1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/Operator.h"
31#include "llvm/Support/ConstantRange.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/PatternMatch.h"
34#include "llvm/Support/ValueHandle.h"
35using namespace llvm;
36using namespace llvm::PatternMatch;
37
38enum { RecursionLimit = 3 };
39
40STATISTIC(NumExpand,  "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
44struct Query {
45  const DataLayout *TD;
46  const TargetLibraryInfo *TLI;
47  const DominatorTree *DT;
48
49  Query(const DataLayout *td, const TargetLibraryInfo *tli,
50        const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
51};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
55                            unsigned);
56static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
57                              unsigned);
58static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
60static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
61
62/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
65  assert(Ty->getScalarType()->isIntegerTy(1) &&
66         "Expected i1 type or a vector of i1!");
67  return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
73  assert(Ty->getScalarType()->isIntegerTy(1) &&
74         "Expected i1 type or a vector of i1!");
75  return Constant::getAllOnesValue(Ty);
76}
77
78/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80                          Value *RHS) {
81  CmpInst *Cmp = dyn_cast<CmpInst>(V);
82  if (!Cmp)
83    return false;
84  CmpInst::Predicate CPred = Cmp->getPredicate();
85  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87    return true;
88  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89    CRHS == LHS;
90}
91
92/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94  Instruction *I = dyn_cast<Instruction>(V);
95  if (!I)
96    // Arguments and constants dominate all instructions.
97    return true;
98
99  // If we are processing instructions (and/or basic blocks) that have not been
100  // fully added to a function, the parent nodes may still be null. Simply
101  // return the conservative answer in these cases.
102  if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103    return false;
104
105  // If we have a DominatorTree then do a precise test.
106  if (DT) {
107    if (!DT->isReachableFromEntry(P->getParent()))
108      return true;
109    if (!DT->isReachableFromEntry(I->getParent()))
110      return false;
111    return DT->dominates(I, P);
112  }
113
114  // Otherwise, if the instruction is in the entry block, and is not an invoke,
115  // then it obviously dominates all phi nodes.
116  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117      !isa<InvokeInst>(I))
118    return true;
119
120  return false;
121}
122
123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
129                          unsigned OpcToExpand, const Query &Q,
130                          unsigned MaxRecurse) {
131  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
132  // Recursion is always used, so bail out at once if we already hit the limit.
133  if (!MaxRecurse--)
134    return 0;
135
136  // Check whether the expression has the form "(A op' B) op C".
137  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138    if (Op0->getOpcode() == OpcodeToExpand) {
139      // It does!  Try turning it into "(A op C) op' (B op C)".
140      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141      // Do "A op C" and "B op C" both simplify?
142      if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143        if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
144          // They do! Return "L op' R" if it simplifies or is already available.
145          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
146          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147                                     && L == B && R == A)) {
148            ++NumExpand;
149            return LHS;
150          }
151          // Otherwise return "L op' R" if it simplifies.
152          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
153            ++NumExpand;
154            return V;
155          }
156        }
157    }
158
159  // Check whether the expression has the form "A op (B op' C)".
160  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161    if (Op1->getOpcode() == OpcodeToExpand) {
162      // It does!  Try turning it into "(A op B) op' (A op C)".
163      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164      // Do "A op B" and "A op C" both simplify?
165      if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166        if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
167          // They do! Return "L op' R" if it simplifies or is already available.
168          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
169          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170                                     && L == C && R == B)) {
171            ++NumExpand;
172            return RHS;
173          }
174          // Otherwise return "L op' R" if it simplifies.
175          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
176            ++NumExpand;
177            return V;
178          }
179        }
180    }
181
182  return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
190                             unsigned OpcToExtract, const Query &Q,
191                             unsigned MaxRecurse) {
192  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
193  // Recursion is always used, so bail out at once if we already hit the limit.
194  if (!MaxRecurse--)
195    return 0;
196
197  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201      !Op1 || Op1->getOpcode() != OpcodeToExtract)
202    return 0;
203
204  // The expression has the form "(A op' B) op (C op' D)".
205  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
207
208  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210  // commutative case, "(A op' B) op (C op' A)"?
211  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212    Value *DD = A == C ? D : C;
213    // Form "A op' (B op DD)" if it simplifies completely.
214    // Does "B op DD" simplify?
215    if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
216      // It does!  Return "A op' V" if it simplifies or is already available.
217      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
218      // "A op' V" is just the RHS.
219      if (V == B || V == DD) {
220        ++NumFactor;
221        return V == B ? LHS : RHS;
222      }
223      // Otherwise return "A op' V" if it simplifies.
224      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
225        ++NumFactor;
226        return W;
227      }
228    }
229  }
230
231  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233  // commutative case, "(A op' B) op (B op' D)"?
234  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235    Value *CC = B == D ? C : D;
236    // Form "(A op CC) op' B" if it simplifies completely..
237    // Does "A op CC" simplify?
238    if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
239      // It does!  Return "V op' B" if it simplifies or is already available.
240      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
241      // "V op' B" is just the RHS.
242      if (V == A || V == CC) {
243        ++NumFactor;
244        return V == A ? LHS : RHS;
245      }
246      // Otherwise return "V op' B" if it simplifies.
247      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
248        ++NumFactor;
249        return W;
250      }
251    }
252  }
253
254  return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations.  Returns the simpler value, or null if none was found.
259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
260                                       const Query &Q, unsigned MaxRecurse) {
261  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
262  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264  // Recursion is always used, so bail out at once if we already hit the limit.
265  if (!MaxRecurse--)
266    return 0;
267
268  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272  if (Op0 && Op0->getOpcode() == Opcode) {
273    Value *A = Op0->getOperand(0);
274    Value *B = Op0->getOperand(1);
275    Value *C = RHS;
276
277    // Does "B op C" simplify?
278    if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
279      // It does!  Return "A op V" if it simplifies or is already available.
280      // If V equals B then "A op V" is just the LHS.
281      if (V == B) return LHS;
282      // Otherwise return "A op V" if it simplifies.
283      if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
284        ++NumReassoc;
285        return W;
286      }
287    }
288  }
289
290  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291  if (Op1 && Op1->getOpcode() == Opcode) {
292    Value *A = LHS;
293    Value *B = Op1->getOperand(0);
294    Value *C = Op1->getOperand(1);
295
296    // Does "A op B" simplify?
297    if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
298      // It does!  Return "V op C" if it simplifies or is already available.
299      // If V equals B then "V op C" is just the RHS.
300      if (V == B) return RHS;
301      // Otherwise return "V op C" if it simplifies.
302      if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
303        ++NumReassoc;
304        return W;
305      }
306    }
307  }
308
309  // The remaining transforms require commutativity as well as associativity.
310  if (!Instruction::isCommutative(Opcode))
311    return 0;
312
313  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314  if (Op0 && Op0->getOpcode() == Opcode) {
315    Value *A = Op0->getOperand(0);
316    Value *B = Op0->getOperand(1);
317    Value *C = RHS;
318
319    // Does "C op A" simplify?
320    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
321      // It does!  Return "V op B" if it simplifies or is already available.
322      // If V equals A then "V op B" is just the LHS.
323      if (V == A) return LHS;
324      // Otherwise return "V op B" if it simplifies.
325      if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
326        ++NumReassoc;
327        return W;
328      }
329    }
330  }
331
332  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333  if (Op1 && Op1->getOpcode() == Opcode) {
334    Value *A = LHS;
335    Value *B = Op1->getOperand(0);
336    Value *C = Op1->getOperand(1);
337
338    // Does "C op A" simplify?
339    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
340      // It does!  Return "B op V" if it simplifies or is already available.
341      // If V equals C then "B op V" is just the RHS.
342      if (V == C) return RHS;
343      // Otherwise return "B op V" if it simplifies.
344      if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
345        ++NumReassoc;
346        return W;
347      }
348    }
349  }
350
351  return 0;
352}
353
354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
359                                    const Query &Q, unsigned MaxRecurse) {
360  // Recursion is always used, so bail out at once if we already hit the limit.
361  if (!MaxRecurse--)
362    return 0;
363
364  SelectInst *SI;
365  if (isa<SelectInst>(LHS)) {
366    SI = cast<SelectInst>(LHS);
367  } else {
368    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369    SI = cast<SelectInst>(RHS);
370  }
371
372  // Evaluate the BinOp on the true and false branches of the select.
373  Value *TV;
374  Value *FV;
375  if (SI == LHS) {
376    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
378  } else {
379    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
381  }
382
383  // If they simplified to the same value, then return the common value.
384  // If they both failed to simplify then return null.
385  if (TV == FV)
386    return TV;
387
388  // If one branch simplified to undef, return the other one.
389  if (TV && isa<UndefValue>(TV))
390    return FV;
391  if (FV && isa<UndefValue>(FV))
392    return TV;
393
394  // If applying the operation did not change the true and false select values,
395  // then the result of the binop is the select itself.
396  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
397    return SI;
398
399  // If one branch simplified and the other did not, and the simplified
400  // value is equal to the unsimplified one, return the simplified value.
401  // For example, select (cond, X, X & Z) & Z -> X & Z.
402  if ((FV && !TV) || (TV && !FV)) {
403    // Check that the simplified value has the form "X op Y" where "op" is the
404    // same as the original operation.
405    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406    if (Simplified && Simplified->getOpcode() == Opcode) {
407      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408      // We already know that "op" is the same as for the simplified value.  See
409      // if the operands match too.  If so, return the simplified value.
410      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
413      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414          Simplified->getOperand(1) == UnsimplifiedRHS)
415        return Simplified;
416      if (Simplified->isCommutative() &&
417          Simplified->getOperand(1) == UnsimplifiedLHS &&
418          Simplified->getOperand(0) == UnsimplifiedRHS)
419        return Simplified;
420    }
421  }
422
423  return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value.  Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
431                                  Value *RHS, const Query &Q,
432                                  unsigned MaxRecurse) {
433  // Recursion is always used, so bail out at once if we already hit the limit.
434  if (!MaxRecurse--)
435    return 0;
436
437  // Make sure the select is on the LHS.
438  if (!isa<SelectInst>(LHS)) {
439    std::swap(LHS, RHS);
440    Pred = CmpInst::getSwappedPredicate(Pred);
441  }
442  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443  SelectInst *SI = cast<SelectInst>(LHS);
444  Value *Cond = SI->getCondition();
445  Value *TV = SI->getTrueValue();
446  Value *FV = SI->getFalseValue();
447
448  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
449  // Does "cmp TV, RHS" simplify?
450  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
451  if (TCmp == Cond) {
452    // It not only simplified, it simplified to the select condition.  Replace
453    // it with 'true'.
454    TCmp = getTrue(Cond->getType());
455  } else if (!TCmp) {
456    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
457    // condition then we can replace it with 'true'.  Otherwise give up.
458    if (!isSameCompare(Cond, Pred, TV, RHS))
459      return 0;
460    TCmp = getTrue(Cond->getType());
461  }
462
463  // Does "cmp FV, RHS" simplify?
464  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
465  if (FCmp == Cond) {
466    // It not only simplified, it simplified to the select condition.  Replace
467    // it with 'false'.
468    FCmp = getFalse(Cond->getType());
469  } else if (!FCmp) {
470    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
471    // condition then we can replace it with 'false'.  Otherwise give up.
472    if (!isSameCompare(Cond, Pred, FV, RHS))
473      return 0;
474    FCmp = getFalse(Cond->getType());
475  }
476
477  // If both sides simplified to the same value, then use it as the result of
478  // the original comparison.
479  if (TCmp == FCmp)
480    return TCmp;
481
482  // The remaining cases only make sense if the select condition has the same
483  // type as the result of the comparison, so bail out if this is not so.
484  if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485    return 0;
486  // If the false value simplified to false, then the result of the compare
487  // is equal to "Cond && TCmp".  This also catches the case when the false
488  // value simplified to false and the true value to true, returning "Cond".
489  if (match(FCmp, m_Zero()))
490    if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
491      return V;
492  // If the true value simplified to true, then the result of the compare
493  // is equal to "Cond || FCmp".
494  if (match(TCmp, m_One()))
495    if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
496      return V;
497  // Finally, if the false value simplified to true and the true value to
498  // false, then the result of the compare is equal to "!Cond".
499  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500    if (Value *V =
501        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
502                        Q, MaxRecurse))
503      return V;
504
505  return 0;
506}
507
508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value.  If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
513                                 const Query &Q, unsigned MaxRecurse) {
514  // Recursion is always used, so bail out at once if we already hit the limit.
515  if (!MaxRecurse--)
516    return 0;
517
518  PHINode *PI;
519  if (isa<PHINode>(LHS)) {
520    PI = cast<PHINode>(LHS);
521    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
522    if (!ValueDominatesPHI(RHS, PI, Q.DT))
523      return 0;
524  } else {
525    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526    PI = cast<PHINode>(RHS);
527    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
528    if (!ValueDominatesPHI(LHS, PI, Q.DT))
529      return 0;
530  }
531
532  // Evaluate the BinOp on the incoming phi values.
533  Value *CommonValue = 0;
534  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
535    Value *Incoming = PI->getIncomingValue(i);
536    // If the incoming value is the phi node itself, it can safely be skipped.
537    if (Incoming == PI) continue;
538    Value *V = PI == LHS ?
539      SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540      SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
541    // If the operation failed to simplify, or simplified to a different value
542    // to previously, then give up.
543    if (!V || (CommonValue && V != CommonValue))
544      return 0;
545    CommonValue = V;
546  }
547
548  return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time.  If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
556                               const Query &Q, unsigned MaxRecurse) {
557  // Recursion is always used, so bail out at once if we already hit the limit.
558  if (!MaxRecurse--)
559    return 0;
560
561  // Make sure the phi is on the LHS.
562  if (!isa<PHINode>(LHS)) {
563    std::swap(LHS, RHS);
564    Pred = CmpInst::getSwappedPredicate(Pred);
565  }
566  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567  PHINode *PI = cast<PHINode>(LHS);
568
569  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
570  if (!ValueDominatesPHI(RHS, PI, Q.DT))
571    return 0;
572
573  // Evaluate the BinOp on the incoming phi values.
574  Value *CommonValue = 0;
575  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
576    Value *Incoming = PI->getIncomingValue(i);
577    // If the incoming value is the phi node itself, it can safely be skipped.
578    if (Incoming == PI) continue;
579    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
580    // If the operation failed to simplify, or simplified to a different value
581    // to previously, then give up.
582    if (!V || (CommonValue && V != CommonValue))
583      return 0;
584    CommonValue = V;
585  }
586
587  return CommonValue;
588}
589
590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result.  If not, this returns null.
592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
593                              const Query &Q, unsigned MaxRecurse) {
594  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596      Constant *Ops[] = { CLHS, CRHS };
597      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598                                      Q.TD, Q.TLI);
599    }
600
601    // Canonicalize the constant to the RHS.
602    std::swap(Op0, Op1);
603  }
604
605  // X + undef -> undef
606  if (match(Op1, m_Undef()))
607    return Op1;
608
609  // X + 0 -> X
610  if (match(Op1, m_Zero()))
611    return Op0;
612
613  // X + (Y - X) -> Y
614  // (Y - X) + X -> Y
615  // Eg: X + -X -> 0
616  Value *Y = 0;
617  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
619    return Y;
620
621  // X + ~X -> -1   since   ~X = -X-1
622  if (match(Op0, m_Not(m_Specific(Op1))) ||
623      match(Op1, m_Not(m_Specific(Op0))))
624    return Constant::getAllOnesValue(Op0->getType());
625
626  /// i1 add -> xor.
627  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
628    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
629      return V;
630
631  // Try some generic simplifications for associative operations.
632  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
633                                          MaxRecurse))
634    return V;
635
636  // Mul distributes over Add.  Try some generic simplifications based on this.
637  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
638                                Q, MaxRecurse))
639    return V;
640
641  // Threading Add over selects and phi nodes is pointless, so don't bother.
642  // Threading over the select in "A + select(cond, B, C)" means evaluating
643  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644  // only if B and C are equal.  If B and C are equal then (since we assume
645  // that operands have already been simplified) "select(cond, B, C)" should
646  // have been simplified to the common value of B and C already.  Analysing
647  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
648  // for threading over phi nodes.
649
650  return 0;
651}
652
653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
654                             const DataLayout *TD, const TargetLibraryInfo *TLI,
655                             const DominatorTree *DT) {
656  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657                           RecursionLimit);
658}
659
660/// \brief Compute the base pointer and cumulative constant offsets for V.
661///
662/// This strips all constant offsets off of V, leaving it the base pointer, and
663/// accumulates the total constant offset applied in the returned constant. It
664/// returns 0 if V is not a pointer, and returns the constant '0' if there are
665/// no constant offsets applied.
666///
667/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
669/// folding.
670static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
671                                                Value *&V) {
672  assert(V->getType()->getScalarType()->isPointerTy());
673
674  // Without DataLayout, just be conservative for now. Theoretically, more could
675  // be done in this case.
676  if (!TD)
677    return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
678
679  unsigned IntPtrWidth = TD->getPointerSizeInBits();
680  APInt Offset = APInt::getNullValue(IntPtrWidth);
681
682  // Even though we don't look through PHI nodes, we could be called on an
683  // instruction in an unreachable block, which may be on a cycle.
684  SmallPtrSet<Value *, 4> Visited;
685  Visited.insert(V);
686  do {
687    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
688      if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
689        break;
690      V = GEP->getPointerOperand();
691    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
692      V = cast<Operator>(V)->getOperand(0);
693    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
694      if (GA->mayBeOverridden())
695        break;
696      V = GA->getAliasee();
697    } else {
698      break;
699    }
700    assert(V->getType()->getScalarType()->isPointerTy() &&
701           "Unexpected operand type!");
702  } while (Visited.insert(V));
703
704  Type *IntPtrTy = TD->getIntPtrType(V->getContext());
705  Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
706  if (V->getType()->isVectorTy())
707    return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
708                                    OffsetIntPtr);
709  return OffsetIntPtr;
710}
711
712/// \brief Compute the constant difference between two pointer values.
713/// If the difference is not a constant, returns zero.
714static Constant *computePointerDifference(const DataLayout *TD,
715                                          Value *LHS, Value *RHS) {
716  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
717  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
718
719  // If LHS and RHS are not related via constant offsets to the same base
720  // value, there is nothing we can do here.
721  if (LHS != RHS)
722    return 0;
723
724  // Otherwise, the difference of LHS - RHS can be computed as:
725  //    LHS - RHS
726  //  = (LHSOffset + Base) - (RHSOffset + Base)
727  //  = LHSOffset - RHSOffset
728  return ConstantExpr::getSub(LHSOffset, RHSOffset);
729}
730
731/// SimplifySubInst - Given operands for a Sub, see if we can
732/// fold the result.  If not, this returns null.
733static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
734                              const Query &Q, unsigned MaxRecurse) {
735  if (Constant *CLHS = dyn_cast<Constant>(Op0))
736    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
737      Constant *Ops[] = { CLHS, CRHS };
738      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
739                                      Ops, Q.TD, Q.TLI);
740    }
741
742  // X - undef -> undef
743  // undef - X -> undef
744  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
745    return UndefValue::get(Op0->getType());
746
747  // X - 0 -> X
748  if (match(Op1, m_Zero()))
749    return Op0;
750
751  // X - X -> 0
752  if (Op0 == Op1)
753    return Constant::getNullValue(Op0->getType());
754
755  // (X*2) - X -> X
756  // (X<<1) - X -> X
757  Value *X = 0;
758  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
759      match(Op0, m_Shl(m_Specific(Op1), m_One())))
760    return Op1;
761
762  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
763  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
764  Value *Y = 0, *Z = Op1;
765  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
766    // See if "V === Y - Z" simplifies.
767    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
768      // It does!  Now see if "X + V" simplifies.
769      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
770        // It does, we successfully reassociated!
771        ++NumReassoc;
772        return W;
773      }
774    // See if "V === X - Z" simplifies.
775    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
776      // It does!  Now see if "Y + V" simplifies.
777      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
778        // It does, we successfully reassociated!
779        ++NumReassoc;
780        return W;
781      }
782  }
783
784  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
785  // For example, X - (X + 1) -> -1
786  X = Op0;
787  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
788    // See if "V === X - Y" simplifies.
789    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
790      // It does!  Now see if "V - Z" simplifies.
791      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
792        // It does, we successfully reassociated!
793        ++NumReassoc;
794        return W;
795      }
796    // See if "V === X - Z" simplifies.
797    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
798      // It does!  Now see if "V - Y" simplifies.
799      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
800        // It does, we successfully reassociated!
801        ++NumReassoc;
802        return W;
803      }
804  }
805
806  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
807  // For example, X - (X - Y) -> Y.
808  Z = Op0;
809  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
810    // See if "V === Z - X" simplifies.
811    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
812      // It does!  Now see if "V + Y" simplifies.
813      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
814        // It does, we successfully reassociated!
815        ++NumReassoc;
816        return W;
817      }
818
819  // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
820  if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
821      match(Op1, m_Trunc(m_Value(Y))))
822    if (X->getType() == Y->getType())
823      // See if "V === X - Y" simplifies.
824      if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
825        // It does!  Now see if "trunc V" simplifies.
826        if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
827          // It does, return the simplified "trunc V".
828          return W;
829
830  // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
831  if (match(Op0, m_PtrToInt(m_Value(X))) &&
832      match(Op1, m_PtrToInt(m_Value(Y))))
833    if (Constant *Result = computePointerDifference(Q.TD, X, Y))
834      return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
835
836  // Mul distributes over Sub.  Try some generic simplifications based on this.
837  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
838                                Q, MaxRecurse))
839    return V;
840
841  // i1 sub -> xor.
842  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
843    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
844      return V;
845
846  // Threading Sub over selects and phi nodes is pointless, so don't bother.
847  // Threading over the select in "A - select(cond, B, C)" means evaluating
848  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
849  // only if B and C are equal.  If B and C are equal then (since we assume
850  // that operands have already been simplified) "select(cond, B, C)" should
851  // have been simplified to the common value of B and C already.  Analysing
852  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
853  // for threading over phi nodes.
854
855  return 0;
856}
857
858Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
859                             const DataLayout *TD, const TargetLibraryInfo *TLI,
860                             const DominatorTree *DT) {
861  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
862                           RecursionLimit);
863}
864
865/// Given operands for an FAdd, see if we can fold the result.  If not, this
866/// returns null.
867static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
868                              const Query &Q, unsigned MaxRecurse) {
869  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
870    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
871      Constant *Ops[] = { CLHS, CRHS };
872      return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
873                                      Ops, Q.TD, Q.TLI);
874    }
875
876    // Canonicalize the constant to the RHS.
877    std::swap(Op0, Op1);
878  }
879
880  // fadd X, -0 ==> X
881  if (match(Op1, m_NegZero()))
882    return Op0;
883
884  // fadd X, 0 ==> X, when we know X is not -0
885  if (match(Op1, m_Zero()) &&
886      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
887    return Op0;
888
889  // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
890  //   where nnan and ninf have to occur at least once somewhere in this
891  //   expression
892  Value *SubOp = 0;
893  if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
894    SubOp = Op1;
895  else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
896    SubOp = Op0;
897  if (SubOp) {
898    Instruction *FSub = cast<Instruction>(SubOp);
899    if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
900        (FMF.noInfs() || FSub->hasNoInfs()))
901      return Constant::getNullValue(Op0->getType());
902  }
903
904  return 0;
905}
906
907/// Given operands for an FSub, see if we can fold the result.  If not, this
908/// returns null.
909static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
910                              const Query &Q, unsigned MaxRecurse) {
911  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
912    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
913      Constant *Ops[] = { CLHS, CRHS };
914      return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
915                                      Ops, Q.TD, Q.TLI);
916    }
917  }
918
919  // fsub X, 0 ==> X
920  if (match(Op1, m_Zero()))
921    return Op0;
922
923  // fsub X, -0 ==> X, when we know X is not -0
924  if (match(Op1, m_NegZero()) &&
925      (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
926    return Op0;
927
928  // fsub 0, (fsub -0.0, X) ==> X
929  Value *X;
930  if (match(Op0, m_AnyZero())) {
931    if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
932      return X;
933    if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
934      return X;
935  }
936
937  // fsub nnan ninf x, x ==> 0.0
938  if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
939    return Constant::getNullValue(Op0->getType());
940
941  return 0;
942}
943
944/// Given the operands for an FMul, see if we can fold the result
945static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
946                               FastMathFlags FMF,
947                               const Query &Q,
948                               unsigned MaxRecurse) {
949 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
950    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
951      Constant *Ops[] = { CLHS, CRHS };
952      return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
953                                      Ops, Q.TD, Q.TLI);
954    }
955
956    // Canonicalize the constant to the RHS.
957    std::swap(Op0, Op1);
958 }
959
960 // fmul X, 1.0 ==> X
961 if (match(Op1, m_FPOne()))
962   return Op0;
963
964 // fmul nnan nsz X, 0 ==> 0
965 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
966   return Op1;
967
968 return 0;
969}
970
971/// SimplifyMulInst - Given operands for a Mul, see if we can
972/// fold the result.  If not, this returns null.
973static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
974                              unsigned MaxRecurse) {
975  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
976    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
977      Constant *Ops[] = { CLHS, CRHS };
978      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
979                                      Ops, Q.TD, Q.TLI);
980    }
981
982    // Canonicalize the constant to the RHS.
983    std::swap(Op0, Op1);
984  }
985
986  // X * undef -> 0
987  if (match(Op1, m_Undef()))
988    return Constant::getNullValue(Op0->getType());
989
990  // X * 0 -> 0
991  if (match(Op1, m_Zero()))
992    return Op1;
993
994  // X * 1 -> X
995  if (match(Op1, m_One()))
996    return Op0;
997
998  // (X / Y) * Y -> X if the division is exact.
999  Value *X = 0;
1000  if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
1001      match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
1002    return X;
1003
1004  // i1 mul -> and.
1005  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
1006    if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
1007      return V;
1008
1009  // Try some generic simplifications for associative operations.
1010  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
1011                                          MaxRecurse))
1012    return V;
1013
1014  // Mul distributes over Add.  Try some generic simplifications based on this.
1015  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
1016                             Q, MaxRecurse))
1017    return V;
1018
1019  // If the operation is with the result of a select instruction, check whether
1020  // operating on either branch of the select always yields the same value.
1021  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1022    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
1023                                         MaxRecurse))
1024      return V;
1025
1026  // If the operation is with the result of a phi instruction, check whether
1027  // operating on all incoming values of the phi always yields the same value.
1028  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1029    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
1030                                      MaxRecurse))
1031      return V;
1032
1033  return 0;
1034}
1035
1036Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1037                             const DataLayout *TD, const TargetLibraryInfo *TLI,
1038                             const DominatorTree *DT) {
1039  return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1040}
1041
1042Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1043                             const DataLayout *TD, const TargetLibraryInfo *TLI,
1044                             const DominatorTree *DT) {
1045  return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1046}
1047
1048Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1049                              FastMathFlags FMF,
1050                              const DataLayout *TD,
1051                              const TargetLibraryInfo *TLI,
1052                              const DominatorTree *DT) {
1053  return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1054}
1055
1056Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
1057                             const TargetLibraryInfo *TLI,
1058                             const DominatorTree *DT) {
1059  return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1060}
1061
1062/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1063/// fold the result.  If not, this returns null.
1064static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1065                          const Query &Q, unsigned MaxRecurse) {
1066  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1067    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1068      Constant *Ops[] = { C0, C1 };
1069      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1070    }
1071  }
1072
1073  bool isSigned = Opcode == Instruction::SDiv;
1074
1075  // X / undef -> undef
1076  if (match(Op1, m_Undef()))
1077    return Op1;
1078
1079  // undef / X -> 0
1080  if (match(Op0, m_Undef()))
1081    return Constant::getNullValue(Op0->getType());
1082
1083  // 0 / X -> 0, we don't need to preserve faults!
1084  if (match(Op0, m_Zero()))
1085    return Op0;
1086
1087  // X / 1 -> X
1088  if (match(Op1, m_One()))
1089    return Op0;
1090
1091  if (Op0->getType()->isIntegerTy(1))
1092    // It can't be division by zero, hence it must be division by one.
1093    return Op0;
1094
1095  // X / X -> 1
1096  if (Op0 == Op1)
1097    return ConstantInt::get(Op0->getType(), 1);
1098
1099  // (X * Y) / Y -> X if the multiplication does not overflow.
1100  Value *X = 0, *Y = 0;
1101  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1102    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1103    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1104    // If the Mul knows it does not overflow, then we are good to go.
1105    if ((isSigned && Mul->hasNoSignedWrap()) ||
1106        (!isSigned && Mul->hasNoUnsignedWrap()))
1107      return X;
1108    // If X has the form X = A / Y then X * Y cannot overflow.
1109    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1110      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1111        return X;
1112  }
1113
1114  // (X rem Y) / Y -> 0
1115  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1116      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1117    return Constant::getNullValue(Op0->getType());
1118
1119  // If the operation is with the result of a select instruction, check whether
1120  // operating on either branch of the select always yields the same value.
1121  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1122    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1123      return V;
1124
1125  // If the operation is with the result of a phi instruction, check whether
1126  // operating on all incoming values of the phi always yields the same value.
1127  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1128    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1129      return V;
1130
1131  return 0;
1132}
1133
1134/// SimplifySDivInst - Given operands for an SDiv, see if we can
1135/// fold the result.  If not, this returns null.
1136static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1137                               unsigned MaxRecurse) {
1138  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1139    return V;
1140
1141  return 0;
1142}
1143
1144Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1145                              const TargetLibraryInfo *TLI,
1146                              const DominatorTree *DT) {
1147  return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1148}
1149
1150/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1151/// fold the result.  If not, this returns null.
1152static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1153                               unsigned MaxRecurse) {
1154  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1155    return V;
1156
1157  return 0;
1158}
1159
1160Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1161                              const TargetLibraryInfo *TLI,
1162                              const DominatorTree *DT) {
1163  return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1164}
1165
1166static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1167                               unsigned) {
1168  // undef / X -> undef    (the undef could be a snan).
1169  if (match(Op0, m_Undef()))
1170    return Op0;
1171
1172  // X / undef -> undef
1173  if (match(Op1, m_Undef()))
1174    return Op1;
1175
1176  return 0;
1177}
1178
1179Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
1180                              const TargetLibraryInfo *TLI,
1181                              const DominatorTree *DT) {
1182  return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1183}
1184
1185/// SimplifyRem - Given operands for an SRem or URem, see if we can
1186/// fold the result.  If not, this returns null.
1187static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1188                          const Query &Q, unsigned MaxRecurse) {
1189  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1190    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1191      Constant *Ops[] = { C0, C1 };
1192      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1193    }
1194  }
1195
1196  // X % undef -> undef
1197  if (match(Op1, m_Undef()))
1198    return Op1;
1199
1200  // undef % X -> 0
1201  if (match(Op0, m_Undef()))
1202    return Constant::getNullValue(Op0->getType());
1203
1204  // 0 % X -> 0, we don't need to preserve faults!
1205  if (match(Op0, m_Zero()))
1206    return Op0;
1207
1208  // X % 0 -> undef, we don't need to preserve faults!
1209  if (match(Op1, m_Zero()))
1210    return UndefValue::get(Op0->getType());
1211
1212  // X % 1 -> 0
1213  if (match(Op1, m_One()))
1214    return Constant::getNullValue(Op0->getType());
1215
1216  if (Op0->getType()->isIntegerTy(1))
1217    // It can't be remainder by zero, hence it must be remainder by one.
1218    return Constant::getNullValue(Op0->getType());
1219
1220  // X % X -> 0
1221  if (Op0 == Op1)
1222    return Constant::getNullValue(Op0->getType());
1223
1224  // If the operation is with the result of a select instruction, check whether
1225  // operating on either branch of the select always yields the same value.
1226  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1227    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1228      return V;
1229
1230  // If the operation is with the result of a phi instruction, check whether
1231  // operating on all incoming values of the phi always yields the same value.
1232  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1233    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1234      return V;
1235
1236  return 0;
1237}
1238
1239/// SimplifySRemInst - Given operands for an SRem, see if we can
1240/// fold the result.  If not, this returns null.
1241static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1242                               unsigned MaxRecurse) {
1243  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1244    return V;
1245
1246  return 0;
1247}
1248
1249Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1250                              const TargetLibraryInfo *TLI,
1251                              const DominatorTree *DT) {
1252  return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1253}
1254
1255/// SimplifyURemInst - Given operands for a URem, see if we can
1256/// fold the result.  If not, this returns null.
1257static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1258                               unsigned MaxRecurse) {
1259  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1260    return V;
1261
1262  return 0;
1263}
1264
1265Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1266                              const TargetLibraryInfo *TLI,
1267                              const DominatorTree *DT) {
1268  return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1269}
1270
1271static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1272                               unsigned) {
1273  // undef % X -> undef    (the undef could be a snan).
1274  if (match(Op0, m_Undef()))
1275    return Op0;
1276
1277  // X % undef -> undef
1278  if (match(Op1, m_Undef()))
1279    return Op1;
1280
1281  return 0;
1282}
1283
1284Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
1285                              const TargetLibraryInfo *TLI,
1286                              const DominatorTree *DT) {
1287  return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1288}
1289
1290/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1291/// fold the result.  If not, this returns null.
1292static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1293                            const Query &Q, unsigned MaxRecurse) {
1294  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1295    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1296      Constant *Ops[] = { C0, C1 };
1297      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1298    }
1299  }
1300
1301  // 0 shift by X -> 0
1302  if (match(Op0, m_Zero()))
1303    return Op0;
1304
1305  // X shift by 0 -> X
1306  if (match(Op1, m_Zero()))
1307    return Op0;
1308
1309  // X shift by undef -> undef because it may shift by the bitwidth.
1310  if (match(Op1, m_Undef()))
1311    return Op1;
1312
1313  // Shifting by the bitwidth or more is undefined.
1314  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1315    if (CI->getValue().getLimitedValue() >=
1316        Op0->getType()->getScalarSizeInBits())
1317      return UndefValue::get(Op0->getType());
1318
1319  // If the operation is with the result of a select instruction, check whether
1320  // operating on either branch of the select always yields the same value.
1321  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1322    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1323      return V;
1324
1325  // If the operation is with the result of a phi instruction, check whether
1326  // operating on all incoming values of the phi always yields the same value.
1327  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1328    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1329      return V;
1330
1331  return 0;
1332}
1333
1334/// SimplifyShlInst - Given operands for an Shl, see if we can
1335/// fold the result.  If not, this returns null.
1336static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1337                              const Query &Q, unsigned MaxRecurse) {
1338  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1339    return V;
1340
1341  // undef << X -> 0
1342  if (match(Op0, m_Undef()))
1343    return Constant::getNullValue(Op0->getType());
1344
1345  // (X >> A) << A -> X
1346  Value *X;
1347  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1348    return X;
1349  return 0;
1350}
1351
1352Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1353                             const DataLayout *TD, const TargetLibraryInfo *TLI,
1354                             const DominatorTree *DT) {
1355  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1356                           RecursionLimit);
1357}
1358
1359/// SimplifyLShrInst - Given operands for an LShr, see if we can
1360/// fold the result.  If not, this returns null.
1361static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1362                               const Query &Q, unsigned MaxRecurse) {
1363  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1364    return V;
1365
1366  // undef >>l X -> 0
1367  if (match(Op0, m_Undef()))
1368    return Constant::getNullValue(Op0->getType());
1369
1370  // (X << A) >> A -> X
1371  Value *X;
1372  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1373      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1374    return X;
1375
1376  return 0;
1377}
1378
1379Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1380                              const DataLayout *TD,
1381                              const TargetLibraryInfo *TLI,
1382                              const DominatorTree *DT) {
1383  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1384                            RecursionLimit);
1385}
1386
1387/// SimplifyAShrInst - Given operands for an AShr, see if we can
1388/// fold the result.  If not, this returns null.
1389static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1390                               const Query &Q, unsigned MaxRecurse) {
1391  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1392    return V;
1393
1394  // all ones >>a X -> all ones
1395  if (match(Op0, m_AllOnes()))
1396    return Op0;
1397
1398  // undef >>a X -> all ones
1399  if (match(Op0, m_Undef()))
1400    return Constant::getAllOnesValue(Op0->getType());
1401
1402  // (X << A) >> A -> X
1403  Value *X;
1404  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1405      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1406    return X;
1407
1408  return 0;
1409}
1410
1411Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1412                              const DataLayout *TD,
1413                              const TargetLibraryInfo *TLI,
1414                              const DominatorTree *DT) {
1415  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1416                            RecursionLimit);
1417}
1418
1419/// SimplifyAndInst - Given operands for an And, see if we can
1420/// fold the result.  If not, this returns null.
1421static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1422                              unsigned MaxRecurse) {
1423  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1424    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1425      Constant *Ops[] = { CLHS, CRHS };
1426      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1427                                      Ops, Q.TD, Q.TLI);
1428    }
1429
1430    // Canonicalize the constant to the RHS.
1431    std::swap(Op0, Op1);
1432  }
1433
1434  // X & undef -> 0
1435  if (match(Op1, m_Undef()))
1436    return Constant::getNullValue(Op0->getType());
1437
1438  // X & X = X
1439  if (Op0 == Op1)
1440    return Op0;
1441
1442  // X & 0 = 0
1443  if (match(Op1, m_Zero()))
1444    return Op1;
1445
1446  // X & -1 = X
1447  if (match(Op1, m_AllOnes()))
1448    return Op0;
1449
1450  // A & ~A  =  ~A & A  =  0
1451  if (match(Op0, m_Not(m_Specific(Op1))) ||
1452      match(Op1, m_Not(m_Specific(Op0))))
1453    return Constant::getNullValue(Op0->getType());
1454
1455  // (A | ?) & A = A
1456  Value *A = 0, *B = 0;
1457  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1458      (A == Op1 || B == Op1))
1459    return Op1;
1460
1461  // A & (A | ?) = A
1462  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1463      (A == Op0 || B == Op0))
1464    return Op0;
1465
1466  // A & (-A) = A if A is a power of two or zero.
1467  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1468      match(Op1, m_Neg(m_Specific(Op0)))) {
1469    if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
1470      return Op0;
1471    if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
1472      return Op1;
1473  }
1474
1475  // Try some generic simplifications for associative operations.
1476  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1477                                          MaxRecurse))
1478    return V;
1479
1480  // And distributes over Or.  Try some generic simplifications based on this.
1481  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1482                             Q, MaxRecurse))
1483    return V;
1484
1485  // And distributes over Xor.  Try some generic simplifications based on this.
1486  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1487                             Q, MaxRecurse))
1488    return V;
1489
1490  // Or distributes over And.  Try some generic simplifications based on this.
1491  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1492                                Q, MaxRecurse))
1493    return V;
1494
1495  // If the operation is with the result of a select instruction, check whether
1496  // operating on either branch of the select always yields the same value.
1497  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1498    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1499                                         MaxRecurse))
1500      return V;
1501
1502  // If the operation is with the result of a phi instruction, check whether
1503  // operating on all incoming values of the phi always yields the same value.
1504  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1505    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1506                                      MaxRecurse))
1507      return V;
1508
1509  return 0;
1510}
1511
1512Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
1513                             const TargetLibraryInfo *TLI,
1514                             const DominatorTree *DT) {
1515  return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1516}
1517
1518/// SimplifyOrInst - Given operands for an Or, see if we can
1519/// fold the result.  If not, this returns null.
1520static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1521                             unsigned MaxRecurse) {
1522  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1523    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1524      Constant *Ops[] = { CLHS, CRHS };
1525      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1526                                      Ops, Q.TD, Q.TLI);
1527    }
1528
1529    // Canonicalize the constant to the RHS.
1530    std::swap(Op0, Op1);
1531  }
1532
1533  // X | undef -> -1
1534  if (match(Op1, m_Undef()))
1535    return Constant::getAllOnesValue(Op0->getType());
1536
1537  // X | X = X
1538  if (Op0 == Op1)
1539    return Op0;
1540
1541  // X | 0 = X
1542  if (match(Op1, m_Zero()))
1543    return Op0;
1544
1545  // X | -1 = -1
1546  if (match(Op1, m_AllOnes()))
1547    return Op1;
1548
1549  // A | ~A  =  ~A | A  =  -1
1550  if (match(Op0, m_Not(m_Specific(Op1))) ||
1551      match(Op1, m_Not(m_Specific(Op0))))
1552    return Constant::getAllOnesValue(Op0->getType());
1553
1554  // (A & ?) | A = A
1555  Value *A = 0, *B = 0;
1556  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1557      (A == Op1 || B == Op1))
1558    return Op1;
1559
1560  // A | (A & ?) = A
1561  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1562      (A == Op0 || B == Op0))
1563    return Op0;
1564
1565  // ~(A & ?) | A = -1
1566  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1567      (A == Op1 || B == Op1))
1568    return Constant::getAllOnesValue(Op1->getType());
1569
1570  // A | ~(A & ?) = -1
1571  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1572      (A == Op0 || B == Op0))
1573    return Constant::getAllOnesValue(Op0->getType());
1574
1575  // Try some generic simplifications for associative operations.
1576  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1577                                          MaxRecurse))
1578    return V;
1579
1580  // Or distributes over And.  Try some generic simplifications based on this.
1581  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1582                             MaxRecurse))
1583    return V;
1584
1585  // And distributes over Or.  Try some generic simplifications based on this.
1586  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1587                                Q, MaxRecurse))
1588    return V;
1589
1590  // If the operation is with the result of a select instruction, check whether
1591  // operating on either branch of the select always yields the same value.
1592  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1593    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1594                                         MaxRecurse))
1595      return V;
1596
1597  // If the operation is with the result of a phi instruction, check whether
1598  // operating on all incoming values of the phi always yields the same value.
1599  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1600    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1601      return V;
1602
1603  return 0;
1604}
1605
1606Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
1607                            const TargetLibraryInfo *TLI,
1608                            const DominatorTree *DT) {
1609  return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1610}
1611
1612/// SimplifyXorInst - Given operands for a Xor, see if we can
1613/// fold the result.  If not, this returns null.
1614static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1615                              unsigned MaxRecurse) {
1616  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1617    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1618      Constant *Ops[] = { CLHS, CRHS };
1619      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1620                                      Ops, Q.TD, Q.TLI);
1621    }
1622
1623    // Canonicalize the constant to the RHS.
1624    std::swap(Op0, Op1);
1625  }
1626
1627  // A ^ undef -> undef
1628  if (match(Op1, m_Undef()))
1629    return Op1;
1630
1631  // A ^ 0 = A
1632  if (match(Op1, m_Zero()))
1633    return Op0;
1634
1635  // A ^ A = 0
1636  if (Op0 == Op1)
1637    return Constant::getNullValue(Op0->getType());
1638
1639  // A ^ ~A  =  ~A ^ A  =  -1
1640  if (match(Op0, m_Not(m_Specific(Op1))) ||
1641      match(Op1, m_Not(m_Specific(Op0))))
1642    return Constant::getAllOnesValue(Op0->getType());
1643
1644  // Try some generic simplifications for associative operations.
1645  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1646                                          MaxRecurse))
1647    return V;
1648
1649  // And distributes over Xor.  Try some generic simplifications based on this.
1650  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1651                                Q, MaxRecurse))
1652    return V;
1653
1654  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1655  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1656  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1657  // only if B and C are equal.  If B and C are equal then (since we assume
1658  // that operands have already been simplified) "select(cond, B, C)" should
1659  // have been simplified to the common value of B and C already.  Analysing
1660  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1661  // for threading over phi nodes.
1662
1663  return 0;
1664}
1665
1666Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
1667                             const TargetLibraryInfo *TLI,
1668                             const DominatorTree *DT) {
1669  return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1670}
1671
1672static Type *GetCompareTy(Value *Op) {
1673  return CmpInst::makeCmpResultType(Op->getType());
1674}
1675
1676/// ExtractEquivalentCondition - Rummage around inside V looking for something
1677/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1678/// otherwise return null.  Helper function for analyzing max/min idioms.
1679static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1680                                         Value *LHS, Value *RHS) {
1681  SelectInst *SI = dyn_cast<SelectInst>(V);
1682  if (!SI)
1683    return 0;
1684  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1685  if (!Cmp)
1686    return 0;
1687  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1688  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1689    return Cmp;
1690  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1691      LHS == CmpRHS && RHS == CmpLHS)
1692    return Cmp;
1693  return 0;
1694}
1695
1696// A significant optimization not implemented here is assuming that alloca
1697// addresses are not equal to incoming argument values. They don't *alias*,
1698// as we say, but that doesn't mean they aren't equal, so we take a
1699// conservative approach.
1700//
1701// This is inspired in part by C++11 5.10p1:
1702//   "Two pointers of the same type compare equal if and only if they are both
1703//    null, both point to the same function, or both represent the same
1704//    address."
1705//
1706// This is pretty permissive.
1707//
1708// It's also partly due to C11 6.5.9p6:
1709//   "Two pointers compare equal if and only if both are null pointers, both are
1710//    pointers to the same object (including a pointer to an object and a
1711//    subobject at its beginning) or function, both are pointers to one past the
1712//    last element of the same array object, or one is a pointer to one past the
1713//    end of one array object and the other is a pointer to the start of a
1714//    different array object that happens to immediately follow the ï¬rst array
1715//    object in the address space.)
1716//
1717// C11's version is more restrictive, however there's no reason why an argument
1718// couldn't be a one-past-the-end value for a stack object in the caller and be
1719// equal to the beginning of a stack object in the callee.
1720//
1721// If the C and C++ standards are ever made sufficiently restrictive in this
1722// area, it may be possible to update LLVM's semantics accordingly and reinstate
1723// this optimization.
1724static Constant *computePointerICmp(const DataLayout *TD,
1725                                    const TargetLibraryInfo *TLI,
1726                                    CmpInst::Predicate Pred,
1727                                    Value *LHS, Value *RHS) {
1728  // First, skip past any trivial no-ops.
1729  LHS = LHS->stripPointerCasts();
1730  RHS = RHS->stripPointerCasts();
1731
1732  // A non-null pointer is not equal to a null pointer.
1733  if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1734      (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1735    return ConstantInt::get(GetCompareTy(LHS),
1736                            !CmpInst::isTrueWhenEqual(Pred));
1737
1738  // We can only fold certain predicates on pointer comparisons.
1739  switch (Pred) {
1740  default:
1741    return 0;
1742
1743    // Equality comaprisons are easy to fold.
1744  case CmpInst::ICMP_EQ:
1745  case CmpInst::ICMP_NE:
1746    break;
1747
1748    // We can only handle unsigned relational comparisons because 'inbounds' on
1749    // a GEP only protects against unsigned wrapping.
1750  case CmpInst::ICMP_UGT:
1751  case CmpInst::ICMP_UGE:
1752  case CmpInst::ICMP_ULT:
1753  case CmpInst::ICMP_ULE:
1754    // However, we have to switch them to their signed variants to handle
1755    // negative indices from the base pointer.
1756    Pred = ICmpInst::getSignedPredicate(Pred);
1757    break;
1758  }
1759
1760  // Strip off any constant offsets so that we can reason about them.
1761  // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1762  // here and compare base addresses like AliasAnalysis does, however there are
1763  // numerous hazards. AliasAnalysis and its utilities rely on special rules
1764  // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1765  // doesn't need to guarantee pointer inequality when it says NoAlias.
1766  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1767  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
1768
1769  // If LHS and RHS are related via constant offsets to the same base
1770  // value, we can replace it with an icmp which just compares the offsets.
1771  if (LHS == RHS)
1772    return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1773
1774  // Various optimizations for (in)equality comparisons.
1775  if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1776    // Different non-empty allocations that exist at the same time have
1777    // different addresses (if the program can tell). Global variables always
1778    // exist, so they always exist during the lifetime of each other and all
1779    // allocas. Two different allocas usually have different addresses...
1780    //
1781    // However, if there's an @llvm.stackrestore dynamically in between two
1782    // allocas, they may have the same address. It's tempting to reduce the
1783    // scope of the problem by only looking at *static* allocas here. That would
1784    // cover the majority of allocas while significantly reducing the likelihood
1785    // of having an @llvm.stackrestore pop up in the middle. However, it's not
1786    // actually impossible for an @llvm.stackrestore to pop up in the middle of
1787    // an entry block. Also, if we have a block that's not attached to a
1788    // function, we can't tell if it's "static" under the current definition.
1789    // Theoretically, this problem could be fixed by creating a new kind of
1790    // instruction kind specifically for static allocas. Such a new instruction
1791    // could be required to be at the top of the entry block, thus preventing it
1792    // from being subject to a @llvm.stackrestore. Instcombine could even
1793    // convert regular allocas into these special allocas. It'd be nifty.
1794    // However, until then, this problem remains open.
1795    //
1796    // So, we'll assume that two non-empty allocas have different addresses
1797    // for now.
1798    //
1799    // With all that, if the offsets are within the bounds of their allocations
1800    // (and not one-past-the-end! so we can't use inbounds!), and their
1801    // allocations aren't the same, the pointers are not equal.
1802    //
1803    // Note that it's not necessary to check for LHS being a global variable
1804    // address, due to canonicalization and constant folding.
1805    if (isa<AllocaInst>(LHS) &&
1806        (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
1807      ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
1808      ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
1809      uint64_t LHSSize, RHSSize;
1810      if (LHSOffsetCI && RHSOffsetCI &&
1811          getObjectSize(LHS, LHSSize, TD, TLI) &&
1812          getObjectSize(RHS, RHSSize, TD, TLI)) {
1813        const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
1814        const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
1815        if (!LHSOffsetValue.isNegative() &&
1816            !RHSOffsetValue.isNegative() &&
1817            LHSOffsetValue.ult(LHSSize) &&
1818            RHSOffsetValue.ult(RHSSize)) {
1819          return ConstantInt::get(GetCompareTy(LHS),
1820                                  !CmpInst::isTrueWhenEqual(Pred));
1821        }
1822      }
1823
1824      // Repeat the above check but this time without depending on DataLayout
1825      // or being able to compute a precise size.
1826      if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1827          !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1828          LHSOffset->isNullValue() &&
1829          RHSOffset->isNullValue())
1830        return ConstantInt::get(GetCompareTy(LHS),
1831                                !CmpInst::isTrueWhenEqual(Pred));
1832    }
1833  }
1834
1835  // Otherwise, fail.
1836  return 0;
1837}
1838
1839/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1840/// fold the result.  If not, this returns null.
1841static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1842                               const Query &Q, unsigned MaxRecurse) {
1843  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1844  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1845
1846  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1847    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1848      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1849
1850    // If we have a constant, make sure it is on the RHS.
1851    std::swap(LHS, RHS);
1852    Pred = CmpInst::getSwappedPredicate(Pred);
1853  }
1854
1855  Type *ITy = GetCompareTy(LHS); // The return type.
1856  Type *OpTy = LHS->getType();   // The operand type.
1857
1858  // icmp X, X -> true/false
1859  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1860  // because X could be 0.
1861  if (LHS == RHS || isa<UndefValue>(RHS))
1862    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1863
1864  // Special case logic when the operands have i1 type.
1865  if (OpTy->getScalarType()->isIntegerTy(1)) {
1866    switch (Pred) {
1867    default: break;
1868    case ICmpInst::ICMP_EQ:
1869      // X == 1 -> X
1870      if (match(RHS, m_One()))
1871        return LHS;
1872      break;
1873    case ICmpInst::ICMP_NE:
1874      // X != 0 -> X
1875      if (match(RHS, m_Zero()))
1876        return LHS;
1877      break;
1878    case ICmpInst::ICMP_UGT:
1879      // X >u 0 -> X
1880      if (match(RHS, m_Zero()))
1881        return LHS;
1882      break;
1883    case ICmpInst::ICMP_UGE:
1884      // X >=u 1 -> X
1885      if (match(RHS, m_One()))
1886        return LHS;
1887      break;
1888    case ICmpInst::ICMP_SLT:
1889      // X <s 0 -> X
1890      if (match(RHS, m_Zero()))
1891        return LHS;
1892      break;
1893    case ICmpInst::ICMP_SLE:
1894      // X <=s -1 -> X
1895      if (match(RHS, m_One()))
1896        return LHS;
1897      break;
1898    }
1899  }
1900
1901  // If we are comparing with zero then try hard since this is a common case.
1902  if (match(RHS, m_Zero())) {
1903    bool LHSKnownNonNegative, LHSKnownNegative;
1904    switch (Pred) {
1905    default: llvm_unreachable("Unknown ICmp predicate!");
1906    case ICmpInst::ICMP_ULT:
1907      return getFalse(ITy);
1908    case ICmpInst::ICMP_UGE:
1909      return getTrue(ITy);
1910    case ICmpInst::ICMP_EQ:
1911    case ICmpInst::ICMP_ULE:
1912      if (isKnownNonZero(LHS, Q.TD))
1913        return getFalse(ITy);
1914      break;
1915    case ICmpInst::ICMP_NE:
1916    case ICmpInst::ICMP_UGT:
1917      if (isKnownNonZero(LHS, Q.TD))
1918        return getTrue(ITy);
1919      break;
1920    case ICmpInst::ICMP_SLT:
1921      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1922      if (LHSKnownNegative)
1923        return getTrue(ITy);
1924      if (LHSKnownNonNegative)
1925        return getFalse(ITy);
1926      break;
1927    case ICmpInst::ICMP_SLE:
1928      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1929      if (LHSKnownNegative)
1930        return getTrue(ITy);
1931      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1932        return getFalse(ITy);
1933      break;
1934    case ICmpInst::ICMP_SGE:
1935      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1936      if (LHSKnownNegative)
1937        return getFalse(ITy);
1938      if (LHSKnownNonNegative)
1939        return getTrue(ITy);
1940      break;
1941    case ICmpInst::ICMP_SGT:
1942      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1943      if (LHSKnownNegative)
1944        return getFalse(ITy);
1945      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1946        return getTrue(ITy);
1947      break;
1948    }
1949  }
1950
1951  // See if we are doing a comparison with a constant integer.
1952  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1953    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1954    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1955    if (RHS_CR.isEmptySet())
1956      return ConstantInt::getFalse(CI->getContext());
1957    if (RHS_CR.isFullSet())
1958      return ConstantInt::getTrue(CI->getContext());
1959
1960    // Many binary operators with constant RHS have easy to compute constant
1961    // range.  Use them to check whether the comparison is a tautology.
1962    uint32_t Width = CI->getBitWidth();
1963    APInt Lower = APInt(Width, 0);
1964    APInt Upper = APInt(Width, 0);
1965    ConstantInt *CI2;
1966    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1967      // 'urem x, CI2' produces [0, CI2).
1968      Upper = CI2->getValue();
1969    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1970      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1971      Upper = CI2->getValue().abs();
1972      Lower = (-Upper) + 1;
1973    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1974      // 'udiv CI2, x' produces [0, CI2].
1975      Upper = CI2->getValue() + 1;
1976    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1977      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1978      APInt NegOne = APInt::getAllOnesValue(Width);
1979      if (!CI2->isZero())
1980        Upper = NegOne.udiv(CI2->getValue()) + 1;
1981    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1982      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1983      APInt IntMin = APInt::getSignedMinValue(Width);
1984      APInt IntMax = APInt::getSignedMaxValue(Width);
1985      APInt Val = CI2->getValue().abs();
1986      if (!Val.isMinValue()) {
1987        Lower = IntMin.sdiv(Val);
1988        Upper = IntMax.sdiv(Val) + 1;
1989      }
1990    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1991      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1992      APInt NegOne = APInt::getAllOnesValue(Width);
1993      if (CI2->getValue().ult(Width))
1994        Upper = NegOne.lshr(CI2->getValue()) + 1;
1995    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1996      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1997      APInt IntMin = APInt::getSignedMinValue(Width);
1998      APInt IntMax = APInt::getSignedMaxValue(Width);
1999      if (CI2->getValue().ult(Width)) {
2000        Lower = IntMin.ashr(CI2->getValue());
2001        Upper = IntMax.ashr(CI2->getValue()) + 1;
2002      }
2003    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2004      // 'or x, CI2' produces [CI2, UINT_MAX].
2005      Lower = CI2->getValue();
2006    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2007      // 'and x, CI2' produces [0, CI2].
2008      Upper = CI2->getValue() + 1;
2009    }
2010    if (Lower != Upper) {
2011      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
2012      if (RHS_CR.contains(LHS_CR))
2013        return ConstantInt::getTrue(RHS->getContext());
2014      if (RHS_CR.inverse().contains(LHS_CR))
2015        return ConstantInt::getFalse(RHS->getContext());
2016    }
2017  }
2018
2019  // Compare of cast, for example (zext X) != 0 -> X != 0
2020  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2021    Instruction *LI = cast<CastInst>(LHS);
2022    Value *SrcOp = LI->getOperand(0);
2023    Type *SrcTy = SrcOp->getType();
2024    Type *DstTy = LI->getType();
2025
2026    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2027    // if the integer type is the same size as the pointer type.
2028    if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
2029        Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
2030      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2031        // Transfer the cast to the constant.
2032        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2033                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
2034                                        Q, MaxRecurse-1))
2035          return V;
2036      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2037        if (RI->getOperand(0)->getType() == SrcTy)
2038          // Compare without the cast.
2039          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2040                                          Q, MaxRecurse-1))
2041            return V;
2042      }
2043    }
2044
2045    if (isa<ZExtInst>(LHS)) {
2046      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2047      // same type.
2048      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2049        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2050          // Compare X and Y.  Note that signed predicates become unsigned.
2051          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2052                                          SrcOp, RI->getOperand(0), Q,
2053                                          MaxRecurse-1))
2054            return V;
2055      }
2056      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2057      // too.  If not, then try to deduce the result of the comparison.
2058      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2059        // Compute the constant that would happen if we truncated to SrcTy then
2060        // reextended to DstTy.
2061        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2062        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2063
2064        // If the re-extended constant didn't change then this is effectively
2065        // also a case of comparing two zero-extended values.
2066        if (RExt == CI && MaxRecurse)
2067          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2068                                        SrcOp, Trunc, Q, MaxRecurse-1))
2069            return V;
2070
2071        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2072        // there.  Use this to work out the result of the comparison.
2073        if (RExt != CI) {
2074          switch (Pred) {
2075          default: llvm_unreachable("Unknown ICmp predicate!");
2076          // LHS <u RHS.
2077          case ICmpInst::ICMP_EQ:
2078          case ICmpInst::ICMP_UGT:
2079          case ICmpInst::ICMP_UGE:
2080            return ConstantInt::getFalse(CI->getContext());
2081
2082          case ICmpInst::ICMP_NE:
2083          case ICmpInst::ICMP_ULT:
2084          case ICmpInst::ICMP_ULE:
2085            return ConstantInt::getTrue(CI->getContext());
2086
2087          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2088          // is non-negative then LHS <s RHS.
2089          case ICmpInst::ICMP_SGT:
2090          case ICmpInst::ICMP_SGE:
2091            return CI->getValue().isNegative() ?
2092              ConstantInt::getTrue(CI->getContext()) :
2093              ConstantInt::getFalse(CI->getContext());
2094
2095          case ICmpInst::ICMP_SLT:
2096          case ICmpInst::ICMP_SLE:
2097            return CI->getValue().isNegative() ?
2098              ConstantInt::getFalse(CI->getContext()) :
2099              ConstantInt::getTrue(CI->getContext());
2100          }
2101        }
2102      }
2103    }
2104
2105    if (isa<SExtInst>(LHS)) {
2106      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2107      // same type.
2108      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2109        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2110          // Compare X and Y.  Note that the predicate does not change.
2111          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2112                                          Q, MaxRecurse-1))
2113            return V;
2114      }
2115      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2116      // too.  If not, then try to deduce the result of the comparison.
2117      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2118        // Compute the constant that would happen if we truncated to SrcTy then
2119        // reextended to DstTy.
2120        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2121        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2122
2123        // If the re-extended constant didn't change then this is effectively
2124        // also a case of comparing two sign-extended values.
2125        if (RExt == CI && MaxRecurse)
2126          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2127            return V;
2128
2129        // Otherwise the upper bits of LHS are all equal, while RHS has varying
2130        // bits there.  Use this to work out the result of the comparison.
2131        if (RExt != CI) {
2132          switch (Pred) {
2133          default: llvm_unreachable("Unknown ICmp predicate!");
2134          case ICmpInst::ICMP_EQ:
2135            return ConstantInt::getFalse(CI->getContext());
2136          case ICmpInst::ICMP_NE:
2137            return ConstantInt::getTrue(CI->getContext());
2138
2139          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2140          // LHS >s RHS.
2141          case ICmpInst::ICMP_SGT:
2142          case ICmpInst::ICMP_SGE:
2143            return CI->getValue().isNegative() ?
2144              ConstantInt::getTrue(CI->getContext()) :
2145              ConstantInt::getFalse(CI->getContext());
2146          case ICmpInst::ICMP_SLT:
2147          case ICmpInst::ICMP_SLE:
2148            return CI->getValue().isNegative() ?
2149              ConstantInt::getFalse(CI->getContext()) :
2150              ConstantInt::getTrue(CI->getContext());
2151
2152          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2153          // LHS >u RHS.
2154          case ICmpInst::ICMP_UGT:
2155          case ICmpInst::ICMP_UGE:
2156            // Comparison is true iff the LHS <s 0.
2157            if (MaxRecurse)
2158              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2159                                              Constant::getNullValue(SrcTy),
2160                                              Q, MaxRecurse-1))
2161                return V;
2162            break;
2163          case ICmpInst::ICMP_ULT:
2164          case ICmpInst::ICMP_ULE:
2165            // Comparison is true iff the LHS >=s 0.
2166            if (MaxRecurse)
2167              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2168                                              Constant::getNullValue(SrcTy),
2169                                              Q, MaxRecurse-1))
2170                return V;
2171            break;
2172          }
2173        }
2174      }
2175    }
2176  }
2177
2178  // Special logic for binary operators.
2179  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2180  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2181  if (MaxRecurse && (LBO || RBO)) {
2182    // Analyze the case when either LHS or RHS is an add instruction.
2183    Value *A = 0, *B = 0, *C = 0, *D = 0;
2184    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2185    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2186    if (LBO && LBO->getOpcode() == Instruction::Add) {
2187      A = LBO->getOperand(0); B = LBO->getOperand(1);
2188      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2189        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2190        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2191    }
2192    if (RBO && RBO->getOpcode() == Instruction::Add) {
2193      C = RBO->getOperand(0); D = RBO->getOperand(1);
2194      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2195        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2196        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2197    }
2198
2199    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2200    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2201      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2202                                      Constant::getNullValue(RHS->getType()),
2203                                      Q, MaxRecurse-1))
2204        return V;
2205
2206    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2207    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2208      if (Value *V = SimplifyICmpInst(Pred,
2209                                      Constant::getNullValue(LHS->getType()),
2210                                      C == LHS ? D : C, Q, MaxRecurse-1))
2211        return V;
2212
2213    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2214    if (A && C && (A == C || A == D || B == C || B == D) &&
2215        NoLHSWrapProblem && NoRHSWrapProblem) {
2216      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2217      Value *Y, *Z;
2218      if (A == C) {
2219        // C + B == C + D  ->  B == D
2220        Y = B;
2221        Z = D;
2222      } else if (A == D) {
2223        // D + B == C + D  ->  B == C
2224        Y = B;
2225        Z = C;
2226      } else if (B == C) {
2227        // A + C == C + D  ->  A == D
2228        Y = A;
2229        Z = D;
2230      } else {
2231        assert(B == D);
2232        // A + D == C + D  ->  A == C
2233        Y = A;
2234        Z = C;
2235      }
2236      if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2237        return V;
2238    }
2239  }
2240
2241  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2242    bool KnownNonNegative, KnownNegative;
2243    switch (Pred) {
2244    default:
2245      break;
2246    case ICmpInst::ICMP_SGT:
2247    case ICmpInst::ICMP_SGE:
2248      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2249      if (!KnownNonNegative)
2250        break;
2251      // fall-through
2252    case ICmpInst::ICMP_EQ:
2253    case ICmpInst::ICMP_UGT:
2254    case ICmpInst::ICMP_UGE:
2255      return getFalse(ITy);
2256    case ICmpInst::ICMP_SLT:
2257    case ICmpInst::ICMP_SLE:
2258      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2259      if (!KnownNonNegative)
2260        break;
2261      // fall-through
2262    case ICmpInst::ICMP_NE:
2263    case ICmpInst::ICMP_ULT:
2264    case ICmpInst::ICMP_ULE:
2265      return getTrue(ITy);
2266    }
2267  }
2268  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2269    bool KnownNonNegative, KnownNegative;
2270    switch (Pred) {
2271    default:
2272      break;
2273    case ICmpInst::ICMP_SGT:
2274    case ICmpInst::ICMP_SGE:
2275      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2276      if (!KnownNonNegative)
2277        break;
2278      // fall-through
2279    case ICmpInst::ICMP_NE:
2280    case ICmpInst::ICMP_UGT:
2281    case ICmpInst::ICMP_UGE:
2282      return getTrue(ITy);
2283    case ICmpInst::ICMP_SLT:
2284    case ICmpInst::ICMP_SLE:
2285      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2286      if (!KnownNonNegative)
2287        break;
2288      // fall-through
2289    case ICmpInst::ICMP_EQ:
2290    case ICmpInst::ICMP_ULT:
2291    case ICmpInst::ICMP_ULE:
2292      return getFalse(ITy);
2293    }
2294  }
2295
2296  // x udiv y <=u x.
2297  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2298    // icmp pred (X /u Y), X
2299    if (Pred == ICmpInst::ICMP_UGT)
2300      return getFalse(ITy);
2301    if (Pred == ICmpInst::ICMP_ULE)
2302      return getTrue(ITy);
2303  }
2304
2305  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2306      LBO->getOperand(1) == RBO->getOperand(1)) {
2307    switch (LBO->getOpcode()) {
2308    default: break;
2309    case Instruction::UDiv:
2310    case Instruction::LShr:
2311      if (ICmpInst::isSigned(Pred))
2312        break;
2313      // fall-through
2314    case Instruction::SDiv:
2315    case Instruction::AShr:
2316      if (!LBO->isExact() || !RBO->isExact())
2317        break;
2318      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2319                                      RBO->getOperand(0), Q, MaxRecurse-1))
2320        return V;
2321      break;
2322    case Instruction::Shl: {
2323      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2324      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2325      if (!NUW && !NSW)
2326        break;
2327      if (!NSW && ICmpInst::isSigned(Pred))
2328        break;
2329      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2330                                      RBO->getOperand(0), Q, MaxRecurse-1))
2331        return V;
2332      break;
2333    }
2334    }
2335  }
2336
2337  // Simplify comparisons involving max/min.
2338  Value *A, *B;
2339  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2340  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2341
2342  // Signed variants on "max(a,b)>=a -> true".
2343  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2344    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2345    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2346    // We analyze this as smax(A, B) pred A.
2347    P = Pred;
2348  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2349             (A == LHS || B == LHS)) {
2350    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2351    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2352    // We analyze this as smax(A, B) swapped-pred A.
2353    P = CmpInst::getSwappedPredicate(Pred);
2354  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2355             (A == RHS || B == RHS)) {
2356    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2357    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2358    // We analyze this as smax(-A, -B) swapped-pred -A.
2359    // Note that we do not need to actually form -A or -B thanks to EqP.
2360    P = CmpInst::getSwappedPredicate(Pred);
2361  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2362             (A == LHS || B == LHS)) {
2363    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2364    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2365    // We analyze this as smax(-A, -B) pred -A.
2366    // Note that we do not need to actually form -A or -B thanks to EqP.
2367    P = Pred;
2368  }
2369  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2370    // Cases correspond to "max(A, B) p A".
2371    switch (P) {
2372    default:
2373      break;
2374    case CmpInst::ICMP_EQ:
2375    case CmpInst::ICMP_SLE:
2376      // Equivalent to "A EqP B".  This may be the same as the condition tested
2377      // in the max/min; if so, we can just return that.
2378      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2379        return V;
2380      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2381        return V;
2382      // Otherwise, see if "A EqP B" simplifies.
2383      if (MaxRecurse)
2384        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2385          return V;
2386      break;
2387    case CmpInst::ICMP_NE:
2388    case CmpInst::ICMP_SGT: {
2389      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2390      // Equivalent to "A InvEqP B".  This may be the same as the condition
2391      // tested in the max/min; if so, we can just return that.
2392      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2393        return V;
2394      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2395        return V;
2396      // Otherwise, see if "A InvEqP B" simplifies.
2397      if (MaxRecurse)
2398        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2399          return V;
2400      break;
2401    }
2402    case CmpInst::ICMP_SGE:
2403      // Always true.
2404      return getTrue(ITy);
2405    case CmpInst::ICMP_SLT:
2406      // Always false.
2407      return getFalse(ITy);
2408    }
2409  }
2410
2411  // Unsigned variants on "max(a,b)>=a -> true".
2412  P = CmpInst::BAD_ICMP_PREDICATE;
2413  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2414    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2415    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2416    // We analyze this as umax(A, B) pred A.
2417    P = Pred;
2418  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2419             (A == LHS || B == LHS)) {
2420    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2421    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2422    // We analyze this as umax(A, B) swapped-pred A.
2423    P = CmpInst::getSwappedPredicate(Pred);
2424  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2425             (A == RHS || B == RHS)) {
2426    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2427    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2428    // We analyze this as umax(-A, -B) swapped-pred -A.
2429    // Note that we do not need to actually form -A or -B thanks to EqP.
2430    P = CmpInst::getSwappedPredicate(Pred);
2431  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2432             (A == LHS || B == LHS)) {
2433    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2434    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2435    // We analyze this as umax(-A, -B) pred -A.
2436    // Note that we do not need to actually form -A or -B thanks to EqP.
2437    P = Pred;
2438  }
2439  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2440    // Cases correspond to "max(A, B) p A".
2441    switch (P) {
2442    default:
2443      break;
2444    case CmpInst::ICMP_EQ:
2445    case CmpInst::ICMP_ULE:
2446      // Equivalent to "A EqP B".  This may be the same as the condition tested
2447      // in the max/min; if so, we can just return that.
2448      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2449        return V;
2450      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2451        return V;
2452      // Otherwise, see if "A EqP B" simplifies.
2453      if (MaxRecurse)
2454        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2455          return V;
2456      break;
2457    case CmpInst::ICMP_NE:
2458    case CmpInst::ICMP_UGT: {
2459      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2460      // Equivalent to "A InvEqP B".  This may be the same as the condition
2461      // tested in the max/min; if so, we can just return that.
2462      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2463        return V;
2464      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2465        return V;
2466      // Otherwise, see if "A InvEqP B" simplifies.
2467      if (MaxRecurse)
2468        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2469          return V;
2470      break;
2471    }
2472    case CmpInst::ICMP_UGE:
2473      // Always true.
2474      return getTrue(ITy);
2475    case CmpInst::ICMP_ULT:
2476      // Always false.
2477      return getFalse(ITy);
2478    }
2479  }
2480
2481  // Variants on "max(x,y) >= min(x,z)".
2482  Value *C, *D;
2483  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2484      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2485      (A == C || A == D || B == C || B == D)) {
2486    // max(x, ?) pred min(x, ?).
2487    if (Pred == CmpInst::ICMP_SGE)
2488      // Always true.
2489      return getTrue(ITy);
2490    if (Pred == CmpInst::ICMP_SLT)
2491      // Always false.
2492      return getFalse(ITy);
2493  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2494             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2495             (A == C || A == D || B == C || B == D)) {
2496    // min(x, ?) pred max(x, ?).
2497    if (Pred == CmpInst::ICMP_SLE)
2498      // Always true.
2499      return getTrue(ITy);
2500    if (Pred == CmpInst::ICMP_SGT)
2501      // Always false.
2502      return getFalse(ITy);
2503  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2504             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2505             (A == C || A == D || B == C || B == D)) {
2506    // max(x, ?) pred min(x, ?).
2507    if (Pred == CmpInst::ICMP_UGE)
2508      // Always true.
2509      return getTrue(ITy);
2510    if (Pred == CmpInst::ICMP_ULT)
2511      // Always false.
2512      return getFalse(ITy);
2513  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2514             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2515             (A == C || A == D || B == C || B == D)) {
2516    // min(x, ?) pred max(x, ?).
2517    if (Pred == CmpInst::ICMP_ULE)
2518      // Always true.
2519      return getTrue(ITy);
2520    if (Pred == CmpInst::ICMP_UGT)
2521      // Always false.
2522      return getFalse(ITy);
2523  }
2524
2525  // Simplify comparisons of related pointers using a powerful, recursive
2526  // GEP-walk when we have target data available..
2527  if (LHS->getType()->isPointerTy())
2528    if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
2529      return C;
2530
2531  if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2532    if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2533      if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2534          GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2535          (ICmpInst::isEquality(Pred) ||
2536           (GLHS->isInBounds() && GRHS->isInBounds() &&
2537            Pred == ICmpInst::getSignedPredicate(Pred)))) {
2538        // The bases are equal and the indices are constant.  Build a constant
2539        // expression GEP with the same indices and a null base pointer to see
2540        // what constant folding can make out of it.
2541        Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2542        SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2543        Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2544
2545        SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2546        Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2547        return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2548      }
2549    }
2550  }
2551
2552  // If the comparison is with the result of a select instruction, check whether
2553  // comparing with either branch of the select always yields the same value.
2554  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2555    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2556      return V;
2557
2558  // If the comparison is with the result of a phi instruction, check whether
2559  // doing the compare with each incoming phi value yields a common result.
2560  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2561    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2562      return V;
2563
2564  return 0;
2565}
2566
2567Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2568                              const DataLayout *TD,
2569                              const TargetLibraryInfo *TLI,
2570                              const DominatorTree *DT) {
2571  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2572                            RecursionLimit);
2573}
2574
2575/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2576/// fold the result.  If not, this returns null.
2577static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2578                               const Query &Q, unsigned MaxRecurse) {
2579  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2580  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2581
2582  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2583    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2584      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2585
2586    // If we have a constant, make sure it is on the RHS.
2587    std::swap(LHS, RHS);
2588    Pred = CmpInst::getSwappedPredicate(Pred);
2589  }
2590
2591  // Fold trivial predicates.
2592  if (Pred == FCmpInst::FCMP_FALSE)
2593    return ConstantInt::get(GetCompareTy(LHS), 0);
2594  if (Pred == FCmpInst::FCMP_TRUE)
2595    return ConstantInt::get(GetCompareTy(LHS), 1);
2596
2597  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2598    return UndefValue::get(GetCompareTy(LHS));
2599
2600  // fcmp x,x -> true/false.  Not all compares are foldable.
2601  if (LHS == RHS) {
2602    if (CmpInst::isTrueWhenEqual(Pred))
2603      return ConstantInt::get(GetCompareTy(LHS), 1);
2604    if (CmpInst::isFalseWhenEqual(Pred))
2605      return ConstantInt::get(GetCompareTy(LHS), 0);
2606  }
2607
2608  // Handle fcmp with constant RHS
2609  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2610    // If the constant is a nan, see if we can fold the comparison based on it.
2611    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2612      if (CFP->getValueAPF().isNaN()) {
2613        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2614          return ConstantInt::getFalse(CFP->getContext());
2615        assert(FCmpInst::isUnordered(Pred) &&
2616               "Comparison must be either ordered or unordered!");
2617        // True if unordered.
2618        return ConstantInt::getTrue(CFP->getContext());
2619      }
2620      // Check whether the constant is an infinity.
2621      if (CFP->getValueAPF().isInfinity()) {
2622        if (CFP->getValueAPF().isNegative()) {
2623          switch (Pred) {
2624          case FCmpInst::FCMP_OLT:
2625            // No value is ordered and less than negative infinity.
2626            return ConstantInt::getFalse(CFP->getContext());
2627          case FCmpInst::FCMP_UGE:
2628            // All values are unordered with or at least negative infinity.
2629            return ConstantInt::getTrue(CFP->getContext());
2630          default:
2631            break;
2632          }
2633        } else {
2634          switch (Pred) {
2635          case FCmpInst::FCMP_OGT:
2636            // No value is ordered and greater than infinity.
2637            return ConstantInt::getFalse(CFP->getContext());
2638          case FCmpInst::FCMP_ULE:
2639            // All values are unordered with and at most infinity.
2640            return ConstantInt::getTrue(CFP->getContext());
2641          default:
2642            break;
2643          }
2644        }
2645      }
2646    }
2647  }
2648
2649  // If the comparison is with the result of a select instruction, check whether
2650  // comparing with either branch of the select always yields the same value.
2651  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2652    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2653      return V;
2654
2655  // If the comparison is with the result of a phi instruction, check whether
2656  // doing the compare with each incoming phi value yields a common result.
2657  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2658    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2659      return V;
2660
2661  return 0;
2662}
2663
2664Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2665                              const DataLayout *TD,
2666                              const TargetLibraryInfo *TLI,
2667                              const DominatorTree *DT) {
2668  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2669                            RecursionLimit);
2670}
2671
2672/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2673/// the result.  If not, this returns null.
2674static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2675                                 Value *FalseVal, const Query &Q,
2676                                 unsigned MaxRecurse) {
2677  // select true, X, Y  -> X
2678  // select false, X, Y -> Y
2679  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2680    return CB->getZExtValue() ? TrueVal : FalseVal;
2681
2682  // select C, X, X -> X
2683  if (TrueVal == FalseVal)
2684    return TrueVal;
2685
2686  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2687    if (isa<Constant>(TrueVal))
2688      return TrueVal;
2689    return FalseVal;
2690  }
2691  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2692    return FalseVal;
2693  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2694    return TrueVal;
2695
2696  return 0;
2697}
2698
2699Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2700                                const DataLayout *TD,
2701                                const TargetLibraryInfo *TLI,
2702                                const DominatorTree *DT) {
2703  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2704                              RecursionLimit);
2705}
2706
2707/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2708/// fold the result.  If not, this returns null.
2709static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2710  // The type of the GEP pointer operand.
2711  PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2712  // The GEP pointer operand is not a pointer, it's a vector of pointers.
2713  if (!PtrTy)
2714    return 0;
2715
2716  // getelementptr P -> P.
2717  if (Ops.size() == 1)
2718    return Ops[0];
2719
2720  if (isa<UndefValue>(Ops[0])) {
2721    // Compute the (pointer) type returned by the GEP instruction.
2722    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2723    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2724    return UndefValue::get(GEPTy);
2725  }
2726
2727  if (Ops.size() == 2) {
2728    // getelementptr P, 0 -> P.
2729    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2730      if (C->isZero())
2731        return Ops[0];
2732    // getelementptr P, N -> P if P points to a type of zero size.
2733    if (Q.TD) {
2734      Type *Ty = PtrTy->getElementType();
2735      if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2736        return Ops[0];
2737    }
2738  }
2739
2740  // Check to see if this is constant foldable.
2741  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2742    if (!isa<Constant>(Ops[i]))
2743      return 0;
2744
2745  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2746}
2747
2748Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
2749                             const TargetLibraryInfo *TLI,
2750                             const DominatorTree *DT) {
2751  return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2752}
2753
2754/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2755/// can fold the result.  If not, this returns null.
2756static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2757                                      ArrayRef<unsigned> Idxs, const Query &Q,
2758                                      unsigned) {
2759  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2760    if (Constant *CVal = dyn_cast<Constant>(Val))
2761      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2762
2763  // insertvalue x, undef, n -> x
2764  if (match(Val, m_Undef()))
2765    return Agg;
2766
2767  // insertvalue x, (extractvalue y, n), n
2768  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2769    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2770        EV->getIndices() == Idxs) {
2771      // insertvalue undef, (extractvalue y, n), n -> y
2772      if (match(Agg, m_Undef()))
2773        return EV->getAggregateOperand();
2774
2775      // insertvalue y, (extractvalue y, n), n -> y
2776      if (Agg == EV->getAggregateOperand())
2777        return Agg;
2778    }
2779
2780  return 0;
2781}
2782
2783Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2784                                     ArrayRef<unsigned> Idxs,
2785                                     const DataLayout *TD,
2786                                     const TargetLibraryInfo *TLI,
2787                                     const DominatorTree *DT) {
2788  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2789                                   RecursionLimit);
2790}
2791
2792/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2793static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2794  // If all of the PHI's incoming values are the same then replace the PHI node
2795  // with the common value.
2796  Value *CommonValue = 0;
2797  bool HasUndefInput = false;
2798  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2799    Value *Incoming = PN->getIncomingValue(i);
2800    // If the incoming value is the phi node itself, it can safely be skipped.
2801    if (Incoming == PN) continue;
2802    if (isa<UndefValue>(Incoming)) {
2803      // Remember that we saw an undef value, but otherwise ignore them.
2804      HasUndefInput = true;
2805      continue;
2806    }
2807    if (CommonValue && Incoming != CommonValue)
2808      return 0;  // Not the same, bail out.
2809    CommonValue = Incoming;
2810  }
2811
2812  // If CommonValue is null then all of the incoming values were either undef or
2813  // equal to the phi node itself.
2814  if (!CommonValue)
2815    return UndefValue::get(PN->getType());
2816
2817  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2818  // instruction, we cannot return X as the result of the PHI node unless it
2819  // dominates the PHI block.
2820  if (HasUndefInput)
2821    return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2822
2823  return CommonValue;
2824}
2825
2826static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2827  if (Constant *C = dyn_cast<Constant>(Op))
2828    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2829
2830  return 0;
2831}
2832
2833Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
2834                               const TargetLibraryInfo *TLI,
2835                               const DominatorTree *DT) {
2836  return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2837}
2838
2839//=== Helper functions for higher up the class hierarchy.
2840
2841/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2842/// fold the result.  If not, this returns null.
2843static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2844                            const Query &Q, unsigned MaxRecurse) {
2845  switch (Opcode) {
2846  case Instruction::Add:
2847    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2848                           Q, MaxRecurse);
2849  case Instruction::FAdd:
2850    return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2851
2852  case Instruction::Sub:
2853    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2854                           Q, MaxRecurse);
2855  case Instruction::FSub:
2856    return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2857
2858  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2859  case Instruction::FMul:
2860    return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2861  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2862  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2863  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2864  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2865  case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2866  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2867  case Instruction::Shl:
2868    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2869                           Q, MaxRecurse);
2870  case Instruction::LShr:
2871    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2872  case Instruction::AShr:
2873    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2874  case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2875  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2876  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2877  default:
2878    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2879      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2880        Constant *COps[] = {CLHS, CRHS};
2881        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2882                                        Q.TLI);
2883      }
2884
2885    // If the operation is associative, try some generic simplifications.
2886    if (Instruction::isAssociative(Opcode))
2887      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2888        return V;
2889
2890    // If the operation is with the result of a select instruction check whether
2891    // operating on either branch of the select always yields the same value.
2892    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2893      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2894        return V;
2895
2896    // If the operation is with the result of a phi instruction, check whether
2897    // operating on all incoming values of the phi always yields the same value.
2898    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2899      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2900        return V;
2901
2902    return 0;
2903  }
2904}
2905
2906Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2907                           const DataLayout *TD, const TargetLibraryInfo *TLI,
2908                           const DominatorTree *DT) {
2909  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2910}
2911
2912/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2913/// fold the result.
2914static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2915                              const Query &Q, unsigned MaxRecurse) {
2916  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2917    return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2918  return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2919}
2920
2921Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2922                             const DataLayout *TD, const TargetLibraryInfo *TLI,
2923                             const DominatorTree *DT) {
2924  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2925                           RecursionLimit);
2926}
2927
2928static bool IsIdempotent(Intrinsic::ID ID) {
2929  switch (ID) {
2930  default: return false;
2931
2932  // Unary idempotent: f(f(x)) = f(x)
2933  case Intrinsic::fabs:
2934  case Intrinsic::floor:
2935  case Intrinsic::ceil:
2936  case Intrinsic::trunc:
2937  case Intrinsic::rint:
2938  case Intrinsic::nearbyint:
2939    return true;
2940  }
2941}
2942
2943template <typename IterTy>
2944static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
2945                                const Query &Q, unsigned MaxRecurse) {
2946  // Perform idempotent optimizations
2947  if (!IsIdempotent(IID))
2948    return 0;
2949
2950  // Unary Ops
2951  if (std::distance(ArgBegin, ArgEnd) == 1)
2952    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
2953      if (II->getIntrinsicID() == IID)
2954        return II;
2955
2956  return 0;
2957}
2958
2959template <typename IterTy>
2960static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
2961                           const Query &Q, unsigned MaxRecurse) {
2962  Type *Ty = V->getType();
2963  if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2964    Ty = PTy->getElementType();
2965  FunctionType *FTy = cast<FunctionType>(Ty);
2966
2967  // call undef -> undef
2968  if (isa<UndefValue>(V))
2969    return UndefValue::get(FTy->getReturnType());
2970
2971  Function *F = dyn_cast<Function>(V);
2972  if (!F)
2973    return 0;
2974
2975  if (unsigned IID = F->getIntrinsicID())
2976    if (Value *Ret =
2977        SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
2978      return Ret;
2979
2980  if (!canConstantFoldCallTo(F))
2981    return 0;
2982
2983  SmallVector<Constant *, 4> ConstantArgs;
2984  ConstantArgs.reserve(ArgEnd - ArgBegin);
2985  for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
2986    Constant *C = dyn_cast<Constant>(*I);
2987    if (!C)
2988      return 0;
2989    ConstantArgs.push_back(C);
2990  }
2991
2992  return ConstantFoldCall(F, ConstantArgs, Q.TLI);
2993}
2994
2995Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
2996                          User::op_iterator ArgEnd, const DataLayout *TD,
2997                          const TargetLibraryInfo *TLI,
2998                          const DominatorTree *DT) {
2999  return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
3000                        RecursionLimit);
3001}
3002
3003Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
3004                          const DataLayout *TD, const TargetLibraryInfo *TLI,
3005                          const DominatorTree *DT) {
3006  return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
3007                        RecursionLimit);
3008}
3009
3010/// SimplifyInstruction - See if we can compute a simplified version of this
3011/// instruction.  If not, this returns null.
3012Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
3013                                 const TargetLibraryInfo *TLI,
3014                                 const DominatorTree *DT) {
3015  Value *Result;
3016
3017  switch (I->getOpcode()) {
3018  default:
3019    Result = ConstantFoldInstruction(I, TD, TLI);
3020    break;
3021  case Instruction::FAdd:
3022    Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3023                              I->getFastMathFlags(), TD, TLI, DT);
3024    break;
3025  case Instruction::Add:
3026    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3027                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
3028                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3029                             TD, TLI, DT);
3030    break;
3031  case Instruction::FSub:
3032    Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3033                              I->getFastMathFlags(), TD, TLI, DT);
3034    break;
3035  case Instruction::Sub:
3036    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3037                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
3038                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3039                             TD, TLI, DT);
3040    break;
3041  case Instruction::FMul:
3042    Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3043                              I->getFastMathFlags(), TD, TLI, DT);
3044    break;
3045  case Instruction::Mul:
3046    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3047    break;
3048  case Instruction::SDiv:
3049    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3050    break;
3051  case Instruction::UDiv:
3052    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3053    break;
3054  case Instruction::FDiv:
3055    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3056    break;
3057  case Instruction::SRem:
3058    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3059    break;
3060  case Instruction::URem:
3061    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3062    break;
3063  case Instruction::FRem:
3064    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3065    break;
3066  case Instruction::Shl:
3067    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3068                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
3069                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
3070                             TD, TLI, DT);
3071    break;
3072  case Instruction::LShr:
3073    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3074                              cast<BinaryOperator>(I)->isExact(),
3075                              TD, TLI, DT);
3076    break;
3077  case Instruction::AShr:
3078    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3079                              cast<BinaryOperator>(I)->isExact(),
3080                              TD, TLI, DT);
3081    break;
3082  case Instruction::And:
3083    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3084    break;
3085  case Instruction::Or:
3086    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3087    break;
3088  case Instruction::Xor:
3089    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3090    break;
3091  case Instruction::ICmp:
3092    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
3093                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3094    break;
3095  case Instruction::FCmp:
3096    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
3097                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
3098    break;
3099  case Instruction::Select:
3100    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
3101                                I->getOperand(2), TD, TLI, DT);
3102    break;
3103  case Instruction::GetElementPtr: {
3104    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
3105    Result = SimplifyGEPInst(Ops, TD, TLI, DT);
3106    break;
3107  }
3108  case Instruction::InsertValue: {
3109    InsertValueInst *IV = cast<InsertValueInst>(I);
3110    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3111                                     IV->getInsertedValueOperand(),
3112                                     IV->getIndices(), TD, TLI, DT);
3113    break;
3114  }
3115  case Instruction::PHI:
3116    Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
3117    break;
3118  case Instruction::Call: {
3119    CallSite CS(cast<CallInst>(I));
3120    Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3121                          TD, TLI, DT);
3122    break;
3123  }
3124  case Instruction::Trunc:
3125    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3126    break;
3127  }
3128
3129  /// If called on unreachable code, the above logic may report that the
3130  /// instruction simplified to itself.  Make life easier for users by
3131  /// detecting that case here, returning a safe value instead.
3132  return Result == I ? UndefValue::get(I->getType()) : Result;
3133}
3134
3135/// \brief Implementation of recursive simplification through an instructions
3136/// uses.
3137///
3138/// This is the common implementation of the recursive simplification routines.
3139/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3140/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3141/// instructions to process and attempt to simplify it using
3142/// InstructionSimplify.
3143///
3144/// This routine returns 'true' only when *it* simplifies something. The passed
3145/// in simplified value does not count toward this.
3146static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
3147                                              const DataLayout *TD,
3148                                              const TargetLibraryInfo *TLI,
3149                                              const DominatorTree *DT) {
3150  bool Simplified = false;
3151  SmallSetVector<Instruction *, 8> Worklist;
3152
3153  // If we have an explicit value to collapse to, do that round of the
3154  // simplification loop by hand initially.
3155  if (SimpleV) {
3156    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3157         ++UI)
3158      if (*UI != I)
3159        Worklist.insert(cast<Instruction>(*UI));
3160
3161    // Replace the instruction with its simplified value.
3162    I->replaceAllUsesWith(SimpleV);
3163
3164    // Gracefully handle edge cases where the instruction is not wired into any
3165    // parent block.
3166    if (I->getParent())
3167      I->eraseFromParent();
3168  } else {
3169    Worklist.insert(I);
3170  }
3171
3172  // Note that we must test the size on each iteration, the worklist can grow.
3173  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3174    I = Worklist[Idx];
3175
3176    // See if this instruction simplifies.
3177    SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3178    if (!SimpleV)
3179      continue;
3180
3181    Simplified = true;
3182
3183    // Stash away all the uses of the old instruction so we can check them for
3184    // recursive simplifications after a RAUW. This is cheaper than checking all
3185    // uses of To on the recursive step in most cases.
3186    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3187         ++UI)
3188      Worklist.insert(cast<Instruction>(*UI));
3189
3190    // Replace the instruction with its simplified value.
3191    I->replaceAllUsesWith(SimpleV);
3192
3193    // Gracefully handle edge cases where the instruction is not wired into any
3194    // parent block.
3195    if (I->getParent())
3196      I->eraseFromParent();
3197  }
3198  return Simplified;
3199}
3200
3201bool llvm::recursivelySimplifyInstruction(Instruction *I,
3202                                          const DataLayout *TD,
3203                                          const TargetLibraryInfo *TLI,
3204                                          const DominatorTree *DT) {
3205  return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3206}
3207
3208bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
3209                                         const DataLayout *TD,
3210                                         const TargetLibraryInfo *TLI,
3211                                         const DominatorTree *DT) {
3212  assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3213  assert(SimpleV && "Must provide a simplified value.");
3214  return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
3215}
3216