic() const {
428    return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
429  }
430   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
431   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
432};
433
434template<class ELFT>
435struct Elf_Phdr_Impl;
436
437template<template<endianness, std::size_t, bool> class ELFT,
438         endianness TargetEndianness, std::size_t MaxAlign>
439struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, false> > {
440  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
441                             MaxAlign LLVM_ELF_COMMA false>)
442  Elf_Word p_type;   // Type of segment
443  Elf_Off  p_offset; // FileOffset where segment is located, in bytes
444  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
445  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
446  Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
447  Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
448  Elf_Word p_flags;  // Segment flags
449  Elf_Word p_align;  // Segment alignment constraint
450};
451
452template<template<endianness, std::size_t, bool> class ELFT,
453         endianness TargetEndianness, std::size_t MaxAlign>
454struct Elf_Phdr_Impl<ELFT<TargetEndianness, MaxAlign, true> > {
455  LLVM_ELF_IMPORT_TYPES(ELFT<TargetEndianness LLVM_ELF_COMMA
456                             MaxAlign LLVM_ELF_COMMA true>)
457  Elf_Word p_type;   // Type of segment
458  Elf_Word p_flags;  // Segment flags
459  Elf_Off  p_offset; // FileOffset where segment is located, in bytes
460  Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
461  Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
462  Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
463  Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
464  Elf_Xword p_align;  // Segment alignment constraint
465};
466
467template<class ELFT>
468class ELFObjectFile : public ObjectFile {
469  LLVM_ELF_IMPORT_TYPES(ELFT)
470
471public:
472  /// \brief Iterate over constant sized entities.
473  template<class EntT>
474  class ELFEntityIterator {
475  public:
476    typedef ptrdiff_t difference_type;
477    typedef EntT value_type;
478    typedef std::random_access_iterator_tag iterator_category;
479    typedef value_type &reference;
480    typedef value_type *pointer;
481
482    /// \brief Default construct iterator.
483    ELFEntityIterator() : EntitySize(0), Current(0) {}
484    ELFEntityIterator(uint64_t EntSize, const char *Start)
485      : EntitySize(EntSize)
486      , Current(Start) {}
487
488    reference operator *() {
489      assert(Current && "Attempted to dereference an invalid iterator!");
490      return *reinterpret_cast<pointer>(Current);
491    }
492
493    pointer operator ->() {
494      assert(Current && "Attempted to dereference an invalid iterator!");
495      return reinterpret_cast<pointer>(Current);
496    }
497
498    bool operator ==(const ELFEntityIterator &Other) {
499      return Current == Other.Current;
500    }
501
502    bool operator !=(const ELFEntityIterator &Other) {
503      return !(*this == Other);
504    }
505
506    ELFEntityIterator &operator ++() {
507      assert(Current && "Attempted to increment an invalid iterator!");
508      Current += EntitySize;
509      return *this;
510    }
511
512    ELFEntityIterator operator ++(int) {
513      ELFEntityIterator Tmp = *this;
514      ++*this;
515      return Tmp;
516    }
517
518    ELFEntityIterator &operator =(const ELFEntityIterator &Other) {
519      EntitySize = Other.EntitySize;
520      Current = Other.Current;
521      return *this;
522    }
523
524    difference_type operator -(const ELFEntityIterator &Other) const {
525      assert(EntitySize == Other.EntitySize &&
526             "Subtracting iterators of different EntitiySize!");
527      return (Current - Other.Current) / EntitySize;
528    }
529
530    const char *get() const { return Current; }
531
532  private:
533    uint64_t EntitySize;
534    const char *Current;
535  };
536
537  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
538  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
539  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
540  typedef Elf_Dyn_Impl<ELFT> Elf_Dyn;
541  typedef Elf_Phdr_Impl<ELFT> Elf_Phdr;
542  typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
543  typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
544  typedef Elf_Verdef_Impl<ELFT> Elf_Verdef;
545  typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
546  typedef Elf_Verneed_Impl<ELFT> Elf_Verneed;
547  typedef Elf_Vernaux_Impl<ELFT> Elf_Vernaux;
548  typedef Elf_Versym_Impl<ELFT> Elf_Versym;
549  typedef ELFEntityIterator<const Elf_Dyn> Elf_Dyn_iterator;
550  typedef ELFEntityIterator<const Elf_Sym> Elf_Sym_iterator;
551  typedef ELFEntityIterator<const Elf_Rela> Elf_Rela_Iter;
552  typedef ELFEntityIterator<const Elf_Rel> Elf_Rel_Iter;
553
554protected:
555  // This flag is used for classof, to distinguish ELFObjectFile from
556  // its subclass. If more subclasses will be created, this flag will
557  // have to become an enum.
558  bool isDyldELFObject;
559
560private:
561  typedef SmallVector<const Elf_Shdr *, 2> Sections_t;
562  typedef DenseMap<unsigned, unsigned> IndexMap_t;
563  typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
564
565  const Elf_Ehdr *Header;
566  const Elf_Shdr *SectionHeaderTable;
567  const Elf_Shdr *dot_shstrtab_sec; // Section header string table.
568  const Elf_Shdr *dot_strtab_sec;   // Symbol header string table.
569  const Elf_Shdr *dot_dynstr_sec;   // Dynamic symbol string table.
570
571  // SymbolTableSections[0] always points to the dynamic string table section
572  // header, or NULL if there is no dynamic string table.
573  Sections_t SymbolTableSections;
574  IndexMap_t SymbolTableSectionsIndexMap;
575  DenseMap<const Elf_Sym*, ELF::Elf64_Word> ExtendedSymbolTable;
576
577  const Elf_Shdr *dot_dynamic_sec;       // .dynamic
578  const Elf_Shdr *dot_gnu_version_sec;   // .gnu.version
579  const Elf_Shdr *dot_gnu_version_r_sec; // .gnu.version_r
580  const Elf_Shdr *dot_gnu_version_d_sec; // .gnu.version_d
581
582  // Pointer to SONAME entry in dynamic string table
583  // This is set the first time getLoadName is called.
584  mutable const char *dt_soname;
585
586private:
587  // Records for each version index the corresponding Verdef or Vernaux entry.
588  // This is filled the first time LoadVersionMap() is called.
589  class VersionMapEntry : public PointerIntPair<const void*, 1> {
590    public:
591    // If the integer is 0, this is an Elf_Verdef*.
592    // If the integer is 1, this is an Elf_Vernaux*.
593    VersionMapEntry() : PointerIntPair<const void*, 1>(NULL, 0) { }
594    VersionMapEntry(const Elf_Verdef *verdef)
595        : PointerIntPair<const void*, 1>(verdef, 0) { }
596    VersionMapEntry(const Elf_Vernaux *vernaux)
597        : PointerIntPair<const void*, 1>(vernaux, 1) { }
598    bool isNull() const { return getPointer() == NULL; }
599    bool isVerdef() const { return !isNull() && getInt() == 0; }
600    bool isVernaux() const { return !isNull() && getInt() == 1; }
601    const Elf_Verdef *getVerdef() const {
602      return isVerdef() ? (const Elf_Verdef*)getPointer() : NULL;
603    }
604    const Elf_Vernaux *getVernaux() const {
605      return isVernaux() ? (const Elf_Vernaux*)getPointer() : NULL;
606    }
607  };
608  mutable SmallVector<VersionMapEntry, 16> VersionMap;
609  void LoadVersionDefs(const Elf_Shdr *sec) const;
610  void LoadVersionNeeds(const Elf_Shdr *ec) const;
611  void LoadVersionMap() const;
612
613  /// @brief Map sections to an array of relocation sections that reference
614  ///        them sorted by section index.
615  RelocMap_t SectionRelocMap;
616
617  /// @brief Get the relocation section that contains \a Rel.
618  const Elf_Shdr *getRelSection(DataRefImpl Rel) const {
619    return getSection(Rel.w.b);
620  }
621
622public:
623  bool            isRelocationHasAddend(DataRefImpl Rel) const;
624  template<typename T>
625  const T        *getEntry(uint16_t Section, uint32_t Entry) const;
626  template<typename T>
627  const T        *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
628  const Elf_Shdr *getSection(DataRefImpl index) const;
629  const Elf_Shdr *getSection(uint32_t index) const;
630  const Elf_Rel  *getRel(DataRefImpl Rel) const;
631  const Elf_Rela *getRela(DataRefImpl Rela) const;
632  const char     *getString(uint32_t section, uint32_t offset) const;
633  const char     *getString(const Elf_Shdr *section, uint32_t offset) const;
634  error_code      getSymbolVersion(const Elf_Shdr *section,
635                                   const Elf_Sym *Symb,
636                                   StringRef &Version,
637                                   bool &IsDefault) const;
638  void VerifyStrTab(const Elf_Shdr *sh) const;
639
640protected:
641  const Elf_Sym  *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
642  void            validateSymbol(DataRefImpl Symb) const;
643
644public:
645  error_code      getSymbolName(const Elf_Shdr *section,
646                                const Elf_Sym *Symb,
647                                StringRef &Res) const;
648  error_code      getSectionName(const Elf_Shdr *section,
649                                 StringRef &Res) const;
650  const Elf_Dyn  *getDyn(DataRefImpl DynData) const;
651  error_code getSymbolVersion(SymbolRef Symb, StringRef &Version,
652                              bool &IsDefault) const;
653  uint64_t getSymbolIndex(const Elf_Sym *sym) const;
654protected:
655  virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
656  virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
657  virtual error_code getSymbolFileOffset(DataRefImpl Symb, uint64_t &Res) const;
658  virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
659  virtual error_code getSymbolSize(DataRefImpl Symb, uint64_t &Res) const;
660  virtual error_code getSymbolNMTypeChar(DataRefImpl Symb, char &Res) const;
661  virtual error_code getSymbolFlags(DataRefImpl Symb, uint32_t &Res) const;
662  virtual error_code getSymbolType(DataRefImpl Symb, SymbolRef::Type &Res) const;
663  virtual error_code getSymbolSection(DataRefImpl Symb,
664                                      section_iterator &Res) const;
665  virtual error_code getSymbolValue(DataRefImpl Symb, uint64_t &Val) const;
666
667  virtual error_code getLibraryNext(DataRefImpl Data, LibraryRef &Result) const;
668  virtual error_code getLibraryPath(DataRefImpl Data, StringRef &Res) const;
669
670  virtual error_code getSectionNext(DataRefImpl Sec, SectionRef &Res) const;
671  virtual error_code getSectionName(DataRefImpl Sec, StringRef &Res) const;
672  virtual error_code getSectionAddress(DataRefImpl Sec, uint64_t &Res) const;
673  virtual error_code getSectionSize(DataRefImpl Sec, uint64_t &Res) const;
674  virtual error_code getSectionContents(DataRefImpl Sec, StringRef &Res) const;
675  virtual error_code getSectionAlignment(DataRefImpl Sec, uint64_t &Res) const;
676  virtual error_code isSectionText(DataRefImpl Sec, bool &Res) const;
677  virtual error_code isSectionData(DataRefImpl Sec, bool &Res) const;
678  virtual error_code isSectionBSS(DataRefImpl Sec, bool &Res) const;
679  virtual error_code isSectionRequiredForExecution(DataRefImpl Sec,
680                                                   bool &Res) const;
681  virtual error_code isSectionVirtual(DataRefImpl Sec, bool &Res) const;
682  virtual error_code isSectionZeroInit(DataRefImpl Sec, bool &Res) const;
683  virtual error_code isSectionReadOnlyData(DataRefImpl Sec, bool &Res) const;
684  virtual error_code sectionContainsSymbol(DataRefImpl Sec, DataRefImpl Symb,
685                                           bool &Result) const;
686  virtual relocation_iterator getSectionRelBegin(DataRefImpl Sec) const;
687  virtual relocation_iterator getSectionRelEnd(DataRefImpl Sec) const;
688
689  virtual error_code getRelocationNext(DataRefImpl Rel,
690                                       RelocationRef &Res) const;
691  virtual error_code getRelocationAddress(DataRefImpl Rel,
692                                          uint64_t &Res) const;
693  virtual error_code getRelocationOffset(DataRefImpl Rel,
694                                         uint64_t &Res) const;
695  virtual error_code getRelocationSymbol(DataRefImpl Rel,
696                                         SymbolRef &Res) const;
697  virtual error_code getRelocationType(DataRefImpl Rel,
698                                       uint64_t &Res) const;
699  virtual error_code getRelocationTypeName(DataRefImpl Rel,
700                                           SmallVectorImpl<char> &Result) const;
701  virtual error_code getRelocationAdditionalInfo(DataRefImpl Rel,
702                                                 int64_t &Res) const;
703  virtual error_code getRelocationValueString(DataRefImpl Rel,
704                                           SmallVectorImpl<char> &Result) const;
705
706public:
707  ELFObjectFile(MemoryBuffer *Object, error_code &ec);
708  virtual symbol_iterator begin_symbols() const;
709  virtual symbol_iterator end_symbols() const;
710
711  virtual symbol_iterator begin_dynamic_symbols() const;
712  virtual symbol_iterator end_dynamic_symbols() const;
713
714  virtual section_iterator begin_sections() const;
715  virtual section_iterator end_sections() const;
716
717  virtual library_iterator begin_libraries_needed() const;
718  virtual library_iterator end_libraries_needed() const;
719
720  const Elf_Shdr *getDynamicSymbolTableSectionHeader() const {
721    return SymbolTableSections[0];
722  }
723
724  const Elf_Shdr *getDynamicStringTableSectionHeader() const {
725    return dot_dynstr_sec;
726  }
727
728  Elf_Dyn_iterator begin_dynamic_table() const;
729  /// \param NULLEnd use one past the first DT_NULL entry as the end instead of
730  /// the section size.
731  Elf_Dyn_iterator end_dynamic_table(bool NULLEnd = false) const;
732
733  Elf_Sym_iterator begin_elf_dynamic_symbols() const {
734    const Elf_Shdr *DynSymtab = SymbolTableSections[0];
735    if (DynSymtab)
736      return Elf_Sym_iterator(DynSymtab->sh_entsize,
737                              (const char *)base() + DynSymtab->sh_offset);
738    return Elf_Sym_iterator(0, 0);
739  }
740
741  Elf_Sym_iterator end_elf_dynamic_symbols() const {
742    const Elf_Shdr *DynSymtab = SymbolTableSections[0];
743    if (DynSymtab)
744      return Elf_Sym_iterator(DynSymtab->sh_entsize, (const char *)base() +
745                              DynSymtab->sh_offset + DynSymtab->sh_size);
746    return Elf_Sym_iterator(0, 0);
747  }
748
749  Elf_Rela_Iter beginELFRela(const Elf_Shdr *sec) const {
750    return Elf_Rela_Iter(sec->sh_entsize,
751                         (const char *)(base() + sec->sh_offset));
752  }
753
754  Elf_Rela_Iter endELFRela(const Elf_Shdr *sec) const {
755    return Elf_Rela_Iter(sec->sh_entsize, (const char *)
756                         (base() + sec->sh_offset + sec->sh_size));
757  }
758
759  Elf_Rel_Iter beginELFRel(const Elf_Shdr *sec) const {
760    return Elf_Rel_Iter(sec->sh_entsize,
761                        (const char *)(base() + sec->sh_offset));
762  }
763
764  Elf_Rel_Iter endELFRel(const Elf_Shdr *sec) const {
765    return Elf_Rel_Iter(sec->sh_entsize, (const char *)
766                        (base() + sec->sh_offset + sec->sh_size));
767  }
768
769  /// \brief Iterate over program header table.
770  typedef ELFEntityIterator<const Elf_Phdr> Elf_Phdr_Iter;
771
772  Elf_Phdr_Iter begin_program_headers() const {
773    return Elf_Phdr_Iter(Header->e_phentsize,
774                         (const char*)base() + Header->e_phoff);
775  }
776
777  Elf_Phdr_Iter end_program_headers() const {
778    return Elf_Phdr_Iter(Header->e_phentsize,
779                         (const char*)base() +
780                           Header->e_phoff +
781                           (Header->e_phnum * Header->e_phentsize));
782  }
783
784  virtual uint8_t getBytesInAddress() const;
785  virtual StringRef getFileFormatName() const;
786  virtual StringRef getObjectType() const { return "ELF"; }
787  virtual unsigned getArch() const;
788  virtual StringRef getLoadName() const;
789  virtual error_code getSectionContents(const Elf_Shdr *sec,
790                                        StringRef &Res) const;
791
792  uint64_t getNumSections() const;
793  uint64_t getStringTableIndex() const;
794  ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
795  const Elf_Shdr *getSection(const Elf_Sym *symb) const;
796  const Elf_Shdr *getElfSection(section_iterator &It) const;
797  const Elf_Sym *getElfSymbol(symbol_iterator &It) const;
798  const Elf_Sym *getElfSymbol(uint32_t index) const;
799
800  // Methods for type inquiry through isa, cast, and dyn_cast
801  bool isDyldType() const { return isDyldELFObject; }
802  static inline bool classof(const Binary *v) {
803    return v->getType() == getELFType(ELFT::TargetEndianness == support::little,
804                                      ELFT::Is64Bits);
805  }
806};
807
808// Iterate through the version definitions, and place each Elf_Verdef
809// in the VersionMap according to its index.
810template<class ELFT>
811void ELFObjectFile<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
812  unsigned vd_size = sec->sh_size; // Size of section in bytes
813  unsigned vd_count = sec->sh_info; // Number of Verdef entries
814  const char *sec_start = (const char*)base() + sec->sh_offset;
815  const char *sec_end = sec_start + vd_size;
816  // The first Verdef entry is at the start of the section.
817  const char *p = sec_start;
818  for (unsigned i = 0; i < vd_count; i++) {
819    if (p + sizeof(Elf_Verdef) > sec_end)
820      report_fatal_error("Section ended unexpectedly while scanning "
821                         "version definitions.");
822    const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
823    if (vd->vd_version != ELF::VER_DEF_CURRENT)
824      report_fatal_error("Unexpected verdef version");
825    size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
826    if (index >= VersionMap.size())
827      VersionMap.resize(index+1);
828    VersionMap[index] = VersionMapEntry(vd);
829    p += vd->vd_next;
830  }
831}
832
833// Iterate through the versions needed section, and place each Elf_Vernaux
834// in the VersionMap according to its index.
835template<class ELFT>
836void ELFObjectFile<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
837  unsigned vn_size = sec->sh_size; // Size of section in bytes
838  unsigned vn_count = sec->sh_info; // Number of Verneed entries
839  const char *sec_start = (const char*)base() + sec->sh_offset;
840  const char *sec_end = sec_start + vn_size;
841  // The first Verneed entry is at the start of the section.
842  const char *p = sec_start;
843  for (unsigned i = 0; i < vn_count; i++) {
844    if (p + sizeof(Elf_Verneed) > sec_end)
845      report_fatal_error("Section ended unexpectedly while scanning "
846                         "version needed records.");
847    const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
848    if (vn->vn_version != ELF::VER_NEED_CURRENT)
849      report_fatal_error("Unexpected verneed version");
850    // Iterate through the Vernaux entries
851    const char *paux = p + vn->vn_aux;
852    for (unsigned j = 0; j < vn->vn_cnt; j++) {
853      if (paux + sizeof(Elf_Vernaux) > sec_end)
854        report_fatal_error("Section ended unexpected while scanning auxiliary "
855                           "version needed records.");
856      const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
857      size_t index = vna->vna_other & ELF::VERSYM_VERSION;
858      if (index >= VersionMap.size())
859        VersionMap.resize(index+1);
860      VersionMap[index] = VersionMapEntry(vna);
861      paux += vna->vna_next;
862    }
863    p += vn->vn_next;
864  }
865}
866
867template<class ELFT>
868void ELFObjectFile<ELFT>::LoadVersionMap() const {
869  // If there is no dynamic symtab or version table, there is nothing to do.
870  if (SymbolTableSections[0] == NULL || dot_gnu_version_sec == NULL)
871    return;
872
873  // Has the VersionMap already been loaded?
874  if (VersionMap.size() > 0)
875    return;
876
877  // The first two version indexes are reserved.
878  // Index 0 is LOCAL, index 1 is GLOBAL.
879  VersionMap.push_back(VersionMapEntry());
880  VersionMap.push_back(VersionMapEntry());
881
882  if (dot_gnu_version_d_sec)
883    LoadVersionDefs(dot_gnu_version_d_sec);
884
885  if (dot_gnu_version_r_sec)
886    LoadVersionNeeds(dot_gnu_version_r_sec);
887}
888
889template<class ELFT>
890void ELFObjectFile<ELFT>::validateSymbol(DataRefImpl Symb) const {
891#ifndef NDEBUG
892  const Elf_Sym  *symb = getSymbol(Symb);
893  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
894  // FIXME: We really need to do proper error handling in the case of an invalid
895  //        input file. Because we don't use exceptions, I think we'll just pass
896  //        an error object around.
897  if (!(  symb
898        && SymbolTableSection
899        && symb >= (const Elf_Sym*)(base()
900                   + SymbolTableSection->sh_offset)
901        && symb <  (const Elf_Sym*)(base()
902                   + SymbolTableSection->sh_offset
903                   + SymbolTableSection->sh_size)))
904    // FIXME: Proper error handling.
905    report_fatal_error("Symb must point to a valid symbol!");
906#endif
907}
908
909template<class ELFT>
910error_code ELFObjectFile<ELFT>::getSymbolNext(DataRefImpl Symb,
911                                              SymbolRef &Result) const {
912  validateSymbol(Symb);
913  const Elf_Shdr *SymbolTableSection = SymbolTableSections[Symb.d.b];
914
915  ++Symb.d.a;
916  // Check to see if we are at the end of this symbol table.
917  if (Symb.d.a >= SymbolTableSection->getEntityCount()) {
918    // We are at the end. If there are other symbol tables, jump to them.
919    // If the symbol table is .dynsym, we are iterating dynamic symbols,
920    // and there is only one table of these.
921    if (Symb.d.b != 0) {
922      ++Symb.d.b;
923      Symb.d.a = 1; // The 0th symbol in ELF is fake.
924    }
925    // Otherwise return the terminator.
926    if (Symb.d.b == 0 || Symb.d.b >= SymbolTableSections.size()) {
927      Symb.d.a = std::numeric_limits<uint32_t>::max();
928      Symb.d.b = std::numeric_limits<uint32_t>::max();
929    }
930  }
931
932  Result = SymbolRef(Symb, this);
933  return object_error::success;
934}
935
936template<class ELFT>
937error_code ELFObjectFile<ELFT>::getSymbolName(DataRefImpl Symb,
938                                              StringRef &Result) const {
939  validateSymbol(Symb);
940  const Elf_Sym *symb = getSymbol(Symb);
941  return getSymbolName(SymbolTableSections[Symb.d.b], symb, Result);
942}
943
944template<class ELFT>
945error_code ELFObjectFile<ELFT>::getSymbolVersion(SymbolRef SymRef,
946                                                 StringRef &Version,
947                                                 bool &IsDefault) const {
948  DataRefImpl Symb = SymRef.getRawDataRefImpl();
949  validateSymbol(Symb);
950  const Elf_Sym *symb = getSymbol(Symb);
951  return getSymbolVersion(SymbolTableSections[Symb.d.b], symb,
952                          Version, IsDefault);
953}
954
955template<class ELFT>
956ELF::Elf64_Word ELFObjectFile<ELFT>
957                             ::getSymbolTableIndex(const Elf_Sym *symb) const {
958  if (symb->st_shndx == ELF::SHN_XINDEX)
959    return ExtendedSymbolTable.lookup(symb);
960  return symb->st_shndx;
961}
962
963template<class ELFT>
964const typename ELFObjectFile<ELFT>::Elf_Shdr *
965ELFObjectFile<ELFT>::getSection(const Elf_Sym *symb) const {
966  if (symb->st_shndx == ELF::SHN_XINDEX)
967    return getSection(ExtendedSymbolTable.lookup(symb));
968  if (symb->st_shndx >= ELF::SHN_LORESERVE)
969    return 0;
970  return getSection(symb->st_shndx);
971}
972
973template<class ELFT>
974const typename ELFObjectFile<ELFT>::Elf_Shdr *
975ELFObjectFile<ELFT>::getElfSection(section_iterator &It) const {
976  llvm::object::DataRefImpl ShdrRef = It->getRawDataRefImpl();
977  return reinterpret_cast<const Elf_Shdr *>(ShdrRef.p);
978}
979
980template<class ELFT>
981const typename ELFObjectFile<ELFT>::Elf_Sym *
982ELFObjectFile<ELFT>::getElfSymbol(symbol_iterator &It) const {
983  return getSymbol(It->getRawDataRefImpl());
984}
985
986template<class ELFT>
987const typename ELFObjectFile<ELFT>::Elf_Sym *
988ELFObjectFile<ELFT>::getElfSymbol(uint32_t index) const {
989  DataRefImpl SymbolData;
990  SymbolData.d.a = index;
991  SymbolData.d.b = 1;
992  return getSymbol(SymbolData);
993}
994
995template<class ELFT>
996error_code ELFObjectFile<ELFT>::getSymbolFileOffset(DataRefImpl Symb,
997                                                    uint64_t &Result) const {
998  validateSymbol(Symb);
999  const Elf_Sym  *symb = getSymbol(Symb);
1000  const Elf_Shdr *Section;
1001  switch (getSymbolTableIndex(symb)) {
1002  case ELF::SHN_COMMON:
1003   // Unintialized symbols have no offset in the object file
1004  case ELF::SHN_UNDEF:
1005    Result = UnknownAddressOrSize;
1006    return object_error::success;
1007  case ELF::SHN_ABS:
1008    Result = symb->st_value;
1009    return object_error::success;
1010  default: Section = getSection(symb);
1011  }
1012
1013  switch (symb->getType()) {
1014  case ELF::STT_SECTION:
1015    Result = Section ? Section->sh_offset : UnknownAddressOrSize;
1016    return object_error::success;
1017  case ELF::STT_FUNC:
1018  case ELF::STT_OBJECT:
1019  case ELF::STT_NOTYPE:
1020    Result = symb->st_value +
1021             (Section ? Section->sh_offset : 0);
1022    return object_error::success;
1023  default:
1024    Result = UnknownAddressOrSize;
1025    return object_error::success;
1026  }
1027}
1028
1029template<class ELFT>
1030error_code ELFObjectFile<ELFT>::getSymbolAddress(DataRefImpl Symb,
1031                                                 uint64_t &Result) const {
1032  validateSymbol(Symb);
1033  const Elf_Sym  *symb = getSymbol(Symb);
1034  const Elf_Shdr *Section;
1035  switch (getSymbolTableIndex(symb)) {
1036  case ELF::SHN_COMMON:
1037  case ELF::SHN_UNDEF:
1038    Result = UnknownAddressOrSize;
1039    return object_error::success;
1040  case ELF::SHN_ABS:
1041    Result = symb->st_value;
1042    return object_error::success;
1043  default: Section = getSection(symb);
1044  }
1045
1046  switch (symb->getType()) {
1047  case ELF::STT_SECTION:
1048    Result = Section ? Section->sh_addr : UnknownAddressOrSize;
1049    return object_error::success;
1050  case ELF::STT_FUNC:
1051  case ELF::STT_OBJECT:
1052  case ELF::STT_NOTYPE:
1053    bool IsRelocatable;
1054    switch(Header->e_type) {
1055    case ELF::ET_EXEC:
1056    case ELF::ET_DYN:
1057      IsRelocatable = false;
1058      break;
1059    default:
1060      IsRelocatable = true;
1061    }
1062    Result = symb->st_value;
1063    if (IsRelocatable && Section != 0)
1064      Result += Section->sh_addr;
1065    return object_error::success;
1066  default:
1067    Result = UnknownAddressOrSize;
1068    return object_error::success;
1069  }
1070}
1071
1072template<class ELFT>
1073error_code ELFObjectFile<ELFT>::getSymbolSize(DataRefImpl Symb,
1074                                              uint64_t &Result) const {
1075  validateSymbol(Symb);
1076  const Elf_Sym  *symb = getSymbol(Symb);
1077  if (symb->st_size == 0)
1078    Result = UnknownAddressOrSize;
1079  Result = symb->st_size;
1080  return object_error::success;
1081}
1082
1083template<class ELFT>
1084error_code ELFObjectFile<ELFT>::getSymbolNMTypeChar(DataRefImpl Symb,
1085                                                    char &Result) const {
1086  validateSymbol(Symb);
1087  const Elf_Sym  *symb = getSymbol(Symb);
1088  const Elf_Shdr *Section = getSection(symb);
1089
1090  char ret = '?';
1091
1092  if (Section) {
1093    switch (Section->sh_type) {
1094    case ELF::SHT_PROGBITS:
1095    case ELF::SHT_DYNAMIC:
1096      switch (Section->sh_flags) {
1097      case (ELF::SHF_ALLOC | ELF::SHF_EXECINSTR):
1098        ret = 't'; break;
1099      case (ELF::SHF_ALLOC | ELF::SHF_WRITE):
1100        ret = 'd'; break;
1101      case ELF::SHF_ALLOC:
1102      case (ELF::SHF_ALLOC | ELF::SHF_MERGE):
1103      case (ELF::SHF_ALLOC | ELF::SHF_MERGE | ELF::SHF_STRINGS):
1104        ret = 'r'; break;
1105      }
1106      break;
1107    case ELF::SHT_NOBITS: ret = 'b';
1108    }
1109  }
1110
1111  switch (getSymbolTableIndex(symb)) {
1112  case ELF::SHN_UNDEF:
1113    if (ret == '?')
1114      ret = 'U';
1115    break;
1116  case ELF::SHN_ABS: ret = 'a'; break;
1117  case ELF::SHN_COMMON: ret = 'c'; break;
1118  }
1119
1120  switch (symb->getBinding()) {
1121  case ELF::STB_GLOBAL: ret = ::toupper(ret); break;
1122  case ELF::STB_WEAK:
1123    if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1124      ret = 'w';
1125    else
1126      if (symb->getType() == ELF::STT_OBJECT)
1127        ret = 'V';
1128      else
1129        ret = 'W';
1130  }
1131
1132  if (ret == '?' && symb->getType() == ELF::STT_SECTION) {
1133    StringRef name;
1134    if (error_code ec = getSymbolName(Symb, name))
1135      return ec;
1136    Result = StringSwitch<char>(name)
1137      .StartsWith(".debug", 'N')
1138      .StartsWith(".note", 'n')
1139      .Default('?');
1140    return object_error::success;
1141  }
1142
1143  Result = ret;
1144  return object_error::success;
1145}
1146
1147template<class ELFT>
1148error_code ELFObjectFile<ELFT>::getSymbolType(DataRefImpl Symb,
1149                                              SymbolRef::Type &Result) const {
1150  validateSymbol(Symb);
1151  const Elf_Sym  *symb = getSymbol(Symb);
1152
1153  switch (symb->getType()) {
1154  case ELF::STT_NOTYPE:
1155    Result = SymbolRef::ST_Unknown;
1156    break;
1157  case ELF::STT_SECTION:
1158    Result = SymbolRef::ST_Debug;
1159    break;
1160  case ELF::STT_FILE:
1161    Result = SymbolRef::ST_File;
1162    break;
1163  case ELF::STT_FUNC:
1164    Result = SymbolRef::ST_Function;
1165    break;
1166  case ELF::STT_OBJECT:
1167  case ELF::STT_COMMON:
1168  case ELF::STT_TLS:
1169    Result = SymbolRef::ST_Data;
1170    break;
1171  default:
1172    Result = SymbolRef::ST_Other;
1173    break;
1174  }
1175  return object_error::success;
1176}
1177
1178template<class ELFT>
1179error_code ELFObjectFile<ELFT>::getSymbolFlags(DataRefImpl Symb,
1180                                               uint32_t &Result) const {
1181  validateSymbol(Symb);
1182  const Elf_Sym  *symb = getSymbol(Symb);
1183
1184  Result = SymbolRef::SF_None;
1185
1186  if (symb->getBinding() != ELF::STB_LOCAL)
1187    Result |= SymbolRef::SF_Global;
1188
1189  if (symb->getBinding() == ELF::STB_WEAK)
1190    Result |= SymbolRef::SF_Weak;
1191
1192  if (symb->st_shndx == ELF::SHN_ABS)
1193    Result |= SymbolRef::SF_Absolute;
1194
1195  if (symb->getType() == ELF::STT_FILE ||
1196      symb->getType() == ELF::STT_SECTION)
1197    Result |= SymbolRef::SF_FormatSpecific;
1198
1199  if (getSymbolTableIndex(symb) == ELF::SHN_UNDEF)
1200    Result |= SymbolRef::SF_Undefined;
1201
1202  if (symb->getType() == ELF::STT_COMMON ||
1203      getSymbolTableIndex(symb) == ELF::SHN_COMMON)
1204    Result |= SymbolRef::SF_Common;
1205
1206  if (symb->getType() == ELF::STT_TLS)
1207    Result |= SymbolRef::SF_ThreadLocal;
1208
1209  return object_error::success;
1210}
1211
1212template<class ELFT>
1213error_code ELFObjectFile<ELFT>::getSymbolSection(DataRefImpl Symb,
1214                                                 section_iterator &Res) const {
1215  validateSymbol(Symb);
1216  const Elf_Sym  *symb = getSymbol(Symb);
1217  const Elf_Shdr *sec = getSection(symb);
1218  if (!sec)
1219    Res = end_sections();
1220  else {
1221    DataRefImpl Sec;
1222    Sec.p = reinterpret_cast<intptr_t>(sec);
1223    Res = section_iterator(SectionRef(Sec, this));
1224  }
1225  return object_error::success;
1226}
1227
1228template<class ELFT>
1229error_code ELFObjectFile<ELFT>::getSymbolValue(DataRefImpl Symb,
1230                                               uint64_t &Val) const {
1231  validateSymbol(Symb);
1232  const Elf_Sym *symb = getSymbol(Symb);
1233  Val = symb->st_value;
1234  return object_error::success;
1235}
1236
1237template<class ELFT>
1238error_code ELFObjectFile<ELFT>::getSectionNext(DataRefImpl Sec,
1239                                               SectionRef &Result) const {
1240  const uint8_t *sec = reinterpret_cast<const uint8_t *>(Sec.p);
1241  sec += Header->e_shentsize;
1242  Sec.p = reinterpret_cast<intptr_t>(sec);
1243  Result = SectionRef(Sec, this);
1244  return object_error::success;
1245}
1246
1247template<class ELFT>
1248error_code ELFObjectFile<ELFT>::getSectionName(DataRefImpl Sec,
1249                                               StringRef &Result) const {
1250  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1251  Result = StringRef(getString(dot_shstrtab_sec, sec->sh_name));
1252  return object_error::success;
1253}
1254
1255template<class ELFT>
1256error_code ELFObjectFile<ELFT>::getSectionAddress(DataRefImpl Sec,
1257                                                  uint64_t &Result) const {
1258  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1259  Result = sec->sh_addr;
1260  return object_error::success;
1261}
1262
1263template<class ELFT>
1264error_code ELFObjectFile<ELFT>::getSectionSize(DataRefImpl Sec,
1265                                               uint64_t &Result) const {
1266  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1267  Result = sec->sh_size;
1268  return object_error::success;
1269}
1270
1271template<class ELFT>
1272error_code ELFObjectFile<ELFT>::getSectionContents(DataRefImpl Sec,
1273                                                   StringRef &Result) const {
1274  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1275  const char *start = (const char*)base() + sec->sh_offset;
1276  Result = StringRef(start, sec->sh_size);
1277  return object_error::success;
1278}
1279
1280template<class ELFT>
1281error_code ELFObjectFile<ELFT>::getSectionContents(const Elf_Shdr *Sec,
1282                                                   StringRef &Result) const {
1283  const char *start = (const char*)base() + Sec->sh_offset;
1284  Result = StringRef(start, Sec->sh_size);
1285  return object_error::success;
1286}
1287
1288template<class ELFT>
1289error_code ELFObjectFile<ELFT>::getSectionAlignment(DataRefImpl Sec,
1290                                                    uint64_t &Result) const {
1291  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1292  Result = sec->sh_addralign;
1293  return object_error::success;
1294}
1295
1296template<class ELFT>
1297error_code ELFObjectFile<ELFT>::isSectionText(DataRefImpl Sec,
1298                                              bool &Result) const {
1299  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1300  if (sec->sh_flags & ELF::SHF_EXECINSTR)
1301    Result = true;
1302  else
1303    Result = false;
1304  return object_error::success;
1305}
1306
1307template<class ELFT>
1308error_code ELFObjectFile<ELFT>::isSectionData(DataRefImpl Sec,
1309                                              bool &Result) const {
1310  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1311  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1312      && sec->sh_type == ELF::SHT_PROGBITS)
1313    Result = true;
1314  else
1315    Result = false;
1316  return object_error::success;
1317}
1318
1319template<class ELFT>
1320error_code ELFObjectFile<ELFT>::isSectionBSS(DataRefImpl Sec,
1321                                             bool &Result) const {
1322  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1323  if (sec->sh_flags & (ELF::SHF_ALLOC | ELF::SHF_WRITE)
1324      && sec->sh_type == ELF::SHT_NOBITS)
1325    Result = true;
1326  else
1327    Result = false;
1328  return object_error::success;
1329}
1330
1331template<class ELFT>
1332error_code ELFObjectFile<ELFT>::isSectionRequiredForExecution(
1333    DataRefImpl Sec, bool &Result) const {
1334  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1335  if (sec->sh_flags & ELF::SHF_ALLOC)
1336    Result = true;
1337  else
1338    Result = false;
1339  return object_error::success;
1340}
1341
1342template<class ELFT>
1343error_code ELFObjectFile<ELFT>::isSectionVirtual(DataRefImpl Sec,
1344                                                 bool &Result) const {
1345  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1346  if (sec->sh_type == ELF::SHT_NOBITS)
1347    Result = true;
1348  else
1349    Result = false;
1350  return object_error::success;
1351}
1352
1353template<class ELFT>
1354error_code ELFObjectFile<ELFT>::isSectionZeroInit(DataRefImpl Sec,
1355                                                  bool &Result) const {
1356  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1357  // For ELF, all zero-init sections are virtual (that is, they occupy no space
1358  //   in the object image) and vice versa.
1359  Result = sec->sh_type == ELF::SHT_NOBITS;
1360  return object_error::success;
1361}
1362
1363template<class ELFT>
1364error_code ELFObjectFile<ELFT>::isSectionReadOnlyData(DataRefImpl Sec,
1365                                                      bool &Result) const {
1366  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1367  if (sec->sh_flags & ELF::SHF_WRITE || sec->sh_flags & ELF::SHF_EXECINSTR)
1368    Result = false;
1369  else
1370    Result = true;
1371  return object_error::success;
1372}
1373
1374template<class ELFT>
1375error_code ELFObjectFile<ELFT>::sectionContainsSymbol(DataRefImpl Sec,
1376                                                      DataRefImpl Symb,
1377                                                      bool &Result) const {
1378  // FIXME: Unimplemented.
1379  Result = false;
1380  return object_error::success;
1381}
1382
1383template<class ELFT>
1384relocation_iterator
1385ELFObjectFile<ELFT>::getSectionRelBegin(DataRefImpl Sec) const {
1386  DataRefImpl RelData;
1387  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1388  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1389  if (sec != 0 && ittr != SectionRelocMap.end()) {
1390    RelData.w.a = getSection(ittr->second[0])->sh_info;
1391    RelData.w.b = ittr->second[0];
1392    RelData.w.c = 0;
1393  }
1394  return relocation_iterator(RelocationRef(RelData, this));
1395}
1396
1397template<class ELFT>
1398relocation_iterator
1399ELFObjectFile<ELFT>::getSectionRelEnd(DataRefImpl Sec) const {
1400  DataRefImpl RelData;
1401  const Elf_Shdr *sec = reinterpret_cast<const Elf_Shdr *>(Sec.p);
1402  typename RelocMap_t::const_iterator ittr = SectionRelocMap.find(sec);
1403  if (sec != 0 && ittr != SectionRelocMap.end()) {
1404    // Get the index of the last relocation section for this section.
1405    std::size_t relocsecindex = ittr->second[ittr->second.size() - 1];
1406    const Elf_Shdr *relocsec = getSection(relocsecindex);
1407    RelData.w.a = relocsec->sh_info;
1408    RelData.w.b = relocsecindex;
1409    RelData.w.c = relocsec->sh_size / relocsec->sh_entsize;
1410  }
1411  return relocation_iterator(RelocationRef(RelData, this));
1412}
1413
1414// Relocations
1415template<class ELFT>
1416error_code ELFObjectFile<ELFT>::getRelocationNext(DataRefImpl Rel,
1417                                                  RelocationRef &Result) const {
1418  ++Rel.w.c;
1419  const Elf_Shdr *relocsec = getSection(Rel.w.b);
1420  if (Rel.w.c >= (relocsec->sh_size / relocsec->sh_entsize)) {
1421    // We have reached the end of the relocations for this section. See if there
1422    // is another relocation section.
1423    typename RelocMap_t::mapped_type relocseclist =
1424      SectionRelocMap.lookup(getSection(Rel.w.a));
1425
1426    // Do a binary search for the current reloc section index (which must be
1427    // present). Then get the next one.
1428    typename RelocMap_t::mapped_type::const_iterator loc =
1429      std::lower_bound(relocseclist.begin(), relocseclist.end(), Rel.w.b);
1430    ++loc;
1431
1432    // If there is no next one, don't do anything. The ++Rel.w.c above sets Rel
1433    // to the end iterator.
1434    if (loc != relocseclist.end()) {
1435      Rel.w.b = *loc;
1436      Rel.w.a = 0;
1437    }
1438  }
1439  Result = RelocationRef(Rel, this);
1440  return object_error::success;
1441}
1442
1443template<class ELFT>
1444error_code ELFObjectFile<ELFT>::getRelocationSymbol(DataRefImpl Rel,
1445                                                    SymbolRef &Result) const {
1446  uint32_t symbolIdx;
1447  const Elf_Shdr *sec = getSection(Rel.w.b);
1448  switch (sec->sh_type) {
1449    default :
1450      report_fatal_error("Invalid section type in Rel!");
1451    case ELF::SHT_REL : {
1452      symbolIdx = getRel(Rel)->getSymbol();
1453      break;
1454    }
1455    case ELF::SHT_RELA : {
1456      symbolIdx = getRela(Rel)->getSymbol();
1457      break;
1458    }
1459  }
1460  DataRefImpl SymbolData;
1461  IndexMap_t::const_iterator it = SymbolTableSectionsIndexMap.find(sec->sh_link);
1462  if (it == SymbolTableSectionsIndexMap.end())
1463    report_fatal_error("Relocation symbol table not found!");
1464  SymbolData.d.a = symbolIdx;
1465  SymbolData.d.b = it->second;
1466  Result = SymbolRef(SymbolData, this);
1467  return object_error::success;
1468}
1469
1470template<class ELFT>
1471error_code ELFObjectFile<ELFT>::getRelocationAddress(DataRefImpl Rel,
1472                                                     uint64_t &Result) const {
1473  uint64_t offset;
1474  const Elf_Shdr *sec = getSection(Rel.w.b);
1475  switch (sec->sh_type) {
1476    default :
1477      report_fatal_error("Invalid section type in Rel!");
1478    case ELF::SHT_REL : {
1479      offset = getRel(Rel)->r_offset;
1480      break;
1481    }
1482    case ELF::SHT_RELA : {
1483      offset = getRela(Rel)->r_offset;
1484      break;
1485    }
1486  }
1487
1488  Result = offset;
1489  return object_error::success;
1490}
1491
1492template<class ELFT>
1493error_code ELFObjectFile<ELFT>::getRelocationOffset(DataRefImpl Rel,
1494                                                    uint64_t &Result) const {
1495  uint64_t offset;
1496  const Elf_Shdr *sec = getSection(Rel.w.b);
1497  switch (sec->sh_type) {
1498    default :
1499      report_fatal_error("Invalid section type in Rel!");
1500    case ELF::SHT_REL : {
1501      offset = getRel(Rel)->r_offset;
1502      break;
1503    }
1504    case ELF::SHT_RELA : {
1505      offset = getRela(Rel)->r_offset;
1506      break;
1507    }
1508  }
1509
1510  Result = offset - sec->sh_addr;
1511  return object_error::success;
1512}
1513
1514template<class ELFT>
1515error_code ELFObjectFile<ELFT>::getRelocationType(DataRefImpl Rel,
1516                                                  uint64_t &Result) const {
1517  const Elf_Shdr *sec = getSection(Rel.w.b);
1518  switch (sec->sh_type) {
1519    default :
1520      report_fatal_error("Invalid section type in Rel!");
1521    case ELF::SHT_REL : {
1522      Result = getRel(Rel)->getType();
1523      break;
1524    }
1525    case ELF::SHT_RELA : {
1526      Result = getRela(Rel)->getType();
1527      break;
1528    }
1529  }
1530  return object_error::success;
1531}
1532
1533#define LLVM_ELF_SWITCH_RELOC_TYPE_NAME(enum) \
1534  case ELF::enum: res = #enum; break;
1535
1536template<class ELFT>
1537error_code ELFObjectFile<ELFT>::getRelocationTypeName(
1538    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1539  const Elf_Shdr *sec = getSection(Rel.w.b);
1540  uint32_t type;
1541  StringRef res;
1542  switch (sec->sh_type) {
1543    default :
1544      return object_error::parse_failed;
1545    case ELF::SHT_REL : {
1546      type = getRel(Rel)->getType();
1547      break;
1548    }
1549    case ELF::SHT_RELA : {
1550      type = getRela(Rel)->getType();
1551      break;
1552    }
1553  }
1554  switch (Header->e_machine) {
1555  case ELF::EM_X86_64:
1556    switch (type) {
1557      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_NONE);
1558      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_64);
1559      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC32);
1560      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOT32);
1561      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PLT32);
1562      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_COPY);
1563      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GLOB_DAT);
1564      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_JUMP_SLOT);
1565      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_RELATIVE);
1566      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPCREL);
1567      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32);
1568      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_32S);
1569      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_16);
1570      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC16);
1571      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_8);
1572      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC8);
1573      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPMOD64);
1574      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF64);
1575      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF64);
1576      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSGD);
1577      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSLD);
1578      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_DTPOFF32);
1579      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTTPOFF);
1580      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TPOFF32);
1581      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_PC64);
1582      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTOFF64);
1583      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32);
1584      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE32);
1585      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_SIZE64);
1586      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_GOTPC32_TLSDESC);
1587      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC_CALL);
1588      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_X86_64_TLSDESC);
1589    default:
1590      res = "Unknown";
1591    }
1592    break;
1593  case ELF::EM_386:
1594    switch (type) {
1595      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_NONE);
1596      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32);
1597      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC32);
1598      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOT32);
1599      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PLT32);
1600      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_COPY);
1601      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GLOB_DAT);
1602      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_JUMP_SLOT);
1603      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_RELATIVE);
1604      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTOFF);
1605      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_GOTPC);
1606      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_32PLT);
1607      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF);
1608      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE);
1609      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTIE);
1610      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE);
1611      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD);
1612      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM);
1613      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_16);
1614      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC16);
1615      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_8);
1616      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_PC8);
1617      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_32);
1618      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_PUSH);
1619      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_CALL);
1620      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GD_POP);
1621      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_32);
1622      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_PUSH);
1623      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_CALL);
1624      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDM_POP);
1625      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LDO_32);
1626      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_IE_32);
1627      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_LE_32);
1628      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPMOD32);
1629      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DTPOFF32);
1630      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_TPOFF32);
1631      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_GOTDESC);
1632      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC_CALL);
1633      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_TLS_DESC);
1634      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_386_IRELATIVE);
1635    default:
1636      res = "Unknown";
1637    }
1638    break;
1639  case ELF::EM_AARCH64:
1640    switch (type) {
1641      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_NONE);
1642      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS64);
1643      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS32);
1644      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ABS16);
1645      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL64);
1646      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL32);
1647      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_PREL16);
1648      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0);
1649      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G0_NC);
1650      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1);
1651      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G1_NC);
1652      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2);
1653      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G2_NC);
1654      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_UABS_G3);
1655      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G0);
1656      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G1);
1657      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_MOVW_SABS_G2);
1658      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD_PREL_LO19);
1659      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_LO21);
1660      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_PREL_PG_HI21);
1661      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADD_ABS_LO12_NC);
1662      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST8_ABS_LO12_NC);
1663      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TSTBR14);
1664      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CONDBR19);
1665      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_JUMP26);
1666      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_CALL26);
1667      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST16_ABS_LO12_NC);
1668      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST32_ABS_LO12_NC);
1669      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST64_ABS_LO12_NC);
1670      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LDST128_ABS_LO12_NC);
1671      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_ADR_GOT_PAGE);
1672      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_LD64_GOT_LO12_NC);
1673      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G2);
1674      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1);
1675      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G1_NC);
1676      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0);
1677      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC);
1678      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_HI12);
1679      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12);
1680      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC);
1681      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12);
1682      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC);
1683      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12);
1684      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC);
1685      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12);
1686      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC);
1687      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12);
1688      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC);
1689      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
1690      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
1691      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
1692      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
1693      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
1694      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G2);
1695      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1);
1696      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G1_NC);
1697      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0);
1698      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_MOVW_TPREL_G0_NC);
1699      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_HI12);
1700      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12);
1701      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_ADD_TPREL_LO12_NC);
1702      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12);
1703      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC);
1704      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12);
1705      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC);
1706      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12);
1707      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC);
1708      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12);
1709      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC);
1710      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADR_PAGE);
1711      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_LD64_LO12_NC);
1712      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_ADD_LO12_NC);
1713      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_AARCH64_TLSDESC_CALL);
1714
1715    default:
1716      res = "Unknown";
1717    }
1718    break;
1719  case ELF::EM_ARM:
1720    switch (type) {
1721      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_NONE);
1722      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PC24);
1723      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32);
1724      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32);
1725      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G0);
1726      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS16);
1727      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS12);
1728      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ABS5);
1729      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS8);
1730      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL32);
1731      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_CALL);
1732      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC8);
1733      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BREL_ADJ);
1734      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESC);
1735      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_SWI8);
1736      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_XPC25);
1737      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_XPC22);
1738      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPMOD32);
1739      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DTPOFF32);
1740      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_TPOFF32);
1741      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_COPY);
1742      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GLOB_DAT);
1743      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP_SLOT);
1744      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_RELATIVE);
1745      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF32);
1746      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_PREL);
1747      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL);
1748      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32);
1749      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_CALL);
1750      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_JUMP24);
1751      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP24);
1752      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_BASE_ABS);
1753      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_7_0);
1754      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_15_8);
1755      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PCREL_23_15);
1756      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SBREL_11_0_NC);
1757      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_19_12_NC);
1758      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SBREL_27_20_CK);
1759      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET1);
1760      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_SBREL31);
1761      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_V4BX);
1762      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TARGET2);
1763      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PREL31);
1764      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_ABS_NC);
1765      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_ABS);
1766      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_PREL_NC);
1767      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_PREL);
1768      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_ABS_NC);
1769      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_ABS);
1770      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_PREL_NC);
1771      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_PREL);
1772      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP19);
1773      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP6);
1774      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_ALU_PREL_11_0);
1775      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_PC12);
1776      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ABS32_NOI);
1777      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_REL32_NOI);
1778      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0_NC);
1779      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G0);
1780      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1_NC);
1781      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G1);
1782      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_PC_G2);
1783      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G1);
1784      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_PC_G2);
1785      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G0);
1786      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G1);
1787      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_PC_G2);
1788      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G0);
1789      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G1);
1790      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_PC_G2);
1791      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0_NC);
1792      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G0);
1793      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1_NC);
1794      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G1);
1795      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ALU_SB_G2);
1796      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G0);
1797      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G1);
1798      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDR_SB_G2);
1799      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G0);
1800      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G1);
1801      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDRS_SB_G2);
1802      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G0);
1803      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G1);
1804      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_LDC_SB_G2);
1805      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL_NC);
1806      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVT_BREL);
1807      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_MOVW_BREL);
1808      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL_NC);
1809      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVT_BREL);
1810      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_MOVW_BREL);
1811      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GOTDESC);
1812      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_CALL);
1813      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_DESCSEQ);
1814      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_CALL);
1815      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PLT32_ABS);
1816      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_ABS);
1817      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_PREL);
1818      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOT_BREL12);
1819      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTOFF12);
1820      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GOTRELAX);
1821      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTENTRY);
1822      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_GNU_VTINHERIT);
1823      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP11);
1824      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_JUMP8);
1825      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_GD32);
1826      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDM32);
1827      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO32);
1828      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE32);
1829      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE32);
1830      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LDO12);
1831      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_LE12);
1832      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_TLS_IE12GP);
1833      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_0);
1834      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_1);
1835      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_2);
1836      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_3);
1837      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_4);
1838      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_5);
1839      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_6);
1840      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_7);
1841      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_8);
1842      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_9);
1843      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_10);
1844      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_11);
1845      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_12);
1846      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_13);
1847      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_14);
1848      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_PRIVATE_15);
1849      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_ME_TOO);
1850      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ16);
1851      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_ARM_THM_TLS_DESCSEQ32);
1852    default:
1853      res = "Unknown";
1854    }
1855    break;
1856  case ELF::EM_HEXAGON:
1857    switch (type) {
1858      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_NONE);
1859      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL);
1860      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL);
1861      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL);
1862      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_LO16);
1863      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HI16);
1864      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32);
1865      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16);
1866      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8);
1867      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_0);
1868      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_1);
1869      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_2);
1870      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GPREL16_3);
1871      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_HL16);
1872      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL);
1873      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL);
1874      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B32_PCREL_X);
1875      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_6_X);
1876      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B22_PCREL_X);
1877      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B15_PCREL_X);
1878      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B13_PCREL_X);
1879      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B9_PCREL_X);
1880      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_B7_PCREL_X);
1881      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_16_X);
1882      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_12_X);
1883      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_11_X);
1884      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_10_X);
1885      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_9_X);
1886      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_8_X);
1887      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_7_X);
1888      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_X);
1889      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_32_PCREL);
1890      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_COPY);
1891      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GLOB_DAT);
1892      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_JMP_SLOT);
1893      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_RELATIVE);
1894      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_PLT_B22_PCREL);
1895      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_LO16);
1896      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_HI16);
1897      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32);
1898      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_LO16);
1899      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_HI16);
1900      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32);
1901      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16);
1902      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPMOD_32);
1903      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_LO16);
1904      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_HI16);
1905      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32);
1906      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16);
1907      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_PLT_B22_PCREL);
1908      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_LO16);
1909      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_HI16);
1910      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32);
1911      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16);
1912      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_LO16);
1913      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_HI16);
1914      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32);
1915      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_LO16);
1916      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_HI16);
1917      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32);
1918      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16);
1919      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_LO16);
1920      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_HI16);
1921      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32);
1922      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16);
1923      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_6_PCREL_X);
1924      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_32_6_X);
1925      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_16_X);
1926      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOTREL_11_X);
1927      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_32_6_X);
1928      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_16_X);
1929      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GOT_11_X);
1930      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_32_6_X);
1931      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_16_X);
1932      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_DTPREL_11_X);
1933      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_32_6_X);
1934      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_16_X);
1935      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_GD_GOT_11_X);
1936      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_32_6_X);
1937      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_16_X);
1938      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_32_6_X);
1939      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_16_X);
1940      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_IE_GOT_11_X);
1941      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_32_6_X);
1942      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_16_X);
1943      LLVM_ELF_SWITCH_RELOC_TYPE_NAME(R_HEX_TPREL_11_X);
1944    default:
1945      res = "Unknown";
1946    }
1947    break;
1948  default:
1949    res = "Unknown";
1950  }
1951  Result.append(res.begin(), res.end());
1952  return object_error::success;
1953}
1954
1955#undef LLVM_ELF_SWITCH_RELOC_TYPE_NAME
1956
1957template<class ELFT>
1958error_code ELFObjectFile<ELFT>::getRelocationAdditionalInfo(
1959    DataRefImpl Rel, int64_t &Result) const {
1960  const Elf_Shdr *sec = getSection(Rel.w.b);
1961  switch (sec->sh_type) {
1962    default :
1963      report_fatal_error("Invalid section type in Rel!");
1964    case ELF::SHT_REL : {
1965      Result = 0;
1966      return object_error::success;
1967    }
1968    case ELF::SHT_RELA : {
1969      Result = getRela(Rel)->r_addend;
1970      return object_error::success;
1971    }
1972  }
1973}
1974
1975template<class ELFT>
1976error_code ELFObjectFile<ELFT>::getRelocationValueString(
1977    DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1978  const Elf_Shdr *sec = getSection(Rel.w.b);
1979  uint8_t type;
1980  StringRef res;
1981  int64_t addend = 0;
1982  uint16_t symbol_index = 0;
1983  switch (sec->sh_type) {
1984    default:
1985      return object_error::parse_failed;
1986    case ELF::SHT_REL: {
1987      type = getRel(Rel)->getType();
1988      symbol_index = getRel(Rel)->getSymbol();
1989      // TODO: Read implicit addend from section data.
1990      break;
1991    }
1992    case ELF::SHT_RELA: {
1993      type = getRela(Rel)->getType();
1994      symbol_index = getRela(Rel)->getSymbol();
1995      addend = getRela(Rel)->r_addend;
1996      break;
1997    }
1998  }
1999  const Elf_Sym *symb = getEntry<Elf_Sym>(sec->sh_link, symbol_index);
2000  StringRef symname;
2001  if (error_code ec = getSymbolName(getSection(sec->sh_link), symb, symname))
2002    return ec;
2003  switch (Header->e_machine) {
2004  case ELF::EM_X86_64:
2005    switch (type) {
2006    case ELF::R_X86_64_PC8:
2007    case ELF::R_X86_64_PC16:
2008    case ELF::R_X86_64_PC32: {
2009        std::string fmtbuf;
2010        raw_string_ostream fmt(fmtbuf);
2011        fmt << symname << (addend < 0 ? "" : "+") << addend << "-P";
2012        fmt.flush();
2013        Result.append(fmtbuf.begin(), fmtbuf.end());
2014      }
2015      break;
2016    case ELF::R_X86_64_8:
2017    case ELF::R_X86_64_16:
2018    case ELF::R_X86_64_32:
2019    case ELF::R_X86_64_32S:
2020    case ELF::R_X86_64_64: {
2021        std::string fmtbuf;
2022        raw_string_ostream fmt(fmtbuf);
2023        fmt << symname << (addend < 0 ? "" : "+") << addend;
2024        fmt.flush();
2025        Result.append(fmtbuf.begin(), fmtbuf.end());
2026      }
2027      break;
2028    default:
2029      res = "Unknown";
2030    }
2031    break;
2032  case ELF::EM_AARCH64:
2033  case ELF::EM_ARM:
2034  case ELF::EM_HEXAGON:
2035    res = symname;
2036    break;
2037  default:
2038    res = "Unknown";
2039  }
2040  if (Result.empty())
2041    Result.append(res.begin(), res.end());
2042  return object_error::success;
2043}
2044
2045// Verify that the last byte in the string table in a null.
2046template<class ELFT>
2047void ELFObjectFile<ELFT>::VerifyStrTab(const Elf_Shdr *sh) const {
2048  const char *strtab = (const char*)base() + sh->sh_offset;
2049  if (strtab[sh->sh_size - 1] != 0)
2050    // FIXME: Proper error handling.
2051    report_fatal_error("String table must end with a null terminator!");
2052}
2053
2054template<class ELFT>
2055ELFObjectFile<ELFT>::ELFObjectFile(MemoryBuffer *Object, error_code &ec)
2056  : ObjectFile(getELFType(
2057      static_cast<endianness>(ELFT::TargetEndianness) == support::little,
2058      ELFT::Is64Bits),
2059      Object,
2060      ec)
2061  , isDyldELFObject(false)
2062  , SectionHeaderTable(0)
2063  , dot_shstrtab_sec(0)
2064  , dot_strtab_sec(0)
2065  , dot_dynstr_sec(0)
2066  , dot_dynamic_sec(0)
2067  , dot_gnu_version_sec(0)
2068  , dot_gnu_version_r_sec(0)
2069  , dot_gnu_version_d_sec(0)
2070  , dt_soname(0)
2071 {
2072
2073  const uint64_t FileSize = Data->getBufferSize();
2074
2075  if (sizeof(Elf_Ehdr) > FileSize)
2076    // FIXME: Proper error handling.
2077    report_fatal_error("File too short!");
2078
2079  Header = reinterpret_cast<const Elf_Ehdr *>(base());
2080
2081  if (Header->e_shoff == 0)
2082    return;
2083
2084  const uint64_t SectionTableOffset = Header->e_shoff;
2085
2086  if (SectionTableOffset + sizeof(Elf_Shdr) > FileSize)
2087    // FIXME: Proper error handling.
2088    report_fatal_error("Section header table goes past end of file!");
2089
2090  // The getNumSections() call below depends on SectionHeaderTable being set.
2091  SectionHeaderTable =
2092    reinterpret_cast<const Elf_Shdr *>(base() + SectionTableOffset);
2093  const uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
2094
2095  if (SectionTableOffset + SectionTableSize > FileSize)
2096    // FIXME: Proper error handling.
2097    report_fatal_error("Section table goes past end of file!");
2098
2099  // To find the symbol tables we walk the section table to find SHT_SYMTAB.
2100  const Elf_Shdr* SymbolTableSectionHeaderIndex = 0;
2101  const Elf_Shdr* sh = SectionHeaderTable;
2102
2103  // Reserve SymbolTableSections[0] for .dynsym
2104  SymbolTableSections.push_back(NULL);
2105
2106  for (uint64_t i = 0, e = getNumSections(); i != e; ++i) {
2107    switch (sh->sh_type) {
2108    case ELF::SHT_SYMTAB_SHNDX: {
2109      if (SymbolTableSectionHeaderIndex)
2110        // FIXME: Proper error handling.
2111        report_fatal_error("More than one .symtab_shndx!");
2112      SymbolTableSectionHeaderIndex = sh;
2113      break;
2114    }
2115    case ELF::SHT_SYMTAB: {
2116      SymbolTableSectionsIndexMap[i] = SymbolTableSections.size();
2117      SymbolTableSections.push_back(sh);
2118      break;
2119    }
2120    case ELF::SHT_DYNSYM: {
2121      if (SymbolTableSections[0] != NULL)
2122        // FIXME: Proper error handling.
2123        report_fatal_error("More than one .dynsym!");
2124      SymbolTableSectionsIndexMap[i] = 0;
2125      SymbolTableSections[0] = sh;
2126      break;
2127    }
2128    case ELF::SHT_REL:
2129    case ELF::SHT_RELA: {
2130      SectionRelocMap[getSection(sh->sh_info)].push_back(i);
2131      break;
2132    }
2133    case ELF::SHT_DYNAMIC: {
2134      if (dot_dynamic_sec != NULL)
2135        // FIXME: Proper error handling.
2136        report_fatal_error("More than one .dynamic!");
2137      dot_dynamic_sec = sh;
2138      break;
2139    }
2140    case ELF::SHT_GNU_versym: {
2141      if (dot_gnu_version_sec != NULL)
2142        // FIXME: Proper error handling.
2143        report_fatal_error("More than one .gnu.version section!");
2144      dot_gnu_version_sec = sh;
2145      break;
2146    }
2147    case ELF::SHT_GNU_verdef: {
2148      if (dot_gnu_version_d_sec != NULL)
2149        // FIXME: Proper error handling.
2150        report_fatal_error("More than one .gnu.version_d section!");
2151      dot_gnu_version_d_sec = sh;
2152      break;
2153    }
2154    case ELF::SHT_GNU_verneed: {
2155      if (dot_gnu_version_r_sec != NULL)
2156        // FIXME: Proper error handling.
2157        report_fatal_error("More than one .gnu.version_r section!");
2158      dot_gnu_version_r_sec = sh;
2159      break;
2160    }
2161    }
2162    ++sh;
2163  }
2164
2165  // Sort section relocation lists by index.
2166  for (typename RelocMap_t::iterator i = SectionRelocMap.begin(),
2167                                     e = SectionRelocMap.end(); i != e; ++i) {
2168    std::sort(i->second.begin(), i->second.end());
2169  }
2170
2171  // Get string table sections.
2172  dot_shstrtab_sec = getSection(getStringTableIndex());
2173  if (dot_shstrtab_sec) {
2174    // Verify that the last byte in the string table in a null.
2175    VerifyStrTab(dot_shstrtab_sec);
2176  }
2177
2178  // Merge this into the above loop.
2179  for (const char *i = reinterpret_cast<const char *>(SectionHeaderTable),
2180                  *e = i + getNumSections() * Header->e_shentsize;
2181                   i != e; i += Header->e_shentsize) {
2182    const Elf_Shdr *sh = reinterpret_cast<const Elf_Shdr*>(i);
2183    if (sh->sh_type == ELF::SHT_STRTAB) {
2184      StringRef SectionName(getString(dot_shstrtab_sec, sh->sh_name));
2185      if (SectionName == ".strtab") {
2186        if (dot_strtab_sec != 0)
2187          // FIXME: Proper error handling.
2188          report_fatal_error("Already found section named .strtab!");
2189        dot_strtab_sec = sh;
2190        VerifyStrTab(dot_strtab_sec);
2191      } else if (SectionName == ".dynstr") {
2192        if (dot_dynstr_sec != 0)
2193          // FIXME: Proper error handling.
2194          report_fatal_error("Already found section named .dynstr!");
2195        dot_dynstr_sec = sh;
2196        VerifyStrTab(dot_dynstr_sec);
2197      }
2198    }
2199  }
2200
2201  // Build symbol name side-mapping if there is one.
2202  if (SymbolTableSectionHeaderIndex) {
2203    const Elf_Word *ShndxTable = reinterpret_cast<const Elf_Word*>(base() +
2204                                      SymbolTableSectionHeaderIndex->sh_offset);
2205    error_code ec;
2206    for (symbol_iterator si = begin_symbols(),
2207                         se = end_symbols(); si != se; si.increment(ec)) {
2208      if (ec)
2209        report_fatal_error("Fewer extended symbol table entries than symbols!");
2210      if (*ShndxTable != ELF::SHN_UNDEF)
2211        ExtendedSymbolTable[getSymbol(si->getRawDataRefImpl())] = *ShndxTable;
2212      ++ShndxTable;
2213    }
2214  }
2215}
2216
2217// Get the symbol table index in the symtab section given a symbol
2218template<class ELFT>
2219uint64_t ELFObjectFile<ELFT>::getSymbolIndex(const Elf_Sym *Sym) const {
2220  assert(SymbolTableSections.size() == 1 && "Only one symbol table supported!");
2221  const Elf_Shdr *SymTab = *SymbolTableSections.begin();
2222  uintptr_t SymLoc = uintptr_t(Sym);
2223  uintptr_t SymTabLoc = uintptr_t(base() + SymTab->sh_offset);
2224  assert(SymLoc > SymTabLoc && "Symbol not in symbol table!");
2225  uint64_t SymOffset = SymLoc - SymTabLoc;
2226  assert(SymOffset % SymTab->sh_entsize == 0 &&
2227         "Symbol not multiple of symbol size!");
2228  return SymOffset / SymTab->sh_entsize;
2229}
2230
2231template<class ELFT>
2232symbol_iterator ELFObjectFile<ELFT>::begin_symbols() const {
2233  DataRefImpl SymbolData;
2234  if (SymbolTableSections.size() <= 1) {
2235    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2236    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2237  } else {
2238    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2239    SymbolData.d.b = 1; // The 0th table is .dynsym
2240  }
2241  return symbol_iterator(SymbolRef(SymbolData, this));
2242}
2243
2244template<class ELFT>
2245symbol_iterator ELFObjectFile<ELFT>::end_symbols() const {
2246  DataRefImpl SymbolData;
2247  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2248  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2249  return symbol_iterator(SymbolRef(SymbolData, this));
2250}
2251
2252template<class ELFT>
2253symbol_iterator ELFObjectFile<ELFT>::begin_dynamic_symbols() const {
2254  DataRefImpl SymbolData;
2255  if (SymbolTableSections[0] == NULL) {
2256    SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2257    SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2258  } else {
2259    SymbolData.d.a = 1; // The 0th symbol in ELF is fake.
2260    SymbolData.d.b = 0; // The 0th table is .dynsym
2261  }
2262  return symbol_iterator(SymbolRef(SymbolData, this));
2263}
2264
2265template<class ELFT>
2266symbol_iterator ELFObjectFile<ELFT>::end_dynamic_symbols() const {
2267  DataRefImpl SymbolData;
2268  SymbolData.d.a = std::numeric_limits<uint32_t>::max();
2269  SymbolData.d.b = std::numeric_limits<uint32_t>::max();
2270  return symbol_iterator(SymbolRef(SymbolData, this));
2271}
2272
2273template<class ELFT>
2274section_iterator ELFObjectFile<ELFT>::begin_sections() const {
2275  DataRefImpl ret;
2276  ret.p = reinterpret_cast<intptr_t>(base() + Header->e_shoff);
2277  return section_iterator(SectionRef(ret, this));
2278}
2279
2280template<class ELFT>
2281section_iterator ELFObjectFile<ELFT>::end_sections() const {
2282  DataRefImpl ret;
2283  ret.p = reinterpret_cast<intptr_t>(base()
2284                                     + Header->e_shoff
2285                                     + (Header->e_shentsize*getNumSections()));
2286  return section_iterator(SectionRef(ret, this));
2287}
2288
2289template<class ELFT>
2290typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2291ELFObjectFile<ELFT>::begin_dynamic_table() const {
2292  if (dot_dynamic_sec)
2293    return Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2294                            (const char *)base() + dot_dynamic_sec->sh_offset);
2295  return Elf_Dyn_iterator(0, 0);
2296}
2297
2298template<class ELFT>
2299typename ELFObjectFile<ELFT>::Elf_Dyn_iterator
2300ELFObjectFile<ELFT>::end_dynamic_table(bool NULLEnd) const {
2301  if (dot_dynamic_sec) {
2302    Elf_Dyn_iterator Ret(dot_dynamic_sec->sh_entsize,
2303                         (const char *)base() + dot_dynamic_sec->sh_offset +
2304                         dot_dynamic_sec->sh_size);
2305
2306    if (NULLEnd) {
2307      Elf_Dyn_iterator Start = begin_dynamic_table();
2308      for (; Start != Ret && Start->getTag() != ELF::DT_NULL; ++Start)
2309        ;
2310      // Include the DT_NULL.
2311      if (Start != Ret)
2312        ++Start;
2313      Ret = Start;
2314    }
2315    return Ret;
2316  }
2317  return Elf_Dyn_iterator(0, 0);
2318}
2319
2320template<class ELFT>
2321StringRef ELFObjectFile<ELFT>::getLoadName() const {
2322  if (!dt_soname) {
2323    // Find the DT_SONAME entry
2324    Elf_Dyn_iterator it = begin_dynamic_table();
2325    Elf_Dyn_iterator ie = end_dynamic_table();
2326    for (; it != ie; ++it) {
2327      if (it->getTag() == ELF::DT_SONAME)
2328        break;
2329    }
2330    if (it != ie) {
2331      if (dot_dynstr_sec == NULL)
2332        report_fatal_error("Dynamic string table is missing");
2333      dt_soname = getString(dot_dynstr_sec, it->getVal());
2334    } else {
2335      dt_soname = "";
2336    }
2337  }
2338  return dt_soname;
2339}
2340
2341template<class ELFT>
2342library_iterator ELFObjectFile<ELFT>::begin_libraries_needed() const {
2343  // Find the first DT_NEEDED entry
2344  Elf_Dyn_iterator i = begin_dynamic_table();
2345  Elf_Dyn_iterator e = end_dynamic_table();
2346  for (; i != e; ++i) {
2347    if (i->getTag() == ELF::DT_NEEDED)
2348      break;
2349  }
2350
2351  DataRefImpl DRI;
2352  DRI.p = reinterpret_cast<uintptr_t>(i.get());
2353  return library_iterator(LibraryRef(DRI, this));
2354}
2355
2356template<class ELFT>
2357error_code ELFObjectFile<ELFT>::getLibraryNext(DataRefImpl Data,
2358                                               LibraryRef &Result) const {
2359  // Use the same DataRefImpl format as DynRef.
2360  Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2361                                        reinterpret_cast<const char *>(Data.p));
2362  Elf_Dyn_iterator e = end_dynamic_table();
2363
2364  // Skip the current dynamic table entry.
2365  ++i;
2366
2367  // Find the next DT_NEEDED entry.
2368  for (; i != e && i->getTag() != ELF::DT_NEEDED; ++i);
2369
2370  DataRefImpl DRI;
2371  DRI.p = reinterpret_cast<uintptr_t>(i.get());
2372  Result = LibraryRef(DRI, this);
2373  return object_error::success;
2374}
2375
2376template<class ELFT>
2377error_code ELFObjectFile<ELFT>::getLibraryPath(DataRefImpl Data,
2378                                               StringRef &Res) const {
2379  Elf_Dyn_iterator i = Elf_Dyn_iterator(dot_dynamic_sec->sh_entsize,
2380                                        reinterpret_cast<const char *>(Data.p));
2381  if (i == end_dynamic_table())
2382    report_fatal_error("getLibraryPath() called on iterator end");
2383
2384  if (i->getTag() != ELF::DT_NEEDED)
2385    report_fatal_error("Invalid library_iterator");
2386
2387  // This uses .dynstr to lookup the name of the DT_NEEDED entry.
2388  // THis works as long as DT_STRTAB == .dynstr. This is true most of
2389  // the time, but the specification allows exceptions.
2390  // TODO: This should really use DT_STRTAB instead. Doing this requires
2391  // reading the program headers.
2392  if (dot_dynstr_sec == NULL)
2393    report_fatal_error("Dynamic string table is missing");
2394  Res = getString(dot_dynstr_sec, i->getVal());
2395  return object_error::success;
2396}
2397
2398template<class ELFT>
2399library_iterator ELFObjectFile<ELFT>::end_libraries_needed() const {
2400  Elf_Dyn_iterator e = end_dynamic_table();
2401  DataRefImpl DRI;
2402  DRI.p = reinterpret_cast<uintptr_t>(e.get());
2403  return library_iterator(LibraryRef(DRI, this));
2404}
2405
2406template<class ELFT>
2407uint8_t ELFObjectFile<ELFT>::getBytesInAddress() const {
2408  return ELFT::Is64Bits ? 8 : 4;
2409}
2410
2411template<class ELFT>
2412StringRef ELFObjectFile<ELFT>::getFileFormatName() const {
2413  switch(Header->e_ident[ELF::EI_CLASS]) {
2414  case ELF::ELFCLASS32:
2415    switch(Header->e_machine) {
2416    case ELF::EM_386:
2417      return "ELF32-i386";
2418    case ELF::EM_X86_64:
2419      return "ELF32-x86-64";
2420    case ELF::EM_ARM:
2421      return "ELF32-arm";
2422    case ELF::EM_HEXAGON:
2423      return "ELF32-hexagon";
2424    case ELF::EM_MIPS:
2425      return "ELF32-mips";
2426    default:
2427      return "ELF32-unknown";
2428    }
2429  case ELF::ELFCLASS64:
2430    switch(Header->e_machine) {
2431    case ELF::EM_386:
2432      return "ELF64-i386";
2433    case ELF::EM_X86_64:
2434      return "ELF64-x86-64";
2435    case ELF::EM_AARCH64:
2436      return "ELF64-aarch64";
2437    case ELF::EM_PPC64:
2438      return "ELF64-ppc64";
2439    default:
2440      return "ELF64-unknown";
2441    }
2442  default:
2443    // FIXME: Proper error handling.
2444    report_fatal_error("Invalid ELFCLASS!");
2445  }
2446}
2447
2448template<class ELFT>
2449unsigned ELFObjectFile<ELFT>::getArch() const {
2450  switch(Header->e_machine) {
2451  case ELF::EM_386:
2452    return Triple::x86;
2453  case ELF::EM_X86_64:
2454    return Triple::x86_64;
2455  case ELF::EM_AARCH64:
2456    return Triple::aarch64;
2457  case ELF::EM_ARM:
2458    return Triple::arm;
2459  case ELF::EM_HEXAGON:
2460    return Triple::hexagon;
2461  case ELF::EM_MIPS:
2462    return (ELFT::TargetEndianness == support::little) ?
2463           Triple::mipsel : Triple::mips;
2464  case ELF::EM_PPC64:
2465    return Triple::ppc64;
2466  default:
2467    return Triple::UnknownArch;
2468  }
2469}
2470
2471template<class ELFT>
2472uint64_t ELFObjectFile<ELFT>::getNumSections() const {
2473  assert(Header && "Header not initialized!");
2474  if (Header->e_shnum == ELF::SHN_UNDEF) {
2475    assert(SectionHeaderTable && "SectionHeaderTable not initialized!");
2476    return SectionHeaderTable->sh_size;
2477  }
2478  return Header->e_shnum;
2479}
2480
2481template<class ELFT>
2482uint64_t
2483ELFObjectFile<ELFT>::getStringTableIndex() const {
2484  if (Header->e_shnum == ELF::SHN_UNDEF) {
2485    if (Header->e_shstrndx == ELF::SHN_HIRESERVE)
2486      return SectionHeaderTable->sh_link;
2487    if (Header->e_shstrndx >= getNumSections())
2488      return 0;
2489  }
2490  return Header->e_shstrndx;
2491}
2492
2493template<class ELFT>
2494template<typename T>
2495inline const T *
2496ELFObjectFile<ELFT>::getEntry(uint16_t Section, uint32_t Entry) const {
2497  return getEntry<T>(getSection(Section), Entry);
2498}
2499
2500template<class ELFT>
2501template<typename T>
2502inline const T *
2503ELFObjectFile<ELFT>::getEntry(const Elf_Shdr * Section, uint32_t Entry) const {
2504  return reinterpret_cast<const T *>(
2505           base()
2506           + Section->sh_offset
2507           + (Entry * Section->sh_entsize));
2508}
2509
2510template<class ELFT>
2511const typename ELFObjectFile<ELFT>::Elf_Sym *
2512ELFObjectFile<ELFT>::getSymbol(DataRefImpl Symb) const {
2513  return getEntry<Elf_Sym>(SymbolTableSections[Symb.d.b], Symb.d.a);
2514}
2515
2516template<class ELFT>
2517const typename ELFObjectFile<ELFT>::Elf_Rel *
2518ELFObjectFile<ELFT>::getRel(DataRefImpl Rel) const {
2519  return getEntry<Elf_Rel>(Rel.w.b, Rel.w.c);
2520}
2521
2522template<class ELFT>
2523const typename ELFObjectFile<ELFT>::Elf_Rela *
2524ELFObjectFile<ELFT>::getRela(DataRefImpl Rela) const {
2525  return getEntry<Elf_Rela>(Rela.w.b, Rela.w.c);
2526}
2527
2528template<class ELFT>
2529const typename ELFObjectFile<ELFT>::Elf_Shdr *
2530ELFObjectFile<ELFT>::getSection(DataRefImpl Symb) const {
2531  const Elf_Shdr *sec = getSection(Symb.d.b);
2532  if (sec->sh_type != ELF::SHT_SYMTAB || sec->sh_type != ELF::SHT_DYNSYM)
2533    // FIXME: Proper error handling.
2534    report_fatal_error("Invalid symbol table section!");
2535  return sec;
2536}
2537
2538template<class ELFT>
2539const typename ELFObjectFile<ELFT>::Elf_Shdr *
2540ELFObjectFile<ELFT>::getSection(uint32_t index) const {
2541  if (index == 0)
2542    return 0;
2543  if (!SectionHeaderTable || index >= getNumSections())
2544    // FIXME: Proper error handling.
2545    report_fatal_error("Invalid section index!");
2546
2547  return reinterpret_cast<const Elf_Shdr *>(
2548         reinterpret_cast<const char *>(SectionHeaderTable)
2549         + (index * Header->e_shentsize));
2550}
2551
2552template<class ELFT>
2553const char *ELFObjectFile<ELFT>::getString(uint32_t section,
2554                                           ELF::Elf32_Word offset) const {
2555  return getString(getSection(section), offset);
2556}
2557
2558template<class ELFT>
2559const char *ELFObjectFile<ELFT>::getString(const Elf_Shdr *section,
2560                                           ELF::Elf32_Word offset) const {
2561  assert(section && section->sh_type == ELF::SHT_STRTAB && "Invalid section!");
2562  if (offset >= section->sh_size)
2563    // FIXME: Proper error handling.
2564    report_fatal_error("Symbol name offset outside of string table!");
2565  return (const char *)base() + section->sh_offset + offset;
2566}
2567
2568template<class ELFT>
2569error_code ELFObjectFile<ELFT>::getSymbolName(const Elf_Shdr *section,
2570                                              const Elf_Sym *symb,
2571                                              StringRef &Result) const {
2572  if (symb->st_name == 0) {
2573    const Elf_Shdr *section = getSection(symb);
2574    if (!section)
2575      Result = "";
2576    else
2577      Result = getString(dot_shstrtab_sec, section->sh_name);
2578    return object_error::success;
2579  }
2580
2581  if (section == SymbolTableSections[0]) {
2582    // Symbol is in .dynsym, use .dynstr string table
2583    Result = getString(dot_dynstr_sec, symb->st_name);
2584  } else {
2585    // Use the default symbol table name section.
2586    Result = getString(dot_strtab_sec, symb->st_name);
2587  }
2588  return object_error::success;
2589}
2590
2591template<class ELFT>
2592error_code ELFObjectFile<ELFT>::getSectionName(const Elf_Shdr *section,
2593                                               StringRef &Result) const {
2594  Result = StringRef(getString(dot_shstrtab_sec, section->sh_name));
2595  return object_error::success;
2596}
2597
2598template<class ELFT>
2599error_code ELFObjectFile<ELFT>::getSymbolVersion(const Elf_Shdr *section,
2600                                                 const Elf_Sym *symb,
2601                                                 StringRef &Version,
2602                                                 bool &IsDefault) const {
2603  // Handle non-dynamic symbols.
2604  if (section != SymbolTableSections[0]) {
2605    // Non-dynamic symbols can have versions in their names
2606    // A name of the form 'foo@V1' indicates version 'V1', non-default.
2607    // A name of the form 'foo@@V2' indicates version 'V2', default version.
2608    StringRef Name;
2609    error_code ec = getSymbolName(section, symb, Name);
2610    if (ec != object_error::success)
2611      return ec;
2612    size_t atpos = Name.find('@');
2613    if (atpos == StringRef::npos) {
2614      Version = "";
2615      IsDefault = false;
2616      return object_error::success;
2617    }
2618    ++atpos;
2619    if (atpos < Name.size() && Name[atpos] == '@') {
2620      IsDefault = true;
2621      ++atpos;
2622    } else {
2623      IsDefault = false;
2624    }
2625    Version = Name.substr(atpos);
2626    return object_error::success;
2627  }
2628
2629  // This is a dynamic symbol. Look in the GNU symbol version table.
2630  if (dot_gnu_version_sec == NULL) {
2631    // No version table.
2632    Version = "";
2633    IsDefault = false;
2634    return object_error::success;
2635  }
2636
2637  // Determine the position in the symbol table of this entry.
2638  const char *sec_start = (const char*)base() + section->sh_offset;
2639  size_t entry_index = ((const char*)symb - sec_start)/section->sh_entsize;
2640
2641  // Get the corresponding version index entry
2642  const Elf_Versym *vs = getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index);
2643  size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
2644
2645  // Special markers for unversioned symbols.
2646  if (version_index == ELF::VER_NDX_LOCAL ||
2647      version_index == ELF::VER_NDX_GLOBAL) {
2648    Version = "";
2649    IsDefault = false;
2650    return object_error::success;
2651  }
2652
2653  // Lookup this symbol in the version table
2654  LoadVersionMap();
2655  if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
2656    report_fatal_error("Symbol has version index without corresponding "
2657                       "define or reference entry");
2658  const VersionMapEntry &entry = VersionMap[version_index];
2659
2660  // Get the version name string
2661  size_t name_offset;
2662  if (entry.isVerdef()) {
2663    // The first Verdaux entry holds the name.
2664    name_offset = entry.getVerdef()->getAux()->vda_name;
2665  } else {
2666    name_offset = entry.getVernaux()->vna_name;
2667  }
2668  Version = getString(dot_dynstr_sec, name_offset);
2669
2670  // Set IsDefault
2671  if (entry.isVerdef()) {
2672    IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
2673  } else {
2674    IsDefault = false;
2675  }
2676
2677  return object_error::success;
2678}
2679
2680/// This is a generic interface for retrieving GNU symbol version
2681/// information from an ELFObjectFile.
2682static inline error_code GetELFSymbolVersion(const ObjectFile *Obj,
2683                                             const SymbolRef &Sym,
2684                                             StringRef &Version,
2685                                             bool &IsDefault) {
2686  // Little-endian 32-bit
2687  if (const ELFObjectFile<ELFType<support::little, 4, false> > *ELFObj =
2688          dyn_cast<ELFObjectFile<ELFType<support::little, 4, false> > >(Obj))
2689    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2690
2691  // Big-endian 32-bit
2692  if (const ELFObjectFile<ELFType<support::big, 4, false> > *ELFObj =
2693          dyn_cast<ELFObjectFile<ELFType<support::big, 4, false> > >(Obj))
2694    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2695
2696  // Little-endian 64-bit
2697  if (const ELFObjectFile<ELFType<support::little, 8, true> > *ELFObj =
2698          dyn_cast<ELFObjectFile<ELFType<support::little, 8, true> > >(Obj))
2699    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2700
2701  // Big-endian 64-bit
2702  if (const ELFObjectFile<ELFType<support::big, 8, true> > *ELFObj =
2703          dyn_cast<ELFObjectFile<ELFType<support::big, 8, true> > >(Obj))
2704    return ELFObj->getSymbolVersion(Sym, Version, IsDefault);
2705
2706  llvm_unreachable("Object passed to GetELFSymbolVersion() is not ELF");
2707}
2708
2709}
2710}
2711
2712#endif
2713