TargetInstrInfo.h revision dc54d317e7a381ef8e4aca80d54ad1466bb85dda
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instruction set to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/Target/TargetInstrDesc.h"
18#include "llvm/CodeGen/MachineFunction.h"
19
20namespace llvm {
21
22class TargetRegisterClass;
23class LiveVariables;
24class CalleeSavedInfo;
25class SDNode;
26class SelectionDAG;
27
28template<class T> class SmallVectorImpl;
29
30
31//---------------------------------------------------------------------------
32///
33/// TargetInstrInfo - Interface to description of machine instruction set
34///
35class TargetInstrInfo {
36  const TargetInstrDesc *Descriptors; // Raw array to allow static init'n
37  unsigned NumOpcodes;                // Number of entries in the desc array
38
39  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
40  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
41public:
42  TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes);
43  virtual ~TargetInstrInfo();
44
45  // Invariant opcodes: All instruction sets have these as their low opcodes.
46  enum {
47    PHI = 0,
48    INLINEASM = 1,
49    DBG_LABEL = 2,
50    EH_LABEL = 3,
51    GC_LABEL = 4,
52    DECLARE = 5,
53    EXTRACT_SUBREG = 6,
54    INSERT_SUBREG = 7,
55    IMPLICIT_DEF = 8,
56    SUBREG_TO_REG = 9
57  };
58
59  unsigned getNumOpcodes() const { return NumOpcodes; }
60
61  /// get - Return the machine instruction descriptor that corresponds to the
62  /// specified instruction opcode.
63  ///
64  const TargetInstrDesc &get(unsigned Opcode) const {
65    assert(Opcode < NumOpcodes && "Invalid opcode!");
66    return Descriptors[Opcode];
67  }
68
69  /// isTriviallyReMaterializable - Return true if the instruction is trivially
70  /// rematerializable, meaning it has no side effects and requires no operands
71  /// that aren't always available.
72  bool isTriviallyReMaterializable(const MachineInstr *MI) const {
73    return MI->getDesc().isRematerializable() &&
74           isReallyTriviallyReMaterializable(MI);
75  }
76
77protected:
78  /// isReallyTriviallyReMaterializable - For instructions with opcodes for
79  /// which the M_REMATERIALIZABLE flag is set, this function tests whether the
80  /// instruction itself is actually trivially rematerializable, considering
81  /// its operands.  This is used for targets that have instructions that are
82  /// only trivially rematerializable for specific uses.  This predicate must
83  /// return false if the instruction has any side effects other than
84  /// producing a value, or if it requres any address registers that are not
85  /// always available.
86  virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
87    return true;
88  }
89
90public:
91  /// Return true if the instruction is a register to register move and return
92  /// the source and dest operands and their sub-register indices by reference.
93  virtual bool isMoveInstr(const MachineInstr& MI,
94                           unsigned& SrcReg, unsigned& DstReg,
95                           unsigned& SrcSubIdx, unsigned& DstSubIdx) const {
96    return false;
97  }
98
99  /// isLoadFromStackSlot - If the specified machine instruction is a direct
100  /// load from a stack slot, return the virtual or physical register number of
101  /// the destination along with the FrameIndex of the loaded stack slot.  If
102  /// not, return 0.  This predicate must return 0 if the instruction has
103  /// any side effects other than loading from the stack slot.
104  virtual unsigned isLoadFromStackSlot(const MachineInstr *MI,
105                                       int &FrameIndex) const {
106    return 0;
107  }
108
109  /// isStoreToStackSlot - If the specified machine instruction is a direct
110  /// store to a stack slot, return the virtual or physical register number of
111  /// the source reg along with the FrameIndex of the loaded stack slot.  If
112  /// not, return 0.  This predicate must return 0 if the instruction has
113  /// any side effects other than storing to the stack slot.
114  virtual unsigned isStoreToStackSlot(const MachineInstr *MI,
115                                      int &FrameIndex) const {
116    return 0;
117  }
118
119  /// reMaterialize - Re-issue the specified 'original' instruction at the
120  /// specific location targeting a new destination register.
121  virtual void reMaterialize(MachineBasicBlock &MBB,
122                             MachineBasicBlock::iterator MI,
123                             unsigned DestReg,
124                             const MachineInstr *Orig) const = 0;
125
126  /// isInvariantLoad - Return true if the specified instruction (which is
127  /// marked mayLoad) is loading from a location whose value is invariant across
128  /// the function.  For example, loading a value from the constant pool or from
129  /// from the argument area of a function if it does not change.  This should
130  /// only return true of *all* loads the instruction does are invariant (if it
131  /// does multiple loads).
132  virtual bool isInvariantLoad(const MachineInstr *MI) const {
133    return false;
134  }
135
136  /// convertToThreeAddress - This method must be implemented by targets that
137  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
138  /// may be able to convert a two-address instruction into one or more true
139  /// three-address instructions on demand.  This allows the X86 target (for
140  /// example) to convert ADD and SHL instructions into LEA instructions if they
141  /// would require register copies due to two-addressness.
142  ///
143  /// This method returns a null pointer if the transformation cannot be
144  /// performed, otherwise it returns the last new instruction.
145  ///
146  virtual MachineInstr *
147  convertToThreeAddress(MachineFunction::iterator &MFI,
148                   MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const {
149    return 0;
150  }
151
152  /// commuteInstruction - If a target has any instructions that are commutable,
153  /// but require converting to a different instruction or making non-trivial
154  /// changes to commute them, this method can overloaded to do this.  The
155  /// default implementation of this method simply swaps the first two operands
156  /// of MI and returns it.
157  ///
158  /// If a target wants to make more aggressive changes, they can construct and
159  /// return a new machine instruction.  If an instruction cannot commute, it
160  /// can also return null.
161  ///
162  /// If NewMI is true, then a new machine instruction must be created.
163  ///
164  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
165                                           bool NewMI = false) const = 0;
166
167  /// CommuteChangesDestination - Return true if commuting the specified
168  /// instruction will also changes the destination operand. Also return the
169  /// current operand index of the would be new destination register by
170  /// reference. This can happen when the commutable instruction is also a
171  /// two-address instruction.
172  virtual bool CommuteChangesDestination(MachineInstr *MI,
173                                         unsigned &OpIdx) const = 0;
174
175  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
176  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
177  /// implemented for a target).  Upon success, this returns false and returns
178  /// with the following information in various cases:
179  ///
180  /// 1. If this block ends with no branches (it just falls through to its succ)
181  ///    just return false, leaving TBB/FBB null.
182  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
183  ///    the destination block.
184  /// 3. If this block ends with an conditional branch and it falls through to
185  ///    an successor block, it sets TBB to be the branch destination block and a
186  ///    list of operands that evaluate the condition. These
187  ///    operands can be passed to other TargetInstrInfo methods to create new
188  ///    branches.
189  /// 4. If this block ends with an conditional branch and an unconditional
190  ///    block, it returns the 'true' destination in TBB, the 'false' destination
191  ///    in FBB, and a list of operands that evaluate the condition. These
192  ///    operands can be passed to other TargetInstrInfo methods to create new
193  ///    branches.
194  ///
195  /// Note that RemoveBranch and InsertBranch must be implemented to support
196  /// cases where this method returns success.
197  ///
198  /// If AllowModify is true, then this routine is allowed to modify the basic
199  /// block (e.g. delete instructions after the unconditional branch).
200  ///
201  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
202                             MachineBasicBlock *&FBB,
203                             SmallVectorImpl<MachineOperand> &Cond,
204                             bool AllowModify = false) const {
205    return true;
206  }
207
208  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
209  /// This is only invoked in cases where AnalyzeBranch returns success. It
210  /// returns the number of instructions that were removed.
211  virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
212    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
213    return 0;
214  }
215
216  /// InsertBranch - Insert a branch into the end of the specified
217  /// MachineBasicBlock.  This operands to this method are the same as those
218  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
219  /// returns success and when an unconditional branch (TBB is non-null, FBB is
220  /// null, Cond is empty) needs to be inserted. It returns the number of
221  /// instructions inserted.
222  virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
223                            MachineBasicBlock *FBB,
224                            const SmallVectorImpl<MachineOperand> &Cond) const {
225    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
226    return 0;
227  }
228
229  /// copyRegToReg - Emit instructions to copy between a pair of registers. It
230  /// returns false if the target does not how to copy between the specified
231  /// registers.
232  virtual bool copyRegToReg(MachineBasicBlock &MBB,
233                            MachineBasicBlock::iterator MI,
234                            unsigned DestReg, unsigned SrcReg,
235                            const TargetRegisterClass *DestRC,
236                            const TargetRegisterClass *SrcRC) const {
237    assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!");
238    return false;
239  }
240
241  /// storeRegToStackSlot - Store the specified register of the given register
242  /// class to the specified stack frame index. The store instruction is to be
243  /// added to the given machine basic block before the specified machine
244  /// instruction. If isKill is true, the register operand is the last use and
245  /// must be marked kill.
246  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
247                                   MachineBasicBlock::iterator MI,
248                                   unsigned SrcReg, bool isKill, int FrameIndex,
249                                   const TargetRegisterClass *RC) const {
250    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!");
251  }
252
253  /// storeRegToAddr - Store the specified register of the given register class
254  /// to the specified address. The store instruction is to be added to the
255  /// given machine basic block before the specified machine instruction. If
256  /// isKill is true, the register operand is the last use and must be marked
257  /// kill.
258  virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
259                              SmallVectorImpl<MachineOperand> &Addr,
260                              const TargetRegisterClass *RC,
261                              SmallVectorImpl<MachineInstr*> &NewMIs) const {
262    assert(0 && "Target didn't implement TargetInstrInfo::storeRegToAddr!");
263  }
264
265  /// loadRegFromStackSlot - Load the specified register of the given register
266  /// class from the specified stack frame index. The load instruction is to be
267  /// added to the given machine basic block before the specified machine
268  /// instruction.
269  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
270                                    MachineBasicBlock::iterator MI,
271                                    unsigned DestReg, int FrameIndex,
272                                    const TargetRegisterClass *RC) const {
273    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!");
274  }
275
276  /// loadRegFromAddr - Load the specified register of the given register class
277  /// class from the specified address. The load instruction is to be added to
278  /// the given machine basic block before the specified machine instruction.
279  virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
280                               SmallVectorImpl<MachineOperand> &Addr,
281                               const TargetRegisterClass *RC,
282                               SmallVectorImpl<MachineInstr*> &NewMIs) const {
283    assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromAddr!");
284  }
285
286  /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee
287  /// saved registers and returns true if it isn't possible / profitable to do
288  /// so by issuing a series of store instructions via
289  /// storeRegToStackSlot(). Returns false otherwise.
290  virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
291                                         MachineBasicBlock::iterator MI,
292                                const std::vector<CalleeSavedInfo> &CSI) const {
293    return false;
294  }
295
296  /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee
297  /// saved registers and returns true if it isn't possible / profitable to do
298  /// so by issuing a series of load instructions via loadRegToStackSlot().
299  /// Returns false otherwise.
300  virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
301                                           MachineBasicBlock::iterator MI,
302                                const std::vector<CalleeSavedInfo> &CSI) const {
303    return false;
304  }
305
306  /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
307  /// slot into the specified machine instruction for the specified operand(s).
308  /// If this is possible, a new instruction is returned with the specified
309  /// operand folded, otherwise NULL is returned. The client is responsible for
310  /// removing the old instruction and adding the new one in the instruction
311  /// stream.
312  MachineInstr* foldMemoryOperand(MachineFunction &MF,
313                                  MachineInstr* MI,
314                                  const SmallVectorImpl<unsigned> &Ops,
315                                  int FrameIndex) const;
316
317  /// foldMemoryOperand - Same as the previous version except it allows folding
318  /// of any load and store from / to any address, not just from a specific
319  /// stack slot.
320  MachineInstr* foldMemoryOperand(MachineFunction &MF,
321                                  MachineInstr* MI,
322                                  const SmallVectorImpl<unsigned> &Ops,
323                                  MachineInstr* LoadMI) const;
324
325protected:
326  /// foldMemoryOperandImpl - Target-dependent implementation for
327  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
328  /// take care of adding a MachineMemOperand to the newly created instruction.
329  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
330                                          MachineInstr* MI,
331                                          const SmallVectorImpl<unsigned> &Ops,
332                                          int FrameIndex) const {
333    return 0;
334  }
335
336  /// foldMemoryOperandImpl - Target-dependent implementation for
337  /// foldMemoryOperand. Target-independent code in foldMemoryOperand will
338  /// take care of adding a MachineMemOperand to the newly created instruction.
339  virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
340                                              MachineInstr* MI,
341                                              const SmallVectorImpl<unsigned> &Ops,
342                                              MachineInstr* LoadMI) const {
343    return 0;
344  }
345
346public:
347  /// canFoldMemoryOperand - Returns true for the specified load / store if
348  /// folding is possible.
349  virtual
350  bool canFoldMemoryOperand(const MachineInstr *MI,
351                            const SmallVectorImpl<unsigned> &Ops) const {
352    return false;
353  }
354
355  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
356  /// a store or a load and a store into two or more instruction. If this is
357  /// possible, returns true as well as the new instructions by reference.
358  virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
359                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
360                                  SmallVectorImpl<MachineInstr*> &NewMIs) const{
361    return false;
362  }
363
364  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
365                                   SmallVectorImpl<SDNode*> &NewNodes) const {
366    return false;
367  }
368
369  /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
370  /// instruction after load / store are unfolded from an instruction of the
371  /// specified opcode. It returns zero if the specified unfolding is not
372  /// possible.
373  virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
374                                      bool UnfoldLoad, bool UnfoldStore) const {
375    return 0;
376  }
377
378  /// BlockHasNoFallThrough - Return true if the specified block does not
379  /// fall-through into its successor block.  This is primarily used when a
380  /// branch is unanalyzable.  It is useful for things like unconditional
381  /// indirect branches (jump tables).
382  virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
383    return false;
384  }
385
386  /// ReverseBranchCondition - Reverses the branch condition of the specified
387  /// condition list, returning false on success and true if it cannot be
388  /// reversed.
389  virtual
390  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
391    return true;
392  }
393
394  /// insertNoop - Insert a noop into the instruction stream at the specified
395  /// point.
396  virtual void insertNoop(MachineBasicBlock &MBB,
397                          MachineBasicBlock::iterator MI) const {
398    assert(0 && "Target didn't implement insertNoop!");
399    abort();
400  }
401
402  /// isPredicated - Returns true if the instruction is already predicated.
403  ///
404  virtual bool isPredicated(const MachineInstr *MI) const {
405    return false;
406  }
407
408  /// isUnpredicatedTerminator - Returns true if the instruction is a
409  /// terminator instruction that has not been predicated.
410  virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const;
411
412  /// PredicateInstruction - Convert the instruction into a predicated
413  /// instruction. It returns true if the operation was successful.
414  virtual
415  bool PredicateInstruction(MachineInstr *MI,
416                        const SmallVectorImpl<MachineOperand> &Pred) const = 0;
417
418  /// SubsumesPredicate - Returns true if the first specified predicate
419  /// subsumes the second, e.g. GE subsumes GT.
420  virtual
421  bool SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
422                         const SmallVectorImpl<MachineOperand> &Pred2) const {
423    return false;
424  }
425
426  /// DefinesPredicate - If the specified instruction defines any predicate
427  /// or condition code register(s) used for predication, returns true as well
428  /// as the definition predicate(s) by reference.
429  virtual bool DefinesPredicate(MachineInstr *MI,
430                                std::vector<MachineOperand> &Pred) const {
431    return false;
432  }
433
434  /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
435  /// instruction that defines the specified register class.
436  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
437    return true;
438  }
439
440  /// GetInstSize - Returns the size of the specified Instruction.
441  ///
442  virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const {
443    assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!");
444    return 0;
445  }
446
447  /// GetFunctionSizeInBytes - Returns the size of the specified MachineFunction.
448  ///
449  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0;
450};
451
452/// TargetInstrInfoImpl - This is the default implementation of
453/// TargetInstrInfo, which just provides a couple of default implementations
454/// for various methods.  This separated out because it is implemented in
455/// libcodegen, not in libtarget.
456class TargetInstrInfoImpl : public TargetInstrInfo {
457protected:
458  TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
459  : TargetInstrInfo(desc, NumOpcodes) {}
460public:
461  virtual MachineInstr *commuteInstruction(MachineInstr *MI,
462                                           bool NewMI = false) const;
463  virtual bool CommuteChangesDestination(MachineInstr *MI,
464                                         unsigned &OpIdx) const;
465  virtual bool PredicateInstruction(MachineInstr *MI,
466                            const SmallVectorImpl<MachineOperand> &Pred) const;
467  virtual void reMaterialize(MachineBasicBlock &MBB,
468                             MachineBasicBlock::iterator MI,
469                             unsigned DestReg,
470                             const MachineInstr *Orig) const;
471  virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const;
472};
473
474} // End llvm namespace
475
476#endif
477