InstructionSimplify.cpp revision 4b720718fbda1194f925e0a9d931bc220e8b0e3a
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Support/PatternMatch.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Target/TargetData.h"
29using namespace llvm;
30using namespace llvm::PatternMatch;
31
32#define RecursionLimit 3
33
34STATISTIC(NumExpand,  "Number of expansions");
35STATISTIC(NumFactor , "Number of factorizations");
36STATISTIC(NumReassoc, "Number of reassociations");
37
38static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
39                              const DominatorTree *, unsigned);
40static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
41                            const DominatorTree *, unsigned);
42static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
43                              const DominatorTree *, unsigned);
44static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
45                             const DominatorTree *, unsigned);
46static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
47                              const DominatorTree *, unsigned);
48
49/// ValueDominatesPHI - Does the given value dominate the specified phi node?
50static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
51  Instruction *I = dyn_cast<Instruction>(V);
52  if (!I)
53    // Arguments and constants dominate all instructions.
54    return true;
55
56  // If we have a DominatorTree then do a precise test.
57  if (DT)
58    return DT->dominates(I, P);
59
60  // Otherwise, if the instruction is in the entry block, and is not an invoke,
61  // then it obviously dominates all phi nodes.
62  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
63      !isa<InvokeInst>(I))
64    return true;
65
66  return false;
67}
68
69/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
70/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
71/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
72/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
73/// Returns the simplified value, or null if no simplification was performed.
74static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
75                          unsigned OpcToExpand, const TargetData *TD,
76                          const DominatorTree *DT, unsigned MaxRecurse) {
77  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
78  // Recursion is always used, so bail out at once if we already hit the limit.
79  if (!MaxRecurse--)
80    return 0;
81
82  // Check whether the expression has the form "(A op' B) op C".
83  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
84    if (Op0->getOpcode() == OpcodeToExpand) {
85      // It does!  Try turning it into "(A op C) op' (B op C)".
86      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
87      // Do "A op C" and "B op C" both simplify?
88      if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
89        if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
90          // They do! Return "L op' R" if it simplifies or is already available.
91          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
92          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
93                                     && L == B && R == A)) {
94            ++NumExpand;
95            return LHS;
96          }
97          // Otherwise return "L op' R" if it simplifies.
98          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
99                                       MaxRecurse)) {
100            ++NumExpand;
101            return V;
102          }
103        }
104    }
105
106  // Check whether the expression has the form "A op (B op' C)".
107  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
108    if (Op1->getOpcode() == OpcodeToExpand) {
109      // It does!  Try turning it into "(A op B) op' (A op C)".
110      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
111      // Do "A op B" and "A op C" both simplify?
112      if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
113        if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
114          // They do! Return "L op' R" if it simplifies or is already available.
115          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
116          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
117                                     && L == C && R == B)) {
118            ++NumExpand;
119            return RHS;
120          }
121          // Otherwise return "L op' R" if it simplifies.
122          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
123                                       MaxRecurse)) {
124            ++NumExpand;
125            return V;
126          }
127        }
128    }
129
130  return 0;
131}
132
133/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
134/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
135/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
136/// Returns the simplified value, or null if no simplification was performed.
137static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
138                             unsigned OpcToExtract, const TargetData *TD,
139                             const DominatorTree *DT, unsigned MaxRecurse) {
140  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
141  // Recursion is always used, so bail out at once if we already hit the limit.
142  if (!MaxRecurse--)
143    return 0;
144
145  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
146  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
147
148  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
149      !Op1 || Op1->getOpcode() != OpcodeToExtract)
150    return 0;
151
152  // The expression has the form "(A op' B) op (C op' D)".
153  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
154  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
155
156  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
157  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
158  // commutative case, "(A op' B) op (C op' A)"?
159  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
160    Value *DD = A == C ? D : C;
161    // Form "A op' (B op DD)" if it simplifies completely.
162    // Does "B op DD" simplify?
163    if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
164      // It does!  Return "A op' V" if it simplifies or is already available.
165      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
166      // "A op' V" is just the RHS.
167      if (V == B || V == DD) {
168        ++NumFactor;
169        return V == B ? LHS : RHS;
170      }
171      // Otherwise return "A op' V" if it simplifies.
172      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
173        ++NumFactor;
174        return W;
175      }
176    }
177  }
178
179  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
180  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
181  // commutative case, "(A op' B) op (B op' D)"?
182  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
183    Value *CC = B == D ? C : D;
184    // Form "(A op CC) op' B" if it simplifies completely..
185    // Does "A op CC" simplify?
186    if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
187      // It does!  Return "V op' B" if it simplifies or is already available.
188      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
189      // "V op' B" is just the RHS.
190      if (V == A || V == CC) {
191        ++NumFactor;
192        return V == A ? LHS : RHS;
193      }
194      // Otherwise return "V op' B" if it simplifies.
195      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
196        ++NumFactor;
197        return W;
198      }
199    }
200  }
201
202  return 0;
203}
204
205/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
206/// operations.  Returns the simpler value, or null if none was found.
207static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
208                                       const TargetData *TD,
209                                       const DominatorTree *DT,
210                                       unsigned MaxRecurse) {
211  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
212  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
213
214  // Recursion is always used, so bail out at once if we already hit the limit.
215  if (!MaxRecurse--)
216    return 0;
217
218  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
219  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
220
221  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
222  if (Op0 && Op0->getOpcode() == Opcode) {
223    Value *A = Op0->getOperand(0);
224    Value *B = Op0->getOperand(1);
225    Value *C = RHS;
226
227    // Does "B op C" simplify?
228    if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
229      // It does!  Return "A op V" if it simplifies or is already available.
230      // If V equals B then "A op V" is just the LHS.
231      if (V == B) return LHS;
232      // Otherwise return "A op V" if it simplifies.
233      if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
234        ++NumReassoc;
235        return W;
236      }
237    }
238  }
239
240  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
241  if (Op1 && Op1->getOpcode() == Opcode) {
242    Value *A = LHS;
243    Value *B = Op1->getOperand(0);
244    Value *C = Op1->getOperand(1);
245
246    // Does "A op B" simplify?
247    if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
248      // It does!  Return "V op C" if it simplifies or is already available.
249      // If V equals B then "V op C" is just the RHS.
250      if (V == B) return RHS;
251      // Otherwise return "V op C" if it simplifies.
252      if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
253        ++NumReassoc;
254        return W;
255      }
256    }
257  }
258
259  // The remaining transforms require commutativity as well as associativity.
260  if (!Instruction::isCommutative(Opcode))
261    return 0;
262
263  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
264  if (Op0 && Op0->getOpcode() == Opcode) {
265    Value *A = Op0->getOperand(0);
266    Value *B = Op0->getOperand(1);
267    Value *C = RHS;
268
269    // Does "C op A" simplify?
270    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
271      // It does!  Return "V op B" if it simplifies or is already available.
272      // If V equals A then "V op B" is just the LHS.
273      if (V == A) return LHS;
274      // Otherwise return "V op B" if it simplifies.
275      if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
276        ++NumReassoc;
277        return W;
278      }
279    }
280  }
281
282  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
283  if (Op1 && Op1->getOpcode() == Opcode) {
284    Value *A = LHS;
285    Value *B = Op1->getOperand(0);
286    Value *C = Op1->getOperand(1);
287
288    // Does "C op A" simplify?
289    if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
290      // It does!  Return "B op V" if it simplifies or is already available.
291      // If V equals C then "B op V" is just the RHS.
292      if (V == C) return RHS;
293      // Otherwise return "B op V" if it simplifies.
294      if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
295        ++NumReassoc;
296        return W;
297      }
298    }
299  }
300
301  return 0;
302}
303
304/// ThreadBinOpOverSelect - In the case of a binary operation with a select
305/// instruction as an operand, try to simplify the binop by seeing whether
306/// evaluating it on both branches of the select results in the same value.
307/// Returns the common value if so, otherwise returns null.
308static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
309                                    const TargetData *TD,
310                                    const DominatorTree *DT,
311                                    unsigned MaxRecurse) {
312  // Recursion is always used, so bail out at once if we already hit the limit.
313  if (!MaxRecurse--)
314    return 0;
315
316  SelectInst *SI;
317  if (isa<SelectInst>(LHS)) {
318    SI = cast<SelectInst>(LHS);
319  } else {
320    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
321    SI = cast<SelectInst>(RHS);
322  }
323
324  // Evaluate the BinOp on the true and false branches of the select.
325  Value *TV;
326  Value *FV;
327  if (SI == LHS) {
328    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
329    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
330  } else {
331    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
332    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
333  }
334
335  // If they simplified to the same value, then return the common value.
336  // If they both failed to simplify then return null.
337  if (TV == FV)
338    return TV;
339
340  // If one branch simplified to undef, return the other one.
341  if (TV && isa<UndefValue>(TV))
342    return FV;
343  if (FV && isa<UndefValue>(FV))
344    return TV;
345
346  // If applying the operation did not change the true and false select values,
347  // then the result of the binop is the select itself.
348  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
349    return SI;
350
351  // If one branch simplified and the other did not, and the simplified
352  // value is equal to the unsimplified one, return the simplified value.
353  // For example, select (cond, X, X & Z) & Z -> X & Z.
354  if ((FV && !TV) || (TV && !FV)) {
355    // Check that the simplified value has the form "X op Y" where "op" is the
356    // same as the original operation.
357    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
358    if (Simplified && Simplified->getOpcode() == Opcode) {
359      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
360      // We already know that "op" is the same as for the simplified value.  See
361      // if the operands match too.  If so, return the simplified value.
362      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
363      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
364      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
365      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
366          Simplified->getOperand(1) == UnsimplifiedRHS)
367        return Simplified;
368      if (Simplified->isCommutative() &&
369          Simplified->getOperand(1) == UnsimplifiedLHS &&
370          Simplified->getOperand(0) == UnsimplifiedRHS)
371        return Simplified;
372    }
373  }
374
375  return 0;
376}
377
378/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
379/// try to simplify the comparison by seeing whether both branches of the select
380/// result in the same value.  Returns the common value if so, otherwise returns
381/// null.
382static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
383                                  Value *RHS, const TargetData *TD,
384                                  const DominatorTree *DT,
385                                  unsigned MaxRecurse) {
386  // Recursion is always used, so bail out at once if we already hit the limit.
387  if (!MaxRecurse--)
388    return 0;
389
390  // Make sure the select is on the LHS.
391  if (!isa<SelectInst>(LHS)) {
392    std::swap(LHS, RHS);
393    Pred = CmpInst::getSwappedPredicate(Pred);
394  }
395  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
396  SelectInst *SI = cast<SelectInst>(LHS);
397
398  // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
399  // Does "cmp TV, RHS" simplify?
400  if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
401                                    MaxRecurse))
402    // It does!  Does "cmp FV, RHS" simplify?
403    if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
404                                      MaxRecurse))
405      // It does!  If they simplified to the same value, then use it as the
406      // result of the original comparison.
407      if (TCmp == FCmp)
408        return TCmp;
409  return 0;
410}
411
412/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
413/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
414/// it on the incoming phi values yields the same result for every value.  If so
415/// returns the common value, otherwise returns null.
416static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
417                                 const TargetData *TD, const DominatorTree *DT,
418                                 unsigned MaxRecurse) {
419  // Recursion is always used, so bail out at once if we already hit the limit.
420  if (!MaxRecurse--)
421    return 0;
422
423  PHINode *PI;
424  if (isa<PHINode>(LHS)) {
425    PI = cast<PHINode>(LHS);
426    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
427    if (!ValueDominatesPHI(RHS, PI, DT))
428      return 0;
429  } else {
430    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
431    PI = cast<PHINode>(RHS);
432    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
433    if (!ValueDominatesPHI(LHS, PI, DT))
434      return 0;
435  }
436
437  // Evaluate the BinOp on the incoming phi values.
438  Value *CommonValue = 0;
439  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
440    Value *Incoming = PI->getIncomingValue(i);
441    // If the incoming value is the phi node itself, it can safely be skipped.
442    if (Incoming == PI) continue;
443    Value *V = PI == LHS ?
444      SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
445      SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
446    // If the operation failed to simplify, or simplified to a different value
447    // to previously, then give up.
448    if (!V || (CommonValue && V != CommonValue))
449      return 0;
450    CommonValue = V;
451  }
452
453  return CommonValue;
454}
455
456/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
457/// try to simplify the comparison by seeing whether comparing with all of the
458/// incoming phi values yields the same result every time.  If so returns the
459/// common result, otherwise returns null.
460static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
461                               const TargetData *TD, const DominatorTree *DT,
462                               unsigned MaxRecurse) {
463  // Recursion is always used, so bail out at once if we already hit the limit.
464  if (!MaxRecurse--)
465    return 0;
466
467  // Make sure the phi is on the LHS.
468  if (!isa<PHINode>(LHS)) {
469    std::swap(LHS, RHS);
470    Pred = CmpInst::getSwappedPredicate(Pred);
471  }
472  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
473  PHINode *PI = cast<PHINode>(LHS);
474
475  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
476  if (!ValueDominatesPHI(RHS, PI, DT))
477    return 0;
478
479  // Evaluate the BinOp on the incoming phi values.
480  Value *CommonValue = 0;
481  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
482    Value *Incoming = PI->getIncomingValue(i);
483    // If the incoming value is the phi node itself, it can safely be skipped.
484    if (Incoming == PI) continue;
485    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
486    // If the operation failed to simplify, or simplified to a different value
487    // to previously, then give up.
488    if (!V || (CommonValue && V != CommonValue))
489      return 0;
490    CommonValue = V;
491  }
492
493  return CommonValue;
494}
495
496/// SimplifyAddInst - Given operands for an Add, see if we can
497/// fold the result.  If not, this returns null.
498static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
499                              const TargetData *TD, const DominatorTree *DT,
500                              unsigned MaxRecurse) {
501  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
502    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
503      Constant *Ops[] = { CLHS, CRHS };
504      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
505                                      Ops, 2, TD);
506    }
507
508    // Canonicalize the constant to the RHS.
509    std::swap(Op0, Op1);
510  }
511
512  // X + undef -> undef
513  if (match(Op1, m_Undef()))
514    return Op1;
515
516  // X + 0 -> X
517  if (match(Op1, m_Zero()))
518    return Op0;
519
520  // X + (Y - X) -> Y
521  // (Y - X) + X -> Y
522  // Eg: X + -X -> 0
523  Value *Y = 0;
524  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
525      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
526    return Y;
527
528  // X + ~X -> -1   since   ~X = -X-1
529  if (match(Op0, m_Not(m_Specific(Op1))) ||
530      match(Op1, m_Not(m_Specific(Op0))))
531    return Constant::getAllOnesValue(Op0->getType());
532
533  /// i1 add -> xor.
534  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
535    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
536      return V;
537
538  // Try some generic simplifications for associative operations.
539  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
540                                          MaxRecurse))
541    return V;
542
543  // Mul distributes over Add.  Try some generic simplifications based on this.
544  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
545                                TD, DT, MaxRecurse))
546    return V;
547
548  // Threading Add over selects and phi nodes is pointless, so don't bother.
549  // Threading over the select in "A + select(cond, B, C)" means evaluating
550  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
551  // only if B and C are equal.  If B and C are equal then (since we assume
552  // that operands have already been simplified) "select(cond, B, C)" should
553  // have been simplified to the common value of B and C already.  Analysing
554  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
555  // for threading over phi nodes.
556
557  return 0;
558}
559
560Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
561                             const TargetData *TD, const DominatorTree *DT) {
562  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
563}
564
565/// SimplifySubInst - Given operands for a Sub, see if we can
566/// fold the result.  If not, this returns null.
567static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
568                              const TargetData *TD, const DominatorTree *DT,
569                              unsigned MaxRecurse) {
570  if (Constant *CLHS = dyn_cast<Constant>(Op0))
571    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
572      Constant *Ops[] = { CLHS, CRHS };
573      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
574                                      Ops, 2, TD);
575    }
576
577  // X - undef -> undef
578  // undef - X -> undef
579  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
580    return UndefValue::get(Op0->getType());
581
582  // X - 0 -> X
583  if (match(Op1, m_Zero()))
584    return Op0;
585
586  // X - X -> 0
587  if (Op0 == Op1)
588    return Constant::getNullValue(Op0->getType());
589
590  // (X*2) - X -> X
591  // (X<<1) - X -> X
592  Value *X = 0;
593  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
594      match(Op0, m_Shl(m_Specific(Op1), m_One())))
595    return Op1;
596
597  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
598  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
599  Value *Y = 0, *Z = Op1;
600  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
601    // See if "V === Y - Z" simplifies.
602    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
603      // It does!  Now see if "X + V" simplifies.
604      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
605                                   MaxRecurse-1)) {
606        // It does, we successfully reassociated!
607        ++NumReassoc;
608        return W;
609      }
610    // See if "V === X - Z" simplifies.
611    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
612      // It does!  Now see if "Y + V" simplifies.
613      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
614                                   MaxRecurse-1)) {
615        // It does, we successfully reassociated!
616        ++NumReassoc;
617        return W;
618      }
619  }
620
621  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
622  // For example, X - (X + 1) -> -1
623  X = Op0;
624  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
625    // See if "V === X - Y" simplifies.
626    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
627      // It does!  Now see if "V - Z" simplifies.
628      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
629                                   MaxRecurse-1)) {
630        // It does, we successfully reassociated!
631        ++NumReassoc;
632        return W;
633      }
634    // See if "V === X - Z" simplifies.
635    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
636      // It does!  Now see if "V - Y" simplifies.
637      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
638                                   MaxRecurse-1)) {
639        // It does, we successfully reassociated!
640        ++NumReassoc;
641        return W;
642      }
643  }
644
645  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
646  // For example, X - (X - Y) -> Y.
647  Z = Op0;
648  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
649    // See if "V === Z - X" simplifies.
650    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
651      // It does!  Now see if "V + Y" simplifies.
652      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
653                                   MaxRecurse-1)) {
654        // It does, we successfully reassociated!
655        ++NumReassoc;
656        return W;
657      }
658
659  // Mul distributes over Sub.  Try some generic simplifications based on this.
660  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
661                                TD, DT, MaxRecurse))
662    return V;
663
664  // i1 sub -> xor.
665  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
666    if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
667      return V;
668
669  // Threading Sub over selects and phi nodes is pointless, so don't bother.
670  // Threading over the select in "A - select(cond, B, C)" means evaluating
671  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
672  // only if B and C are equal.  If B and C are equal then (since we assume
673  // that operands have already been simplified) "select(cond, B, C)" should
674  // have been simplified to the common value of B and C already.  Analysing
675  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
676  // for threading over phi nodes.
677
678  return 0;
679}
680
681Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
682                             const TargetData *TD, const DominatorTree *DT) {
683  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
684}
685
686/// SimplifyMulInst - Given operands for a Mul, see if we can
687/// fold the result.  If not, this returns null.
688static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
689                              const DominatorTree *DT, unsigned MaxRecurse) {
690  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
691    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
692      Constant *Ops[] = { CLHS, CRHS };
693      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
694                                      Ops, 2, TD);
695    }
696
697    // Canonicalize the constant to the RHS.
698    std::swap(Op0, Op1);
699  }
700
701  // X * undef -> 0
702  if (match(Op1, m_Undef()))
703    return Constant::getNullValue(Op0->getType());
704
705  // X * 0 -> 0
706  if (match(Op1, m_Zero()))
707    return Op1;
708
709  // X * 1 -> X
710  if (match(Op1, m_One()))
711    return Op0;
712
713  // (X / Y) * Y -> X if the division is exact.
714  Value *X = 0, *Y = 0;
715  if ((match(Op0, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
716      (match(Op1, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
717    BinaryOperator *SDiv = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
718    if (SDiv->isExact())
719      return X;
720  }
721
722  // i1 mul -> and.
723  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
724    if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
725      return V;
726
727  // Try some generic simplifications for associative operations.
728  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
729                                          MaxRecurse))
730    return V;
731
732  // Mul distributes over Add.  Try some generic simplifications based on this.
733  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
734                             TD, DT, MaxRecurse))
735    return V;
736
737  // If the operation is with the result of a select instruction, check whether
738  // operating on either branch of the select always yields the same value.
739  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
740    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
741                                         MaxRecurse))
742      return V;
743
744  // If the operation is with the result of a phi instruction, check whether
745  // operating on all incoming values of the phi always yields the same value.
746  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
747    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
748                                      MaxRecurse))
749      return V;
750
751  return 0;
752}
753
754Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
755                             const DominatorTree *DT) {
756  return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
757}
758
759/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
760/// fold the result.  If not, this returns null.
761static Value *SimplifyDiv(unsigned Opcode, Value *Op0, Value *Op1,
762                          const TargetData *TD, const DominatorTree *DT,
763                          unsigned MaxRecurse) {
764  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
765    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
766      Constant *Ops[] = { C0, C1 };
767      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
768    }
769  }
770
771  bool isSigned = Opcode == Instruction::SDiv;
772
773  // X / undef -> undef
774  if (match(Op1, m_Undef()))
775    return Op1;
776
777  // undef / X -> 0
778  if (match(Op0, m_Undef()))
779    return Constant::getNullValue(Op0->getType());
780
781  // 0 / X -> 0, we don't need to preserve faults!
782  if (match(Op0, m_Zero()))
783    return Op0;
784
785  // X / 1 -> X
786  if (match(Op1, m_One()))
787    return Op0;
788
789  if (Op0->getType()->isIntegerTy(1))
790    // It can't be division by zero, hence it must be division by one.
791    return Op0;
792
793  // X / X -> 1
794  if (Op0 == Op1)
795    return ConstantInt::get(Op0->getType(), 1);
796
797  // (X * Y) / Y -> X if the multiplication does not overflow.
798  Value *X = 0, *Y = 0;
799  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
800    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
801    BinaryOperator *Mul = cast<BinaryOperator>(Op0);
802    // If the Mul knows it does not overflow, then we are good to go.
803    if ((isSigned && Mul->hasNoSignedWrap()) ||
804        (!isSigned && Mul->hasNoUnsignedWrap()))
805      return X;
806    // If X has the form X = A / Y then X * Y cannot overflow.
807    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
808      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
809        return X;
810  }
811
812  // (X rem Y) / Y -> 0
813  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
814      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
815    return Constant::getNullValue(Op0->getType());
816
817  // If the operation is with the result of a select instruction, check whether
818  // operating on either branch of the select always yields the same value.
819  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
820    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
821      return V;
822
823  // If the operation is with the result of a phi instruction, check whether
824  // operating on all incoming values of the phi always yields the same value.
825  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
826    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
827      return V;
828
829  return 0;
830}
831
832/// SimplifySDivInst - Given operands for an SDiv, see if we can
833/// fold the result.  If not, this returns null.
834static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
835                               const DominatorTree *DT, unsigned MaxRecurse) {
836  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
837    return V;
838
839  return 0;
840}
841
842Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
843                              const DominatorTree *DT) {
844  return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
845}
846
847/// SimplifyUDivInst - Given operands for a UDiv, see if we can
848/// fold the result.  If not, this returns null.
849static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
850                               const DominatorTree *DT, unsigned MaxRecurse) {
851  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
852    return V;
853
854  return 0;
855}
856
857Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
858                              const DominatorTree *DT) {
859  return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
860}
861
862static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
863                               const DominatorTree *, unsigned) {
864  // undef / X -> undef    (the undef could be a snan).
865  if (match(Op0, m_Undef()))
866    return Op0;
867
868  // X / undef -> undef
869  if (match(Op1, m_Undef()))
870    return Op1;
871
872  return 0;
873}
874
875Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
876                              const DominatorTree *DT) {
877  return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
878}
879
880/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
881/// fold the result.  If not, this returns null.
882static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
883                            const TargetData *TD, const DominatorTree *DT,
884                            unsigned MaxRecurse) {
885  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
886    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
887      Constant *Ops[] = { C0, C1 };
888      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, 2, TD);
889    }
890  }
891
892  // 0 shift by X -> 0
893  if (match(Op0, m_Zero()))
894    return Op0;
895
896  // X shift by 0 -> X
897  if (match(Op1, m_Zero()))
898    return Op0;
899
900  // X shift by undef -> undef because it may shift by the bitwidth.
901  if (match(Op1, m_Undef()))
902    return Op1;
903
904  // Shifting by the bitwidth or more is undefined.
905  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
906    if (CI->getValue().getLimitedValue() >=
907        Op0->getType()->getScalarSizeInBits())
908      return UndefValue::get(Op0->getType());
909
910  // If the operation is with the result of a select instruction, check whether
911  // operating on either branch of the select always yields the same value.
912  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
913    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
914      return V;
915
916  // If the operation is with the result of a phi instruction, check whether
917  // operating on all incoming values of the phi always yields the same value.
918  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
919    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
920      return V;
921
922  return 0;
923}
924
925/// SimplifyShlInst - Given operands for an Shl, see if we can
926/// fold the result.  If not, this returns null.
927static Value *SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
928                              const DominatorTree *DT, unsigned MaxRecurse) {
929  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
930    return V;
931
932  // undef << X -> 0
933  if (match(Op0, m_Undef()))
934    return Constant::getNullValue(Op0->getType());
935
936  return 0;
937}
938
939Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, const TargetData *TD,
940                             const DominatorTree *DT) {
941  return ::SimplifyShlInst(Op0, Op1, TD, DT, RecursionLimit);
942}
943
944/// SimplifyLShrInst - Given operands for an LShr, see if we can
945/// fold the result.  If not, this returns null.
946static Value *SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
947                               const DominatorTree *DT, unsigned MaxRecurse) {
948  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
949    return V;
950
951  // undef >>l X -> 0
952  if (match(Op0, m_Undef()))
953    return Constant::getNullValue(Op0->getType());
954
955  return 0;
956}
957
958Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, const TargetData *TD,
959                              const DominatorTree *DT) {
960  return ::SimplifyLShrInst(Op0, Op1, TD, DT, RecursionLimit);
961}
962
963/// SimplifyAShrInst - Given operands for an AShr, see if we can
964/// fold the result.  If not, this returns null.
965static Value *SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
966                              const DominatorTree *DT, unsigned MaxRecurse) {
967  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
968    return V;
969
970  // all ones >>a X -> all ones
971  if (match(Op0, m_AllOnes()))
972    return Op0;
973
974  // undef >>a X -> all ones
975  if (match(Op0, m_Undef()))
976    return Constant::getAllOnesValue(Op0->getType());
977
978  return 0;
979}
980
981Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, const TargetData *TD,
982                              const DominatorTree *DT) {
983  return ::SimplifyAShrInst(Op0, Op1, TD, DT, RecursionLimit);
984}
985
986/// SimplifyAndInst - Given operands for an And, see if we can
987/// fold the result.  If not, this returns null.
988static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
989                              const DominatorTree *DT, unsigned MaxRecurse) {
990  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
991    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
992      Constant *Ops[] = { CLHS, CRHS };
993      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
994                                      Ops, 2, TD);
995    }
996
997    // Canonicalize the constant to the RHS.
998    std::swap(Op0, Op1);
999  }
1000
1001  // X & undef -> 0
1002  if (match(Op1, m_Undef()))
1003    return Constant::getNullValue(Op0->getType());
1004
1005  // X & X = X
1006  if (Op0 == Op1)
1007    return Op0;
1008
1009  // X & 0 = 0
1010  if (match(Op1, m_Zero()))
1011    return Op1;
1012
1013  // X & -1 = X
1014  if (match(Op1, m_AllOnes()))
1015    return Op0;
1016
1017  // A & ~A  =  ~A & A  =  0
1018  Value *A = 0, *B = 0;
1019  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1020      (match(Op1, m_Not(m_Value(A))) && A == Op0))
1021    return Constant::getNullValue(Op0->getType());
1022
1023  // (A | ?) & A = A
1024  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1025      (A == Op1 || B == Op1))
1026    return Op1;
1027
1028  // A & (A | ?) = A
1029  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1030      (A == Op0 || B == Op0))
1031    return Op0;
1032
1033  // Try some generic simplifications for associative operations.
1034  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
1035                                          MaxRecurse))
1036    return V;
1037
1038  // And distributes over Or.  Try some generic simplifications based on this.
1039  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1040                             TD, DT, MaxRecurse))
1041    return V;
1042
1043  // And distributes over Xor.  Try some generic simplifications based on this.
1044  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1045                             TD, DT, MaxRecurse))
1046    return V;
1047
1048  // Or distributes over And.  Try some generic simplifications based on this.
1049  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1050                                TD, DT, MaxRecurse))
1051    return V;
1052
1053  // If the operation is with the result of a select instruction, check whether
1054  // operating on either branch of the select always yields the same value.
1055  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1056    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
1057                                         MaxRecurse))
1058      return V;
1059
1060  // If the operation is with the result of a phi instruction, check whether
1061  // operating on all incoming values of the phi always yields the same value.
1062  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1063    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
1064                                      MaxRecurse))
1065      return V;
1066
1067  return 0;
1068}
1069
1070Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1071                             const DominatorTree *DT) {
1072  return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
1073}
1074
1075/// SimplifyOrInst - Given operands for an Or, see if we can
1076/// fold the result.  If not, this returns null.
1077static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1078                             const DominatorTree *DT, unsigned MaxRecurse) {
1079  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1080    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1081      Constant *Ops[] = { CLHS, CRHS };
1082      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1083                                      Ops, 2, TD);
1084    }
1085
1086    // Canonicalize the constant to the RHS.
1087    std::swap(Op0, Op1);
1088  }
1089
1090  // X | undef -> -1
1091  if (match(Op1, m_Undef()))
1092    return Constant::getAllOnesValue(Op0->getType());
1093
1094  // X | X = X
1095  if (Op0 == Op1)
1096    return Op0;
1097
1098  // X | 0 = X
1099  if (match(Op1, m_Zero()))
1100    return Op0;
1101
1102  // X | -1 = -1
1103  if (match(Op1, m_AllOnes()))
1104    return Op1;
1105
1106  // A | ~A  =  ~A | A  =  -1
1107  Value *A = 0, *B = 0;
1108  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1109      (match(Op1, m_Not(m_Value(A))) && A == Op0))
1110    return Constant::getAllOnesValue(Op0->getType());
1111
1112  // (A & ?) | A = A
1113  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1114      (A == Op1 || B == Op1))
1115    return Op1;
1116
1117  // A | (A & ?) = A
1118  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1119      (A == Op0 || B == Op0))
1120    return Op0;
1121
1122  // Try some generic simplifications for associative operations.
1123  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
1124                                          MaxRecurse))
1125    return V;
1126
1127  // Or distributes over And.  Try some generic simplifications based on this.
1128  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1129                             TD, DT, MaxRecurse))
1130    return V;
1131
1132  // And distributes over Or.  Try some generic simplifications based on this.
1133  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1134                                TD, DT, MaxRecurse))
1135    return V;
1136
1137  // If the operation is with the result of a select instruction, check whether
1138  // operating on either branch of the select always yields the same value.
1139  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1140    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
1141                                         MaxRecurse))
1142      return V;
1143
1144  // If the operation is with the result of a phi instruction, check whether
1145  // operating on all incoming values of the phi always yields the same value.
1146  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1147    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
1148                                      MaxRecurse))
1149      return V;
1150
1151  return 0;
1152}
1153
1154Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1155                            const DominatorTree *DT) {
1156  return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
1157}
1158
1159/// SimplifyXorInst - Given operands for a Xor, see if we can
1160/// fold the result.  If not, this returns null.
1161static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1162                              const DominatorTree *DT, unsigned MaxRecurse) {
1163  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1164    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1165      Constant *Ops[] = { CLHS, CRHS };
1166      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1167                                      Ops, 2, TD);
1168    }
1169
1170    // Canonicalize the constant to the RHS.
1171    std::swap(Op0, Op1);
1172  }
1173
1174  // A ^ undef -> undef
1175  if (match(Op1, m_Undef()))
1176    return Op1;
1177
1178  // A ^ 0 = A
1179  if (match(Op1, m_Zero()))
1180    return Op0;
1181
1182  // A ^ A = 0
1183  if (Op0 == Op1)
1184    return Constant::getNullValue(Op0->getType());
1185
1186  // A ^ ~A  =  ~A ^ A  =  -1
1187  Value *A = 0;
1188  if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
1189      (match(Op1, m_Not(m_Value(A))) && A == Op0))
1190    return Constant::getAllOnesValue(Op0->getType());
1191
1192  // Try some generic simplifications for associative operations.
1193  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
1194                                          MaxRecurse))
1195    return V;
1196
1197  // And distributes over Xor.  Try some generic simplifications based on this.
1198  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1199                                TD, DT, MaxRecurse))
1200    return V;
1201
1202  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1203  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1204  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1205  // only if B and C are equal.  If B and C are equal then (since we assume
1206  // that operands have already been simplified) "select(cond, B, C)" should
1207  // have been simplified to the common value of B and C already.  Analysing
1208  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1209  // for threading over phi nodes.
1210
1211  return 0;
1212}
1213
1214Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1215                             const DominatorTree *DT) {
1216  return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
1217}
1218
1219static const Type *GetCompareTy(Value *Op) {
1220  return CmpInst::makeCmpResultType(Op->getType());
1221}
1222
1223/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1224/// fold the result.  If not, this returns null.
1225static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1226                               const TargetData *TD, const DominatorTree *DT,
1227                               unsigned MaxRecurse) {
1228  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1229  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1230
1231  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1232    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1233      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1234
1235    // If we have a constant, make sure it is on the RHS.
1236    std::swap(LHS, RHS);
1237    Pred = CmpInst::getSwappedPredicate(Pred);
1238  }
1239
1240  const Type *ITy = GetCompareTy(LHS); // The return type.
1241  const Type *OpTy = LHS->getType();   // The operand type.
1242
1243  // icmp X, X -> true/false
1244  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1245  // because X could be 0.
1246  if (LHS == RHS || isa<UndefValue>(RHS))
1247    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1248
1249  // Special case logic when the operands have i1 type.
1250  if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
1251       cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
1252    switch (Pred) {
1253    default: break;
1254    case ICmpInst::ICMP_EQ:
1255      // X == 1 -> X
1256      if (match(RHS, m_One()))
1257        return LHS;
1258      break;
1259    case ICmpInst::ICMP_NE:
1260      // X != 0 -> X
1261      if (match(RHS, m_Zero()))
1262        return LHS;
1263      break;
1264    case ICmpInst::ICMP_UGT:
1265      // X >u 0 -> X
1266      if (match(RHS, m_Zero()))
1267        return LHS;
1268      break;
1269    case ICmpInst::ICMP_UGE:
1270      // X >=u 1 -> X
1271      if (match(RHS, m_One()))
1272        return LHS;
1273      break;
1274    case ICmpInst::ICMP_SLT:
1275      // X <s 0 -> X
1276      if (match(RHS, m_Zero()))
1277        return LHS;
1278      break;
1279    case ICmpInst::ICMP_SLE:
1280      // X <=s -1 -> X
1281      if (match(RHS, m_One()))
1282        return LHS;
1283      break;
1284    }
1285  }
1286
1287  // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
1288  // different addresses, and what's more the address of a stack variable is
1289  // never null or equal to the address of a global.  Note that generalizing
1290  // to the case where LHS is a global variable address or null is pointless,
1291  // since if both LHS and RHS are constants then we already constant folded
1292  // the compare, and if only one of them is then we moved it to RHS already.
1293  if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
1294                               isa<ConstantPointerNull>(RHS)))
1295    // We already know that LHS != LHS.
1296    return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
1297
1298  // If we are comparing with zero then try hard since this is a common case.
1299  if (match(RHS, m_Zero())) {
1300    bool LHSKnownNonNegative, LHSKnownNegative;
1301    switch (Pred) {
1302    default:
1303      assert(false && "Unknown ICmp predicate!");
1304    case ICmpInst::ICMP_ULT:
1305      return ConstantInt::getFalse(LHS->getContext());
1306    case ICmpInst::ICMP_UGE:
1307      return ConstantInt::getTrue(LHS->getContext());
1308    case ICmpInst::ICMP_EQ:
1309    case ICmpInst::ICMP_ULE:
1310      if (isKnownNonZero(LHS, TD))
1311        return ConstantInt::getFalse(LHS->getContext());
1312      break;
1313    case ICmpInst::ICMP_NE:
1314    case ICmpInst::ICMP_UGT:
1315      if (isKnownNonZero(LHS, TD))
1316        return ConstantInt::getTrue(LHS->getContext());
1317      break;
1318    case ICmpInst::ICMP_SLT:
1319      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1320      if (LHSKnownNegative)
1321        return ConstantInt::getTrue(LHS->getContext());
1322      if (LHSKnownNonNegative)
1323        return ConstantInt::getFalse(LHS->getContext());
1324      break;
1325    case ICmpInst::ICMP_SLE:
1326      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1327      if (LHSKnownNegative)
1328        return ConstantInt::getTrue(LHS->getContext());
1329      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1330        return ConstantInt::getFalse(LHS->getContext());
1331      break;
1332    case ICmpInst::ICMP_SGE:
1333      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1334      if (LHSKnownNegative)
1335        return ConstantInt::getFalse(LHS->getContext());
1336      if (LHSKnownNonNegative)
1337        return ConstantInt::getTrue(LHS->getContext());
1338      break;
1339    case ICmpInst::ICMP_SGT:
1340      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
1341      if (LHSKnownNegative)
1342        return ConstantInt::getFalse(LHS->getContext());
1343      if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
1344        return ConstantInt::getTrue(LHS->getContext());
1345      break;
1346    }
1347  }
1348
1349  // See if we are doing a comparison with a constant integer.
1350  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1351    switch (Pred) {
1352    default: break;
1353    case ICmpInst::ICMP_UGT:
1354      if (CI->isMaxValue(false))                 // A >u MAX -> FALSE
1355        return ConstantInt::getFalse(CI->getContext());
1356      break;
1357    case ICmpInst::ICMP_UGE:
1358      if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
1359        return ConstantInt::getTrue(CI->getContext());
1360      break;
1361    case ICmpInst::ICMP_ULT:
1362      if (CI->isMinValue(false))                 // A <u MIN -> FALSE
1363        return ConstantInt::getFalse(CI->getContext());
1364      break;
1365    case ICmpInst::ICMP_ULE:
1366      if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
1367        return ConstantInt::getTrue(CI->getContext());
1368      break;
1369    case ICmpInst::ICMP_SGT:
1370      if (CI->isMaxValue(true))                  // A >s MAX -> FALSE
1371        return ConstantInt::getFalse(CI->getContext());
1372      break;
1373    case ICmpInst::ICMP_SGE:
1374      if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
1375        return ConstantInt::getTrue(CI->getContext());
1376      break;
1377    case ICmpInst::ICMP_SLT:
1378      if (CI->isMinValue(true))                  // A <s MIN -> FALSE
1379        return ConstantInt::getFalse(CI->getContext());
1380      break;
1381    case ICmpInst::ICMP_SLE:
1382      if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
1383        return ConstantInt::getTrue(CI->getContext());
1384      break;
1385    }
1386  }
1387
1388  // Compare of cast, for example (zext X) != 0 -> X != 0
1389  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1390    Instruction *LI = cast<CastInst>(LHS);
1391    Value *SrcOp = LI->getOperand(0);
1392    const Type *SrcTy = SrcOp->getType();
1393    const Type *DstTy = LI->getType();
1394
1395    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1396    // if the integer type is the same size as the pointer type.
1397    if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
1398        TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1399      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1400        // Transfer the cast to the constant.
1401        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1402                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1403                                        TD, DT, MaxRecurse-1))
1404          return V;
1405      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1406        if (RI->getOperand(0)->getType() == SrcTy)
1407          // Compare without the cast.
1408          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1409                                          TD, DT, MaxRecurse-1))
1410            return V;
1411      }
1412    }
1413
1414    if (isa<ZExtInst>(LHS)) {
1415      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1416      // same type.
1417      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1418        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1419          // Compare X and Y.  Note that signed predicates become unsigned.
1420          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1421                                          SrcOp, RI->getOperand(0), TD, DT,
1422                                          MaxRecurse-1))
1423            return V;
1424      }
1425      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1426      // too.  If not, then try to deduce the result of the comparison.
1427      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1428        // Compute the constant that would happen if we truncated to SrcTy then
1429        // reextended to DstTy.
1430        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1431        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1432
1433        // If the re-extended constant didn't change then this is effectively
1434        // also a case of comparing two zero-extended values.
1435        if (RExt == CI && MaxRecurse)
1436          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1437                                          SrcOp, Trunc, TD, DT, MaxRecurse-1))
1438            return V;
1439
1440        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1441        // there.  Use this to work out the result of the comparison.
1442        if (RExt != CI) {
1443          switch (Pred) {
1444          default:
1445            assert(false && "Unknown ICmp predicate!");
1446          // LHS <u RHS.
1447          case ICmpInst::ICMP_EQ:
1448          case ICmpInst::ICMP_UGT:
1449          case ICmpInst::ICMP_UGE:
1450            return ConstantInt::getFalse(CI->getContext());
1451
1452          case ICmpInst::ICMP_NE:
1453          case ICmpInst::ICMP_ULT:
1454          case ICmpInst::ICMP_ULE:
1455            return ConstantInt::getTrue(CI->getContext());
1456
1457          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1458          // is non-negative then LHS <s RHS.
1459          case ICmpInst::ICMP_SGT:
1460          case ICmpInst::ICMP_SGE:
1461            return CI->getValue().isNegative() ?
1462              ConstantInt::getTrue(CI->getContext()) :
1463              ConstantInt::getFalse(CI->getContext());
1464
1465          case ICmpInst::ICMP_SLT:
1466          case ICmpInst::ICMP_SLE:
1467            return CI->getValue().isNegative() ?
1468              ConstantInt::getFalse(CI->getContext()) :
1469              ConstantInt::getTrue(CI->getContext());
1470          }
1471        }
1472      }
1473    }
1474
1475    if (isa<SExtInst>(LHS)) {
1476      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1477      // same type.
1478      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1479        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1480          // Compare X and Y.  Note that the predicate does not change.
1481          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1482                                          TD, DT, MaxRecurse-1))
1483            return V;
1484      }
1485      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1486      // too.  If not, then try to deduce the result of the comparison.
1487      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1488        // Compute the constant that would happen if we truncated to SrcTy then
1489        // reextended to DstTy.
1490        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1491        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1492
1493        // If the re-extended constant didn't change then this is effectively
1494        // also a case of comparing two sign-extended values.
1495        if (RExt == CI && MaxRecurse)
1496          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
1497                                          MaxRecurse-1))
1498            return V;
1499
1500        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1501        // bits there.  Use this to work out the result of the comparison.
1502        if (RExt != CI) {
1503          switch (Pred) {
1504          default:
1505            assert(false && "Unknown ICmp predicate!");
1506          case ICmpInst::ICMP_EQ:
1507            return ConstantInt::getFalse(CI->getContext());
1508          case ICmpInst::ICMP_NE:
1509            return ConstantInt::getTrue(CI->getContext());
1510
1511          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1512          // LHS >s RHS.
1513          case ICmpInst::ICMP_SGT:
1514          case ICmpInst::ICMP_SGE:
1515            return CI->getValue().isNegative() ?
1516              ConstantInt::getTrue(CI->getContext()) :
1517              ConstantInt::getFalse(CI->getContext());
1518          case ICmpInst::ICMP_SLT:
1519          case ICmpInst::ICMP_SLE:
1520            return CI->getValue().isNegative() ?
1521              ConstantInt::getFalse(CI->getContext()) :
1522              ConstantInt::getTrue(CI->getContext());
1523
1524          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1525          // LHS >u RHS.
1526          case ICmpInst::ICMP_UGT:
1527          case ICmpInst::ICMP_UGE:
1528            // Comparison is true iff the LHS <s 0.
1529            if (MaxRecurse)
1530              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1531                                              Constant::getNullValue(SrcTy),
1532                                              TD, DT, MaxRecurse-1))
1533                return V;
1534            break;
1535          case ICmpInst::ICMP_ULT:
1536          case ICmpInst::ICMP_ULE:
1537            // Comparison is true iff the LHS >=s 0.
1538            if (MaxRecurse)
1539              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1540                                              Constant::getNullValue(SrcTy),
1541                                              TD, DT, MaxRecurse-1))
1542                return V;
1543            break;
1544          }
1545        }
1546      }
1547    }
1548  }
1549
1550  // If the comparison is with the result of a select instruction, check whether
1551  // comparing with either branch of the select always yields the same value.
1552  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1553    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
1554      return V;
1555
1556  // If the comparison is with the result of a phi instruction, check whether
1557  // doing the compare with each incoming phi value yields a common result.
1558  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1559    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
1560      return V;
1561
1562  return 0;
1563}
1564
1565Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1566                              const TargetData *TD, const DominatorTree *DT) {
1567  return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
1568}
1569
1570/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
1571/// fold the result.  If not, this returns null.
1572static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1573                               const TargetData *TD, const DominatorTree *DT,
1574                               unsigned MaxRecurse) {
1575  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1576  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
1577
1578  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1579    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1580      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
1581
1582    // If we have a constant, make sure it is on the RHS.
1583    std::swap(LHS, RHS);
1584    Pred = CmpInst::getSwappedPredicate(Pred);
1585  }
1586
1587  // Fold trivial predicates.
1588  if (Pred == FCmpInst::FCMP_FALSE)
1589    return ConstantInt::get(GetCompareTy(LHS), 0);
1590  if (Pred == FCmpInst::FCMP_TRUE)
1591    return ConstantInt::get(GetCompareTy(LHS), 1);
1592
1593  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
1594    return UndefValue::get(GetCompareTy(LHS));
1595
1596  // fcmp x,x -> true/false.  Not all compares are foldable.
1597  if (LHS == RHS) {
1598    if (CmpInst::isTrueWhenEqual(Pred))
1599      return ConstantInt::get(GetCompareTy(LHS), 1);
1600    if (CmpInst::isFalseWhenEqual(Pred))
1601      return ConstantInt::get(GetCompareTy(LHS), 0);
1602  }
1603
1604  // Handle fcmp with constant RHS
1605  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1606    // If the constant is a nan, see if we can fold the comparison based on it.
1607    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
1608      if (CFP->getValueAPF().isNaN()) {
1609        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
1610          return ConstantInt::getFalse(CFP->getContext());
1611        assert(FCmpInst::isUnordered(Pred) &&
1612               "Comparison must be either ordered or unordered!");
1613        // True if unordered.
1614        return ConstantInt::getTrue(CFP->getContext());
1615      }
1616      // Check whether the constant is an infinity.
1617      if (CFP->getValueAPF().isInfinity()) {
1618        if (CFP->getValueAPF().isNegative()) {
1619          switch (Pred) {
1620          case FCmpInst::FCMP_OLT:
1621            // No value is ordered and less than negative infinity.
1622            return ConstantInt::getFalse(CFP->getContext());
1623          case FCmpInst::FCMP_UGE:
1624            // All values are unordered with or at least negative infinity.
1625            return ConstantInt::getTrue(CFP->getContext());
1626          default:
1627            break;
1628          }
1629        } else {
1630          switch (Pred) {
1631          case FCmpInst::FCMP_OGT:
1632            // No value is ordered and greater than infinity.
1633            return ConstantInt::getFalse(CFP->getContext());
1634          case FCmpInst::FCMP_ULE:
1635            // All values are unordered with and at most infinity.
1636            return ConstantInt::getTrue(CFP->getContext());
1637          default:
1638            break;
1639          }
1640        }
1641      }
1642    }
1643  }
1644
1645  // If the comparison is with the result of a select instruction, check whether
1646  // comparing with either branch of the select always yields the same value.
1647  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1648    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
1649      return V;
1650
1651  // If the comparison is with the result of a phi instruction, check whether
1652  // doing the compare with each incoming phi value yields a common result.
1653  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1654    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
1655      return V;
1656
1657  return 0;
1658}
1659
1660Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1661                              const TargetData *TD, const DominatorTree *DT) {
1662  return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
1663}
1664
1665/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
1666/// the result.  If not, this returns null.
1667Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
1668                                const TargetData *TD, const DominatorTree *) {
1669  // select true, X, Y  -> X
1670  // select false, X, Y -> Y
1671  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
1672    return CB->getZExtValue() ? TrueVal : FalseVal;
1673
1674  // select C, X, X -> X
1675  if (TrueVal == FalseVal)
1676    return TrueVal;
1677
1678  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
1679    return FalseVal;
1680  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
1681    return TrueVal;
1682  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
1683    if (isa<Constant>(TrueVal))
1684      return TrueVal;
1685    return FalseVal;
1686  }
1687
1688  return 0;
1689}
1690
1691/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
1692/// fold the result.  If not, this returns null.
1693Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
1694                             const TargetData *TD, const DominatorTree *) {
1695  // The type of the GEP pointer operand.
1696  const PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
1697
1698  // getelementptr P -> P.
1699  if (NumOps == 1)
1700    return Ops[0];
1701
1702  if (isa<UndefValue>(Ops[0])) {
1703    // Compute the (pointer) type returned by the GEP instruction.
1704    const Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, &Ops[1],
1705                                                             NumOps-1);
1706    const Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
1707    return UndefValue::get(GEPTy);
1708  }
1709
1710  if (NumOps == 2) {
1711    // getelementptr P, 0 -> P.
1712    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
1713      if (C->isZero())
1714        return Ops[0];
1715    // getelementptr P, N -> P if P points to a type of zero size.
1716    if (TD) {
1717      const Type *Ty = PtrTy->getElementType();
1718      if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
1719        return Ops[0];
1720    }
1721  }
1722
1723  // Check to see if this is constant foldable.
1724  for (unsigned i = 0; i != NumOps; ++i)
1725    if (!isa<Constant>(Ops[i]))
1726      return 0;
1727
1728  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
1729                                        (Constant *const*)Ops+1, NumOps-1);
1730}
1731
1732/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
1733static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
1734  // If all of the PHI's incoming values are the same then replace the PHI node
1735  // with the common value.
1736  Value *CommonValue = 0;
1737  bool HasUndefInput = false;
1738  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1739    Value *Incoming = PN->getIncomingValue(i);
1740    // If the incoming value is the phi node itself, it can safely be skipped.
1741    if (Incoming == PN) continue;
1742    if (isa<UndefValue>(Incoming)) {
1743      // Remember that we saw an undef value, but otherwise ignore them.
1744      HasUndefInput = true;
1745      continue;
1746    }
1747    if (CommonValue && Incoming != CommonValue)
1748      return 0;  // Not the same, bail out.
1749    CommonValue = Incoming;
1750  }
1751
1752  // If CommonValue is null then all of the incoming values were either undef or
1753  // equal to the phi node itself.
1754  if (!CommonValue)
1755    return UndefValue::get(PN->getType());
1756
1757  // If we have a PHI node like phi(X, undef, X), where X is defined by some
1758  // instruction, we cannot return X as the result of the PHI node unless it
1759  // dominates the PHI block.
1760  if (HasUndefInput)
1761    return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
1762
1763  return CommonValue;
1764}
1765
1766
1767//=== Helper functions for higher up the class hierarchy.
1768
1769/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
1770/// fold the result.  If not, this returns null.
1771static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
1772                            const TargetData *TD, const DominatorTree *DT,
1773                            unsigned MaxRecurse) {
1774  switch (Opcode) {
1775  case Instruction::Add: return SimplifyAddInst(LHS, RHS, /* isNSW */ false,
1776                                                /* isNUW */ false, TD, DT,
1777                                                MaxRecurse);
1778  case Instruction::Sub: return SimplifySubInst(LHS, RHS, /* isNSW */ false,
1779                                                /* isNUW */ false, TD, DT,
1780                                                MaxRecurse);
1781  case Instruction::Mul: return SimplifyMulInst(LHS, RHS, TD, DT, MaxRecurse);
1782  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
1783  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
1784  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
1785  case Instruction::Shl: return SimplifyShlInst(LHS, RHS, TD, DT, MaxRecurse);
1786  case Instruction::LShr: return SimplifyLShrInst(LHS, RHS, TD, DT, MaxRecurse);
1787  case Instruction::AShr: return SimplifyAShrInst(LHS, RHS, TD, DT, MaxRecurse);
1788  case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
1789  case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
1790  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
1791  default:
1792    if (Constant *CLHS = dyn_cast<Constant>(LHS))
1793      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1794        Constant *COps[] = {CLHS, CRHS};
1795        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
1796      }
1797
1798    // If the operation is associative, try some generic simplifications.
1799    if (Instruction::isAssociative(Opcode))
1800      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
1801                                              MaxRecurse))
1802        return V;
1803
1804    // If the operation is with the result of a select instruction, check whether
1805    // operating on either branch of the select always yields the same value.
1806    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
1807      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
1808                                           MaxRecurse))
1809        return V;
1810
1811    // If the operation is with the result of a phi instruction, check whether
1812    // operating on all incoming values of the phi always yields the same value.
1813    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
1814      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
1815        return V;
1816
1817    return 0;
1818  }
1819}
1820
1821Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
1822                           const TargetData *TD, const DominatorTree *DT) {
1823  return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
1824}
1825
1826/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
1827/// fold the result.
1828static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1829                              const TargetData *TD, const DominatorTree *DT,
1830                              unsigned MaxRecurse) {
1831  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
1832    return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1833  return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
1834}
1835
1836Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1837                             const TargetData *TD, const DominatorTree *DT) {
1838  return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
1839}
1840
1841/// SimplifyInstruction - See if we can compute a simplified version of this
1842/// instruction.  If not, this returns null.
1843Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
1844                                 const DominatorTree *DT) {
1845  Value *Result;
1846
1847  switch (I->getOpcode()) {
1848  default:
1849    Result = ConstantFoldInstruction(I, TD);
1850    break;
1851  case Instruction::Add:
1852    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
1853                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
1854                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1855                             TD, DT);
1856    break;
1857  case Instruction::Sub:
1858    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
1859                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
1860                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
1861                             TD, DT);
1862    break;
1863  case Instruction::Mul:
1864    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
1865    break;
1866  case Instruction::SDiv:
1867    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1868    break;
1869  case Instruction::UDiv:
1870    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1871    break;
1872  case Instruction::FDiv:
1873    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
1874    break;
1875  case Instruction::Shl:
1876    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), TD, DT);
1877    break;
1878  case Instruction::LShr:
1879    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1880    break;
1881  case Instruction::AShr:
1882    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1883    break;
1884  case Instruction::And:
1885    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
1886    break;
1887  case Instruction::Or:
1888    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
1889    break;
1890  case Instruction::Xor:
1891    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
1892    break;
1893  case Instruction::ICmp:
1894    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
1895                              I->getOperand(0), I->getOperand(1), TD, DT);
1896    break;
1897  case Instruction::FCmp:
1898    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
1899                              I->getOperand(0), I->getOperand(1), TD, DT);
1900    break;
1901  case Instruction::Select:
1902    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
1903                                I->getOperand(2), TD, DT);
1904    break;
1905  case Instruction::GetElementPtr: {
1906    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1907    Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
1908    break;
1909  }
1910  case Instruction::PHI:
1911    Result = SimplifyPHINode(cast<PHINode>(I), DT);
1912    break;
1913  }
1914
1915  /// If called on unreachable code, the above logic may report that the
1916  /// instruction simplified to itself.  Make life easier for users by
1917  /// detecting that case here, returning a safe value instead.
1918  return Result == I ? UndefValue::get(I->getType()) : Result;
1919}
1920
1921/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
1922/// delete the From instruction.  In addition to a basic RAUW, this does a
1923/// recursive simplification of the newly formed instructions.  This catches
1924/// things where one simplification exposes other opportunities.  This only
1925/// simplifies and deletes scalar operations, it does not change the CFG.
1926///
1927void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
1928                                     const TargetData *TD,
1929                                     const DominatorTree *DT) {
1930  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
1931
1932  // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
1933  // we can know if it gets deleted out from under us or replaced in a
1934  // recursive simplification.
1935  WeakVH FromHandle(From);
1936  WeakVH ToHandle(To);
1937
1938  while (!From->use_empty()) {
1939    // Update the instruction to use the new value.
1940    Use &TheUse = From->use_begin().getUse();
1941    Instruction *User = cast<Instruction>(TheUse.getUser());
1942    TheUse = To;
1943
1944    // Check to see if the instruction can be folded due to the operand
1945    // replacement.  For example changing (or X, Y) into (or X, -1) can replace
1946    // the 'or' with -1.
1947    Value *SimplifiedVal;
1948    {
1949      // Sanity check to make sure 'User' doesn't dangle across
1950      // SimplifyInstruction.
1951      AssertingVH<> UserHandle(User);
1952
1953      SimplifiedVal = SimplifyInstruction(User, TD, DT);
1954      if (SimplifiedVal == 0) continue;
1955    }
1956
1957    // Recursively simplify this user to the new value.
1958    ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
1959    From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
1960    To = ToHandle;
1961
1962    assert(ToHandle && "To value deleted by recursive simplification?");
1963
1964    // If the recursive simplification ended up revisiting and deleting
1965    // 'From' then we're done.
1966    if (From == 0)
1967      return;
1968  }
1969
1970  // If 'From' has value handles referring to it, do a real RAUW to update them.
1971  From->replaceAllUsesWith(To);
1972
1973  From->eraseFromParent();
1974}
1975