InstructionSimplify.cpp revision 1608769abeb1430dc34f31ffac0d9850f99ae36a
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/Operator.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/InstructionSimplify.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Support/ConstantRange.h"
28#include "llvm/Support/PatternMatch.h"
29#include "llvm/Support/ValueHandle.h"
30#include "llvm/Target/TargetData.h"
31using namespace llvm;
32using namespace llvm::PatternMatch;
33
34enum { RecursionLimit = 3 };
35
36STATISTIC(NumExpand,  "Number of expansions");
37STATISTIC(NumFactor , "Number of factorizations");
38STATISTIC(NumReassoc, "Number of reassociations");
39
40static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
41                              const TargetLibraryInfo *, const DominatorTree *,
42                              unsigned);
43static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
44                            const TargetLibraryInfo *, const DominatorTree *,
45                            unsigned);
46static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
47                              const TargetLibraryInfo *, const DominatorTree *,
48                              unsigned);
49static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
50                             const TargetLibraryInfo *, const DominatorTree *,
51                             unsigned);
52static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
53                              const TargetLibraryInfo *, const DominatorTree *,
54                              unsigned);
55
56/// getFalse - For a boolean type, or a vector of boolean type, return false, or
57/// a vector with every element false, as appropriate for the type.
58static Constant *getFalse(Type *Ty) {
59  assert(Ty->getScalarType()->isIntegerTy(1) &&
60         "Expected i1 type or a vector of i1!");
61  return Constant::getNullValue(Ty);
62}
63
64/// getTrue - For a boolean type, or a vector of boolean type, return true, or
65/// a vector with every element true, as appropriate for the type.
66static Constant *getTrue(Type *Ty) {
67  assert(Ty->getScalarType()->isIntegerTy(1) &&
68         "Expected i1 type or a vector of i1!");
69  return Constant::getAllOnesValue(Ty);
70}
71
72/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
73static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
74                          Value *RHS) {
75  CmpInst *Cmp = dyn_cast<CmpInst>(V);
76  if (!Cmp)
77    return false;
78  CmpInst::Predicate CPred = Cmp->getPredicate();
79  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
80  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
81    return true;
82  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
83    CRHS == LHS;
84}
85
86/// ValueDominatesPHI - Does the given value dominate the specified phi node?
87static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
88  Instruction *I = dyn_cast<Instruction>(V);
89  if (!I)
90    // Arguments and constants dominate all instructions.
91    return true;
92
93  // If we have a DominatorTree then do a precise test.
94  if (DT)
95    return DT->dominates(I, P);
96
97  // Otherwise, if the instruction is in the entry block, and is not an invoke,
98  // then it obviously dominates all phi nodes.
99  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
100      !isa<InvokeInst>(I))
101    return true;
102
103  return false;
104}
105
106/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
107/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
108/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
109/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
110/// Returns the simplified value, or null if no simplification was performed.
111static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
112                          unsigned OpcToExpand, const TargetData *TD,
113                          const TargetLibraryInfo *TLI, const DominatorTree *DT,
114                          unsigned MaxRecurse) {
115  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
116  // Recursion is always used, so bail out at once if we already hit the limit.
117  if (!MaxRecurse--)
118    return 0;
119
120  // Check whether the expression has the form "(A op' B) op C".
121  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
122    if (Op0->getOpcode() == OpcodeToExpand) {
123      // It does!  Try turning it into "(A op C) op' (B op C)".
124      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
125      // Do "A op C" and "B op C" both simplify?
126      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, TLI, DT, MaxRecurse))
127        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, TLI, DT, MaxRecurse)) {
128          // They do! Return "L op' R" if it simplifies or is already available.
129          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
130          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
131                                     && L == B && R == A)) {
132            ++NumExpand;
133            return LHS;
134          }
135          // Otherwise return "L op' R" if it simplifies.
136          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, TLI, DT,
137                                       MaxRecurse)) {
138            ++NumExpand;
139            return V;
140          }
141        }
142    }
143
144  // Check whether the expression has the form "A op (B op' C)".
145  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
146    if (Op1->getOpcode() == OpcodeToExpand) {
147      // It does!  Try turning it into "(A op B) op' (A op C)".
148      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
149      // Do "A op B" and "A op C" both simplify?
150      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, TLI, DT, MaxRecurse))
151        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, TLI, DT, MaxRecurse)) {
152          // They do! Return "L op' R" if it simplifies or is already available.
153          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
154          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
155                                     && L == C && R == B)) {
156            ++NumExpand;
157            return RHS;
158          }
159          // Otherwise return "L op' R" if it simplifies.
160          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, TLI, DT,
161                                       MaxRecurse)) {
162            ++NumExpand;
163            return V;
164          }
165        }
166    }
167
168  return 0;
169}
170
171/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
172/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
173/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
174/// Returns the simplified value, or null if no simplification was performed.
175static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
176                             unsigned OpcToExtract, const TargetData *TD,
177                             const TargetLibraryInfo *TLI,
178                             const DominatorTree *DT,
179                             unsigned MaxRecurse) {
180  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
181  // Recursion is always used, so bail out at once if we already hit the limit.
182  if (!MaxRecurse--)
183    return 0;
184
185  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
186  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
187
188  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
189      !Op1 || Op1->getOpcode() != OpcodeToExtract)
190    return 0;
191
192  // The expression has the form "(A op' B) op (C op' D)".
193  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
194  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
195
196  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
197  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
198  // commutative case, "(A op' B) op (C op' A)"?
199  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
200    Value *DD = A == C ? D : C;
201    // Form "A op' (B op DD)" if it simplifies completely.
202    // Does "B op DD" simplify?
203    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, TLI, DT, MaxRecurse)) {
204      // It does!  Return "A op' V" if it simplifies or is already available.
205      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
206      // "A op' V" is just the RHS.
207      if (V == B || V == DD) {
208        ++NumFactor;
209        return V == B ? LHS : RHS;
210      }
211      // Otherwise return "A op' V" if it simplifies.
212      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, TLI, DT,
213                                   MaxRecurse)) {
214        ++NumFactor;
215        return W;
216      }
217    }
218  }
219
220  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
221  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
222  // commutative case, "(A op' B) op (B op' D)"?
223  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
224    Value *CC = B == D ? C : D;
225    // Form "(A op CC) op' B" if it simplifies completely..
226    // Does "A op CC" simplify?
227    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, TLI, DT, MaxRecurse)) {
228      // It does!  Return "V op' B" if it simplifies or is already available.
229      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
230      // "V op' B" is just the RHS.
231      if (V == A || V == CC) {
232        ++NumFactor;
233        return V == A ? LHS : RHS;
234      }
235      // Otherwise return "V op' B" if it simplifies.
236      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, TLI, DT,
237                                   MaxRecurse)) {
238        ++NumFactor;
239        return W;
240      }
241    }
242  }
243
244  return 0;
245}
246
247/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
248/// operations.  Returns the simpler value, or null if none was found.
249static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
250                                       const TargetData *TD,
251                                       const TargetLibraryInfo *TLI,
252                                       const DominatorTree *DT,
253                                       unsigned MaxRecurse) {
254  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
255  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
256
257  // Recursion is always used, so bail out at once if we already hit the limit.
258  if (!MaxRecurse--)
259    return 0;
260
261  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
262  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
263
264  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
265  if (Op0 && Op0->getOpcode() == Opcode) {
266    Value *A = Op0->getOperand(0);
267    Value *B = Op0->getOperand(1);
268    Value *C = RHS;
269
270    // Does "B op C" simplify?
271    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, TLI, DT, MaxRecurse)) {
272      // It does!  Return "A op V" if it simplifies or is already available.
273      // If V equals B then "A op V" is just the LHS.
274      if (V == B) return LHS;
275      // Otherwise return "A op V" if it simplifies.
276      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, TLI, DT, MaxRecurse)) {
277        ++NumReassoc;
278        return W;
279      }
280    }
281  }
282
283  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
284  if (Op1 && Op1->getOpcode() == Opcode) {
285    Value *A = LHS;
286    Value *B = Op1->getOperand(0);
287    Value *C = Op1->getOperand(1);
288
289    // Does "A op B" simplify?
290    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, TLI, DT, MaxRecurse)) {
291      // It does!  Return "V op C" if it simplifies or is already available.
292      // If V equals B then "V op C" is just the RHS.
293      if (V == B) return RHS;
294      // Otherwise return "V op C" if it simplifies.
295      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, TLI, DT, MaxRecurse)) {
296        ++NumReassoc;
297        return W;
298      }
299    }
300  }
301
302  // The remaining transforms require commutativity as well as associativity.
303  if (!Instruction::isCommutative(Opcode))
304    return 0;
305
306  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
307  if (Op0 && Op0->getOpcode() == Opcode) {
308    Value *A = Op0->getOperand(0);
309    Value *B = Op0->getOperand(1);
310    Value *C = RHS;
311
312    // Does "C op A" simplify?
313    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, TLI, DT, MaxRecurse)) {
314      // It does!  Return "V op B" if it simplifies or is already available.
315      // If V equals A then "V op B" is just the LHS.
316      if (V == A) return LHS;
317      // Otherwise return "V op B" if it simplifies.
318      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, TLI, DT, MaxRecurse)) {
319        ++NumReassoc;
320        return W;
321      }
322    }
323  }
324
325  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
326  if (Op1 && Op1->getOpcode() == Opcode) {
327    Value *A = LHS;
328    Value *B = Op1->getOperand(0);
329    Value *C = Op1->getOperand(1);
330
331    // Does "C op A" simplify?
332    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, TLI, DT, MaxRecurse)) {
333      // It does!  Return "B op V" if it simplifies or is already available.
334      // If V equals C then "B op V" is just the RHS.
335      if (V == C) return RHS;
336      // Otherwise return "B op V" if it simplifies.
337      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, TLI, DT, MaxRecurse)) {
338        ++NumReassoc;
339        return W;
340      }
341    }
342  }
343
344  return 0;
345}
346
347/// ThreadBinOpOverSelect - In the case of a binary operation with a select
348/// instruction as an operand, try to simplify the binop by seeing whether
349/// evaluating it on both branches of the select results in the same value.
350/// Returns the common value if so, otherwise returns null.
351static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
352                                    const TargetData *TD,
353                                    const TargetLibraryInfo *TLI,
354                                    const DominatorTree *DT,
355                                    unsigned MaxRecurse) {
356  // Recursion is always used, so bail out at once if we already hit the limit.
357  if (!MaxRecurse--)
358    return 0;
359
360  SelectInst *SI;
361  if (isa<SelectInst>(LHS)) {
362    SI = cast<SelectInst>(LHS);
363  } else {
364    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
365    SI = cast<SelectInst>(RHS);
366  }
367
368  // Evaluate the BinOp on the true and false branches of the select.
369  Value *TV;
370  Value *FV;
371  if (SI == LHS) {
372    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, TLI, DT, MaxRecurse);
373    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, TLI, DT, MaxRecurse);
374  } else {
375    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, TLI, DT, MaxRecurse);
376    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, TLI, DT, MaxRecurse);
377  }
378
379  // If they simplified to the same value, then return the common value.
380  // If they both failed to simplify then return null.
381  if (TV == FV)
382    return TV;
383
384  // If one branch simplified to undef, return the other one.
385  if (TV && isa<UndefValue>(TV))
386    return FV;
387  if (FV && isa<UndefValue>(FV))
388    return TV;
389
390  // If applying the operation did not change the true and false select values,
391  // then the result of the binop is the select itself.
392  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
393    return SI;
394
395  // If one branch simplified and the other did not, and the simplified
396  // value is equal to the unsimplified one, return the simplified value.
397  // For example, select (cond, X, X & Z) & Z -> X & Z.
398  if ((FV && !TV) || (TV && !FV)) {
399    // Check that the simplified value has the form "X op Y" where "op" is the
400    // same as the original operation.
401    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
402    if (Simplified && Simplified->getOpcode() == Opcode) {
403      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
404      // We already know that "op" is the same as for the simplified value.  See
405      // if the operands match too.  If so, return the simplified value.
406      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
407      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
408      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
409      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
410          Simplified->getOperand(1) == UnsimplifiedRHS)
411        return Simplified;
412      if (Simplified->isCommutative() &&
413          Simplified->getOperand(1) == UnsimplifiedLHS &&
414          Simplified->getOperand(0) == UnsimplifiedRHS)
415        return Simplified;
416    }
417  }
418
419  return 0;
420}
421
422/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
423/// try to simplify the comparison by seeing whether both branches of the select
424/// result in the same value.  Returns the common value if so, otherwise returns
425/// null.
426static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
427                                  Value *RHS, const TargetData *TD,
428                                  const TargetLibraryInfo *TLI,
429                                  const DominatorTree *DT,
430                                  unsigned MaxRecurse) {
431  // Recursion is always used, so bail out at once if we already hit the limit.
432  if (!MaxRecurse--)
433    return 0;
434
435  // Make sure the select is on the LHS.
436  if (!isa<SelectInst>(LHS)) {
437    std::swap(LHS, RHS);
438    Pred = CmpInst::getSwappedPredicate(Pred);
439  }
440  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
441  SelectInst *SI = cast<SelectInst>(LHS);
442  Value *Cond = SI->getCondition();
443  Value *TV = SI->getTrueValue();
444  Value *FV = SI->getFalseValue();
445
446  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
447  // Does "cmp TV, RHS" simplify?
448  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, TD, TLI, DT, MaxRecurse);
449  if (TCmp == Cond) {
450    // It not only simplified, it simplified to the select condition.  Replace
451    // it with 'true'.
452    TCmp = getTrue(Cond->getType());
453  } else if (!TCmp) {
454    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
455    // condition then we can replace it with 'true'.  Otherwise give up.
456    if (!isSameCompare(Cond, Pred, TV, RHS))
457      return 0;
458    TCmp = getTrue(Cond->getType());
459  }
460
461  // Does "cmp FV, RHS" simplify?
462  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, TD, TLI, DT, MaxRecurse);
463  if (FCmp == Cond) {
464    // It not only simplified, it simplified to the select condition.  Replace
465    // it with 'false'.
466    FCmp = getFalse(Cond->getType());
467  } else if (!FCmp) {
468    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
469    // condition then we can replace it with 'false'.  Otherwise give up.
470    if (!isSameCompare(Cond, Pred, FV, RHS))
471      return 0;
472    FCmp = getFalse(Cond->getType());
473  }
474
475  // If both sides simplified to the same value, then use it as the result of
476  // the original comparison.
477  if (TCmp == FCmp)
478    return TCmp;
479  // If the false value simplified to false, then the result of the compare
480  // is equal to "Cond && TCmp".  This also catches the case when the false
481  // value simplified to false and the true value to true, returning "Cond".
482  if (match(FCmp, m_Zero()))
483    if (Value *V = SimplifyAndInst(Cond, TCmp, TD, TLI, DT, MaxRecurse))
484      return V;
485  // If the true value simplified to true, then the result of the compare
486  // is equal to "Cond || FCmp".
487  if (match(TCmp, m_One()))
488    if (Value *V = SimplifyOrInst(Cond, FCmp, TD, TLI, DT, MaxRecurse))
489      return V;
490  // Finally, if the false value simplified to true and the true value to
491  // false, then the result of the compare is equal to "!Cond".
492  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
493    if (Value *V =
494        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
495                        TD, TLI, DT, MaxRecurse))
496      return V;
497
498  return 0;
499}
500
501/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
502/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
503/// it on the incoming phi values yields the same result for every value.  If so
504/// returns the common value, otherwise returns null.
505static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
506                                 const TargetData *TD,
507                                 const TargetLibraryInfo *TLI,
508                                 const DominatorTree *DT,
509                                 unsigned MaxRecurse) {
510  // Recursion is always used, so bail out at once if we already hit the limit.
511  if (!MaxRecurse--)
512    return 0;
513
514  PHINode *PI;
515  if (isa<PHINode>(LHS)) {
516    PI = cast<PHINode>(LHS);
517    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
518    if (!ValueDominatesPHI(RHS, PI, DT))
519      return 0;
520  } else {
521    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
522    PI = cast<PHINode>(RHS);
523    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
524    if (!ValueDominatesPHI(LHS, PI, DT))
525      return 0;
526  }
527
528  // Evaluate the BinOp on the incoming phi values.
529  Value *CommonValue = 0;
530  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
531    Value *Incoming = PI->getIncomingValue(i);
532    // If the incoming value is the phi node itself, it can safely be skipped.
533    if (Incoming == PI) continue;
534    Value *V = PI == LHS ?
535      SimplifyBinOp(Opcode, Incoming, RHS, TD, TLI, DT, MaxRecurse) :
536      SimplifyBinOp(Opcode, LHS, Incoming, TD, TLI, DT, MaxRecurse);
537    // If the operation failed to simplify, or simplified to a different value
538    // to previously, then give up.
539    if (!V || (CommonValue && V != CommonValue))
540      return 0;
541    CommonValue = V;
542  }
543
544  return CommonValue;
545}
546
547/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
548/// try to simplify the comparison by seeing whether comparing with all of the
549/// incoming phi values yields the same result every time.  If so returns the
550/// common result, otherwise returns null.
551static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
552                               const TargetData *TD,
553                               const TargetLibraryInfo *TLI,
554                               const DominatorTree *DT,
555                               unsigned MaxRecurse) {
556  // Recursion is always used, so bail out at once if we already hit the limit.
557  if (!MaxRecurse--)
558    return 0;
559
560  // Make sure the phi is on the LHS.
561  if (!isa<PHINode>(LHS)) {
562    std::swap(LHS, RHS);
563    Pred = CmpInst::getSwappedPredicate(Pred);
564  }
565  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
566  PHINode *PI = cast<PHINode>(LHS);
567
568  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
569  if (!ValueDominatesPHI(RHS, PI, DT))
570    return 0;
571
572  // Evaluate the BinOp on the incoming phi values.
573  Value *CommonValue = 0;
574  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
575    Value *Incoming = PI->getIncomingValue(i);
576    // If the incoming value is the phi node itself, it can safely be skipped.
577    if (Incoming == PI) continue;
578    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, TLI, DT, MaxRecurse);
579    // If the operation failed to simplify, or simplified to a different value
580    // to previously, then give up.
581    if (!V || (CommonValue && V != CommonValue))
582      return 0;
583    CommonValue = V;
584  }
585
586  return CommonValue;
587}
588
589/// SimplifyAddInst - Given operands for an Add, see if we can
590/// fold the result.  If not, this returns null.
591static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
592                              const TargetData *TD,
593                              const TargetLibraryInfo *TLI,
594                              const DominatorTree *DT,
595                              unsigned MaxRecurse) {
596  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
597    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
598      Constant *Ops[] = { CLHS, CRHS };
599      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
600                                      Ops, TD, TLI);
601    }
602
603    // Canonicalize the constant to the RHS.
604    std::swap(Op0, Op1);
605  }
606
607  // X + undef -> undef
608  if (match(Op1, m_Undef()))
609    return Op1;
610
611  // X + 0 -> X
612  if (match(Op1, m_Zero()))
613    return Op0;
614
615  // X + (Y - X) -> Y
616  // (Y - X) + X -> Y
617  // Eg: X + -X -> 0
618  Value *Y = 0;
619  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
620      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
621    return Y;
622
623  // X + ~X -> -1   since   ~X = -X-1
624  if (match(Op0, m_Not(m_Specific(Op1))) ||
625      match(Op1, m_Not(m_Specific(Op0))))
626    return Constant::getAllOnesValue(Op0->getType());
627
628  /// i1 add -> xor.
629  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
630    if (Value *V = SimplifyXorInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1))
631      return V;
632
633  // Try some generic simplifications for associative operations.
634  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, TLI, DT,
635                                          MaxRecurse))
636    return V;
637
638  // Mul distributes over Add.  Try some generic simplifications based on this.
639  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
640                                TD, TLI, DT, MaxRecurse))
641    return V;
642
643  // Threading Add over selects and phi nodes is pointless, so don't bother.
644  // Threading over the select in "A + select(cond, B, C)" means evaluating
645  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
646  // only if B and C are equal.  If B and C are equal then (since we assume
647  // that operands have already been simplified) "select(cond, B, C)" should
648  // have been simplified to the common value of B and C already.  Analysing
649  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
650  // for threading over phi nodes.
651
652  return 0;
653}
654
655Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
656                             const TargetData *TD, const TargetLibraryInfo *TLI,
657                             const DominatorTree *DT) {
658  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit);
659}
660
661/// SimplifySubInst - Given operands for a Sub, see if we can
662/// fold the result.  If not, this returns null.
663static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
664                              const TargetData *TD,
665                              const TargetLibraryInfo *TLI,
666                              const DominatorTree *DT,
667                              unsigned MaxRecurse) {
668  if (Constant *CLHS = dyn_cast<Constant>(Op0))
669    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
670      Constant *Ops[] = { CLHS, CRHS };
671      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
672                                      Ops, TD, TLI);
673    }
674
675  // X - undef -> undef
676  // undef - X -> undef
677  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
678    return UndefValue::get(Op0->getType());
679
680  // X - 0 -> X
681  if (match(Op1, m_Zero()))
682    return Op0;
683
684  // X - X -> 0
685  if (Op0 == Op1)
686    return Constant::getNullValue(Op0->getType());
687
688  // (X*2) - X -> X
689  // (X<<1) - X -> X
690  Value *X = 0;
691  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
692      match(Op0, m_Shl(m_Specific(Op1), m_One())))
693    return Op1;
694
695  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
696  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
697  Value *Y = 0, *Z = Op1;
698  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
699    // See if "V === Y - Z" simplifies.
700    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, TLI, DT, MaxRecurse-1))
701      // It does!  Now see if "X + V" simplifies.
702      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, TLI, DT,
703                                   MaxRecurse-1)) {
704        // It does, we successfully reassociated!
705        ++NumReassoc;
706        return W;
707      }
708    // See if "V === X - Z" simplifies.
709    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, TLI, DT, MaxRecurse-1))
710      // It does!  Now see if "Y + V" simplifies.
711      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, TLI, DT,
712                                   MaxRecurse-1)) {
713        // It does, we successfully reassociated!
714        ++NumReassoc;
715        return W;
716      }
717  }
718
719  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
720  // For example, X - (X + 1) -> -1
721  X = Op0;
722  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
723    // See if "V === X - Y" simplifies.
724    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, TLI, DT, MaxRecurse-1))
725      // It does!  Now see if "V - Z" simplifies.
726      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, TLI, DT,
727                                   MaxRecurse-1)) {
728        // It does, we successfully reassociated!
729        ++NumReassoc;
730        return W;
731      }
732    // See if "V === X - Z" simplifies.
733    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, TLI, DT, MaxRecurse-1))
734      // It does!  Now see if "V - Y" simplifies.
735      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, TLI, DT,
736                                   MaxRecurse-1)) {
737        // It does, we successfully reassociated!
738        ++NumReassoc;
739        return W;
740      }
741  }
742
743  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
744  // For example, X - (X - Y) -> Y.
745  Z = Op0;
746  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
747    // See if "V === Z - X" simplifies.
748    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, TLI, DT, MaxRecurse-1))
749      // It does!  Now see if "V + Y" simplifies.
750      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, TLI, DT,
751                                   MaxRecurse-1)) {
752        // It does, we successfully reassociated!
753        ++NumReassoc;
754        return W;
755      }
756
757  // Mul distributes over Sub.  Try some generic simplifications based on this.
758  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
759                                TD, TLI, DT, MaxRecurse))
760    return V;
761
762  // i1 sub -> xor.
763  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
764    if (Value *V = SimplifyXorInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1))
765      return V;
766
767  // Threading Sub over selects and phi nodes is pointless, so don't bother.
768  // Threading over the select in "A - select(cond, B, C)" means evaluating
769  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
770  // only if B and C are equal.  If B and C are equal then (since we assume
771  // that operands have already been simplified) "select(cond, B, C)" should
772  // have been simplified to the common value of B and C already.  Analysing
773  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
774  // for threading over phi nodes.
775
776  return 0;
777}
778
779Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
780                             const TargetData *TD,
781                             const TargetLibraryInfo *TLI,
782                             const DominatorTree *DT) {
783  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit);
784}
785
786/// SimplifyMulInst - Given operands for a Mul, see if we can
787/// fold the result.  If not, this returns null.
788static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
789                              const TargetLibraryInfo *TLI,
790                              const DominatorTree *DT, unsigned MaxRecurse) {
791  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
792    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
793      Constant *Ops[] = { CLHS, CRHS };
794      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
795                                      Ops, TD, TLI);
796    }
797
798    // Canonicalize the constant to the RHS.
799    std::swap(Op0, Op1);
800  }
801
802  // X * undef -> 0
803  if (match(Op1, m_Undef()))
804    return Constant::getNullValue(Op0->getType());
805
806  // X * 0 -> 0
807  if (match(Op1, m_Zero()))
808    return Op1;
809
810  // X * 1 -> X
811  if (match(Op1, m_One()))
812    return Op0;
813
814  // (X / Y) * Y -> X if the division is exact.
815  Value *X = 0, *Y = 0;
816  if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
817      (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
818    PossiblyExactOperator *Div =
819      cast<PossiblyExactOperator>(Y == Op1 ? Op0 : Op1);
820    if (Div->isExact())
821      return X;
822  }
823
824  // i1 mul -> and.
825  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
826    if (Value *V = SimplifyAndInst(Op0, Op1, TD, TLI, DT, MaxRecurse-1))
827      return V;
828
829  // Try some generic simplifications for associative operations.
830  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, TLI, DT,
831                                          MaxRecurse))
832    return V;
833
834  // Mul distributes over Add.  Try some generic simplifications based on this.
835  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
836                             TD, TLI, DT, MaxRecurse))
837    return V;
838
839  // If the operation is with the result of a select instruction, check whether
840  // operating on either branch of the select always yields the same value.
841  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
842    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, TLI, DT,
843                                         MaxRecurse))
844      return V;
845
846  // If the operation is with the result of a phi instruction, check whether
847  // operating on all incoming values of the phi always yields the same value.
848  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
849    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, TLI, DT,
850                                      MaxRecurse))
851      return V;
852
853  return 0;
854}
855
856Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
857                             const TargetLibraryInfo *TLI,
858                             const DominatorTree *DT) {
859  return ::SimplifyMulInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
860}
861
862/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
863/// fold the result.  If not, this returns null.
864static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
865                          const TargetData *TD, const TargetLibraryInfo *TLI,
866                          const DominatorTree *DT, unsigned MaxRecurse) {
867  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
868    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
869      Constant *Ops[] = { C0, C1 };
870      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI);
871    }
872  }
873
874  bool isSigned = Opcode == Instruction::SDiv;
875
876  // X / undef -> undef
877  if (match(Op1, m_Undef()))
878    return Op1;
879
880  // undef / X -> 0
881  if (match(Op0, m_Undef()))
882    return Constant::getNullValue(Op0->getType());
883
884  // 0 / X -> 0, we don't need to preserve faults!
885  if (match(Op0, m_Zero()))
886    return Op0;
887
888  // X / 1 -> X
889  if (match(Op1, m_One()))
890    return Op0;
891
892  if (Op0->getType()->isIntegerTy(1))
893    // It can't be division by zero, hence it must be division by one.
894    return Op0;
895
896  // X / X -> 1
897  if (Op0 == Op1)
898    return ConstantInt::get(Op0->getType(), 1);
899
900  // (X * Y) / Y -> X if the multiplication does not overflow.
901  Value *X = 0, *Y = 0;
902  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
903    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
904    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
905    // If the Mul knows it does not overflow, then we are good to go.
906    if ((isSigned && Mul->hasNoSignedWrap()) ||
907        (!isSigned && Mul->hasNoUnsignedWrap()))
908      return X;
909    // If X has the form X = A / Y then X * Y cannot overflow.
910    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
911      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
912        return X;
913  }
914
915  // (X rem Y) / Y -> 0
916  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
917      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
918    return Constant::getNullValue(Op0->getType());
919
920  // If the operation is with the result of a select instruction, check whether
921  // operating on either branch of the select always yields the same value.
922  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
923    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT,
924                                         MaxRecurse))
925      return V;
926
927  // If the operation is with the result of a phi instruction, check whether
928  // operating on all incoming values of the phi always yields the same value.
929  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
930    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT,
931                                      MaxRecurse))
932      return V;
933
934  return 0;
935}
936
937/// SimplifySDivInst - Given operands for an SDiv, see if we can
938/// fold the result.  If not, this returns null.
939static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
940                               const TargetLibraryInfo *TLI,
941                               const DominatorTree *DT, unsigned MaxRecurse) {
942  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, TLI, DT,
943                             MaxRecurse))
944    return V;
945
946  return 0;
947}
948
949Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
950                              const TargetLibraryInfo *TLI,
951                              const DominatorTree *DT) {
952  return ::SimplifySDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
953}
954
955/// SimplifyUDivInst - Given operands for a UDiv, see if we can
956/// fold the result.  If not, this returns null.
957static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
958                               const TargetLibraryInfo *TLI,
959                               const DominatorTree *DT, unsigned MaxRecurse) {
960  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, TLI, DT,
961                             MaxRecurse))
962    return V;
963
964  return 0;
965}
966
967Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
968                              const TargetLibraryInfo *TLI,
969                              const DominatorTree *DT) {
970  return ::SimplifyUDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
971}
972
973static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
974                               const TargetLibraryInfo *,
975                               const DominatorTree *, unsigned) {
976  // undef / X -> undef    (the undef could be a snan).
977  if (match(Op0, m_Undef()))
978    return Op0;
979
980  // X / undef -> undef
981  if (match(Op1, m_Undef()))
982    return Op1;
983
984  return 0;
985}
986
987Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
988                              const TargetLibraryInfo *TLI,
989                              const DominatorTree *DT) {
990  return ::SimplifyFDivInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
991}
992
993/// SimplifyRem - Given operands for an SRem or URem, see if we can
994/// fold the result.  If not, this returns null.
995static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
996                          const TargetData *TD, const TargetLibraryInfo *TLI,
997                          const DominatorTree *DT, unsigned MaxRecurse) {
998  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
999    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1000      Constant *Ops[] = { C0, C1 };
1001      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI);
1002    }
1003  }
1004
1005  // X % undef -> undef
1006  if (match(Op1, m_Undef()))
1007    return Op1;
1008
1009  // undef % X -> 0
1010  if (match(Op0, m_Undef()))
1011    return Constant::getNullValue(Op0->getType());
1012
1013  // 0 % X -> 0, we don't need to preserve faults!
1014  if (match(Op0, m_Zero()))
1015    return Op0;
1016
1017  // X % 0 -> undef, we don't need to preserve faults!
1018  if (match(Op1, m_Zero()))
1019    return UndefValue::get(Op0->getType());
1020
1021  // X % 1 -> 0
1022  if (match(Op1, m_One()))
1023    return Constant::getNullValue(Op0->getType());
1024
1025  if (Op0->getType()->isIntegerTy(1))
1026    // It can't be remainder by zero, hence it must be remainder by one.
1027    return Constant::getNullValue(Op0->getType());
1028
1029  // X % X -> 0
1030  if (Op0 == Op1)
1031    return Constant::getNullValue(Op0->getType());
1032
1033  // If the operation is with the result of a select instruction, check whether
1034  // operating on either branch of the select always yields the same value.
1035  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1036    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1037      return V;
1038
1039  // If the operation is with the result of a phi instruction, check whether
1040  // operating on all incoming values of the phi always yields the same value.
1041  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1042    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1043      return V;
1044
1045  return 0;
1046}
1047
1048/// SimplifySRemInst - Given operands for an SRem, see if we can
1049/// fold the result.  If not, this returns null.
1050static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1051                               const TargetLibraryInfo *TLI,
1052                               const DominatorTree *DT,
1053                               unsigned MaxRecurse) {
1054  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, TLI, DT, MaxRecurse))
1055    return V;
1056
1057  return 0;
1058}
1059
1060Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1061                              const TargetLibraryInfo *TLI,
1062                              const DominatorTree *DT) {
1063  return ::SimplifySRemInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1064}
1065
1066/// SimplifyURemInst - Given operands for a URem, see if we can
1067/// fold the result.  If not, this returns null.
1068static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1069                               const TargetLibraryInfo *TLI,
1070                               const DominatorTree *DT,
1071                               unsigned MaxRecurse) {
1072  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, TLI, DT, MaxRecurse))
1073    return V;
1074
1075  return 0;
1076}
1077
1078Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1079                              const TargetLibraryInfo *TLI,
1080                              const DominatorTree *DT) {
1081  return ::SimplifyURemInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1082}
1083
1084static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
1085                               const TargetLibraryInfo *,
1086                               const DominatorTree *,
1087                               unsigned) {
1088  // undef % X -> undef    (the undef could be a snan).
1089  if (match(Op0, m_Undef()))
1090    return Op0;
1091
1092  // X % undef -> undef
1093  if (match(Op1, m_Undef()))
1094    return Op1;
1095
1096  return 0;
1097}
1098
1099Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1100                              const TargetLibraryInfo *TLI,
1101                              const DominatorTree *DT) {
1102  return ::SimplifyFRemInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1103}
1104
1105/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1106/// fold the result.  If not, this returns null.
1107static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1108                            const TargetData *TD, const TargetLibraryInfo *TLI,
1109                            const DominatorTree *DT, unsigned MaxRecurse) {
1110  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1111    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1112      Constant *Ops[] = { C0, C1 };
1113      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD, TLI);
1114    }
1115  }
1116
1117  // 0 shift by X -> 0
1118  if (match(Op0, m_Zero()))
1119    return Op0;
1120
1121  // X shift by 0 -> X
1122  if (match(Op1, m_Zero()))
1123    return Op0;
1124
1125  // X shift by undef -> undef because it may shift by the bitwidth.
1126  if (match(Op1, m_Undef()))
1127    return Op1;
1128
1129  // Shifting by the bitwidth or more is undefined.
1130  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1131    if (CI->getValue().getLimitedValue() >=
1132        Op0->getType()->getScalarSizeInBits())
1133      return UndefValue::get(Op0->getType());
1134
1135  // If the operation is with the result of a select instruction, check whether
1136  // operating on either branch of the select always yields the same value.
1137  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1138    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1139      return V;
1140
1141  // If the operation is with the result of a phi instruction, check whether
1142  // operating on all incoming values of the phi always yields the same value.
1143  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1144    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, TLI, DT, MaxRecurse))
1145      return V;
1146
1147  return 0;
1148}
1149
1150/// SimplifyShlInst - Given operands for an Shl, see if we can
1151/// fold the result.  If not, this returns null.
1152static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1153                              const TargetData *TD,
1154                              const TargetLibraryInfo *TLI,
1155                              const DominatorTree *DT, unsigned MaxRecurse) {
1156  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, TLI, DT, MaxRecurse))
1157    return V;
1158
1159  // undef << X -> 0
1160  if (match(Op0, m_Undef()))
1161    return Constant::getNullValue(Op0->getType());
1162
1163  // (X >> A) << A -> X
1164  Value *X;
1165  if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
1166      cast<PossiblyExactOperator>(Op0)->isExact())
1167    return X;
1168  return 0;
1169}
1170
1171Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1172                             const TargetData *TD, const TargetLibraryInfo *TLI,
1173                             const DominatorTree *DT) {
1174  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, TLI, DT, RecursionLimit);
1175}
1176
1177/// SimplifyLShrInst - Given operands for an LShr, see if we can
1178/// fold the result.  If not, this returns null.
1179static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1180                               const TargetData *TD,
1181                               const TargetLibraryInfo *TLI,
1182                               const DominatorTree *DT,
1183                               unsigned MaxRecurse) {
1184  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, TLI, DT, MaxRecurse))
1185    return V;
1186
1187  // undef >>l X -> 0
1188  if (match(Op0, m_Undef()))
1189    return Constant::getNullValue(Op0->getType());
1190
1191  // (X << A) >> A -> X
1192  Value *X;
1193  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1194      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1195    return X;
1196
1197  return 0;
1198}
1199
1200Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1201                              const TargetData *TD,
1202                              const TargetLibraryInfo *TLI,
1203                              const DominatorTree *DT) {
1204  return ::SimplifyLShrInst(Op0, Op1, isExact, TD, TLI, DT, RecursionLimit);
1205}
1206
1207/// SimplifyAShrInst - Given operands for an AShr, see if we can
1208/// fold the result.  If not, this returns null.
1209static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1210                               const TargetData *TD,
1211                               const TargetLibraryInfo *TLI,
1212                               const DominatorTree *DT,
1213                               unsigned MaxRecurse) {
1214  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, TLI, DT, MaxRecurse))
1215    return V;
1216
1217  // all ones >>a X -> all ones
1218  if (match(Op0, m_AllOnes()))
1219    return Op0;
1220
1221  // undef >>a X -> all ones
1222  if (match(Op0, m_Undef()))
1223    return Constant::getAllOnesValue(Op0->getType());
1224
1225  // (X << A) >> A -> X
1226  Value *X;
1227  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1228      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1229    return X;
1230
1231  return 0;
1232}
1233
1234Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1235                              const TargetData *TD,
1236                              const TargetLibraryInfo *TLI,
1237                              const DominatorTree *DT) {
1238  return ::SimplifyAShrInst(Op0, Op1, isExact, TD, TLI, DT, RecursionLimit);
1239}
1240
1241/// SimplifyAndInst - Given operands for an And, see if we can
1242/// fold the result.  If not, this returns null.
1243static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1244                              const TargetLibraryInfo *TLI,
1245                              const DominatorTree *DT,
1246                              unsigned MaxRecurse) {
1247  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1248    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1249      Constant *Ops[] = { CLHS, CRHS };
1250      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1251                                      Ops, TD, TLI);
1252    }
1253
1254    // Canonicalize the constant to the RHS.
1255    std::swap(Op0, Op1);
1256  }
1257
1258  // X & undef -> 0
1259  if (match(Op1, m_Undef()))
1260    return Constant::getNullValue(Op0->getType());
1261
1262  // X & X = X
1263  if (Op0 == Op1)
1264    return Op0;
1265
1266  // X & 0 = 0
1267  if (match(Op1, m_Zero()))
1268    return Op1;
1269
1270  // X & -1 = X
1271  if (match(Op1, m_AllOnes()))
1272    return Op0;
1273
1274  // A & ~A  =  ~A & A  =  0
1275  if (match(Op0, m_Not(m_Specific(Op1))) ||
1276      match(Op1, m_Not(m_Specific(Op0))))
1277    return Constant::getNullValue(Op0->getType());
1278
1279  // (A | ?) & A = A
1280  Value *A = 0, *B = 0;
1281  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1282      (A == Op1 || B == Op1))
1283    return Op1;
1284
1285  // A & (A | ?) = A
1286  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1287      (A == Op0 || B == Op0))
1288    return Op0;
1289
1290  // A & (-A) = A if A is a power of two or zero.
1291  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1292      match(Op1, m_Neg(m_Specific(Op0)))) {
1293    if (isPowerOfTwo(Op0, TD, /*OrZero*/true))
1294      return Op0;
1295    if (isPowerOfTwo(Op1, TD, /*OrZero*/true))
1296      return Op1;
1297  }
1298
1299  // Try some generic simplifications for associative operations.
1300  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, TLI,
1301                                          DT, MaxRecurse))
1302    return V;
1303
1304  // And distributes over Or.  Try some generic simplifications based on this.
1305  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1306                             TD, TLI, DT, MaxRecurse))
1307    return V;
1308
1309  // And distributes over Xor.  Try some generic simplifications based on this.
1310  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1311                             TD, TLI, DT, MaxRecurse))
1312    return V;
1313
1314  // Or distributes over And.  Try some generic simplifications based on this.
1315  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1316                                TD, TLI, DT, MaxRecurse))
1317    return V;
1318
1319  // If the operation is with the result of a select instruction, check whether
1320  // operating on either branch of the select always yields the same value.
1321  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1322    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, TLI,
1323                                         DT, MaxRecurse))
1324      return V;
1325
1326  // If the operation is with the result of a phi instruction, check whether
1327  // operating on all incoming values of the phi always yields the same value.
1328  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1329    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, TLI, DT,
1330                                      MaxRecurse))
1331      return V;
1332
1333  return 0;
1334}
1335
1336Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1337                             const TargetLibraryInfo *TLI,
1338                             const DominatorTree *DT) {
1339  return ::SimplifyAndInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1340}
1341
1342/// SimplifyOrInst - Given operands for an Or, see if we can
1343/// fold the result.  If not, this returns null.
1344static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1345                             const TargetLibraryInfo *TLI,
1346                             const DominatorTree *DT, unsigned MaxRecurse) {
1347  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1348    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1349      Constant *Ops[] = { CLHS, CRHS };
1350      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1351                                      Ops, TD, TLI);
1352    }
1353
1354    // Canonicalize the constant to the RHS.
1355    std::swap(Op0, Op1);
1356  }
1357
1358  // X | undef -> -1
1359  if (match(Op1, m_Undef()))
1360    return Constant::getAllOnesValue(Op0->getType());
1361
1362  // X | X = X
1363  if (Op0 == Op1)
1364    return Op0;
1365
1366  // X | 0 = X
1367  if (match(Op1, m_Zero()))
1368    return Op0;
1369
1370  // X | -1 = -1
1371  if (match(Op1, m_AllOnes()))
1372    return Op1;
1373
1374  // A | ~A  =  ~A | A  =  -1
1375  if (match(Op0, m_Not(m_Specific(Op1))) ||
1376      match(Op1, m_Not(m_Specific(Op0))))
1377    return Constant::getAllOnesValue(Op0->getType());
1378
1379  // (A & ?) | A = A
1380  Value *A = 0, *B = 0;
1381  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1382      (A == Op1 || B == Op1))
1383    return Op1;
1384
1385  // A | (A & ?) = A
1386  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1387      (A == Op0 || B == Op0))
1388    return Op0;
1389
1390  // ~(A & ?) | A = -1
1391  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1392      (A == Op1 || B == Op1))
1393    return Constant::getAllOnesValue(Op1->getType());
1394
1395  // A | ~(A & ?) = -1
1396  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1397      (A == Op0 || B == Op0))
1398    return Constant::getAllOnesValue(Op0->getType());
1399
1400  // Try some generic simplifications for associative operations.
1401  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, TLI,
1402                                          DT, MaxRecurse))
1403    return V;
1404
1405  // Or distributes over And.  Try some generic simplifications based on this.
1406  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, TD,
1407                             TLI, DT, MaxRecurse))
1408    return V;
1409
1410  // And distributes over Or.  Try some generic simplifications based on this.
1411  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1412                                TD, TLI, DT, MaxRecurse))
1413    return V;
1414
1415  // If the operation is with the result of a select instruction, check whether
1416  // operating on either branch of the select always yields the same value.
1417  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1418    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, TLI, DT,
1419                                         MaxRecurse))
1420      return V;
1421
1422  // If the operation is with the result of a phi instruction, check whether
1423  // operating on all incoming values of the phi always yields the same value.
1424  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1425    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, TLI, DT,
1426                                      MaxRecurse))
1427      return V;
1428
1429  return 0;
1430}
1431
1432Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1433                            const TargetLibraryInfo *TLI,
1434                            const DominatorTree *DT) {
1435  return ::SimplifyOrInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1436}
1437
1438/// SimplifyXorInst - Given operands for a Xor, see if we can
1439/// fold the result.  If not, this returns null.
1440static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1441                              const TargetLibraryInfo *TLI,
1442                              const DominatorTree *DT, unsigned MaxRecurse) {
1443  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1444    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1445      Constant *Ops[] = { CLHS, CRHS };
1446      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1447                                      Ops, TD, TLI);
1448    }
1449
1450    // Canonicalize the constant to the RHS.
1451    std::swap(Op0, Op1);
1452  }
1453
1454  // A ^ undef -> undef
1455  if (match(Op1, m_Undef()))
1456    return Op1;
1457
1458  // A ^ 0 = A
1459  if (match(Op1, m_Zero()))
1460    return Op0;
1461
1462  // A ^ A = 0
1463  if (Op0 == Op1)
1464    return Constant::getNullValue(Op0->getType());
1465
1466  // A ^ ~A  =  ~A ^ A  =  -1
1467  if (match(Op0, m_Not(m_Specific(Op1))) ||
1468      match(Op1, m_Not(m_Specific(Op0))))
1469    return Constant::getAllOnesValue(Op0->getType());
1470
1471  // Try some generic simplifications for associative operations.
1472  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, TLI,
1473                                          DT, MaxRecurse))
1474    return V;
1475
1476  // And distributes over Xor.  Try some generic simplifications based on this.
1477  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1478                                TD, TLI, DT, MaxRecurse))
1479    return V;
1480
1481  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1482  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1483  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1484  // only if B and C are equal.  If B and C are equal then (since we assume
1485  // that operands have already been simplified) "select(cond, B, C)" should
1486  // have been simplified to the common value of B and C already.  Analysing
1487  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1488  // for threading over phi nodes.
1489
1490  return 0;
1491}
1492
1493Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1494                             const TargetLibraryInfo *TLI,
1495                             const DominatorTree *DT) {
1496  return ::SimplifyXorInst(Op0, Op1, TD, TLI, DT, RecursionLimit);
1497}
1498
1499static Type *GetCompareTy(Value *Op) {
1500  return CmpInst::makeCmpResultType(Op->getType());
1501}
1502
1503/// ExtractEquivalentCondition - Rummage around inside V looking for something
1504/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1505/// otherwise return null.  Helper function for analyzing max/min idioms.
1506static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1507                                         Value *LHS, Value *RHS) {
1508  SelectInst *SI = dyn_cast<SelectInst>(V);
1509  if (!SI)
1510    return 0;
1511  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1512  if (!Cmp)
1513    return 0;
1514  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1515  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1516    return Cmp;
1517  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1518      LHS == CmpRHS && RHS == CmpLHS)
1519    return Cmp;
1520  return 0;
1521}
1522
1523/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1524/// fold the result.  If not, this returns null.
1525static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1526                               const TargetData *TD,
1527                               const TargetLibraryInfo *TLI,
1528                               const DominatorTree *DT,
1529                               unsigned MaxRecurse) {
1530  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1531  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1532
1533  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1534    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1535      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD, TLI);
1536
1537    // If we have a constant, make sure it is on the RHS.
1538    std::swap(LHS, RHS);
1539    Pred = CmpInst::getSwappedPredicate(Pred);
1540  }
1541
1542  Type *ITy = GetCompareTy(LHS); // The return type.
1543  Type *OpTy = LHS->getType();   // The operand type.
1544
1545  // icmp X, X -> true/false
1546  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1547  // because X could be 0.
1548  if (LHS == RHS || isa<UndefValue>(RHS))
1549    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1550
1551  // Special case logic when the operands have i1 type.
1552  if (OpTy->getScalarType()->isIntegerTy(1)) {
1553    switch (Pred) {
1554    default: break;
1555    case ICmpInst::ICMP_EQ:
1556      // X == 1 -> X
1557      if (match(RHS, m_One()))
1558        return LHS;
1559      break;
1560    case ICmpInst::ICMP_NE:
1561      // X != 0 -> X
1562      if (match(RHS, m_Zero()))
1563        return LHS;
1564      break;
1565    case ICmpInst::ICMP_UGT:
1566      // X >u 0 -> X
1567      if (match(RHS, m_Zero()))
1568        return LHS;
1569      break;
1570    case ICmpInst::ICMP_UGE:
1571      // X >=u 1 -> X
1572      if (match(RHS, m_One()))
1573        return LHS;
1574      break;
1575    case ICmpInst::ICMP_SLT:
1576      // X <s 0 -> X
1577      if (match(RHS, m_Zero()))
1578        return LHS;
1579      break;
1580    case ICmpInst::ICMP_SLE:
1581      // X <=s -1 -> X
1582      if (match(RHS, m_One()))
1583        return LHS;
1584      break;
1585    }
1586  }
1587
1588  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1589  // different addresses, and what's more the address of a stack variable is
1590  // never null or equal to the address of a global.  Note that generalizing
1591  // to the case where LHS is a global variable address or null is pointless,
1592  // since if both LHS and RHS are constants then we already constant folded
1593  // the compare, and if only one of them is then we moved it to RHS already.
1594  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1595                               isa<ConstantPointerNull>(RHS)))
1596    // We already know that LHS != RHS.
1597    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1598
1599  // If we are comparing with zero then try hard since this is a common case.
1600  if (match(RHS, m_Zero())) {
1601    bool LHSKnownNonNegative, LHSKnownNegative;
1602    switch (Pred) {
1603    default:
1604      assert(false && "Unknown ICmp predicate!");
1605    case ICmpInst::ICMP_ULT:
1606      return getFalse(ITy);
1607    case ICmpInst::ICMP_UGE:
1608      return getTrue(ITy);
1609    case ICmpInst::ICMP_EQ:
1610    case ICmpInst::ICMP_ULE:
1611      if (isKnownNonZero(LHS, TD))
1612        return getFalse(ITy);
1613      break;
1614    case ICmpInst::ICMP_NE:
1615    case ICmpInst::ICMP_UGT:
1616      if (isKnownNonZero(LHS, TD))
1617        return getTrue(ITy);
1618      break;
1619    case ICmpInst::ICMP_SLT:
1620      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1621      if (LHSKnownNegative)
1622        return getTrue(ITy);
1623      if (LHSKnownNonNegative)
1624        return getFalse(ITy);
1625      break;
1626    case ICmpInst::ICMP_SLE:
1627      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1628      if (LHSKnownNegative)
1629        return getTrue(ITy);
1630      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1631        return getFalse(ITy);
1632      break;
1633    case ICmpInst::ICMP_SGE:
1634      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1635      if (LHSKnownNegative)
1636        return getFalse(ITy);
1637      if (LHSKnownNonNegative)
1638        return getTrue(ITy);
1639      break;
1640    case ICmpInst::ICMP_SGT:
1641      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1642      if (LHSKnownNegative)
1643        return getFalse(ITy);
1644      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1645        return getTrue(ITy);
1646      break;
1647    }
1648  }
1649
1650  // See if we are doing a comparison with a constant integer.
1651  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1652    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1653    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1654    if (RHS_CR.isEmptySet())
1655      return ConstantInt::getFalse(CI->getContext());
1656    if (RHS_CR.isFullSet())
1657      return ConstantInt::getTrue(CI->getContext());
1658
1659    // Many binary operators with constant RHS have easy to compute constant
1660    // range.  Use them to check whether the comparison is a tautology.
1661    uint32_t Width = CI->getBitWidth();
1662    APInt Lower = APInt(Width, 0);
1663    APInt Upper = APInt(Width, 0);
1664    ConstantInt *CI2;
1665    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1666      // 'urem x, CI2' produces [0, CI2).
1667      Upper = CI2->getValue();
1668    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1669      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1670      Upper = CI2->getValue().abs();
1671      Lower = (-Upper) + 1;
1672    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1673      // 'udiv CI2, x' produces [0, CI2].
1674      Upper = CI2->getValue() + 1;
1675    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1676      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1677      APInt NegOne = APInt::getAllOnesValue(Width);
1678      if (!CI2->isZero())
1679        Upper = NegOne.udiv(CI2->getValue()) + 1;
1680    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1681      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1682      APInt IntMin = APInt::getSignedMinValue(Width);
1683      APInt IntMax = APInt::getSignedMaxValue(Width);
1684      APInt Val = CI2->getValue().abs();
1685      if (!Val.isMinValue()) {
1686        Lower = IntMin.sdiv(Val);
1687        Upper = IntMax.sdiv(Val) + 1;
1688      }
1689    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1690      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1691      APInt NegOne = APInt::getAllOnesValue(Width);
1692      if (CI2->getValue().ult(Width))
1693        Upper = NegOne.lshr(CI2->getValue()) + 1;
1694    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1695      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1696      APInt IntMin = APInt::getSignedMinValue(Width);
1697      APInt IntMax = APInt::getSignedMaxValue(Width);
1698      if (CI2->getValue().ult(Width)) {
1699        Lower = IntMin.ashr(CI2->getValue());
1700        Upper = IntMax.ashr(CI2->getValue()) + 1;
1701      }
1702    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1703      // 'or x, CI2' produces [CI2, UINT_MAX].
1704      Lower = CI2->getValue();
1705    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1706      // 'and x, CI2' produces [0, CI2].
1707      Upper = CI2->getValue() + 1;
1708    }
1709    if (Lower != Upper) {
1710      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1711      if (RHS_CR.contains(LHS_CR))
1712        return ConstantInt::getTrue(RHS->getContext());
1713      if (RHS_CR.inverse().contains(LHS_CR))
1714        return ConstantInt::getFalse(RHS->getContext());
1715    }
1716  }
1717
1718  // Compare of cast, for example (zext X) != 0 -> X != 0
1719  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1720    Instruction *LI = cast<CastInst>(LHS);
1721    Value *SrcOp = LI->getOperand(0);
1722    Type *SrcTy = SrcOp->getType();
1723    Type *DstTy = LI->getType();
1724
1725    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1726    // if the integer type is the same size as the pointer type.
1727    if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1728        TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1729      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1730        // Transfer the cast to the constant.
1731        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1732                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1733                                        TD, TLI, DT, MaxRecurse-1))
1734          return V;
1735      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1736        if (RI->getOperand(0)->getType() == SrcTy)
1737          // Compare without the cast.
1738          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1739                                          TD, TLI, DT, MaxRecurse-1))
1740            return V;
1741      }
1742    }
1743
1744    if (isa<ZExtInst>(LHS)) {
1745      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1746      // same type.
1747      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1748        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1749          // Compare X and Y.  Note that signed predicates become unsigned.
1750          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1751                                          SrcOp, RI->getOperand(0), TD, TLI, DT,
1752                                          MaxRecurse-1))
1753            return V;
1754      }
1755      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1756      // too.  If not, then try to deduce the result of the comparison.
1757      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1758        // Compute the constant that would happen if we truncated to SrcTy then
1759        // reextended to DstTy.
1760        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1761        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1762
1763        // If the re-extended constant didn't change then this is effectively
1764        // also a case of comparing two zero-extended values.
1765        if (RExt == CI && MaxRecurse)
1766          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1767                                        SrcOp, Trunc, TD, TLI, DT, MaxRecurse-1))
1768            return V;
1769
1770        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1771        // there.  Use this to work out the result of the comparison.
1772        if (RExt != CI) {
1773          switch (Pred) {
1774          default:
1775            assert(false && "Unknown ICmp predicate!");
1776          // LHS <u RHS.
1777          case ICmpInst::ICMP_EQ:
1778          case ICmpInst::ICMP_UGT:
1779          case ICmpInst::ICMP_UGE:
1780            return ConstantInt::getFalse(CI->getContext());
1781
1782          case ICmpInst::ICMP_NE:
1783          case ICmpInst::ICMP_ULT:
1784          case ICmpInst::ICMP_ULE:
1785            return ConstantInt::getTrue(CI->getContext());
1786
1787          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1788          // is non-negative then LHS <s RHS.
1789          case ICmpInst::ICMP_SGT:
1790          case ICmpInst::ICMP_SGE:
1791            return CI->getValue().isNegative() ?
1792              ConstantInt::getTrue(CI->getContext()) :
1793              ConstantInt::getFalse(CI->getContext());
1794
1795          case ICmpInst::ICMP_SLT:
1796          case ICmpInst::ICMP_SLE:
1797            return CI->getValue().isNegative() ?
1798              ConstantInt::getFalse(CI->getContext()) :
1799              ConstantInt::getTrue(CI->getContext());
1800          }
1801        }
1802      }
1803    }
1804
1805    if (isa<SExtInst>(LHS)) {
1806      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1807      // same type.
1808      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1809        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1810          // Compare X and Y.  Note that the predicate does not change.
1811          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1812                                          TD, TLI, DT, MaxRecurse-1))
1813            return V;
1814      }
1815      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1816      // too.  If not, then try to deduce the result of the comparison.
1817      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1818        // Compute the constant that would happen if we truncated to SrcTy then
1819        // reextended to DstTy.
1820        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1821        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1822
1823        // If the re-extended constant didn't change then this is effectively
1824        // also a case of comparing two sign-extended values.
1825        if (RExt == CI && MaxRecurse)
1826          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, TLI, DT,
1827                                          MaxRecurse-1))
1828            return V;
1829
1830        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1831        // bits there.  Use this to work out the result of the comparison.
1832        if (RExt != CI) {
1833          switch (Pred) {
1834          default:
1835            assert(false && "Unknown ICmp predicate!");
1836          case ICmpInst::ICMP_EQ:
1837            return ConstantInt::getFalse(CI->getContext());
1838          case ICmpInst::ICMP_NE:
1839            return ConstantInt::getTrue(CI->getContext());
1840
1841          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1842          // LHS >s RHS.
1843          case ICmpInst::ICMP_SGT:
1844          case ICmpInst::ICMP_SGE:
1845            return CI->getValue().isNegative() ?
1846              ConstantInt::getTrue(CI->getContext()) :
1847              ConstantInt::getFalse(CI->getContext());
1848          case ICmpInst::ICMP_SLT:
1849          case ICmpInst::ICMP_SLE:
1850            return CI->getValue().isNegative() ?
1851              ConstantInt::getFalse(CI->getContext()) :
1852              ConstantInt::getTrue(CI->getContext());
1853
1854          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1855          // LHS >u RHS.
1856          case ICmpInst::ICMP_UGT:
1857          case ICmpInst::ICMP_UGE:
1858            // Comparison is true iff the LHS <s 0.
1859            if (MaxRecurse)
1860              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1861                                              Constant::getNullValue(SrcTy),
1862                                              TD, TLI, DT, MaxRecurse-1))
1863                return V;
1864            break;
1865          case ICmpInst::ICMP_ULT:
1866          case ICmpInst::ICMP_ULE:
1867            // Comparison is true iff the LHS >=s 0.
1868            if (MaxRecurse)
1869              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1870                                              Constant::getNullValue(SrcTy),
1871                                              TD, TLI, DT, MaxRecurse-1))
1872                return V;
1873            break;
1874          }
1875        }
1876      }
1877    }
1878  }
1879
1880  // Special logic for binary operators.
1881  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1882  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1883  if (MaxRecurse && (LBO || RBO)) {
1884    // Analyze the case when either LHS or RHS is an add instruction.
1885    Value *A = 0, *B = 0, *C = 0, *D = 0;
1886    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1887    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1888    if (LBO && LBO->getOpcode() == Instruction::Add) {
1889      A = LBO->getOperand(0); B = LBO->getOperand(1);
1890      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1891        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1892        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1893    }
1894    if (RBO && RBO->getOpcode() == Instruction::Add) {
1895      C = RBO->getOperand(0); D = RBO->getOperand(1);
1896      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
1897        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
1898        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
1899    }
1900
1901    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
1902    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
1903      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
1904                                      Constant::getNullValue(RHS->getType()),
1905                                      TD, TLI, DT, MaxRecurse-1))
1906        return V;
1907
1908    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
1909    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
1910      if (Value *V = SimplifyICmpInst(Pred,
1911                                      Constant::getNullValue(LHS->getType()),
1912                                      C == LHS ? D : C, TD, TLI, DT, MaxRecurse-1))
1913        return V;
1914
1915    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
1916    if (A && C && (A == C || A == D || B == C || B == D) &&
1917        NoLHSWrapProblem && NoRHSWrapProblem) {
1918      // Determine Y and Z in the form icmp (X+Y), (X+Z).
1919      Value *Y = (A == C || A == D) ? B : A;
1920      Value *Z = (C == A || C == B) ? D : C;
1921      if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, TLI, DT, MaxRecurse-1))
1922        return V;
1923    }
1924  }
1925
1926  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
1927    bool KnownNonNegative, KnownNegative;
1928    switch (Pred) {
1929    default:
1930      break;
1931    case ICmpInst::ICMP_SGT:
1932    case ICmpInst::ICMP_SGE:
1933      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1934      if (!KnownNonNegative)
1935        break;
1936      // fall-through
1937    case ICmpInst::ICMP_EQ:
1938    case ICmpInst::ICMP_UGT:
1939    case ICmpInst::ICMP_UGE:
1940      return getFalse(ITy);
1941    case ICmpInst::ICMP_SLT:
1942    case ICmpInst::ICMP_SLE:
1943      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
1944      if (!KnownNonNegative)
1945        break;
1946      // fall-through
1947    case ICmpInst::ICMP_NE:
1948    case ICmpInst::ICMP_ULT:
1949    case ICmpInst::ICMP_ULE:
1950      return getTrue(ITy);
1951    }
1952  }
1953  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
1954    bool KnownNonNegative, KnownNegative;
1955    switch (Pred) {
1956    default:
1957      break;
1958    case ICmpInst::ICMP_SGT:
1959    case ICmpInst::ICMP_SGE:
1960      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1961      if (!KnownNonNegative)
1962        break;
1963      // fall-through
1964    case ICmpInst::ICMP_NE:
1965    case ICmpInst::ICMP_UGT:
1966    case ICmpInst::ICMP_UGE:
1967      return getTrue(ITy);
1968    case ICmpInst::ICMP_SLT:
1969    case ICmpInst::ICMP_SLE:
1970      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
1971      if (!KnownNonNegative)
1972        break;
1973      // fall-through
1974    case ICmpInst::ICMP_EQ:
1975    case ICmpInst::ICMP_ULT:
1976    case ICmpInst::ICMP_ULE:
1977      return getFalse(ITy);
1978    }
1979  }
1980
1981  // x udiv y <=u x.
1982  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
1983    // icmp pred (X /u Y), X
1984    if (Pred == ICmpInst::ICMP_UGT)
1985      return getFalse(ITy);
1986    if (Pred == ICmpInst::ICMP_ULE)
1987      return getTrue(ITy);
1988  }
1989
1990  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
1991      LBO->getOperand(1) == RBO->getOperand(1)) {
1992    switch (LBO->getOpcode()) {
1993    default: break;
1994    case Instruction::UDiv:
1995    case Instruction::LShr:
1996      if (ICmpInst::isSigned(Pred))
1997        break;
1998      // fall-through
1999    case Instruction::SDiv:
2000    case Instruction::AShr:
2001      if (!LBO->isExact() || !RBO->isExact())
2002        break;
2003      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2004                                      RBO->getOperand(0), TD, TLI, DT, MaxRecurse-1))
2005        return V;
2006      break;
2007    case Instruction::Shl: {
2008      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2009      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2010      if (!NUW && !NSW)
2011        break;
2012      if (!NSW && ICmpInst::isSigned(Pred))
2013        break;
2014      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2015                                      RBO->getOperand(0), TD, TLI, DT, MaxRecurse-1))
2016        return V;
2017      break;
2018    }
2019    }
2020  }
2021
2022  // Simplify comparisons involving max/min.
2023  Value *A, *B;
2024  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2025  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2026
2027  // Signed variants on "max(a,b)>=a -> true".
2028  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2029    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2030    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2031    // We analyze this as smax(A, B) pred A.
2032    P = Pred;
2033  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2034             (A == LHS || B == LHS)) {
2035    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2036    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2037    // We analyze this as smax(A, B) swapped-pred A.
2038    P = CmpInst::getSwappedPredicate(Pred);
2039  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2040             (A == RHS || B == RHS)) {
2041    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2042    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2043    // We analyze this as smax(-A, -B) swapped-pred -A.
2044    // Note that we do not need to actually form -A or -B thanks to EqP.
2045    P = CmpInst::getSwappedPredicate(Pred);
2046  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2047             (A == LHS || B == LHS)) {
2048    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2049    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2050    // We analyze this as smax(-A, -B) pred -A.
2051    // Note that we do not need to actually form -A or -B thanks to EqP.
2052    P = Pred;
2053  }
2054  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2055    // Cases correspond to "max(A, B) p A".
2056    switch (P) {
2057    default:
2058      break;
2059    case CmpInst::ICMP_EQ:
2060    case CmpInst::ICMP_SLE:
2061      // Equivalent to "A EqP B".  This may be the same as the condition tested
2062      // in the max/min; if so, we can just return that.
2063      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2064        return V;
2065      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2066        return V;
2067      // Otherwise, see if "A EqP B" simplifies.
2068      if (MaxRecurse)
2069        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, TLI, DT, MaxRecurse-1))
2070          return V;
2071      break;
2072    case CmpInst::ICMP_NE:
2073    case CmpInst::ICMP_SGT: {
2074      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2075      // Equivalent to "A InvEqP B".  This may be the same as the condition
2076      // tested in the max/min; if so, we can just return that.
2077      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2078        return V;
2079      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2080        return V;
2081      // Otherwise, see if "A InvEqP B" simplifies.
2082      if (MaxRecurse)
2083        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, TLI, DT, MaxRecurse-1))
2084          return V;
2085      break;
2086    }
2087    case CmpInst::ICMP_SGE:
2088      // Always true.
2089      return getTrue(ITy);
2090    case CmpInst::ICMP_SLT:
2091      // Always false.
2092      return getFalse(ITy);
2093    }
2094  }
2095
2096  // Unsigned variants on "max(a,b)>=a -> true".
2097  P = CmpInst::BAD_ICMP_PREDICATE;
2098  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2099    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2100    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2101    // We analyze this as umax(A, B) pred A.
2102    P = Pred;
2103  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2104             (A == LHS || B == LHS)) {
2105    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2106    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2107    // We analyze this as umax(A, B) swapped-pred A.
2108    P = CmpInst::getSwappedPredicate(Pred);
2109  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2110             (A == RHS || B == RHS)) {
2111    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2112    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2113    // We analyze this as umax(-A, -B) swapped-pred -A.
2114    // Note that we do not need to actually form -A or -B thanks to EqP.
2115    P = CmpInst::getSwappedPredicate(Pred);
2116  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2117             (A == LHS || B == LHS)) {
2118    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2119    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2120    // We analyze this as umax(-A, -B) pred -A.
2121    // Note that we do not need to actually form -A or -B thanks to EqP.
2122    P = Pred;
2123  }
2124  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2125    // Cases correspond to "max(A, B) p A".
2126    switch (P) {
2127    default:
2128      break;
2129    case CmpInst::ICMP_EQ:
2130    case CmpInst::ICMP_ULE:
2131      // Equivalent to "A EqP B".  This may be the same as the condition tested
2132      // in the max/min; if so, we can just return that.
2133      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2134        return V;
2135      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2136        return V;
2137      // Otherwise, see if "A EqP B" simplifies.
2138      if (MaxRecurse)
2139        if (Value *V = SimplifyICmpInst(EqP, A, B, TD, TLI, DT, MaxRecurse-1))
2140          return V;
2141      break;
2142    case CmpInst::ICMP_NE:
2143    case CmpInst::ICMP_UGT: {
2144      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2145      // Equivalent to "A InvEqP B".  This may be the same as the condition
2146      // tested in the max/min; if so, we can just return that.
2147      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2148        return V;
2149      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2150        return V;
2151      // Otherwise, see if "A InvEqP B" simplifies.
2152      if (MaxRecurse)
2153        if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, TLI, DT, MaxRecurse-1))
2154          return V;
2155      break;
2156    }
2157    case CmpInst::ICMP_UGE:
2158      // Always true.
2159      return getTrue(ITy);
2160    case CmpInst::ICMP_ULT:
2161      // Always false.
2162      return getFalse(ITy);
2163    }
2164  }
2165
2166  // Variants on "max(x,y) >= min(x,z)".
2167  Value *C, *D;
2168  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2169      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2170      (A == C || A == D || B == C || B == D)) {
2171    // max(x, ?) pred min(x, ?).
2172    if (Pred == CmpInst::ICMP_SGE)
2173      // Always true.
2174      return getTrue(ITy);
2175    if (Pred == CmpInst::ICMP_SLT)
2176      // Always false.
2177      return getFalse(ITy);
2178  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2179             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2180             (A == C || A == D || B == C || B == D)) {
2181    // min(x, ?) pred max(x, ?).
2182    if (Pred == CmpInst::ICMP_SLE)
2183      // Always true.
2184      return getTrue(ITy);
2185    if (Pred == CmpInst::ICMP_SGT)
2186      // Always false.
2187      return getFalse(ITy);
2188  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2189             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2190             (A == C || A == D || B == C || B == D)) {
2191    // max(x, ?) pred min(x, ?).
2192    if (Pred == CmpInst::ICMP_UGE)
2193      // Always true.
2194      return getTrue(ITy);
2195    if (Pred == CmpInst::ICMP_ULT)
2196      // Always false.
2197      return getFalse(ITy);
2198  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2199             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2200             (A == C || A == D || B == C || B == D)) {
2201    // min(x, ?) pred max(x, ?).
2202    if (Pred == CmpInst::ICMP_ULE)
2203      // Always true.
2204      return getTrue(ITy);
2205    if (Pred == CmpInst::ICMP_UGT)
2206      // Always false.
2207      return getFalse(ITy);
2208  }
2209
2210  // If the comparison is with the result of a select instruction, check whether
2211  // comparing with either branch of the select always yields the same value.
2212  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2213    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2214      return V;
2215
2216  // If the comparison is with the result of a phi instruction, check whether
2217  // doing the compare with each incoming phi value yields a common result.
2218  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2219    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2220      return V;
2221
2222  return 0;
2223}
2224
2225Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2226                              const TargetData *TD,
2227                              const TargetLibraryInfo *TLI,
2228                              const DominatorTree *DT) {
2229  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit);
2230}
2231
2232/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2233/// fold the result.  If not, this returns null.
2234static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2235                               const TargetData *TD,
2236                               const TargetLibraryInfo *TLI,
2237                               const DominatorTree *DT,
2238                               unsigned MaxRecurse) {
2239  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2240  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2241
2242  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2243    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2244      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD, TLI);
2245
2246    // If we have a constant, make sure it is on the RHS.
2247    std::swap(LHS, RHS);
2248    Pred = CmpInst::getSwappedPredicate(Pred);
2249  }
2250
2251  // Fold trivial predicates.
2252  if (Pred == FCmpInst::FCMP_FALSE)
2253    return ConstantInt::get(GetCompareTy(LHS), 0);
2254  if (Pred == FCmpInst::FCMP_TRUE)
2255    return ConstantInt::get(GetCompareTy(LHS), 1);
2256
2257  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2258    return UndefValue::get(GetCompareTy(LHS));
2259
2260  // fcmp x,x -> true/false.  Not all compares are foldable.
2261  if (LHS == RHS) {
2262    if (CmpInst::isTrueWhenEqual(Pred))
2263      return ConstantInt::get(GetCompareTy(LHS), 1);
2264    if (CmpInst::isFalseWhenEqual(Pred))
2265      return ConstantInt::get(GetCompareTy(LHS), 0);
2266  }
2267
2268  // Handle fcmp with constant RHS
2269  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2270    // If the constant is a nan, see if we can fold the comparison based on it.
2271    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2272      if (CFP->getValueAPF().isNaN()) {
2273        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2274          return ConstantInt::getFalse(CFP->getContext());
2275        assert(FCmpInst::isUnordered(Pred) &&
2276               "Comparison must be either ordered or unordered!");
2277        // True if unordered.
2278        return ConstantInt::getTrue(CFP->getContext());
2279      }
2280      // Check whether the constant is an infinity.
2281      if (CFP->getValueAPF().isInfinity()) {
2282        if (CFP->getValueAPF().isNegative()) {
2283          switch (Pred) {
2284          case FCmpInst::FCMP_OLT:
2285            // No value is ordered and less than negative infinity.
2286            return ConstantInt::getFalse(CFP->getContext());
2287          case FCmpInst::FCMP_UGE:
2288            // All values are unordered with or at least negative infinity.
2289            return ConstantInt::getTrue(CFP->getContext());
2290          default:
2291            break;
2292          }
2293        } else {
2294          switch (Pred) {
2295          case FCmpInst::FCMP_OGT:
2296            // No value is ordered and greater than infinity.
2297            return ConstantInt::getFalse(CFP->getContext());
2298          case FCmpInst::FCMP_ULE:
2299            // All values are unordered with and at most infinity.
2300            return ConstantInt::getTrue(CFP->getContext());
2301          default:
2302            break;
2303          }
2304        }
2305      }
2306    }
2307  }
2308
2309  // If the comparison is with the result of a select instruction, check whether
2310  // comparing with either branch of the select always yields the same value.
2311  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2312    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2313      return V;
2314
2315  // If the comparison is with the result of a phi instruction, check whether
2316  // doing the compare with each incoming phi value yields a common result.
2317  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2318    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, TLI, DT, MaxRecurse))
2319      return V;
2320
2321  return 0;
2322}
2323
2324Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2325                              const TargetData *TD,
2326                              const TargetLibraryInfo *TLI,
2327                              const DominatorTree *DT) {
2328  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit);
2329}
2330
2331/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2332/// the result.  If not, this returns null.
2333Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
2334                                const TargetData *TD, const DominatorTree *) {
2335  // select true, X, Y  -> X
2336  // select false, X, Y -> Y
2337  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2338    return CB->getZExtValue() ? TrueVal : FalseVal;
2339
2340  // select C, X, X -> X
2341  if (TrueVal == FalseVal)
2342    return TrueVal;
2343
2344  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2345    if (isa<Constant>(TrueVal))
2346      return TrueVal;
2347    return FalseVal;
2348  }
2349  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2350    return FalseVal;
2351  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2352    return TrueVal;
2353
2354  return 0;
2355}
2356
2357/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2358/// fold the result.  If not, this returns null.
2359Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
2360                             const DominatorTree *) {
2361  // The type of the GEP pointer operand.
2362  PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2363  // The GEP pointer operand is not a pointer, it's a vector of pointers.
2364  if (!PtrTy)
2365    return 0;
2366
2367  // getelementptr P -> P.
2368  if (Ops.size() == 1)
2369    return Ops[0];
2370
2371  if (isa<UndefValue>(Ops[0])) {
2372    // Compute the (pointer) type returned by the GEP instruction.
2373    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2374    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2375    return UndefValue::get(GEPTy);
2376  }
2377
2378  if (Ops.size() == 2) {
2379    // getelementptr P, 0 -> P.
2380    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2381      if (C->isZero())
2382        return Ops[0];
2383    // getelementptr P, N -> P if P points to a type of zero size.
2384    if (TD) {
2385      Type *Ty = PtrTy->getElementType();
2386      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
2387        return Ops[0];
2388    }
2389  }
2390
2391  // Check to see if this is constant foldable.
2392  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2393    if (!isa<Constant>(Ops[i]))
2394      return 0;
2395
2396  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2397}
2398
2399/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2400/// can fold the result.  If not, this returns null.
2401Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2402                                     ArrayRef<unsigned> Idxs,
2403                                     const TargetData *,
2404                                     const DominatorTree *) {
2405  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2406    if (Constant *CVal = dyn_cast<Constant>(Val))
2407      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2408
2409  // insertvalue x, undef, n -> x
2410  if (match(Val, m_Undef()))
2411    return Agg;
2412
2413  // insertvalue x, (extractvalue y, n), n
2414  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2415    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2416        EV->getIndices() == Idxs) {
2417      // insertvalue undef, (extractvalue y, n), n -> y
2418      if (match(Agg, m_Undef()))
2419        return EV->getAggregateOperand();
2420
2421      // insertvalue y, (extractvalue y, n), n -> y
2422      if (Agg == EV->getAggregateOperand())
2423        return Agg;
2424    }
2425
2426  return 0;
2427}
2428
2429/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2430static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
2431  // If all of the PHI's incoming values are the same then replace the PHI node
2432  // with the common value.
2433  Value *CommonValue = 0;
2434  bool HasUndefInput = false;
2435  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2436    Value *Incoming = PN->getIncomingValue(i);
2437    // If the incoming value is the phi node itself, it can safely be skipped.
2438    if (Incoming == PN) continue;
2439    if (isa<UndefValue>(Incoming)) {
2440      // Remember that we saw an undef value, but otherwise ignore them.
2441      HasUndefInput = true;
2442      continue;
2443    }
2444    if (CommonValue && Incoming != CommonValue)
2445      return 0;  // Not the same, bail out.
2446    CommonValue = Incoming;
2447  }
2448
2449  // If CommonValue is null then all of the incoming values were either undef or
2450  // equal to the phi node itself.
2451  if (!CommonValue)
2452    return UndefValue::get(PN->getType());
2453
2454  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2455  // instruction, we cannot return X as the result of the PHI node unless it
2456  // dominates the PHI block.
2457  if (HasUndefInput)
2458    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
2459
2460  return CommonValue;
2461}
2462
2463//=== Helper functions for higher up the class hierarchy.
2464
2465/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2466/// fold the result.  If not, this returns null.
2467static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2468                            const TargetData *TD,
2469                            const TargetLibraryInfo *TLI,
2470                            const DominatorTree *DT,
2471                            unsigned MaxRecurse) {
2472  switch (Opcode) {
2473  case Instruction::Add:
2474    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2475                           TD, TLI, DT, MaxRecurse);
2476  case Instruction::Sub:
2477    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2478                           TD, TLI, DT, MaxRecurse);
2479  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, TLI, DT,
2480                                                  MaxRecurse);
2481  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, TLI, DT,
2482                                                  MaxRecurse);
2483  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, TLI, DT,
2484                                                  MaxRecurse);
2485  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, TLI, DT,
2486                                                  MaxRecurse);
2487  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, TLI, DT,
2488                                                  MaxRecurse);
2489  case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, TLI, DT,
2490                                                  MaxRecurse);
2491  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, TLI, DT,
2492                                                  MaxRecurse);
2493  case Instruction::Shl:
2494    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2495                           TD, TLI, DT, MaxRecurse);
2496  case Instruction::LShr:
2497    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, TLI, DT,
2498                            MaxRecurse);
2499  case Instruction::AShr:
2500    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, TLI, DT,
2501                            MaxRecurse);
2502  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, TLI, DT,
2503                                                MaxRecurse);
2504  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, TLI, DT,
2505                                                MaxRecurse);
2506  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, TLI, DT,
2507                                                MaxRecurse);
2508  default:
2509    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2510      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2511        Constant *COps[] = {CLHS, CRHS};
2512        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD, TLI);
2513      }
2514
2515    // If the operation is associative, try some generic simplifications.
2516    if (Instruction::isAssociative(Opcode))
2517      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, TLI, DT,
2518                                              MaxRecurse))
2519        return V;
2520
2521    // If the operation is with the result of a select instruction, check whether
2522    // operating on either branch of the select always yields the same value.
2523    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2524      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, TLI, DT,
2525                                           MaxRecurse))
2526        return V;
2527
2528    // If the operation is with the result of a phi instruction, check whether
2529    // operating on all incoming values of the phi always yields the same value.
2530    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2531      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, TLI, DT,
2532                                        MaxRecurse))
2533        return V;
2534
2535    return 0;
2536  }
2537}
2538
2539Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2540                           const TargetData *TD, const TargetLibraryInfo *TLI,
2541                           const DominatorTree *DT) {
2542  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, TLI, DT, RecursionLimit);
2543}
2544
2545/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2546/// fold the result.
2547static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2548                              const TargetData *TD,
2549                              const TargetLibraryInfo *TLI,
2550                              const DominatorTree *DT,
2551                              unsigned MaxRecurse) {
2552  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2553    return SimplifyICmpInst(Predicate, LHS, RHS, TD, TLI, DT, MaxRecurse);
2554  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, TLI, DT, MaxRecurse);
2555}
2556
2557Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2558                             const TargetData *TD, const TargetLibraryInfo *TLI,
2559                             const DominatorTree *DT) {
2560  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, TLI, DT, RecursionLimit);
2561}
2562
2563static Value *SimplifyCallInst(CallInst *CI) {
2564  // call undef -> undef
2565  if (isa<UndefValue>(CI->getCalledValue()))
2566    return UndefValue::get(CI->getType());
2567
2568  return 0;
2569}
2570
2571/// SimplifyInstruction - See if we can compute a simplified version of this
2572/// instruction.  If not, this returns null.
2573Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2574                                 const TargetLibraryInfo *TLI,
2575                                 const DominatorTree *DT) {
2576  Value *Result;
2577
2578  switch (I->getOpcode()) {
2579  default:
2580    Result = ConstantFoldInstruction(I, TD, TLI);
2581    break;
2582  case Instruction::Add:
2583    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2584                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2585                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2586                             TD, TLI, DT);
2587    break;
2588  case Instruction::Sub:
2589    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2590                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2591                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2592                             TD, TLI, DT);
2593    break;
2594  case Instruction::Mul:
2595    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2596    break;
2597  case Instruction::SDiv:
2598    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2599    break;
2600  case Instruction::UDiv:
2601    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2602    break;
2603  case Instruction::FDiv:
2604    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2605    break;
2606  case Instruction::SRem:
2607    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2608    break;
2609  case Instruction::URem:
2610    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2611    break;
2612  case Instruction::FRem:
2613    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2614    break;
2615  case Instruction::Shl:
2616    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2617                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2618                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2619                             TD, TLI, DT);
2620    break;
2621  case Instruction::LShr:
2622    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2623                              cast<BinaryOperator>(I)->isExact(),
2624                              TD, TLI, DT);
2625    break;
2626  case Instruction::AShr:
2627    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2628                              cast<BinaryOperator>(I)->isExact(),
2629                              TD, TLI, DT);
2630    break;
2631  case Instruction::And:
2632    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2633    break;
2634  case Instruction::Or:
2635    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2636    break;
2637  case Instruction::Xor:
2638    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2639    break;
2640  case Instruction::ICmp:
2641    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2642                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2643    break;
2644  case Instruction::FCmp:
2645    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2646                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2647    break;
2648  case Instruction::Select:
2649    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2650                                I->getOperand(2), TD, DT);
2651    break;
2652  case Instruction::GetElementPtr: {
2653    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2654    Result = SimplifyGEPInst(Ops, TD, DT);
2655    break;
2656  }
2657  case Instruction::InsertValue: {
2658    InsertValueInst *IV = cast<InsertValueInst>(I);
2659    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2660                                     IV->getInsertedValueOperand(),
2661                                     IV->getIndices(), TD, DT);
2662    break;
2663  }
2664  case Instruction::PHI:
2665    Result = SimplifyPHINode(cast<PHINode>(I), DT);
2666    break;
2667  case Instruction::Call:
2668    Result = SimplifyCallInst(cast<CallInst>(I));
2669    break;
2670  }
2671
2672  /// If called on unreachable code, the above logic may report that the
2673  /// instruction simplified to itself.  Make life easier for users by
2674  /// detecting that case here, returning a safe value instead.
2675  return Result == I ? UndefValue::get(I->getType()) : Result;
2676}
2677
2678/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
2679/// delete the From instruction.  In addition to a basic RAUW, this does a
2680/// recursive simplification of the newly formed instructions.  This catches
2681/// things where one simplification exposes other opportunities.  This only
2682/// simplifies and deletes scalar operations, it does not change the CFG.
2683///
2684void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
2685                                     const TargetData *TD,
2686                                     const TargetLibraryInfo *TLI,
2687                                     const DominatorTree *DT) {
2688  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
2689
2690  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
2691  // we can know if it gets deleted out from under us or replaced in a
2692  // recursive simplification.
2693  WeakVH FromHandle(From);
2694  WeakVH ToHandle(To);
2695
2696  while (!From->use_empty()) {
2697    // Update the instruction to use the new value.
2698    Use &TheUse = From->use_begin().getUse();
2699    Instruction *User = cast<Instruction>(TheUse.getUser());
2700    TheUse = To;
2701
2702    // Check to see if the instruction can be folded due to the operand
2703    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
2704    // the 'or' with -1.
2705    Value *SimplifiedVal;
2706    {
2707      // Sanity check to make sure 'User' doesn't dangle across
2708      // SimplifyInstruction.
2709      AssertingVH<> UserHandle(User);
2710
2711      SimplifiedVal = SimplifyInstruction(User, TD, TLI, DT);
2712      if (SimplifiedVal == 0) continue;
2713    }
2714
2715    // Recursively simplify this user to the new value.
2716    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, TLI, DT);
2717    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
2718    To = ToHandle;
2719
2720    assert(ToHandle && "To value deleted by recursive simplification?");
2721
2722    // If the recursive simplification ended up revisiting and deleting
2723    // 'From' then we're done.
2724    if (From == 0)
2725      return;
2726  }
2727
2728  // If 'From' has value handles referring to it, do a real RAUW to update them.
2729  From->replaceAllUsesWith(To);
2730
2731  From->eraseFromParent();
2732}
2733