1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/CodeGen/DAGCombine.h"
27#include "llvm/CodeGen/RuntimeLibcalls.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/IR/Attributes.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/InlineAsm.h"
32#include "llvm/Support/CallSite.h"
33#include "llvm/Support/DebugLoc.h"
34#include "llvm/Target/TargetCallingConv.h"
35#include "llvm/Target/TargetMachine.h"
36#include <climits>
37#include <map>
38#include <vector>
39
40namespace llvm {
41  class CallInst;
42  class CCState;
43  class FastISel;
44  class FunctionLoweringInfo;
45  class ImmutableCallSite;
46  class IntrinsicInst;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineInstr;
50  class MachineJumpTableInfo;
51  class MCContext;
52  class MCExpr;
53  template<typename T> class SmallVectorImpl;
54  class DataLayout;
55  class TargetRegisterClass;
56  class TargetLibraryInfo;
57  class TargetLoweringObjectFile;
58  class Value;
59
60  namespace Sched {
61    enum Preference {
62      None,             // No preference
63      Source,           // Follow source order.
64      RegPressure,      // Scheduling for lowest register pressure.
65      Hybrid,           // Scheduling for both latency and register pressure.
66      ILP,              // Scheduling for ILP in low register pressure mode.
67      VLIW              // Scheduling for VLIW targets.
68    };
69  }
70
71/// TargetLoweringBase - This base class for TargetLowering contains the
72/// SelectionDAG-independent parts that can be used from the rest of CodeGen.
73class TargetLoweringBase {
74  TargetLoweringBase(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
75  void operator=(const TargetLoweringBase&) LLVM_DELETED_FUNCTION;
76
77public:
78  /// LegalizeAction - This enum indicates whether operations are valid for a
79  /// target, and if not, what action should be used to make them valid.
80  enum LegalizeAction {
81    Legal,      // The target natively supports this operation.
82    Promote,    // This operation should be executed in a larger type.
83    Expand,     // Try to expand this to other ops, otherwise use a libcall.
84    Custom      // Use the LowerOperation hook to implement custom lowering.
85  };
86
87  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
88  /// target, and if not, what action should be used to make them valid.
89  enum LegalizeTypeAction {
90    TypeLegal,           // The target natively supports this type.
91    TypePromoteInteger,  // Replace this integer with a larger one.
92    TypeExpandInteger,   // Split this integer into two of half the size.
93    TypeSoftenFloat,     // Convert this float to a same size integer type.
94    TypeExpandFloat,     // Split this float into two of half the size.
95    TypeScalarizeVector, // Replace this one-element vector with its element.
96    TypeSplitVector,     // Split this vector into two of half the size.
97    TypeWidenVector      // This vector should be widened into a larger vector.
98  };
99
100  /// LegalizeKind holds the legalization kind that needs to happen to EVT
101  /// in order to type-legalize it.
102  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
103
104  enum BooleanContent { // How the target represents true/false values.
105    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
106    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
107    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
108  };
109
110  enum SelectSupportKind {
111    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
112    ScalarCondVectorVal,  // The target supports selects with a scalar condition
113                          // and vector values (ex: cmov).
114    VectorMaskSelect      // The target supports vector selects with a vector
115                          // mask (ex: x86 blends).
116  };
117
118  static ISD::NodeType getExtendForContent(BooleanContent Content) {
119    switch (Content) {
120    case UndefinedBooleanContent:
121      // Extend by adding rubbish bits.
122      return ISD::ANY_EXTEND;
123    case ZeroOrOneBooleanContent:
124      // Extend by adding zero bits.
125      return ISD::ZERO_EXTEND;
126    case ZeroOrNegativeOneBooleanContent:
127      // Extend by copying the sign bit.
128      return ISD::SIGN_EXTEND;
129    }
130    llvm_unreachable("Invalid content kind");
131  }
132
133  /// NOTE: The constructor takes ownership of TLOF.
134  explicit TargetLoweringBase(const TargetMachine &TM,
135                              const TargetLoweringObjectFile *TLOF);
136  virtual ~TargetLoweringBase();
137
138  const TargetMachine &getTargetMachine() const { return TM; }
139  const DataLayout *getDataLayout() const { return TD; }
140  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
141
142  bool isBigEndian() const { return !IsLittleEndian; }
143  bool isLittleEndian() const { return IsLittleEndian; }
144  // Return the pointer type for the given address space, defaults to
145  // the pointer type from the data layout.
146  // FIXME: The default needs to be removed once all the code is updated.
147  virtual MVT getPointerTy(uint32_t AS = 0) const { return PointerTy; }
148  virtual MVT getScalarShiftAmountTy(EVT LHSTy) const;
149
150  EVT getShiftAmountTy(EVT LHSTy) const;
151
152  /// isSelectExpensive - Return true if the select operation is expensive for
153  /// this target.
154  bool isSelectExpensive() const { return SelectIsExpensive; }
155
156  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
157
158  /// shouldSplitVectorElementType - Return true if a vector of the given type
159  /// should be split (TypeSplitVector) instead of promoted
160  /// (TypePromoteInteger) during type legalization.
161  virtual bool shouldSplitVectorElementType(EVT VT) const { return false; }
162
163  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
164  /// a sequence of several shifts, adds, and multiplies for this target.
165  bool isIntDivCheap() const { return IntDivIsCheap; }
166
167  /// isSlowDivBypassed - Returns true if target has indicated at least one
168  /// type should be bypassed.
169  bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
170
171  /// getBypassSlowDivTypes - Returns map of slow types for division or
172  /// remainder with corresponding fast types
173  const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const {
174    return BypassSlowDivWidths;
175  }
176
177  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
178  /// srl/add/sra.
179  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
180
181  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
182  /// that should be avoided.
183  bool isJumpExpensive() const { return JumpIsExpensive; }
184
185  /// isPredictableSelectExpensive - Return true if selects are only cheaper
186  /// than branches if the branch is unlikely to be predicted right.
187  bool isPredictableSelectExpensive() const {
188    return PredictableSelectIsExpensive;
189  }
190
191  /// getSetCCResultType - Return the ValueType of the result of SETCC
192  /// operations.  Also used to obtain the target's preferred type for
193  /// the condition operand of SELECT and BRCOND nodes.  In the case of
194  /// BRCOND the argument passed is MVT::Other since there are no other
195  /// operands to get a type hint from.
196  virtual EVT getSetCCResultType(EVT VT) const;
197
198  /// getCmpLibcallReturnType - Return the ValueType for comparison
199  /// libcalls. Comparions libcalls include floating point comparion calls,
200  /// and Ordered/Unordered check calls on floating point numbers.
201  virtual
202  MVT::SimpleValueType getCmpLibcallReturnType() const;
203
204  /// getBooleanContents - For targets without i1 registers, this gives the
205  /// nature of the high-bits of boolean values held in types wider than i1.
206  /// "Boolean values" are special true/false values produced by nodes like
207  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
208  /// Not to be confused with general values promoted from i1.
209  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
210  /// parameter selects between the two kinds.  For example on X86 a scalar
211  /// boolean should be zero extended from i1, while the elements of a vector
212  /// of booleans should be sign extended from i1.
213  BooleanContent getBooleanContents(bool isVec) const {
214    return isVec ? BooleanVectorContents : BooleanContents;
215  }
216
217  /// getSchedulingPreference - Return target scheduling preference.
218  Sched::Preference getSchedulingPreference() const {
219    return SchedPreferenceInfo;
220  }
221
222  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
223  /// different scheduling heuristics for different nodes. This function returns
224  /// the preference (or none) for the given node.
225  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
226    return Sched::None;
227  }
228
229  /// getRegClassFor - Return the register class that should be used for the
230  /// specified value type.
231  virtual const TargetRegisterClass *getRegClassFor(MVT VT) const {
232    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
233    assert(RC && "This value type is not natively supported!");
234    return RC;
235  }
236
237  /// getRepRegClassFor - Return the 'representative' register class for the
238  /// specified value type. The 'representative' register class is the largest
239  /// legal super-reg register class for the register class of the value type.
240  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
241  /// while the rep register class is GR64 on x86_64.
242  virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
243    const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
244    return RC;
245  }
246
247  /// getRepRegClassCostFor - Return the cost of the 'representative' register
248  /// class for the specified value type.
249  virtual uint8_t getRepRegClassCostFor(MVT VT) const {
250    return RepRegClassCostForVT[VT.SimpleTy];
251  }
252
253  /// isTypeLegal - Return true if the target has native support for the
254  /// specified value type.  This means that it has a register that directly
255  /// holds it without promotions or expansions.
256  bool isTypeLegal(EVT VT) const {
257    assert(!VT.isSimple() ||
258           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
259    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
260  }
261
262  class ValueTypeActionImpl {
263    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
264    /// that indicates how instruction selection should deal with the type.
265    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
266
267  public:
268    ValueTypeActionImpl() {
269      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
270    }
271
272    LegalizeTypeAction getTypeAction(MVT VT) const {
273      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
274    }
275
276    void setTypeAction(MVT VT, LegalizeTypeAction Action) {
277      unsigned I = VT.SimpleTy;
278      ValueTypeActions[I] = Action;
279    }
280  };
281
282  const ValueTypeActionImpl &getValueTypeActions() const {
283    return ValueTypeActions;
284  }
285
286  /// getTypeAction - Return how we should legalize values of this type, either
287  /// it is already legal (return 'Legal') or we need to promote it to a larger
288  /// type (return 'Promote'), or we need to expand it into multiple registers
289  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
290  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
291    return getTypeConversion(Context, VT).first;
292  }
293  LegalizeTypeAction getTypeAction(MVT VT) const {
294    return ValueTypeActions.getTypeAction(VT);
295  }
296
297  /// getTypeToTransformTo - For types supported by the target, this is an
298  /// identity function.  For types that must be promoted to larger types, this
299  /// returns the larger type to promote to.  For integer types that are larger
300  /// than the largest integer register, this contains one step in the expansion
301  /// to get to the smaller register. For illegal floating point types, this
302  /// returns the integer type to transform to.
303  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
304    return getTypeConversion(Context, VT).second;
305  }
306
307  /// getTypeToExpandTo - For types supported by the target, this is an
308  /// identity function.  For types that must be expanded (i.e. integer types
309  /// that are larger than the largest integer register or illegal floating
310  /// point types), this returns the largest legal type it will be expanded to.
311  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
312    assert(!VT.isVector());
313    while (true) {
314      switch (getTypeAction(Context, VT)) {
315      case TypeLegal:
316        return VT;
317      case TypeExpandInteger:
318        VT = getTypeToTransformTo(Context, VT);
319        break;
320      default:
321        llvm_unreachable("Type is not legal nor is it to be expanded!");
322      }
323    }
324  }
325
326  /// getVectorTypeBreakdown - Vector types are broken down into some number of
327  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
328  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
329  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
330  ///
331  /// This method returns the number of registers needed, and the VT for each
332  /// register.  It also returns the VT and quantity of the intermediate values
333  /// before they are promoted/expanded.
334  ///
335  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
336                                  EVT &IntermediateVT,
337                                  unsigned &NumIntermediates,
338                                  MVT &RegisterVT) const;
339
340  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
341  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
342  /// this is the case, it returns true and store the intrinsic
343  /// information into the IntrinsicInfo that was passed to the function.
344  struct IntrinsicInfo {
345    unsigned     opc;         // target opcode
346    EVT          memVT;       // memory VT
347    const Value* ptrVal;      // value representing memory location
348    int          offset;      // offset off of ptrVal
349    unsigned     align;       // alignment
350    bool         vol;         // is volatile?
351    bool         readMem;     // reads memory?
352    bool         writeMem;    // writes memory?
353  };
354
355  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
356                                  unsigned /*Intrinsic*/) const {
357    return false;
358  }
359
360  /// isFPImmLegal - Returns true if the target can instruction select the
361  /// specified FP immediate natively. If false, the legalizer will materialize
362  /// the FP immediate as a load from a constant pool.
363  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
364    return false;
365  }
366
367  /// isShuffleMaskLegal - Targets can use this to indicate that they only
368  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
369  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
370  /// are assumed to be legal.
371  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
372                                  EVT /*VT*/) const {
373    return true;
374  }
375
376  /// canOpTrap - Returns true if the operation can trap for the value type.
377  /// VT must be a legal type. By default, we optimistically assume most
378  /// operations don't trap except for divide and remainder.
379  virtual bool canOpTrap(unsigned Op, EVT VT) const;
380
381  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
382  /// used by Targets can use this to indicate if there is a suitable
383  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
384  /// pool entry.
385  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
386                                      EVT /*VT*/) const {
387    return false;
388  }
389
390  /// getOperationAction - Return how this operation should be treated: either
391  /// it is legal, needs to be promoted to a larger size, needs to be
392  /// expanded to some other code sequence, or the target has a custom expander
393  /// for it.
394  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
395    if (VT.isExtended()) return Expand;
396    // If a target-specific SDNode requires legalization, require the target
397    // to provide custom legalization for it.
398    if (Op > array_lengthof(OpActions[0])) return Custom;
399    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
400    return (LegalizeAction)OpActions[I][Op];
401  }
402
403  /// isOperationLegalOrCustom - Return true if the specified operation is
404  /// legal on this target or can be made legal with custom lowering. This
405  /// is used to help guide high-level lowering decisions.
406  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
407    return (VT == MVT::Other || isTypeLegal(VT)) &&
408      (getOperationAction(Op, VT) == Legal ||
409       getOperationAction(Op, VT) == Custom);
410  }
411
412  /// isOperationLegalOrPromote - Return true if the specified operation is
413  /// legal on this target or can be made legal using promotion. This
414  /// is used to help guide high-level lowering decisions.
415  bool isOperationLegalOrPromote(unsigned Op, EVT VT) const {
416    return (VT == MVT::Other || isTypeLegal(VT)) &&
417      (getOperationAction(Op, VT) == Legal ||
418       getOperationAction(Op, VT) == Promote);
419  }
420
421  /// isOperationExpand - Return true if the specified operation is illegal on
422  /// this target or unlikely to be made legal with custom lowering. This is
423  /// used to help guide high-level lowering decisions.
424  bool isOperationExpand(unsigned Op, EVT VT) const {
425    return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
426  }
427
428  /// isOperationLegal - Return true if the specified operation is legal on this
429  /// target.
430  bool isOperationLegal(unsigned Op, EVT VT) const {
431    return (VT == MVT::Other || isTypeLegal(VT)) &&
432           getOperationAction(Op, VT) == Legal;
433  }
434
435  /// getLoadExtAction - Return how this load with extension should be treated:
436  /// either it is legal, needs to be promoted to a larger size, needs to be
437  /// expanded to some other code sequence, or the target has a custom expander
438  /// for it.
439  LegalizeAction getLoadExtAction(unsigned ExtType, MVT VT) const {
440    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
441           "Table isn't big enough!");
442    return (LegalizeAction)LoadExtActions[VT.SimpleTy][ExtType];
443  }
444
445  /// isLoadExtLegal - Return true if the specified load with extension is legal
446  /// on this target.
447  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
448    return VT.isSimple() &&
449      getLoadExtAction(ExtType, VT.getSimpleVT()) == Legal;
450  }
451
452  /// getTruncStoreAction - Return how this store with truncation should be
453  /// treated: either it is legal, needs to be promoted to a larger size, needs
454  /// to be expanded to some other code sequence, or the target has a custom
455  /// expander for it.
456  LegalizeAction getTruncStoreAction(MVT ValVT, MVT MemVT) const {
457    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
458           "Table isn't big enough!");
459    return (LegalizeAction)TruncStoreActions[ValVT.SimpleTy]
460                                            [MemVT.SimpleTy];
461  }
462
463  /// isTruncStoreLegal - Return true if the specified store with truncation is
464  /// legal on this target.
465  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
466    return isTypeLegal(ValVT) && MemVT.isSimple() &&
467      getTruncStoreAction(ValVT.getSimpleVT(), MemVT.getSimpleVT()) == Legal;
468  }
469
470  /// getIndexedLoadAction - Return how the indexed load should be treated:
471  /// either it is legal, needs to be promoted to a larger size, needs to be
472  /// expanded to some other code sequence, or the target has a custom expander
473  /// for it.
474  LegalizeAction
475  getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
476    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
477           "Table isn't big enough!");
478    unsigned Ty = (unsigned)VT.SimpleTy;
479    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
480  }
481
482  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
483  /// on this target.
484  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
485    return VT.isSimple() &&
486      (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
487       getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
488  }
489
490  /// getIndexedStoreAction - Return how the indexed store should be treated:
491  /// either it is legal, needs to be promoted to a larger size, needs to be
492  /// expanded to some other code sequence, or the target has a custom expander
493  /// for it.
494  LegalizeAction
495  getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
496    assert(IdxMode < ISD::LAST_INDEXED_MODE && VT < MVT::LAST_VALUETYPE &&
497           "Table isn't big enough!");
498    unsigned Ty = (unsigned)VT.SimpleTy;
499    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
500  }
501
502  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
503  /// on this target.
504  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
505    return VT.isSimple() &&
506      (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
507       getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
508  }
509
510  /// getCondCodeAction - Return how the condition code should be treated:
511  /// either it is legal, needs to be expanded to some other code sequence,
512  /// or the target has a custom expander for it.
513  LegalizeAction
514  getCondCodeAction(ISD::CondCode CC, MVT VT) const {
515    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
516           (unsigned)VT.SimpleTy < sizeof(CondCodeActions[0])*4 &&
517           "Table isn't big enough!");
518    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
519    /// value and the upper 27 bits index into the second dimension of the
520    /// array to select what 64bit value to use.
521    LegalizeAction Action = (LegalizeAction)
522      ((CondCodeActions[CC][VT.SimpleTy >> 5] >> (2*(VT.SimpleTy & 0x1F))) & 3);
523    assert(Action != Promote && "Can't promote condition code!");
524    return Action;
525  }
526
527  /// isCondCodeLegal - Return true if the specified condition code is legal
528  /// on this target.
529  bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const {
530    return
531      getCondCodeAction(CC, VT) == Legal ||
532      getCondCodeAction(CC, VT) == Custom;
533  }
534
535
536  /// getTypeToPromoteTo - If the action for this operation is to promote, this
537  /// method returns the ValueType to promote to.
538  MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
539    assert(getOperationAction(Op, VT) == Promote &&
540           "This operation isn't promoted!");
541
542    // See if this has an explicit type specified.
543    std::map<std::pair<unsigned, MVT::SimpleValueType>,
544             MVT::SimpleValueType>::const_iterator PTTI =
545      PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
546    if (PTTI != PromoteToType.end()) return PTTI->second;
547
548    assert((VT.isInteger() || VT.isFloatingPoint()) &&
549           "Cannot autopromote this type, add it with AddPromotedToType.");
550
551    MVT NVT = VT;
552    do {
553      NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
554      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
555             "Didn't find type to promote to!");
556    } while (!isTypeLegal(NVT) ||
557              getOperationAction(Op, NVT) == Promote);
558    return NVT;
559  }
560
561  /// getValueType - Return the EVT corresponding to this LLVM type.
562  /// This is fixed by the LLVM operations except for the pointer size.  If
563  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
564  /// counterpart (e.g. structs), otherwise it will assert.
565  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
566    // Lower scalar pointers to native pointer types.
567    if (Ty->isPointerTy()) return PointerTy;
568
569    if (Ty->isVectorTy()) {
570      VectorType *VTy = cast<VectorType>(Ty);
571      Type *Elm = VTy->getElementType();
572      // Lower vectors of pointers to native pointer types.
573      if (Elm->isPointerTy())
574        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
575      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
576                       VTy->getNumElements());
577    }
578    return EVT::getEVT(Ty, AllowUnknown);
579  }
580
581  /// Return the MVT corresponding to this LLVM type. See getValueType.
582  MVT getSimpleValueType(Type *Ty, bool AllowUnknown = false) const {
583    return getValueType(Ty, AllowUnknown).getSimpleVT();
584  }
585
586  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
587  /// function arguments in the caller parameter area.  This is the actual
588  /// alignment, not its logarithm.
589  virtual unsigned getByValTypeAlignment(Type *Ty) const;
590
591  /// getRegisterType - Return the type of registers that this ValueType will
592  /// eventually require.
593  MVT getRegisterType(MVT VT) const {
594    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
595    return RegisterTypeForVT[VT.SimpleTy];
596  }
597
598  /// getRegisterType - Return the type of registers that this ValueType will
599  /// eventually require.
600  MVT getRegisterType(LLVMContext &Context, EVT VT) const {
601    if (VT.isSimple()) {
602      assert((unsigned)VT.getSimpleVT().SimpleTy <
603                array_lengthof(RegisterTypeForVT));
604      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
605    }
606    if (VT.isVector()) {
607      EVT VT1;
608      MVT RegisterVT;
609      unsigned NumIntermediates;
610      (void)getVectorTypeBreakdown(Context, VT, VT1,
611                                   NumIntermediates, RegisterVT);
612      return RegisterVT;
613    }
614    if (VT.isInteger()) {
615      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
616    }
617    llvm_unreachable("Unsupported extended type!");
618  }
619
620  /// getNumRegisters - Return the number of registers that this ValueType will
621  /// eventually require.  This is one for any types promoted to live in larger
622  /// registers, but may be more than one for types (like i64) that are split
623  /// into pieces.  For types like i140, which are first promoted then expanded,
624  /// it is the number of registers needed to hold all the bits of the original
625  /// type.  For an i140 on a 32 bit machine this means 5 registers.
626  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
627    if (VT.isSimple()) {
628      assert((unsigned)VT.getSimpleVT().SimpleTy <
629                array_lengthof(NumRegistersForVT));
630      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
631    }
632    if (VT.isVector()) {
633      EVT VT1;
634      MVT VT2;
635      unsigned NumIntermediates;
636      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
637    }
638    if (VT.isInteger()) {
639      unsigned BitWidth = VT.getSizeInBits();
640      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
641      return (BitWidth + RegWidth - 1) / RegWidth;
642    }
643    llvm_unreachable("Unsupported extended type!");
644  }
645
646  /// ShouldShrinkFPConstant - If true, then instruction selection should
647  /// seek to shrink the FP constant of the specified type to a smaller type
648  /// in order to save space and / or reduce runtime.
649  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
650
651  /// hasTargetDAGCombine - If true, the target has custom DAG combine
652  /// transformations that it can perform for the specified node.
653  bool hasTargetDAGCombine(ISD::NodeType NT) const {
654    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
655    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
656  }
657
658  /// This function returns the maximum number of store operations permitted
659  /// to replace a call to llvm.memset. The value is set by the target at the
660  /// performance threshold for such a replacement. If OptSize is true,
661  /// return the limit for functions that have OptSize attribute.
662  /// @brief Get maximum # of store operations permitted for llvm.memset
663  unsigned getMaxStoresPerMemset(bool OptSize) const {
664    return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset;
665  }
666
667  /// This function returns the maximum number of store operations permitted
668  /// to replace a call to llvm.memcpy. The value is set by the target at the
669  /// performance threshold for such a replacement. If OptSize is true,
670  /// return the limit for functions that have OptSize attribute.
671  /// @brief Get maximum # of store operations permitted for llvm.memcpy
672  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
673    return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy;
674  }
675
676  /// This function returns the maximum number of store operations permitted
677  /// to replace a call to llvm.memmove. The value is set by the target at the
678  /// performance threshold for such a replacement. If OptSize is true,
679  /// return the limit for functions that have OptSize attribute.
680  /// @brief Get maximum # of store operations permitted for llvm.memmove
681  unsigned getMaxStoresPerMemmove(bool OptSize) const {
682    return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove;
683  }
684
685  /// This function returns true if the target allows unaligned memory accesses.
686  /// of the specified type. If true, it also returns whether the unaligned
687  /// memory access is "fast" in the second argument by reference. This is used,
688  /// for example, in situations where an array copy/move/set is  converted to a
689  /// sequence of store operations. It's use helps to ensure that such
690  /// replacements don't generate code that causes an alignment error  (trap) on
691  /// the target machine.
692  /// @brief Determine if the target supports unaligned memory accesses.
693  virtual bool allowsUnalignedMemoryAccesses(EVT, bool *Fast = 0) const {
694    return false;
695  }
696
697  /// This function returns true if the target would benefit from code placement
698  /// optimization.
699  /// @brief Determine if the target should perform code placement optimization.
700  bool shouldOptimizeCodePlacement() const {
701    return BenefitFromCodePlacementOpt;
702  }
703
704  /// getOptimalMemOpType - Returns the target specific optimal type for load
705  /// and store operations as a result of memset, memcpy, and memmove
706  /// lowering. If DstAlign is zero that means it's safe to destination
707  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
708  /// means there isn't a need to check it against alignment requirement,
709  /// probably because the source does not need to be loaded. If 'IsMemset' is
710  /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
711  /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
712  /// source is constant so it does not need to be loaded.
713  /// It returns EVT::Other if the type should be determined using generic
714  /// target-independent logic.
715  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
716                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
717                                  bool /*IsMemset*/,
718                                  bool /*ZeroMemset*/,
719                                  bool /*MemcpyStrSrc*/,
720                                  MachineFunction &/*MF*/) const {
721    return MVT::Other;
722  }
723
724  /// isSafeMemOpType - Returns true if it's safe to use load / store of the
725  /// specified type to expand memcpy / memset inline. This is mostly true
726  /// for all types except for some special cases. For example, on X86
727  /// targets without SSE2 f64 load / store are done with fldl / fstpl which
728  /// also does type conversion. Note the specified type doesn't have to be
729  /// legal as the hook is used before type legalization.
730  virtual bool isSafeMemOpType(MVT VT) const {
731    return true;
732  }
733
734  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
735  /// to implement llvm.setjmp.
736  bool usesUnderscoreSetJmp() const {
737    return UseUnderscoreSetJmp;
738  }
739
740  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
741  /// to implement llvm.longjmp.
742  bool usesUnderscoreLongJmp() const {
743    return UseUnderscoreLongJmp;
744  }
745
746  /// supportJumpTables - return whether the target can generate code for
747  /// jump tables.
748  bool supportJumpTables() const {
749    return SupportJumpTables;
750  }
751
752  /// getMinimumJumpTableEntries - return integer threshold on number of
753  /// blocks to use jump tables rather than if sequence.
754  int getMinimumJumpTableEntries() const {
755    return MinimumJumpTableEntries;
756  }
757
758  /// getStackPointerRegisterToSaveRestore - If a physical register, this
759  /// specifies the register that llvm.savestack/llvm.restorestack should save
760  /// and restore.
761  unsigned getStackPointerRegisterToSaveRestore() const {
762    return StackPointerRegisterToSaveRestore;
763  }
764
765  /// getExceptionPointerRegister - If a physical register, this returns
766  /// the register that receives the exception address on entry to a landing
767  /// pad.
768  unsigned getExceptionPointerRegister() const {
769    return ExceptionPointerRegister;
770  }
771
772  /// getExceptionSelectorRegister - If a physical register, this returns
773  /// the register that receives the exception typeid on entry to a landing
774  /// pad.
775  unsigned getExceptionSelectorRegister() const {
776    return ExceptionSelectorRegister;
777  }
778
779  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
780  /// set, the default is 200)
781  unsigned getJumpBufSize() const {
782    return JumpBufSize;
783  }
784
785  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
786  /// (if never set, the default is 0)
787  unsigned getJumpBufAlignment() const {
788    return JumpBufAlignment;
789  }
790
791  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
792  /// argument.
793  unsigned getMinStackArgumentAlignment() const {
794    return MinStackArgumentAlignment;
795  }
796
797  /// getMinFunctionAlignment - return the minimum function alignment.
798  ///
799  unsigned getMinFunctionAlignment() const {
800    return MinFunctionAlignment;
801  }
802
803  /// getPrefFunctionAlignment - return the preferred function alignment.
804  ///
805  unsigned getPrefFunctionAlignment() const {
806    return PrefFunctionAlignment;
807  }
808
809  /// getPrefLoopAlignment - return the preferred loop alignment.
810  ///
811  unsigned getPrefLoopAlignment() const {
812    return PrefLoopAlignment;
813  }
814
815  /// getShouldFoldAtomicFences - return whether the combiner should fold
816  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
817  ///
818  bool getShouldFoldAtomicFences() const {
819    return ShouldFoldAtomicFences;
820  }
821
822  /// getInsertFencesFor - return whether the DAG builder should automatically
823  /// insert fences and reduce ordering for atomics.
824  ///
825  bool getInsertFencesForAtomic() const {
826    return InsertFencesForAtomic;
827  }
828
829  /// getStackCookieLocation - Return true if the target stores stack
830  /// protector cookies at a fixed offset in some non-standard address
831  /// space, and populates the address space and offset as
832  /// appropriate.
833  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
834                                      unsigned &/*Offset*/) const {
835    return false;
836  }
837
838  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
839  /// used for loads / stores from the global.
840  virtual unsigned getMaximalGlobalOffset() const {
841    return 0;
842  }
843
844  //===--------------------------------------------------------------------===//
845  /// \name Helpers for TargetTransformInfo implementations
846  /// @{
847
848  /// Get the ISD node that corresponds to the Instruction class opcode.
849  int InstructionOpcodeToISD(unsigned Opcode) const;
850
851  /// Estimate the cost of type-legalization and the legalized type.
852  std::pair<unsigned, MVT> getTypeLegalizationCost(Type *Ty) const;
853
854  /// @}
855
856  //===--------------------------------------------------------------------===//
857  // TargetLowering Configuration Methods - These methods should be invoked by
858  // the derived class constructor to configure this object for the target.
859  //
860
861protected:
862  /// setBooleanContents - Specify how the target extends the result of a
863  /// boolean value from i1 to a wider type.  See getBooleanContents.
864  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
865  /// setBooleanVectorContents - Specify how the target extends the result
866  /// of a vector boolean value from a vector of i1 to a wider type.  See
867  /// getBooleanContents.
868  void setBooleanVectorContents(BooleanContent Ty) {
869    BooleanVectorContents = Ty;
870  }
871
872  /// setSchedulingPreference - Specify the target scheduling preference.
873  void setSchedulingPreference(Sched::Preference Pref) {
874    SchedPreferenceInfo = Pref;
875  }
876
877  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
878  /// use _setjmp to implement llvm.setjmp or the non _ version.
879  /// Defaults to false.
880  void setUseUnderscoreSetJmp(bool Val) {
881    UseUnderscoreSetJmp = Val;
882  }
883
884  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
885  /// use _longjmp to implement llvm.longjmp or the non _ version.
886  /// Defaults to false.
887  void setUseUnderscoreLongJmp(bool Val) {
888    UseUnderscoreLongJmp = Val;
889  }
890
891  /// setSupportJumpTables - Indicate whether the target can generate code for
892  /// jump tables.
893  void setSupportJumpTables(bool Val) {
894    SupportJumpTables = Val;
895  }
896
897  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
898  /// jump tables rather than if sequence.
899  void setMinimumJumpTableEntries(int Val) {
900    MinimumJumpTableEntries = Val;
901  }
902
903  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
904  /// specifies the register that llvm.savestack/llvm.restorestack should save
905  /// and restore.
906  void setStackPointerRegisterToSaveRestore(unsigned R) {
907    StackPointerRegisterToSaveRestore = R;
908  }
909
910  /// setExceptionPointerRegister - If set to a physical register, this sets
911  /// the register that receives the exception address on entry to a landing
912  /// pad.
913  void setExceptionPointerRegister(unsigned R) {
914    ExceptionPointerRegister = R;
915  }
916
917  /// setExceptionSelectorRegister - If set to a physical register, this sets
918  /// the register that receives the exception typeid on entry to a landing
919  /// pad.
920  void setExceptionSelectorRegister(unsigned R) {
921    ExceptionSelectorRegister = R;
922  }
923
924  /// SelectIsExpensive - Tells the code generator not to expand operations
925  /// into sequences that use the select operations if possible.
926  void setSelectIsExpensive(bool isExpensive = true) {
927    SelectIsExpensive = isExpensive;
928  }
929
930  /// JumpIsExpensive - Tells the code generator not to expand sequence of
931  /// operations into a separate sequences that increases the amount of
932  /// flow control.
933  void setJumpIsExpensive(bool isExpensive = true) {
934    JumpIsExpensive = isExpensive;
935  }
936
937  /// setIntDivIsCheap - Tells the code generator that integer divide is
938  /// expensive, and if possible, should be replaced by an alternate sequence
939  /// of instructions not containing an integer divide.
940  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
941
942  /// addBypassSlowDiv - Tells the code generator which bitwidths to bypass.
943  void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
944    BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
945  }
946
947  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
948  /// srl/add/sra for a signed divide by power of two, and let the target handle
949  /// it.
950  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
951
952  /// addRegisterClass - Add the specified register class as an available
953  /// regclass for the specified value type.  This indicates the selector can
954  /// handle values of that class natively.
955  void addRegisterClass(MVT VT, const TargetRegisterClass *RC) {
956    assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT));
957    AvailableRegClasses.push_back(std::make_pair(VT, RC));
958    RegClassForVT[VT.SimpleTy] = RC;
959  }
960
961  /// clearRegisterClasses - remove all register classes
962  void clearRegisterClasses() {
963    for (unsigned i = 0 ; i<array_lengthof(RegClassForVT); i++)
964      RegClassForVT[i] = 0;
965    AvailableRegClasses.clear();
966  }
967
968  /// findRepresentativeClass - Return the largest legal super-reg register class
969  /// of the register class for the specified type and its associated "cost".
970  virtual std::pair<const TargetRegisterClass*, uint8_t>
971  findRepresentativeClass(MVT VT) const;
972
973  /// computeRegisterProperties - Once all of the register classes are added,
974  /// this allows us to compute derived properties we expose.
975  void computeRegisterProperties();
976
977  /// setOperationAction - Indicate that the specified operation does not work
978  /// with the specified type and indicate what to do about it.
979  void setOperationAction(unsigned Op, MVT VT,
980                          LegalizeAction Action) {
981    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
982    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
983  }
984
985  /// setLoadExtAction - Indicate that the specified load with extension does
986  /// not work with the specified type and indicate what to do about it.
987  void setLoadExtAction(unsigned ExtType, MVT VT,
988                        LegalizeAction Action) {
989    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
990           "Table isn't big enough!");
991    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
992  }
993
994  /// setTruncStoreAction - Indicate that the specified truncating store does
995  /// not work with the specified type and indicate what to do about it.
996  void setTruncStoreAction(MVT ValVT, MVT MemVT,
997                           LegalizeAction Action) {
998    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
999           "Table isn't big enough!");
1000    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1001  }
1002
1003  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1004  /// does not work with the specified type and indicate what to do abort
1005  /// it. NOTE: All indexed mode loads are initialized to Expand in
1006  /// TargetLowering.cpp
1007  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1008                            LegalizeAction Action) {
1009    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1010           (unsigned)Action < 0xf && "Table isn't big enough!");
1011    // Load action are kept in the upper half.
1012    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1013    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1014  }
1015
1016  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1017  /// does not work with the specified type and indicate what to do about
1018  /// it. NOTE: All indexed mode stores are initialized to Expand in
1019  /// TargetLowering.cpp
1020  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1021                             LegalizeAction Action) {
1022    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1023           (unsigned)Action < 0xf && "Table isn't big enough!");
1024    // Store action are kept in the lower half.
1025    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1026    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1027  }
1028
1029  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1030  /// supported on the target and indicate what to do about it.
1031  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1032                         LegalizeAction Action) {
1033    assert(VT < MVT::LAST_VALUETYPE &&
1034           (unsigned)CC < array_lengthof(CondCodeActions) &&
1035           "Table isn't big enough!");
1036    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1037    /// value and the upper 27 bits index into the second dimension of the
1038    /// array to select what 64bit value to use.
1039    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1040      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1041    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1042      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1043  }
1044
1045  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1046  /// promotion code defaults to trying a larger integer/fp until it can find
1047  /// one that works.  If that default is insufficient, this method can be used
1048  /// by the target to override the default.
1049  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1050    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1051  }
1052
1053  /// setTargetDAGCombine - Targets should invoke this method for each target
1054  /// independent node that they want to provide a custom DAG combiner for by
1055  /// implementing the PerformDAGCombine virtual method.
1056  void setTargetDAGCombine(ISD::NodeType NT) {
1057    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1058    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1059  }
1060
1061  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1062  /// bytes); default is 200
1063  void setJumpBufSize(unsigned Size) {
1064    JumpBufSize = Size;
1065  }
1066
1067  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1068  /// alignment (in bytes); default is 0
1069  void setJumpBufAlignment(unsigned Align) {
1070    JumpBufAlignment = Align;
1071  }
1072
1073  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1074  /// log2(bytes))
1075  void setMinFunctionAlignment(unsigned Align) {
1076    MinFunctionAlignment = Align;
1077  }
1078
1079  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1080  /// This should be set if there is a performance benefit to
1081  /// higher-than-minimum alignment (in log2(bytes))
1082  void setPrefFunctionAlignment(unsigned Align) {
1083    PrefFunctionAlignment = Align;
1084  }
1085
1086  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1087  /// alignment is zero, it means the target does not care about loop alignment.
1088  /// The alignment is specified in log2(bytes).
1089  void setPrefLoopAlignment(unsigned Align) {
1090    PrefLoopAlignment = Align;
1091  }
1092
1093  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1094  /// argument (in log2(bytes)).
1095  void setMinStackArgumentAlignment(unsigned Align) {
1096    MinStackArgumentAlignment = Align;
1097  }
1098
1099  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1100  /// atomic operation intrinsics includes locking. Default is false.
1101  void setShouldFoldAtomicFences(bool fold) {
1102    ShouldFoldAtomicFences = fold;
1103  }
1104
1105  /// setInsertFencesForAtomic - Set if the DAG builder should
1106  /// automatically insert fences and reduce the order of atomic memory
1107  /// operations to Monotonic.
1108  void setInsertFencesForAtomic(bool fence) {
1109    InsertFencesForAtomic = fence;
1110  }
1111
1112public:
1113  //===--------------------------------------------------------------------===//
1114  // Addressing mode description hooks (used by LSR etc).
1115  //
1116
1117  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1118  /// same BB as Load/Store instructions reading the address.  This allows as
1119  /// much computation as possible to be done in the address mode for that
1120  /// operand.  This hook lets targets also pass back when this should be done
1121  /// on intrinsics which load/store.
1122  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1123                                    SmallVectorImpl<Value*> &Ops,
1124                                    Type *&AccessTy) const {
1125    return false;
1126  }
1127
1128  /// AddrMode - This represents an addressing mode of:
1129  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1130  /// If BaseGV is null,  there is no BaseGV.
1131  /// If BaseOffs is zero, there is no base offset.
1132  /// If HasBaseReg is false, there is no base register.
1133  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1134  /// no scale.
1135  ///
1136  struct AddrMode {
1137    GlobalValue *BaseGV;
1138    int64_t      BaseOffs;
1139    bool         HasBaseReg;
1140    int64_t      Scale;
1141    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1142  };
1143
1144  /// isLegalAddressingMode - Return true if the addressing mode represented by
1145  /// AM is legal for this target, for a load/store of the specified type.
1146  /// The type may be VoidTy, in which case only return true if the addressing
1147  /// mode is legal for a load/store of any legal type.
1148  /// TODO: Handle pre/postinc as well.
1149  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1150
1151  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1152  /// icmp immediate, that is the target has icmp instructions which can compare
1153  /// a register against the immediate without having to materialize the
1154  /// immediate into a register.
1155  virtual bool isLegalICmpImmediate(int64_t) const {
1156    return true;
1157  }
1158
1159  /// isLegalAddImmediate - Return true if the specified immediate is legal
1160  /// add immediate, that is the target has add instructions which can add
1161  /// a register with the immediate without having to materialize the
1162  /// immediate into a register.
1163  virtual bool isLegalAddImmediate(int64_t) const {
1164    return true;
1165  }
1166
1167  /// isTruncateFree - Return true if it's free to truncate a value of
1168  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1169  /// register EAX to i16 by referencing its sub-register AX.
1170  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1171    return false;
1172  }
1173
1174  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1175    return false;
1176  }
1177
1178  /// isZExtFree - Return true if any actual instruction that defines a
1179  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1180  /// register. This does not necessarily include registers defined in
1181  /// unknown ways, such as incoming arguments, or copies from unknown
1182  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1183  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1184  /// all instructions that define 32-bit values implicit zero-extend the
1185  /// result out to 64 bits.
1186  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1187    return false;
1188  }
1189
1190  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1191    return false;
1192  }
1193
1194  /// isZExtFree - Return true if zero-extending the specific node Val to type
1195  /// VT2 is free (either because it's implicitly zero-extended such as ARM
1196  /// ldrb / ldrh or because it's folded such as X86 zero-extending loads).
1197  virtual bool isZExtFree(SDValue Val, EVT VT2) const {
1198    return isZExtFree(Val.getValueType(), VT2);
1199  }
1200
1201  /// isFNegFree - Return true if an fneg operation is free to the point where
1202  /// it is never worthwhile to replace it with a bitwise operation.
1203  virtual bool isFNegFree(EVT) const {
1204    return false;
1205  }
1206
1207  /// isFAbsFree - Return true if an fneg operation is free to the point where
1208  /// it is never worthwhile to replace it with a bitwise operation.
1209  virtual bool isFAbsFree(EVT) const {
1210    return false;
1211  }
1212
1213  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1214  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1215  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1216  /// is expanded to mul + add.
1217  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1218    return false;
1219  }
1220
1221  /// isNarrowingProfitable - Return true if it's profitable to narrow
1222  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1223  /// from i32 to i8 but not from i32 to i16.
1224  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1225    return false;
1226  }
1227
1228  //===--------------------------------------------------------------------===//
1229  // Runtime Library hooks
1230  //
1231
1232  /// setLibcallName - Rename the default libcall routine name for the specified
1233  /// libcall.
1234  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1235    LibcallRoutineNames[Call] = Name;
1236  }
1237
1238  /// getLibcallName - Get the libcall routine name for the specified libcall.
1239  ///
1240  const char *getLibcallName(RTLIB::Libcall Call) const {
1241    return LibcallRoutineNames[Call];
1242  }
1243
1244  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1245  /// result of the comparison libcall against zero.
1246  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1247    CmpLibcallCCs[Call] = CC;
1248  }
1249
1250  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1251  /// the comparison libcall against zero.
1252  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1253    return CmpLibcallCCs[Call];
1254  }
1255
1256  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1257  /// specified libcall.
1258  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1259    LibcallCallingConvs[Call] = CC;
1260  }
1261
1262  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1263  /// specified libcall.
1264  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1265    return LibcallCallingConvs[Call];
1266  }
1267
1268private:
1269  const TargetMachine &TM;
1270  const DataLayout *TD;
1271  const TargetLoweringObjectFile &TLOF;
1272
1273  /// PointerTy - The type to use for pointers for the default address space,
1274  /// usually i32 or i64.
1275  ///
1276  MVT PointerTy;
1277
1278  /// IsLittleEndian - True if this is a little endian target.
1279  ///
1280  bool IsLittleEndian;
1281
1282  /// SelectIsExpensive - Tells the code generator not to expand operations
1283  /// into sequences that use the select operations if possible.
1284  bool SelectIsExpensive;
1285
1286  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1287  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1288  /// a real cost model is in place.  If we ever optimize for size, this will be
1289  /// set to true unconditionally.
1290  bool IntDivIsCheap;
1291
1292  /// BypassSlowDivMap - Tells the code generator to bypass slow divide or
1293  /// remainder instructions. For example, BypassSlowDivWidths[32,8] tells the
1294  /// code generator to bypass 32-bit integer div/rem with an 8-bit unsigned
1295  /// integer div/rem when the operands are positive and less than 256.
1296  DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
1297
1298  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1299  /// srl/add/sra for a signed divide by power of two, and let the target handle
1300  /// it.
1301  bool Pow2DivIsCheap;
1302
1303  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1304  /// extra flow control instructions and should attempt to combine flow
1305  /// control instructions via predication.
1306  bool JumpIsExpensive;
1307
1308  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1309  /// llvm.setjmp.  Defaults to false.
1310  bool UseUnderscoreSetJmp;
1311
1312  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1313  /// llvm.longjmp.  Defaults to false.
1314  bool UseUnderscoreLongJmp;
1315
1316  /// SupportJumpTables - Whether the target can generate code for jumptables.
1317  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1318  bool SupportJumpTables;
1319
1320  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1321  int MinimumJumpTableEntries;
1322
1323  /// BooleanContents - Information about the contents of the high-bits in
1324  /// boolean values held in a type wider than i1.  See getBooleanContents.
1325  BooleanContent BooleanContents;
1326  /// BooleanVectorContents - Information about the contents of the high-bits
1327  /// in boolean vector values when the element type is wider than i1.  See
1328  /// getBooleanContents.
1329  BooleanContent BooleanVectorContents;
1330
1331  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1332  /// total cycles or lowest register usage.
1333  Sched::Preference SchedPreferenceInfo;
1334
1335  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1336  unsigned JumpBufSize;
1337
1338  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1339  /// buffers
1340  unsigned JumpBufAlignment;
1341
1342  /// MinStackArgumentAlignment - The minimum alignment that any argument
1343  /// on the stack needs to have.
1344  ///
1345  unsigned MinStackArgumentAlignment;
1346
1347  /// MinFunctionAlignment - The minimum function alignment (used when
1348  /// optimizing for size, and to prevent explicitly provided alignment
1349  /// from leading to incorrect code).
1350  ///
1351  unsigned MinFunctionAlignment;
1352
1353  /// PrefFunctionAlignment - The preferred function alignment (used when
1354  /// alignment unspecified and optimizing for speed).
1355  ///
1356  unsigned PrefFunctionAlignment;
1357
1358  /// PrefLoopAlignment - The preferred loop alignment.
1359  ///
1360  unsigned PrefLoopAlignment;
1361
1362  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1363  /// be folded into the enclosed atomic intrinsic instruction by the
1364  /// combiner.
1365  bool ShouldFoldAtomicFences;
1366
1367  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1368  /// insert fences and reduce ordering for atomics.  (This will be set for
1369  /// for most architectures with weak memory ordering.)
1370  bool InsertFencesForAtomic;
1371
1372  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1373  /// specifies the register that llvm.savestack/llvm.restorestack should save
1374  /// and restore.
1375  unsigned StackPointerRegisterToSaveRestore;
1376
1377  /// ExceptionPointerRegister - If set to a physical register, this specifies
1378  /// the register that receives the exception address on entry to a landing
1379  /// pad.
1380  unsigned ExceptionPointerRegister;
1381
1382  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1383  /// the register that receives the exception typeid on entry to a landing
1384  /// pad.
1385  unsigned ExceptionSelectorRegister;
1386
1387  /// RegClassForVT - This indicates the default register class to use for
1388  /// each ValueType the target supports natively.
1389  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1390  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1391  MVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1392
1393  /// RepRegClassForVT - This indicates the "representative" register class to
1394  /// use for each ValueType the target supports natively. This information is
1395  /// used by the scheduler to track register pressure. By default, the
1396  /// representative register class is the largest legal super-reg register
1397  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1398  /// and i32's representative class would be GR32.
1399  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1400
1401  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1402  /// register class for each ValueType. The cost is used by the scheduler to
1403  /// approximate register pressure.
1404  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1405
1406  /// TransformToType - For any value types we are promoting or expanding, this
1407  /// contains the value type that we are changing to.  For Expanded types, this
1408  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1409  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1410  /// by the system, this holds the same type (e.g. i32 -> i32).
1411  MVT TransformToType[MVT::LAST_VALUETYPE];
1412
1413  /// OpActions - For each operation and each value type, keep a LegalizeAction
1414  /// that indicates how instruction selection should deal with the operation.
1415  /// Most operations are Legal (aka, supported natively by the target), but
1416  /// operations that are not should be described.  Note that operations on
1417  /// non-legal value types are not described here.
1418  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1419
1420  /// LoadExtActions - For each load extension type and each value type,
1421  /// keep a LegalizeAction that indicates how instruction selection should deal
1422  /// with a load of a specific value type and extension type.
1423  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1424
1425  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1426  /// indicates whether a truncating store of a specific value type and
1427  /// truncating type is legal.
1428  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1429
1430  /// IndexedModeActions - For each indexed mode and each value type,
1431  /// keep a pair of LegalizeAction that indicates how instruction
1432  /// selection should deal with the load / store.  The first dimension is the
1433  /// value_type for the reference. The second dimension represents the various
1434  /// modes for load store.
1435  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1436
1437  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1438  /// LegalizeAction that indicates how instruction selection should
1439  /// deal with the condition code.
1440  /// Because each CC action takes up 2 bits, we need to have the array size
1441  /// be large enough to fit all of the value types. This can be done by
1442  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1443  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1444
1445  ValueTypeActionImpl ValueTypeActions;
1446
1447public:
1448  LegalizeKind
1449  getTypeConversion(LLVMContext &Context, EVT VT) const {
1450    // If this is a simple type, use the ComputeRegisterProp mechanism.
1451    if (VT.isSimple()) {
1452      MVT SVT = VT.getSimpleVT();
1453      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
1454      MVT NVT = TransformToType[SVT.SimpleTy];
1455      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1456
1457      assert(
1458        (LA == TypeLegal ||
1459         ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)
1460         && "Promote may not follow Expand or Promote");
1461
1462      if (LA == TypeSplitVector)
1463        return LegalizeKind(LA, EVT::getVectorVT(Context,
1464                                                 SVT.getVectorElementType(),
1465                                                 SVT.getVectorNumElements()/2));
1466      if (LA == TypeScalarizeVector)
1467        return LegalizeKind(LA, SVT.getVectorElementType());
1468      return LegalizeKind(LA, NVT);
1469    }
1470
1471    // Handle Extended Scalar Types.
1472    if (!VT.isVector()) {
1473      assert(VT.isInteger() && "Float types must be simple");
1474      unsigned BitSize = VT.getSizeInBits();
1475      // First promote to a power-of-two size, then expand if necessary.
1476      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1477        EVT NVT = VT.getRoundIntegerType(Context);
1478        assert(NVT != VT && "Unable to round integer VT");
1479        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1480        // Avoid multi-step promotion.
1481        if (NextStep.first == TypePromoteInteger) return NextStep;
1482        // Return rounded integer type.
1483        return LegalizeKind(TypePromoteInteger, NVT);
1484      }
1485
1486      return LegalizeKind(TypeExpandInteger,
1487                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1488    }
1489
1490    // Handle vector types.
1491    unsigned NumElts = VT.getVectorNumElements();
1492    EVT EltVT = VT.getVectorElementType();
1493
1494    // Vectors with only one element are always scalarized.
1495    if (NumElts == 1)
1496      return LegalizeKind(TypeScalarizeVector, EltVT);
1497
1498    // Try to widen vector elements until a legal type is found.
1499    if (EltVT.isInteger()) {
1500      // Vectors with a number of elements that is not a power of two are always
1501      // widened, for example <3 x float> -> <4 x float>.
1502      if (!VT.isPow2VectorType()) {
1503        NumElts = (unsigned)NextPowerOf2(NumElts);
1504        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1505        return LegalizeKind(TypeWidenVector, NVT);
1506      }
1507
1508      // Examine the element type.
1509      LegalizeKind LK = getTypeConversion(Context, EltVT);
1510
1511      // If type is to be expanded, split the vector.
1512      //  <4 x i140> -> <2 x i140>
1513      if (LK.first == TypeExpandInteger)
1514        return LegalizeKind(TypeSplitVector,
1515                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1516
1517      // Promote the integer element types until a legal vector type is found
1518      // or until the element integer type is too big. If a legal type was not
1519      // found, fallback to the usual mechanism of widening/splitting the
1520      // vector.
1521      while (1) {
1522        // Increase the bitwidth of the element to the next pow-of-two
1523        // (which is greater than 8 bits).
1524        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1525                                 ).getRoundIntegerType(Context);
1526
1527        // Stop trying when getting a non-simple element type.
1528        // Note that vector elements may be greater than legal vector element
1529        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1530        if (!EltVT.isSimple()) break;
1531
1532        // Build a new vector type and check if it is legal.
1533        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1534        // Found a legal promoted vector type.
1535        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1536          return LegalizeKind(TypePromoteInteger,
1537                              EVT::getVectorVT(Context, EltVT, NumElts));
1538      }
1539    }
1540
1541    // Try to widen the vector until a legal type is found.
1542    // If there is no wider legal type, split the vector.
1543    while (1) {
1544      // Round up to the next power of 2.
1545      NumElts = (unsigned)NextPowerOf2(NumElts);
1546
1547      // If there is no simple vector type with this many elements then there
1548      // cannot be a larger legal vector type.  Note that this assumes that
1549      // there are no skipped intermediate vector types in the simple types.
1550      if (!EltVT.isSimple()) break;
1551      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1552      if (LargerVector == MVT()) break;
1553
1554      // If this type is legal then widen the vector.
1555      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1556        return LegalizeKind(TypeWidenVector, LargerVector);
1557    }
1558
1559    // Widen odd vectors to next power of two.
1560    if (!VT.isPow2VectorType()) {
1561      EVT NVT = VT.getPow2VectorType(Context);
1562      return LegalizeKind(TypeWidenVector, NVT);
1563    }
1564
1565    // Vectors with illegal element types are expanded.
1566    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1567    return LegalizeKind(TypeSplitVector, NVT);
1568  }
1569
1570private:
1571  std::vector<std::pair<MVT, const TargetRegisterClass*> > AvailableRegClasses;
1572
1573  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1574  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1575  /// which sets a bit in this array.
1576  unsigned char
1577  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1578
1579  /// PromoteToType - For operations that must be promoted to a specific type,
1580  /// this holds the destination type.  This map should be sparse, so don't hold
1581  /// it as an array.
1582  ///
1583  /// Targets add entries to this map with AddPromotedToType(..), clients access
1584  /// this with getTypeToPromoteTo(..).
1585  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1586    PromoteToType;
1587
1588  /// LibcallRoutineNames - Stores the name each libcall.
1589  ///
1590  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1591
1592  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1593  /// of each of the comparison libcall against zero.
1594  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1595
1596  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1597  /// libcall.
1598  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1599
1600protected:
1601  /// When lowering \@llvm.memset this field specifies the maximum number of
1602  /// store operations that may be substituted for the call to memset. Targets
1603  /// must set this value based on the cost threshold for that target. Targets
1604  /// should assume that the memset will be done using as many of the largest
1605  /// store operations first, followed by smaller ones, if necessary, per
1606  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1607  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1608  /// store.  This only applies to setting a constant array of a constant size.
1609  /// @brief Specify maximum number of store instructions per memset call.
1610  unsigned MaxStoresPerMemset;
1611
1612  /// Maximum number of stores operations that may be substituted for the call
1613  /// to memset, used for functions with OptSize attribute.
1614  unsigned MaxStoresPerMemsetOptSize;
1615
1616  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1617  /// store operations that may be substituted for a call to memcpy. Targets
1618  /// must set this value based on the cost threshold for that target. Targets
1619  /// should assume that the memcpy will be done using as many of the largest
1620  /// store operations first, followed by smaller ones, if necessary, per
1621  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1622  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1623  /// and one 1-byte store. This only applies to copying a constant array of
1624  /// constant size.
1625  /// @brief Specify maximum bytes of store instructions per memcpy call.
1626  unsigned MaxStoresPerMemcpy;
1627
1628  /// Maximum number of store operations that may be substituted for a call
1629  /// to memcpy, used for functions with OptSize attribute.
1630  unsigned MaxStoresPerMemcpyOptSize;
1631
1632  /// When lowering \@llvm.memmove this field specifies the maximum number of
1633  /// store instructions that may be substituted for a call to memmove. Targets
1634  /// must set this value based on the cost threshold for that target. Targets
1635  /// should assume that the memmove will be done using as many of the largest
1636  /// store operations first, followed by smaller ones, if necessary, per
1637  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
1638  /// with 8-bit alignment would result in nine 1-byte stores.  This only
1639  /// applies to copying a constant array of constant size.
1640  /// @brief Specify maximum bytes of store instructions per memmove call.
1641  unsigned MaxStoresPerMemmove;
1642
1643  /// Maximum number of store instructions that may be substituted for a call
1644  /// to memmove, used for functions with OpSize attribute.
1645  unsigned MaxStoresPerMemmoveOptSize;
1646
1647  /// This field specifies whether the target can benefit from code placement
1648  /// optimization.
1649  bool BenefitFromCodePlacementOpt;
1650
1651  /// PredictableSelectIsExpensive - Tells the code generator that select is
1652  /// more expensive than a branch if the branch is usually predicted right.
1653  bool PredictableSelectIsExpensive;
1654
1655protected:
1656  /// isLegalRC - Return true if the value types that can be represented by the
1657  /// specified register class are all legal.
1658  bool isLegalRC(const TargetRegisterClass *RC) const;
1659};
1660
1661//===----------------------------------------------------------------------===//
1662/// TargetLowering - This class defines information used to lower LLVM code to
1663/// legal SelectionDAG operators that the target instruction selector can accept
1664/// natively.
1665///
1666/// This class also defines callbacks that targets must implement to lower
1667/// target-specific constructs to SelectionDAG operators.
1668///
1669class TargetLowering : public TargetLoweringBase {
1670  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
1671  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
1672
1673public:
1674  /// NOTE: The constructor takes ownership of TLOF.
1675  explicit TargetLowering(const TargetMachine &TM,
1676                          const TargetLoweringObjectFile *TLOF);
1677
1678  /// getPreIndexedAddressParts - returns true by value, base pointer and
1679  /// offset pointer and addressing mode by reference if the node's address
1680  /// can be legally represented as pre-indexed load / store address.
1681  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
1682                                         SDValue &/*Offset*/,
1683                                         ISD::MemIndexedMode &/*AM*/,
1684                                         SelectionDAG &/*DAG*/) const {
1685    return false;
1686  }
1687
1688  /// getPostIndexedAddressParts - returns true by value, base pointer and
1689  /// offset pointer and addressing mode by reference if this node can be
1690  /// combined with a load / store to form a post-indexed load / store.
1691  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
1692                                          SDValue &/*Base*/, SDValue &/*Offset*/,
1693                                          ISD::MemIndexedMode &/*AM*/,
1694                                          SelectionDAG &/*DAG*/) const {
1695    return false;
1696  }
1697
1698  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1699  /// current function.  The returned value is a member of the
1700  /// MachineJumpTableInfo::JTEntryKind enum.
1701  virtual unsigned getJumpTableEncoding() const;
1702
1703  virtual const MCExpr *
1704  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
1705                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
1706                            MCContext &/*Ctx*/) const {
1707    llvm_unreachable("Need to implement this hook if target has custom JTIs");
1708  }
1709
1710  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1711  /// jumptable.
1712  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
1713                                           SelectionDAG &DAG) const;
1714
1715  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1716  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1717  /// MCExpr.
1718  virtual const MCExpr *
1719  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1720                               unsigned JTI, MCContext &Ctx) const;
1721
1722  /// isOffsetFoldingLegal - Return true if folding a constant offset
1723  /// with the given GlobalAddress is legal.  It is frequently not legal in
1724  /// PIC relocation models.
1725  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
1726
1727  bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
1728                            SDValue &Chain) const;
1729
1730  void softenSetCCOperands(SelectionDAG &DAG, EVT VT,
1731                           SDValue &NewLHS, SDValue &NewRHS,
1732                           ISD::CondCode &CCCode, DebugLoc DL) const;
1733
1734  SDValue makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
1735                      const SDValue *Ops, unsigned NumOps,
1736                      bool isSigned, DebugLoc dl) const;
1737
1738  //===--------------------------------------------------------------------===//
1739  // TargetLowering Optimization Methods
1740  //
1741
1742  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
1743  /// SDValues for returning information from TargetLowering to its clients
1744  /// that want to combine
1745  struct TargetLoweringOpt {
1746    SelectionDAG &DAG;
1747    bool LegalTys;
1748    bool LegalOps;
1749    SDValue Old;
1750    SDValue New;
1751
1752    explicit TargetLoweringOpt(SelectionDAG &InDAG,
1753                               bool LT, bool LO) :
1754      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
1755
1756    bool LegalTypes() const { return LegalTys; }
1757    bool LegalOperations() const { return LegalOps; }
1758
1759    bool CombineTo(SDValue O, SDValue N) {
1760      Old = O;
1761      New = N;
1762      return true;
1763    }
1764
1765    /// ShrinkDemandedConstant - Check to see if the specified operand of the
1766    /// specified instruction is a constant integer.  If so, check to see if
1767    /// there are any bits set in the constant that are not demanded.  If so,
1768    /// shrink the constant and return true.
1769    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
1770
1771    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1772    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1773    /// cast, but it could be generalized for targets with other types of
1774    /// implicit widening casts.
1775    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
1776                          DebugLoc dl);
1777  };
1778
1779  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1780  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
1781  /// use this information to simplify Op, create a new simplified DAG node and
1782  /// return true, returning the original and new nodes in Old and New.
1783  /// Otherwise, analyze the expression and return a mask of KnownOne and
1784  /// KnownZero bits for the expression (used to simplify the caller).
1785  /// The KnownZero/One bits may only be accurate for those bits in the
1786  /// DemandedMask.
1787  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
1788                            APInt &KnownZero, APInt &KnownOne,
1789                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
1790
1791  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
1792  /// Mask are known to be either zero or one and return them in the
1793  /// KnownZero/KnownOne bitsets.
1794  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
1795                                              APInt &KnownZero,
1796                                              APInt &KnownOne,
1797                                              const SelectionDAG &DAG,
1798                                              unsigned Depth = 0) const;
1799
1800  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1801  /// targets that want to expose additional information about sign bits to the
1802  /// DAG Combiner.
1803  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
1804                                                   unsigned Depth = 0) const;
1805
1806  struct DAGCombinerInfo {
1807    void *DC;  // The DAG Combiner object.
1808    CombineLevel Level;
1809    bool CalledByLegalizer;
1810  public:
1811    SelectionDAG &DAG;
1812
1813    DAGCombinerInfo(SelectionDAG &dag, CombineLevel level,  bool cl, void *dc)
1814      : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
1815
1816    bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
1817    bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
1818    bool isAfterLegalizeVectorOps() const {
1819      return Level == AfterLegalizeDAG;
1820    }
1821    CombineLevel getDAGCombineLevel() { return Level; }
1822    bool isCalledByLegalizer() const { return CalledByLegalizer; }
1823
1824    void AddToWorklist(SDNode *N);
1825    void RemoveFromWorklist(SDNode *N);
1826    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
1827                      bool AddTo = true);
1828    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
1829    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
1830
1831    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
1832  };
1833
1834  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1835  /// and cc. If it is unable to simplify it, return a null SDValue.
1836  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1837                          ISD::CondCode Cond, bool foldBooleans,
1838                          DAGCombinerInfo &DCI, DebugLoc dl) const;
1839
1840  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1841  /// node is a GlobalAddress + offset.
1842  virtual bool
1843  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
1844
1845  /// PerformDAGCombine - This method will be invoked for all target nodes and
1846  /// for any target-independent nodes that the target has registered with
1847  /// invoke it for.
1848  ///
1849  /// The semantics are as follows:
1850  /// Return Value:
1851  ///   SDValue.Val == 0   - No change was made
1852  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
1853  ///   otherwise          - N should be replaced by the returned Operand.
1854  ///
1855  /// In addition, methods provided by DAGCombinerInfo may be used to perform
1856  /// more complex transformations.
1857  ///
1858  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
1859
1860  /// isTypeDesirableForOp - Return true if the target has native support for
1861  /// the specified value type and it is 'desirable' to use the type for the
1862  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1863  /// instruction encodings are longer and some i16 instructions are slow.
1864  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
1865    // By default, assume all legal types are desirable.
1866    return isTypeLegal(VT);
1867  }
1868
1869  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
1870  /// to transform a floating point op of specified opcode to a equivalent op of
1871  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
1872  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
1873                                                 EVT /*VT*/) const {
1874    return false;
1875  }
1876
1877  /// IsDesirableToPromoteOp - This method query the target whether it is
1878  /// beneficial for dag combiner to promote the specified node. If true, it
1879  /// should return the desired promotion type by reference.
1880  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
1881    return false;
1882  }
1883
1884  //===--------------------------------------------------------------------===//
1885  // Lowering methods - These methods must be implemented by targets so that
1886  // the SelectionDAGBuilder code knows how to lower these.
1887  //
1888
1889  /// LowerFormalArguments - This hook must be implemented to lower the
1890  /// incoming (formal) arguments, described by the Ins array, into the
1891  /// specified DAG. The implementation should fill in the InVals array
1892  /// with legal-type argument values, and return the resulting token
1893  /// chain value.
1894  ///
1895  virtual SDValue
1896    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1897                         bool /*isVarArg*/,
1898                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1899                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1900                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1901    llvm_unreachable("Not Implemented");
1902  }
1903
1904  struct ArgListEntry {
1905    SDValue Node;
1906    Type* Ty;
1907    bool isSExt  : 1;
1908    bool isZExt  : 1;
1909    bool isInReg : 1;
1910    bool isSRet  : 1;
1911    bool isNest  : 1;
1912    bool isByVal : 1;
1913    uint16_t Alignment;
1914
1915    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1916      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1917  };
1918  typedef std::vector<ArgListEntry> ArgListTy;
1919
1920  /// CallLoweringInfo - This structure contains all information that is
1921  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1922  /// SelectionDAG builder needs to lower a call, and targets will see this
1923  /// struct in their LowerCall implementation.
1924  struct CallLoweringInfo {
1925    SDValue Chain;
1926    Type *RetTy;
1927    bool RetSExt           : 1;
1928    bool RetZExt           : 1;
1929    bool IsVarArg          : 1;
1930    bool IsInReg           : 1;
1931    bool DoesNotReturn     : 1;
1932    bool IsReturnValueUsed : 1;
1933
1934    // IsTailCall should be modified by implementations of
1935    // TargetLowering::LowerCall that perform tail call conversions.
1936    bool IsTailCall;
1937
1938    unsigned NumFixedArgs;
1939    CallingConv::ID CallConv;
1940    SDValue Callee;
1941    ArgListTy &Args;
1942    SelectionDAG &DAG;
1943    DebugLoc DL;
1944    ImmutableCallSite *CS;
1945    SmallVector<ISD::OutputArg, 32> Outs;
1946    SmallVector<SDValue, 32> OutVals;
1947    SmallVector<ISD::InputArg, 32> Ins;
1948
1949
1950    /// CallLoweringInfo - Constructs a call lowering context based on the
1951    /// ImmutableCallSite \p cs.
1952    CallLoweringInfo(SDValue chain, Type *retTy,
1953                     FunctionType *FTy, bool isTailCall, SDValue callee,
1954                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1955                     ImmutableCallSite &cs)
1956    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1957      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1958      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1959      DoesNotReturn(cs.doesNotReturn()),
1960      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1961      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1962      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1963      DL(dl), CS(&cs) {}
1964
1965    /// CallLoweringInfo - Constructs a call lowering context based on the
1966    /// provided call information.
1967    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1968                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1969                     CallingConv::ID callConv, bool isTailCall,
1970                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1971                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1972    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1973      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1974      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1975      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1976      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1977  };
1978
1979  /// LowerCallTo - This function lowers an abstract call to a function into an
1980  /// actual call.  This returns a pair of operands.  The first element is the
1981  /// return value for the function (if RetTy is not VoidTy).  The second
1982  /// element is the outgoing token chain. It calls LowerCall to do the actual
1983  /// lowering.
1984  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1985
1986  /// LowerCall - This hook must be implemented to lower calls into the
1987  /// the specified DAG. The outgoing arguments to the call are described
1988  /// by the Outs array, and the values to be returned by the call are
1989  /// described by the Ins array. The implementation should fill in the
1990  /// InVals array with legal-type return values from the call, and return
1991  /// the resulting token chain value.
1992  virtual SDValue
1993    LowerCall(CallLoweringInfo &/*CLI*/,
1994              SmallVectorImpl<SDValue> &/*InVals*/) const {
1995    llvm_unreachable("Not Implemented");
1996  }
1997
1998  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1999  virtual void HandleByVal(CCState *, unsigned &, unsigned) const {}
2000
2001  /// CanLowerReturn - This hook should be implemented to check whether the
2002  /// return values described by the Outs array can fit into the return
2003  /// registers.  If false is returned, an sret-demotion is performed.
2004  ///
2005  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
2006                              MachineFunction &/*MF*/, bool /*isVarArg*/,
2007               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2008               LLVMContext &/*Context*/) const
2009  {
2010    // Return true by default to get preexisting behavior.
2011    return true;
2012  }
2013
2014  /// LowerReturn - This hook must be implemented to lower outgoing
2015  /// return values, described by the Outs array, into the specified
2016  /// DAG. The implementation should return the resulting token chain
2017  /// value.
2018  ///
2019  virtual SDValue
2020    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
2021                bool /*isVarArg*/,
2022                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
2023                const SmallVectorImpl<SDValue> &/*OutVals*/,
2024                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
2025    llvm_unreachable("Not Implemented");
2026  }
2027
2028  /// isUsedByReturnOnly - Return true if result of the specified node is used
2029  /// by a return node only. It also compute and return the input chain for the
2030  /// tail call.
2031  /// This is used to determine whether it is possible
2032  /// to codegen a libcall as tail call at legalization time.
2033  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
2034    return false;
2035  }
2036
2037  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
2038  /// call instruction as a tail call. This is used by optimization passes to
2039  /// determine if it's profitable to duplicate return instructions to enable
2040  /// tailcall optimization.
2041  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
2042    return false;
2043  }
2044
2045  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
2046  /// sign extend a zeroext/signext integer argument or return value.
2047  /// FIXME: Most C calling convention requires the return type to be promoted,
2048  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
2049  /// necessary for non-C calling conventions. The frontend should handle this
2050  /// and include all of the necessary information.
2051  virtual MVT getTypeForExtArgOrReturn(MVT VT,
2052                                       ISD::NodeType /*ExtendKind*/) const {
2053    MVT MinVT = getRegisterType(MVT::i32);
2054    return VT.bitsLT(MinVT) ? MinVT : VT;
2055  }
2056
2057  /// LowerOperationWrapper - This callback is invoked by the type legalizer
2058  /// to legalize nodes with an illegal operand type but legal result types.
2059  /// It replaces the LowerOperation callback in the type Legalizer.
2060  /// The reason we can not do away with LowerOperation entirely is that
2061  /// LegalizeDAG isn't yet ready to use this callback.
2062  /// TODO: Consider merging with ReplaceNodeResults.
2063
2064  /// The target places new result values for the node in Results (their number
2065  /// and types must exactly match those of the original return values of
2066  /// the node), or leaves Results empty, which indicates that the node is not
2067  /// to be custom lowered after all.
2068  /// The default implementation calls LowerOperation.
2069  virtual void LowerOperationWrapper(SDNode *N,
2070                                     SmallVectorImpl<SDValue> &Results,
2071                                     SelectionDAG &DAG) const;
2072
2073  /// LowerOperation - This callback is invoked for operations that are
2074  /// unsupported by the target, which are registered to use 'custom' lowering,
2075  /// and whose defined values are all legal.
2076  /// If the target has no operations that require custom lowering, it need not
2077  /// implement this.  The default implementation of this aborts.
2078  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
2079
2080  /// ReplaceNodeResults - This callback is invoked when a node result type is
2081  /// illegal for the target, and the operation was registered to use 'custom'
2082  /// lowering for that result type.  The target places new result values for
2083  /// the node in Results (their number and types must exactly match those of
2084  /// the original return values of the node), or leaves Results empty, which
2085  /// indicates that the node is not to be custom lowered after all.
2086  ///
2087  /// If the target has no operations that require custom lowering, it need not
2088  /// implement this.  The default implementation aborts.
2089  virtual void ReplaceNodeResults(SDNode * /*N*/,
2090                                  SmallVectorImpl<SDValue> &/*Results*/,
2091                                  SelectionDAG &/*DAG*/) const {
2092    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
2093  }
2094
2095  /// getTargetNodeName() - This method returns the name of a target specific
2096  /// DAG node.
2097  virtual const char *getTargetNodeName(unsigned Opcode) const;
2098
2099  /// createFastISel - This method returns a target specific FastISel object,
2100  /// or null if the target does not support "fast" ISel.
2101  virtual FastISel *createFastISel(FunctionLoweringInfo &,
2102                                   const TargetLibraryInfo *) const {
2103    return 0;
2104  }
2105
2106  //===--------------------------------------------------------------------===//
2107  // Inline Asm Support hooks
2108  //
2109
2110  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
2111  /// call to be explicit llvm code if it wants to.  This is useful for
2112  /// turning simple inline asms into LLVM intrinsics, which gives the
2113  /// compiler more information about the behavior of the code.
2114  virtual bool ExpandInlineAsm(CallInst *) const {
2115    return false;
2116  }
2117
2118  enum ConstraintType {
2119    C_Register,            // Constraint represents specific register(s).
2120    C_RegisterClass,       // Constraint represents any of register(s) in class.
2121    C_Memory,              // Memory constraint.
2122    C_Other,               // Something else.
2123    C_Unknown              // Unsupported constraint.
2124  };
2125
2126  enum ConstraintWeight {
2127    // Generic weights.
2128    CW_Invalid  = -1,     // No match.
2129    CW_Okay     = 0,      // Acceptable.
2130    CW_Good     = 1,      // Good weight.
2131    CW_Better   = 2,      // Better weight.
2132    CW_Best     = 3,      // Best weight.
2133
2134    // Well-known weights.
2135    CW_SpecificReg  = CW_Okay,    // Specific register operands.
2136    CW_Register     = CW_Good,    // Register operands.
2137    CW_Memory       = CW_Better,  // Memory operands.
2138    CW_Constant     = CW_Best,    // Constant operand.
2139    CW_Default      = CW_Okay     // Default or don't know type.
2140  };
2141
2142  /// AsmOperandInfo - This contains information for each constraint that we are
2143  /// lowering.
2144  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
2145    /// ConstraintCode - This contains the actual string for the code, like "m".
2146    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
2147    /// most closely matches the operand.
2148    std::string ConstraintCode;
2149
2150    /// ConstraintType - Information about the constraint code, e.g. Register,
2151    /// RegisterClass, Memory, Other, Unknown.
2152    TargetLowering::ConstraintType ConstraintType;
2153
2154    /// CallOperandval - If this is the result output operand or a
2155    /// clobber, this is null, otherwise it is the incoming operand to the
2156    /// CallInst.  This gets modified as the asm is processed.
2157    Value *CallOperandVal;
2158
2159    /// ConstraintVT - The ValueType for the operand value.
2160    MVT ConstraintVT;
2161
2162    /// isMatchingInputConstraint - Return true of this is an input operand that
2163    /// is a matching constraint like "4".
2164    bool isMatchingInputConstraint() const;
2165
2166    /// getMatchedOperand - If this is an input matching constraint, this method
2167    /// returns the output operand it matches.
2168    unsigned getMatchedOperand() const;
2169
2170    /// Copy constructor for copying from an AsmOperandInfo.
2171    AsmOperandInfo(const AsmOperandInfo &info)
2172      : InlineAsm::ConstraintInfo(info),
2173        ConstraintCode(info.ConstraintCode),
2174        ConstraintType(info.ConstraintType),
2175        CallOperandVal(info.CallOperandVal),
2176        ConstraintVT(info.ConstraintVT) {
2177    }
2178
2179    /// Copy constructor for copying from a ConstraintInfo.
2180    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
2181      : InlineAsm::ConstraintInfo(info),
2182        ConstraintType(TargetLowering::C_Unknown),
2183        CallOperandVal(0), ConstraintVT(MVT::Other) {
2184    }
2185  };
2186
2187  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
2188
2189  /// ParseConstraints - Split up the constraint string from the inline
2190  /// assembly value into the specific constraints and their prefixes,
2191  /// and also tie in the associated operand values.
2192  /// If this returns an empty vector, and if the constraint string itself
2193  /// isn't empty, there was an error parsing.
2194  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
2195
2196  /// Examine constraint type and operand type and determine a weight value.
2197  /// The operand object must already have been set up with the operand type.
2198  virtual ConstraintWeight getMultipleConstraintMatchWeight(
2199      AsmOperandInfo &info, int maIndex) const;
2200
2201  /// Examine constraint string and operand type and determine a weight value.
2202  /// The operand object must already have been set up with the operand type.
2203  virtual ConstraintWeight getSingleConstraintMatchWeight(
2204      AsmOperandInfo &info, const char *constraint) const;
2205
2206  /// ComputeConstraintToUse - Determines the constraint code and constraint
2207  /// type to use for the specific AsmOperandInfo, setting
2208  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
2209  /// being passed in is available, it can be passed in as Op, otherwise an
2210  /// empty SDValue can be passed.
2211  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2212                                      SDValue Op,
2213                                      SelectionDAG *DAG = 0) const;
2214
2215  /// getConstraintType - Given a constraint, return the type of constraint it
2216  /// is for this target.
2217  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
2218
2219  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
2220  /// {edx}), return the register number and the register class for the
2221  /// register.
2222  ///
2223  /// Given a register class constraint, like 'r', if this corresponds directly
2224  /// to an LLVM register class, return a register of 0 and the register class
2225  /// pointer.
2226  ///
2227  /// This should only be used for C_Register constraints.  On error,
2228  /// this returns a register number of 0 and a null register class pointer..
2229  virtual std::pair<unsigned, const TargetRegisterClass*>
2230    getRegForInlineAsmConstraint(const std::string &Constraint,
2231                                 EVT VT) const;
2232
2233  /// LowerXConstraint - try to replace an X constraint, which matches anything,
2234  /// with another that has more specific requirements based on the type of the
2235  /// corresponding operand.  This returns null if there is no replacement to
2236  /// make.
2237  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
2238
2239  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2240  /// vector.  If it is invalid, don't add anything to Ops.
2241  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
2242                                            std::vector<SDValue> &Ops,
2243                                            SelectionDAG &DAG) const;
2244
2245  //===--------------------------------------------------------------------===//
2246  // Div utility functions
2247  //
2248  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
2249                         SelectionDAG &DAG) const;
2250  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2251                      std::vector<SDNode*> *Created) const;
2252  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2253                      std::vector<SDNode*> *Created) const;
2254
2255  //===--------------------------------------------------------------------===//
2256  // Instruction Emitting Hooks
2257  //
2258
2259  // EmitInstrWithCustomInserter - This method should be implemented by targets
2260  // that mark instructions with the 'usesCustomInserter' flag.  These
2261  // instructions are special in various ways, which require special support to
2262  // insert.  The specified MachineInstr is created but not inserted into any
2263  // basic blocks, and this method is called to expand it into a sequence of
2264  // instructions, potentially also creating new basic blocks and control flow.
2265  virtual MachineBasicBlock *
2266    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
2267
2268  /// AdjustInstrPostInstrSelection - This method should be implemented by
2269  /// targets that mark instructions with the 'hasPostISelHook' flag. These
2270  /// instructions must be adjusted after instruction selection by target hooks.
2271  /// e.g. To fill in optional defs for ARM 's' setting instructions.
2272  virtual void
2273  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
2274};
2275
2276/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2277/// compute the return value EVTs and flags, and optionally also
2278/// the offsets, if the return value is being lowered to memory.
2279void GetReturnInfo(Type* ReturnType, AttributeSet attr,
2280                   SmallVectorImpl<ISD::OutputArg> &Outs,
2281                   const TargetLowering &TLI);
2282
2283} // end llvm namespace
2284
2285#endif
2286