InstructionSimplify.cpp revision 6231d5be410e2d7967352b29ad01522fda15680d
1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
11// that do not require creating new instructions.  This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14// ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "instsimplify"
21#include "llvm/GlobalAlias.h"
22#include "llvm/Operator.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Support/ConstantRange.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/PatternMatch.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Target/TargetData.h"
35using namespace llvm;
36using namespace llvm::PatternMatch;
37
38enum { RecursionLimit = 3 };
39
40STATISTIC(NumExpand,  "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
44struct Query {
45  const TargetData *TD;
46  const TargetLibraryInfo *TLI;
47  const DominatorTree *DT;
48
49  Query(const TargetData *td, const TargetLibraryInfo *tli,
50        const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {};
51};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
55                            unsigned);
56static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
57                              unsigned);
58static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
60static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
61
62/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
65  assert(Ty->getScalarType()->isIntegerTy(1) &&
66         "Expected i1 type or a vector of i1!");
67  return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
73  assert(Ty->getScalarType()->isIntegerTy(1) &&
74         "Expected i1 type or a vector of i1!");
75  return Constant::getAllOnesValue(Ty);
76}
77
78/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80                          Value *RHS) {
81  CmpInst *Cmp = dyn_cast<CmpInst>(V);
82  if (!Cmp)
83    return false;
84  CmpInst::Predicate CPred = Cmp->getPredicate();
85  Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86  if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87    return true;
88  return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89    CRHS == LHS;
90}
91
92/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94  Instruction *I = dyn_cast<Instruction>(V);
95  if (!I)
96    // Arguments and constants dominate all instructions.
97    return true;
98
99  // If we are processing instructions (and/or basic blocks) that have not been
100  // fully added to a function, the parent nodes may still be null. Simply
101  // return the conservative answer in these cases.
102  if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103    return false;
104
105  // If we have a DominatorTree then do a precise test.
106  if (DT) {
107    if (!DT->isReachableFromEntry(P->getParent()))
108      return true;
109    if (!DT->isReachableFromEntry(I->getParent()))
110      return false;
111    return DT->dominates(I, P);
112  }
113
114  // Otherwise, if the instruction is in the entry block, and is not an invoke,
115  // then it obviously dominates all phi nodes.
116  if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117      !isa<InvokeInst>(I))
118    return true;
119
120  return false;
121}
122
123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
129                          unsigned OpcToExpand, const Query &Q,
130                          unsigned MaxRecurse) {
131  Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
132  // Recursion is always used, so bail out at once if we already hit the limit.
133  if (!MaxRecurse--)
134    return 0;
135
136  // Check whether the expression has the form "(A op' B) op C".
137  if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138    if (Op0->getOpcode() == OpcodeToExpand) {
139      // It does!  Try turning it into "(A op C) op' (B op C)".
140      Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141      // Do "A op C" and "B op C" both simplify?
142      if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143        if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
144          // They do! Return "L op' R" if it simplifies or is already available.
145          // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
146          if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147                                     && L == B && R == A)) {
148            ++NumExpand;
149            return LHS;
150          }
151          // Otherwise return "L op' R" if it simplifies.
152          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
153            ++NumExpand;
154            return V;
155          }
156        }
157    }
158
159  // Check whether the expression has the form "A op (B op' C)".
160  if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161    if (Op1->getOpcode() == OpcodeToExpand) {
162      // It does!  Try turning it into "(A op B) op' (A op C)".
163      Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164      // Do "A op B" and "A op C" both simplify?
165      if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166        if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
167          // They do! Return "L op' R" if it simplifies or is already available.
168          // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
169          if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170                                     && L == C && R == B)) {
171            ++NumExpand;
172            return RHS;
173          }
174          // Otherwise return "L op' R" if it simplifies.
175          if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
176            ++NumExpand;
177            return V;
178          }
179        }
180    }
181
182  return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract.  For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
190                             unsigned OpcToExtract, const Query &Q,
191                             unsigned MaxRecurse) {
192  Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
193  // Recursion is always used, so bail out at once if we already hit the limit.
194  if (!MaxRecurse--)
195    return 0;
196
197  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200  if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201      !Op1 || Op1->getOpcode() != OpcodeToExtract)
202    return 0;
203
204  // The expression has the form "(A op' B) op (C op' D)".
205  Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206  Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
207
208  // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209  // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210  // commutative case, "(A op' B) op (C op' A)"?
211  if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212    Value *DD = A == C ? D : C;
213    // Form "A op' (B op DD)" if it simplifies completely.
214    // Does "B op DD" simplify?
215    if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
216      // It does!  Return "A op' V" if it simplifies or is already available.
217      // If V equals B then "A op' V" is just the LHS.  If V equals DD then
218      // "A op' V" is just the RHS.
219      if (V == B || V == DD) {
220        ++NumFactor;
221        return V == B ? LHS : RHS;
222      }
223      // Otherwise return "A op' V" if it simplifies.
224      if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
225        ++NumFactor;
226        return W;
227      }
228    }
229  }
230
231  // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232  // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233  // commutative case, "(A op' B) op (B op' D)"?
234  if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235    Value *CC = B == D ? C : D;
236    // Form "(A op CC) op' B" if it simplifies completely..
237    // Does "A op CC" simplify?
238    if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
239      // It does!  Return "V op' B" if it simplifies or is already available.
240      // If V equals A then "V op' B" is just the LHS.  If V equals CC then
241      // "V op' B" is just the RHS.
242      if (V == A || V == CC) {
243        ++NumFactor;
244        return V == A ? LHS : RHS;
245      }
246      // Otherwise return "V op' B" if it simplifies.
247      if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
248        ++NumFactor;
249        return W;
250      }
251    }
252  }
253
254  return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations.  Returns the simpler value, or null if none was found.
259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
260                                       const Query &Q, unsigned MaxRecurse) {
261  Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
262  assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264  // Recursion is always used, so bail out at once if we already hit the limit.
265  if (!MaxRecurse--)
266    return 0;
267
268  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271  // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272  if (Op0 && Op0->getOpcode() == Opcode) {
273    Value *A = Op0->getOperand(0);
274    Value *B = Op0->getOperand(1);
275    Value *C = RHS;
276
277    // Does "B op C" simplify?
278    if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
279      // It does!  Return "A op V" if it simplifies or is already available.
280      // If V equals B then "A op V" is just the LHS.
281      if (V == B) return LHS;
282      // Otherwise return "A op V" if it simplifies.
283      if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
284        ++NumReassoc;
285        return W;
286      }
287    }
288  }
289
290  // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291  if (Op1 && Op1->getOpcode() == Opcode) {
292    Value *A = LHS;
293    Value *B = Op1->getOperand(0);
294    Value *C = Op1->getOperand(1);
295
296    // Does "A op B" simplify?
297    if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
298      // It does!  Return "V op C" if it simplifies or is already available.
299      // If V equals B then "V op C" is just the RHS.
300      if (V == B) return RHS;
301      // Otherwise return "V op C" if it simplifies.
302      if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
303        ++NumReassoc;
304        return W;
305      }
306    }
307  }
308
309  // The remaining transforms require commutativity as well as associativity.
310  if (!Instruction::isCommutative(Opcode))
311    return 0;
312
313  // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314  if (Op0 && Op0->getOpcode() == Opcode) {
315    Value *A = Op0->getOperand(0);
316    Value *B = Op0->getOperand(1);
317    Value *C = RHS;
318
319    // Does "C op A" simplify?
320    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
321      // It does!  Return "V op B" if it simplifies or is already available.
322      // If V equals A then "V op B" is just the LHS.
323      if (V == A) return LHS;
324      // Otherwise return "V op B" if it simplifies.
325      if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
326        ++NumReassoc;
327        return W;
328      }
329    }
330  }
331
332  // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333  if (Op1 && Op1->getOpcode() == Opcode) {
334    Value *A = LHS;
335    Value *B = Op1->getOperand(0);
336    Value *C = Op1->getOperand(1);
337
338    // Does "C op A" simplify?
339    if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
340      // It does!  Return "B op V" if it simplifies or is already available.
341      // If V equals C then "B op V" is just the RHS.
342      if (V == C) return RHS;
343      // Otherwise return "B op V" if it simplifies.
344      if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
345        ++NumReassoc;
346        return W;
347      }
348    }
349  }
350
351  return 0;
352}
353
354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
359                                    const Query &Q, unsigned MaxRecurse) {
360  // Recursion is always used, so bail out at once if we already hit the limit.
361  if (!MaxRecurse--)
362    return 0;
363
364  SelectInst *SI;
365  if (isa<SelectInst>(LHS)) {
366    SI = cast<SelectInst>(LHS);
367  } else {
368    assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369    SI = cast<SelectInst>(RHS);
370  }
371
372  // Evaluate the BinOp on the true and false branches of the select.
373  Value *TV;
374  Value *FV;
375  if (SI == LHS) {
376    TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377    FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
378  } else {
379    TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380    FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
381  }
382
383  // If they simplified to the same value, then return the common value.
384  // If they both failed to simplify then return null.
385  if (TV == FV)
386    return TV;
387
388  // If one branch simplified to undef, return the other one.
389  if (TV && isa<UndefValue>(TV))
390    return FV;
391  if (FV && isa<UndefValue>(FV))
392    return TV;
393
394  // If applying the operation did not change the true and false select values,
395  // then the result of the binop is the select itself.
396  if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
397    return SI;
398
399  // If one branch simplified and the other did not, and the simplified
400  // value is equal to the unsimplified one, return the simplified value.
401  // For example, select (cond, X, X & Z) & Z -> X & Z.
402  if ((FV && !TV) || (TV && !FV)) {
403    // Check that the simplified value has the form "X op Y" where "op" is the
404    // same as the original operation.
405    Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406    if (Simplified && Simplified->getOpcode() == Opcode) {
407      // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408      // We already know that "op" is the same as for the simplified value.  See
409      // if the operands match too.  If so, return the simplified value.
410      Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411      Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412      Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
413      if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414          Simplified->getOperand(1) == UnsimplifiedRHS)
415        return Simplified;
416      if (Simplified->isCommutative() &&
417          Simplified->getOperand(1) == UnsimplifiedLHS &&
418          Simplified->getOperand(0) == UnsimplifiedRHS)
419        return Simplified;
420    }
421  }
422
423  return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value.  Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
431                                  Value *RHS, const Query &Q,
432                                  unsigned MaxRecurse) {
433  // Recursion is always used, so bail out at once if we already hit the limit.
434  if (!MaxRecurse--)
435    return 0;
436
437  // Make sure the select is on the LHS.
438  if (!isa<SelectInst>(LHS)) {
439    std::swap(LHS, RHS);
440    Pred = CmpInst::getSwappedPredicate(Pred);
441  }
442  assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443  SelectInst *SI = cast<SelectInst>(LHS);
444  Value *Cond = SI->getCondition();
445  Value *TV = SI->getTrueValue();
446  Value *FV = SI->getFalseValue();
447
448  // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
449  // Does "cmp TV, RHS" simplify?
450  Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
451  if (TCmp == Cond) {
452    // It not only simplified, it simplified to the select condition.  Replace
453    // it with 'true'.
454    TCmp = getTrue(Cond->getType());
455  } else if (!TCmp) {
456    // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
457    // condition then we can replace it with 'true'.  Otherwise give up.
458    if (!isSameCompare(Cond, Pred, TV, RHS))
459      return 0;
460    TCmp = getTrue(Cond->getType());
461  }
462
463  // Does "cmp FV, RHS" simplify?
464  Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
465  if (FCmp == Cond) {
466    // It not only simplified, it simplified to the select condition.  Replace
467    // it with 'false'.
468    FCmp = getFalse(Cond->getType());
469  } else if (!FCmp) {
470    // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
471    // condition then we can replace it with 'false'.  Otherwise give up.
472    if (!isSameCompare(Cond, Pred, FV, RHS))
473      return 0;
474    FCmp = getFalse(Cond->getType());
475  }
476
477  // If both sides simplified to the same value, then use it as the result of
478  // the original comparison.
479  if (TCmp == FCmp)
480    return TCmp;
481
482  // The remaining cases only make sense if the select condition has the same
483  // type as the result of the comparison, so bail out if this is not so.
484  if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485    return 0;
486  // If the false value simplified to false, then the result of the compare
487  // is equal to "Cond && TCmp".  This also catches the case when the false
488  // value simplified to false and the true value to true, returning "Cond".
489  if (match(FCmp, m_Zero()))
490    if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
491      return V;
492  // If the true value simplified to true, then the result of the compare
493  // is equal to "Cond || FCmp".
494  if (match(TCmp, m_One()))
495    if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
496      return V;
497  // Finally, if the false value simplified to true and the true value to
498  // false, then the result of the compare is equal to "!Cond".
499  if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500    if (Value *V =
501        SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
502                        Q, MaxRecurse))
503      return V;
504
505  return 0;
506}
507
508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value.  If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
513                                 const Query &Q, unsigned MaxRecurse) {
514  // Recursion is always used, so bail out at once if we already hit the limit.
515  if (!MaxRecurse--)
516    return 0;
517
518  PHINode *PI;
519  if (isa<PHINode>(LHS)) {
520    PI = cast<PHINode>(LHS);
521    // Bail out if RHS and the phi may be mutually interdependent due to a loop.
522    if (!ValueDominatesPHI(RHS, PI, Q.DT))
523      return 0;
524  } else {
525    assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526    PI = cast<PHINode>(RHS);
527    // Bail out if LHS and the phi may be mutually interdependent due to a loop.
528    if (!ValueDominatesPHI(LHS, PI, Q.DT))
529      return 0;
530  }
531
532  // Evaluate the BinOp on the incoming phi values.
533  Value *CommonValue = 0;
534  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
535    Value *Incoming = PI->getIncomingValue(i);
536    // If the incoming value is the phi node itself, it can safely be skipped.
537    if (Incoming == PI) continue;
538    Value *V = PI == LHS ?
539      SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540      SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
541    // If the operation failed to simplify, or simplified to a different value
542    // to previously, then give up.
543    if (!V || (CommonValue && V != CommonValue))
544      return 0;
545    CommonValue = V;
546  }
547
548  return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time.  If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
556                               const Query &Q, unsigned MaxRecurse) {
557  // Recursion is always used, so bail out at once if we already hit the limit.
558  if (!MaxRecurse--)
559    return 0;
560
561  // Make sure the phi is on the LHS.
562  if (!isa<PHINode>(LHS)) {
563    std::swap(LHS, RHS);
564    Pred = CmpInst::getSwappedPredicate(Pred);
565  }
566  assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567  PHINode *PI = cast<PHINode>(LHS);
568
569  // Bail out if RHS and the phi may be mutually interdependent due to a loop.
570  if (!ValueDominatesPHI(RHS, PI, Q.DT))
571    return 0;
572
573  // Evaluate the BinOp on the incoming phi values.
574  Value *CommonValue = 0;
575  for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
576    Value *Incoming = PI->getIncomingValue(i);
577    // If the incoming value is the phi node itself, it can safely be skipped.
578    if (Incoming == PI) continue;
579    Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
580    // If the operation failed to simplify, or simplified to a different value
581    // to previously, then give up.
582    if (!V || (CommonValue && V != CommonValue))
583      return 0;
584    CommonValue = V;
585  }
586
587  return CommonValue;
588}
589
590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result.  If not, this returns null.
592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
593                              const Query &Q, unsigned MaxRecurse) {
594  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596      Constant *Ops[] = { CLHS, CRHS };
597      return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598                                      Q.TD, Q.TLI);
599    }
600
601    // Canonicalize the constant to the RHS.
602    std::swap(Op0, Op1);
603  }
604
605  // X + undef -> undef
606  if (match(Op1, m_Undef()))
607    return Op1;
608
609  // X + 0 -> X
610  if (match(Op1, m_Zero()))
611    return Op0;
612
613  // X + (Y - X) -> Y
614  // (Y - X) + X -> Y
615  // Eg: X + -X -> 0
616  Value *Y = 0;
617  if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618      match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
619    return Y;
620
621  // X + ~X -> -1   since   ~X = -X-1
622  if (match(Op0, m_Not(m_Specific(Op1))) ||
623      match(Op1, m_Not(m_Specific(Op0))))
624    return Constant::getAllOnesValue(Op0->getType());
625
626  /// i1 add -> xor.
627  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
628    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
629      return V;
630
631  // Try some generic simplifications for associative operations.
632  if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
633                                          MaxRecurse))
634    return V;
635
636  // Mul distributes over Add.  Try some generic simplifications based on this.
637  if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
638                                Q, MaxRecurse))
639    return V;
640
641  // Threading Add over selects and phi nodes is pointless, so don't bother.
642  // Threading over the select in "A + select(cond, B, C)" means evaluating
643  // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644  // only if B and C are equal.  If B and C are equal then (since we assume
645  // that operands have already been simplified) "select(cond, B, C)" should
646  // have been simplified to the common value of B and C already.  Analysing
647  // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
648  // for threading over phi nodes.
649
650  return 0;
651}
652
653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
654                             const TargetData *TD, const TargetLibraryInfo *TLI,
655                             const DominatorTree *DT) {
656  return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657                           RecursionLimit);
658}
659
660/// \brief Accumulate the constant integer offset a GEP represents.
661///
662/// Given a getelementptr instruction/constantexpr, accumulate the constant
663/// offset from the base pointer into the provided APInt 'Offset'. Returns true
664/// if the GEP has all-constant indices. Returns false if any non-constant
665/// index is encountered leaving the 'Offset' in an undefined state. The
666/// 'Offset' APInt must be the bitwidth of the target's pointer size.
667static bool accumulateGEPOffset(const TargetData &TD, GEPOperator *GEP,
668                                APInt &Offset) {
669  unsigned IntPtrWidth = TD.getPointerSizeInBits();
670  assert(IntPtrWidth == Offset.getBitWidth());
671
672  gep_type_iterator GTI = gep_type_begin(GEP);
673  for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
674       ++I, ++GTI) {
675    ConstantInt *OpC = dyn_cast<ConstantInt>(*I);
676    if (!OpC) return false;
677    if (OpC->isZero()) continue;
678
679    // Handle a struct index, which adds its field offset to the pointer.
680    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
681      unsigned ElementIdx = OpC->getZExtValue();
682      const StructLayout *SL = TD.getStructLayout(STy);
683      Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
684      continue;
685    }
686
687    APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType()));
688    Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
689  }
690  return true;
691}
692
693/// \brief Compute the base pointer and cumulative constant offsets for V.
694///
695/// This strips all constant offsets off of V, leaving it the base pointer, and
696/// accumulates the total constant offset applied in the returned constant. It
697/// returns 0 if V is not a pointer, and returns the constant '0' if there are
698/// no constant offsets applied.
699static Constant *stripAndComputeConstantOffsets(const TargetData &TD,
700                                                Value *&V) {
701  if (!V->getType()->isPointerTy())
702    return 0;
703
704  unsigned IntPtrWidth = TD.getPointerSizeInBits();
705  APInt Offset = APInt::getNullValue(IntPtrWidth);
706
707  // Even though we don't look through PHI nodes, we could be called on an
708  // instruction in an unreachable block, which may be on a cycle.
709  SmallPtrSet<Value *, 4> Visited;
710  Visited.insert(V);
711  do {
712    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
713      if (!accumulateGEPOffset(TD, GEP, Offset))
714        break;
715      V = GEP->getPointerOperand();
716    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
717      V = cast<Operator>(V)->getOperand(0);
718    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
719      if (GA->mayBeOverridden())
720        break;
721      V = GA->getAliasee();
722    } else {
723      break;
724    }
725    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
726  } while (Visited.insert(V));
727
728  Type *IntPtrTy = TD.getIntPtrType(V->getContext());
729  return ConstantInt::get(IntPtrTy, Offset);
730}
731
732/// \brief Compute the constant difference between two pointer values.
733/// If the difference is not a constant, returns zero.
734static Constant *computePointerDifference(const TargetData &TD,
735                                          Value *LHS, Value *RHS) {
736  Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
737  if (!LHSOffset)
738    return 0;
739  Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
740  if (!RHSOffset)
741    return 0;
742
743  // If LHS and RHS are not related via constant offsets to the same base
744  // value, there is nothing we can do here.
745  if (LHS != RHS)
746    return 0;
747
748  // Otherwise, the difference of LHS - RHS can be computed as:
749  //    LHS - RHS
750  //  = (LHSOffset + Base) - (RHSOffset + Base)
751  //  = LHSOffset - RHSOffset
752  return ConstantExpr::getSub(LHSOffset, RHSOffset);
753}
754
755/// SimplifySubInst - Given operands for a Sub, see if we can
756/// fold the result.  If not, this returns null.
757static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
758                              const Query &Q, unsigned MaxRecurse) {
759  if (Constant *CLHS = dyn_cast<Constant>(Op0))
760    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
761      Constant *Ops[] = { CLHS, CRHS };
762      return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
763                                      Ops, Q.TD, Q.TLI);
764    }
765
766  // X - undef -> undef
767  // undef - X -> undef
768  if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
769    return UndefValue::get(Op0->getType());
770
771  // X - 0 -> X
772  if (match(Op1, m_Zero()))
773    return Op0;
774
775  // X - X -> 0
776  if (Op0 == Op1)
777    return Constant::getNullValue(Op0->getType());
778
779  // (X*2) - X -> X
780  // (X<<1) - X -> X
781  Value *X = 0;
782  if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
783      match(Op0, m_Shl(m_Specific(Op1), m_One())))
784    return Op1;
785
786  // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
787  // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
788  Value *Y = 0, *Z = Op1;
789  if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
790    // See if "V === Y - Z" simplifies.
791    if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
792      // It does!  Now see if "X + V" simplifies.
793      if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
794        // It does, we successfully reassociated!
795        ++NumReassoc;
796        return W;
797      }
798    // See if "V === X - Z" simplifies.
799    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
800      // It does!  Now see if "Y + V" simplifies.
801      if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
802        // It does, we successfully reassociated!
803        ++NumReassoc;
804        return W;
805      }
806  }
807
808  // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
809  // For example, X - (X + 1) -> -1
810  X = Op0;
811  if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
812    // See if "V === X - Y" simplifies.
813    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
814      // It does!  Now see if "V - Z" simplifies.
815      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
816        // It does, we successfully reassociated!
817        ++NumReassoc;
818        return W;
819      }
820    // See if "V === X - Z" simplifies.
821    if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
822      // It does!  Now see if "V - Y" simplifies.
823      if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
824        // It does, we successfully reassociated!
825        ++NumReassoc;
826        return W;
827      }
828  }
829
830  // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
831  // For example, X - (X - Y) -> Y.
832  Z = Op0;
833  if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
834    // See if "V === Z - X" simplifies.
835    if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
836      // It does!  Now see if "V + Y" simplifies.
837      if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
838        // It does, we successfully reassociated!
839        ++NumReassoc;
840        return W;
841      }
842
843  // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
844  if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
845      match(Op1, m_Trunc(m_Value(Y))))
846    if (X->getType() == Y->getType())
847      // See if "V === X - Y" simplifies.
848      if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
849        // It does!  Now see if "trunc V" simplifies.
850        if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
851          // It does, return the simplified "trunc V".
852          return W;
853
854  // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
855  if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
856      match(Op1, m_PtrToInt(m_Value(Y))))
857    if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
858      return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
859
860  // Mul distributes over Sub.  Try some generic simplifications based on this.
861  if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
862                                Q, MaxRecurse))
863    return V;
864
865  // i1 sub -> xor.
866  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
867    if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
868      return V;
869
870  // Threading Sub over selects and phi nodes is pointless, so don't bother.
871  // Threading over the select in "A - select(cond, B, C)" means evaluating
872  // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
873  // only if B and C are equal.  If B and C are equal then (since we assume
874  // that operands have already been simplified) "select(cond, B, C)" should
875  // have been simplified to the common value of B and C already.  Analysing
876  // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
877  // for threading over phi nodes.
878
879  return 0;
880}
881
882Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
883                             const TargetData *TD, const TargetLibraryInfo *TLI,
884                             const DominatorTree *DT) {
885  return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
886                           RecursionLimit);
887}
888
889/// SimplifyMulInst - Given operands for a Mul, see if we can
890/// fold the result.  If not, this returns null.
891static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
892                              unsigned MaxRecurse) {
893  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
894    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
895      Constant *Ops[] = { CLHS, CRHS };
896      return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
897                                      Ops, Q.TD, Q.TLI);
898    }
899
900    // Canonicalize the constant to the RHS.
901    std::swap(Op0, Op1);
902  }
903
904  // X * undef -> 0
905  if (match(Op1, m_Undef()))
906    return Constant::getNullValue(Op0->getType());
907
908  // X * 0 -> 0
909  if (match(Op1, m_Zero()))
910    return Op1;
911
912  // X * 1 -> X
913  if (match(Op1, m_One()))
914    return Op0;
915
916  // (X / Y) * Y -> X if the division is exact.
917  Value *X = 0;
918  if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
919      match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
920    return X;
921
922  // i1 mul -> and.
923  if (MaxRecurse && Op0->getType()->isIntegerTy(1))
924    if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
925      return V;
926
927  // Try some generic simplifications for associative operations.
928  if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
929                                          MaxRecurse))
930    return V;
931
932  // Mul distributes over Add.  Try some generic simplifications based on this.
933  if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
934                             Q, MaxRecurse))
935    return V;
936
937  // If the operation is with the result of a select instruction, check whether
938  // operating on either branch of the select always yields the same value.
939  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
940    if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
941                                         MaxRecurse))
942      return V;
943
944  // If the operation is with the result of a phi instruction, check whether
945  // operating on all incoming values of the phi always yields the same value.
946  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
947    if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
948                                      MaxRecurse))
949      return V;
950
951  return 0;
952}
953
954Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
955                             const TargetLibraryInfo *TLI,
956                             const DominatorTree *DT) {
957  return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
958}
959
960/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
961/// fold the result.  If not, this returns null.
962static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
963                          const Query &Q, unsigned MaxRecurse) {
964  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
965    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
966      Constant *Ops[] = { C0, C1 };
967      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
968    }
969  }
970
971  bool isSigned = Opcode == Instruction::SDiv;
972
973  // X / undef -> undef
974  if (match(Op1, m_Undef()))
975    return Op1;
976
977  // undef / X -> 0
978  if (match(Op0, m_Undef()))
979    return Constant::getNullValue(Op0->getType());
980
981  // 0 / X -> 0, we don't need to preserve faults!
982  if (match(Op0, m_Zero()))
983    return Op0;
984
985  // X / 1 -> X
986  if (match(Op1, m_One()))
987    return Op0;
988
989  if (Op0->getType()->isIntegerTy(1))
990    // It can't be division by zero, hence it must be division by one.
991    return Op0;
992
993  // X / X -> 1
994  if (Op0 == Op1)
995    return ConstantInt::get(Op0->getType(), 1);
996
997  // (X * Y) / Y -> X if the multiplication does not overflow.
998  Value *X = 0, *Y = 0;
999  if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1000    if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1001    OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1002    // If the Mul knows it does not overflow, then we are good to go.
1003    if ((isSigned && Mul->hasNoSignedWrap()) ||
1004        (!isSigned && Mul->hasNoUnsignedWrap()))
1005      return X;
1006    // If X has the form X = A / Y then X * Y cannot overflow.
1007    if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1008      if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1009        return X;
1010  }
1011
1012  // (X rem Y) / Y -> 0
1013  if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1014      (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1015    return Constant::getNullValue(Op0->getType());
1016
1017  // If the operation is with the result of a select instruction, check whether
1018  // operating on either branch of the select always yields the same value.
1019  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1020    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1021      return V;
1022
1023  // If the operation is with the result of a phi instruction, check whether
1024  // operating on all incoming values of the phi always yields the same value.
1025  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1026    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1027      return V;
1028
1029  return 0;
1030}
1031
1032/// SimplifySDivInst - Given operands for an SDiv, see if we can
1033/// fold the result.  If not, this returns null.
1034static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1035                               unsigned MaxRecurse) {
1036  if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1037    return V;
1038
1039  return 0;
1040}
1041
1042Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1043                              const TargetLibraryInfo *TLI,
1044                              const DominatorTree *DT) {
1045  return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1046}
1047
1048/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1049/// fold the result.  If not, this returns null.
1050static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1051                               unsigned MaxRecurse) {
1052  if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1053    return V;
1054
1055  return 0;
1056}
1057
1058Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1059                              const TargetLibraryInfo *TLI,
1060                              const DominatorTree *DT) {
1061  return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1062}
1063
1064static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1065                               unsigned) {
1066  // undef / X -> undef    (the undef could be a snan).
1067  if (match(Op0, m_Undef()))
1068    return Op0;
1069
1070  // X / undef -> undef
1071  if (match(Op1, m_Undef()))
1072    return Op1;
1073
1074  return 0;
1075}
1076
1077Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
1078                              const TargetLibraryInfo *TLI,
1079                              const DominatorTree *DT) {
1080  return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1081}
1082
1083/// SimplifyRem - Given operands for an SRem or URem, see if we can
1084/// fold the result.  If not, this returns null.
1085static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1086                          const Query &Q, unsigned MaxRecurse) {
1087  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1088    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1089      Constant *Ops[] = { C0, C1 };
1090      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1091    }
1092  }
1093
1094  // X % undef -> undef
1095  if (match(Op1, m_Undef()))
1096    return Op1;
1097
1098  // undef % X -> 0
1099  if (match(Op0, m_Undef()))
1100    return Constant::getNullValue(Op0->getType());
1101
1102  // 0 % X -> 0, we don't need to preserve faults!
1103  if (match(Op0, m_Zero()))
1104    return Op0;
1105
1106  // X % 0 -> undef, we don't need to preserve faults!
1107  if (match(Op1, m_Zero()))
1108    return UndefValue::get(Op0->getType());
1109
1110  // X % 1 -> 0
1111  if (match(Op1, m_One()))
1112    return Constant::getNullValue(Op0->getType());
1113
1114  if (Op0->getType()->isIntegerTy(1))
1115    // It can't be remainder by zero, hence it must be remainder by one.
1116    return Constant::getNullValue(Op0->getType());
1117
1118  // X % X -> 0
1119  if (Op0 == Op1)
1120    return Constant::getNullValue(Op0->getType());
1121
1122  // If the operation is with the result of a select instruction, check whether
1123  // operating on either branch of the select always yields the same value.
1124  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1125    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1126      return V;
1127
1128  // If the operation is with the result of a phi instruction, check whether
1129  // operating on all incoming values of the phi always yields the same value.
1130  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1131    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1132      return V;
1133
1134  return 0;
1135}
1136
1137/// SimplifySRemInst - Given operands for an SRem, see if we can
1138/// fold the result.  If not, this returns null.
1139static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1140                               unsigned MaxRecurse) {
1141  if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1142    return V;
1143
1144  return 0;
1145}
1146
1147Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1148                              const TargetLibraryInfo *TLI,
1149                              const DominatorTree *DT) {
1150  return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1151}
1152
1153/// SimplifyURemInst - Given operands for a URem, see if we can
1154/// fold the result.  If not, this returns null.
1155static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1156                               unsigned MaxRecurse) {
1157  if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1158    return V;
1159
1160  return 0;
1161}
1162
1163Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
1164                              const TargetLibraryInfo *TLI,
1165                              const DominatorTree *DT) {
1166  return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1167}
1168
1169static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
1170                               unsigned) {
1171  // undef % X -> undef    (the undef could be a snan).
1172  if (match(Op0, m_Undef()))
1173    return Op0;
1174
1175  // X % undef -> undef
1176  if (match(Op1, m_Undef()))
1177    return Op1;
1178
1179  return 0;
1180}
1181
1182Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
1183                              const TargetLibraryInfo *TLI,
1184                              const DominatorTree *DT) {
1185  return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1186}
1187
1188/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
1189/// fold the result.  If not, this returns null.
1190static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1191                            const Query &Q, unsigned MaxRecurse) {
1192  if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1193    if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1194      Constant *Ops[] = { C0, C1 };
1195      return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
1196    }
1197  }
1198
1199  // 0 shift by X -> 0
1200  if (match(Op0, m_Zero()))
1201    return Op0;
1202
1203  // X shift by 0 -> X
1204  if (match(Op1, m_Zero()))
1205    return Op0;
1206
1207  // X shift by undef -> undef because it may shift by the bitwidth.
1208  if (match(Op1, m_Undef()))
1209    return Op1;
1210
1211  // Shifting by the bitwidth or more is undefined.
1212  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1213    if (CI->getValue().getLimitedValue() >=
1214        Op0->getType()->getScalarSizeInBits())
1215      return UndefValue::get(Op0->getType());
1216
1217  // If the operation is with the result of a select instruction, check whether
1218  // operating on either branch of the select always yields the same value.
1219  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1220    if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1221      return V;
1222
1223  // If the operation is with the result of a phi instruction, check whether
1224  // operating on all incoming values of the phi always yields the same value.
1225  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1226    if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1227      return V;
1228
1229  return 0;
1230}
1231
1232/// SimplifyShlInst - Given operands for an Shl, see if we can
1233/// fold the result.  If not, this returns null.
1234static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1235                              const Query &Q, unsigned MaxRecurse) {
1236  if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1237    return V;
1238
1239  // undef << X -> 0
1240  if (match(Op0, m_Undef()))
1241    return Constant::getNullValue(Op0->getType());
1242
1243  // (X >> A) << A -> X
1244  Value *X;
1245  if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1246    return X;
1247  return 0;
1248}
1249
1250Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1251                             const TargetData *TD, const TargetLibraryInfo *TLI,
1252                             const DominatorTree *DT) {
1253  return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1254                           RecursionLimit);
1255}
1256
1257/// SimplifyLShrInst - Given operands for an LShr, see if we can
1258/// fold the result.  If not, this returns null.
1259static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1260                               const Query &Q, unsigned MaxRecurse) {
1261  if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
1262    return V;
1263
1264  // undef >>l X -> 0
1265  if (match(Op0, m_Undef()))
1266    return Constant::getNullValue(Op0->getType());
1267
1268  // (X << A) >> A -> X
1269  Value *X;
1270  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1271      cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1272    return X;
1273
1274  return 0;
1275}
1276
1277Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1278                              const TargetData *TD,
1279                              const TargetLibraryInfo *TLI,
1280                              const DominatorTree *DT) {
1281  return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1282                            RecursionLimit);
1283}
1284
1285/// SimplifyAShrInst - Given operands for an AShr, see if we can
1286/// fold the result.  If not, this returns null.
1287static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1288                               const Query &Q, unsigned MaxRecurse) {
1289  if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
1290    return V;
1291
1292  // all ones >>a X -> all ones
1293  if (match(Op0, m_AllOnes()))
1294    return Op0;
1295
1296  // undef >>a X -> all ones
1297  if (match(Op0, m_Undef()))
1298    return Constant::getAllOnesValue(Op0->getType());
1299
1300  // (X << A) >> A -> X
1301  Value *X;
1302  if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1303      cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1304    return X;
1305
1306  return 0;
1307}
1308
1309Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1310                              const TargetData *TD,
1311                              const TargetLibraryInfo *TLI,
1312                              const DominatorTree *DT) {
1313  return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1314                            RecursionLimit);
1315}
1316
1317/// SimplifyAndInst - Given operands for an And, see if we can
1318/// fold the result.  If not, this returns null.
1319static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1320                              unsigned MaxRecurse) {
1321  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1322    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1323      Constant *Ops[] = { CLHS, CRHS };
1324      return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
1325                                      Ops, Q.TD, Q.TLI);
1326    }
1327
1328    // Canonicalize the constant to the RHS.
1329    std::swap(Op0, Op1);
1330  }
1331
1332  // X & undef -> 0
1333  if (match(Op1, m_Undef()))
1334    return Constant::getNullValue(Op0->getType());
1335
1336  // X & X = X
1337  if (Op0 == Op1)
1338    return Op0;
1339
1340  // X & 0 = 0
1341  if (match(Op1, m_Zero()))
1342    return Op1;
1343
1344  // X & -1 = X
1345  if (match(Op1, m_AllOnes()))
1346    return Op0;
1347
1348  // A & ~A  =  ~A & A  =  0
1349  if (match(Op0, m_Not(m_Specific(Op1))) ||
1350      match(Op1, m_Not(m_Specific(Op0))))
1351    return Constant::getNullValue(Op0->getType());
1352
1353  // (A | ?) & A = A
1354  Value *A = 0, *B = 0;
1355  if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1356      (A == Op1 || B == Op1))
1357    return Op1;
1358
1359  // A & (A | ?) = A
1360  if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1361      (A == Op0 || B == Op0))
1362    return Op0;
1363
1364  // A & (-A) = A if A is a power of two or zero.
1365  if (match(Op0, m_Neg(m_Specific(Op1))) ||
1366      match(Op1, m_Neg(m_Specific(Op0)))) {
1367    if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true))
1368      return Op0;
1369    if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true))
1370      return Op1;
1371  }
1372
1373  // Try some generic simplifications for associative operations.
1374  if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1375                                          MaxRecurse))
1376    return V;
1377
1378  // And distributes over Or.  Try some generic simplifications based on this.
1379  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1380                             Q, MaxRecurse))
1381    return V;
1382
1383  // And distributes over Xor.  Try some generic simplifications based on this.
1384  if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1385                             Q, MaxRecurse))
1386    return V;
1387
1388  // Or distributes over And.  Try some generic simplifications based on this.
1389  if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1390                                Q, MaxRecurse))
1391    return V;
1392
1393  // If the operation is with the result of a select instruction, check whether
1394  // operating on either branch of the select always yields the same value.
1395  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1396    if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1397                                         MaxRecurse))
1398      return V;
1399
1400  // If the operation is with the result of a phi instruction, check whether
1401  // operating on all incoming values of the phi always yields the same value.
1402  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1403    if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1404                                      MaxRecurse))
1405      return V;
1406
1407  return 0;
1408}
1409
1410Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
1411                             const TargetLibraryInfo *TLI,
1412                             const DominatorTree *DT) {
1413  return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1414}
1415
1416/// SimplifyOrInst - Given operands for an Or, see if we can
1417/// fold the result.  If not, this returns null.
1418static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1419                             unsigned MaxRecurse) {
1420  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1421    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1422      Constant *Ops[] = { CLHS, CRHS };
1423      return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
1424                                      Ops, Q.TD, Q.TLI);
1425    }
1426
1427    // Canonicalize the constant to the RHS.
1428    std::swap(Op0, Op1);
1429  }
1430
1431  // X | undef -> -1
1432  if (match(Op1, m_Undef()))
1433    return Constant::getAllOnesValue(Op0->getType());
1434
1435  // X | X = X
1436  if (Op0 == Op1)
1437    return Op0;
1438
1439  // X | 0 = X
1440  if (match(Op1, m_Zero()))
1441    return Op0;
1442
1443  // X | -1 = -1
1444  if (match(Op1, m_AllOnes()))
1445    return Op1;
1446
1447  // A | ~A  =  ~A | A  =  -1
1448  if (match(Op0, m_Not(m_Specific(Op1))) ||
1449      match(Op1, m_Not(m_Specific(Op0))))
1450    return Constant::getAllOnesValue(Op0->getType());
1451
1452  // (A & ?) | A = A
1453  Value *A = 0, *B = 0;
1454  if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1455      (A == Op1 || B == Op1))
1456    return Op1;
1457
1458  // A | (A & ?) = A
1459  if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1460      (A == Op0 || B == Op0))
1461    return Op0;
1462
1463  // ~(A & ?) | A = -1
1464  if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1465      (A == Op1 || B == Op1))
1466    return Constant::getAllOnesValue(Op1->getType());
1467
1468  // A | ~(A & ?) = -1
1469  if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1470      (A == Op0 || B == Op0))
1471    return Constant::getAllOnesValue(Op0->getType());
1472
1473  // Try some generic simplifications for associative operations.
1474  if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1475                                          MaxRecurse))
1476    return V;
1477
1478  // Or distributes over And.  Try some generic simplifications based on this.
1479  if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1480                             MaxRecurse))
1481    return V;
1482
1483  // And distributes over Or.  Try some generic simplifications based on this.
1484  if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
1485                                Q, MaxRecurse))
1486    return V;
1487
1488  // If the operation is with the result of a select instruction, check whether
1489  // operating on either branch of the select always yields the same value.
1490  if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1491    if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1492                                         MaxRecurse))
1493      return V;
1494
1495  // If the operation is with the result of a phi instruction, check whether
1496  // operating on all incoming values of the phi always yields the same value.
1497  if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1498    if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1499      return V;
1500
1501  return 0;
1502}
1503
1504Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
1505                            const TargetLibraryInfo *TLI,
1506                            const DominatorTree *DT) {
1507  return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1508}
1509
1510/// SimplifyXorInst - Given operands for a Xor, see if we can
1511/// fold the result.  If not, this returns null.
1512static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1513                              unsigned MaxRecurse) {
1514  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1515    if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1516      Constant *Ops[] = { CLHS, CRHS };
1517      return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
1518                                      Ops, Q.TD, Q.TLI);
1519    }
1520
1521    // Canonicalize the constant to the RHS.
1522    std::swap(Op0, Op1);
1523  }
1524
1525  // A ^ undef -> undef
1526  if (match(Op1, m_Undef()))
1527    return Op1;
1528
1529  // A ^ 0 = A
1530  if (match(Op1, m_Zero()))
1531    return Op0;
1532
1533  // A ^ A = 0
1534  if (Op0 == Op1)
1535    return Constant::getNullValue(Op0->getType());
1536
1537  // A ^ ~A  =  ~A ^ A  =  -1
1538  if (match(Op0, m_Not(m_Specific(Op1))) ||
1539      match(Op1, m_Not(m_Specific(Op0))))
1540    return Constant::getAllOnesValue(Op0->getType());
1541
1542  // Try some generic simplifications for associative operations.
1543  if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1544                                          MaxRecurse))
1545    return V;
1546
1547  // And distributes over Xor.  Try some generic simplifications based on this.
1548  if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
1549                                Q, MaxRecurse))
1550    return V;
1551
1552  // Threading Xor over selects and phi nodes is pointless, so don't bother.
1553  // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1554  // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1555  // only if B and C are equal.  If B and C are equal then (since we assume
1556  // that operands have already been simplified) "select(cond, B, C)" should
1557  // have been simplified to the common value of B and C already.  Analysing
1558  // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1559  // for threading over phi nodes.
1560
1561  return 0;
1562}
1563
1564Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
1565                             const TargetLibraryInfo *TLI,
1566                             const DominatorTree *DT) {
1567  return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
1568}
1569
1570static Type *GetCompareTy(Value *Op) {
1571  return CmpInst::makeCmpResultType(Op->getType());
1572}
1573
1574/// ExtractEquivalentCondition - Rummage around inside V looking for something
1575/// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
1576/// otherwise return null.  Helper function for analyzing max/min idioms.
1577static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1578                                         Value *LHS, Value *RHS) {
1579  SelectInst *SI = dyn_cast<SelectInst>(V);
1580  if (!SI)
1581    return 0;
1582  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1583  if (!Cmp)
1584    return 0;
1585  Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1586  if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1587    return Cmp;
1588  if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1589      LHS == CmpRHS && RHS == CmpLHS)
1590    return Cmp;
1591  return 0;
1592}
1593
1594
1595/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1596/// fold the result.  If not, this returns null.
1597static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
1598                               const Query &Q, unsigned MaxRecurse) {
1599  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
1600  assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
1601
1602  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
1603    if (Constant *CRHS = dyn_cast<Constant>(RHS))
1604      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
1605
1606    // If we have a constant, make sure it is on the RHS.
1607    std::swap(LHS, RHS);
1608    Pred = CmpInst::getSwappedPredicate(Pred);
1609  }
1610
1611  Type *ITy = GetCompareTy(LHS); // The return type.
1612  Type *OpTy = LHS->getType();   // The operand type.
1613
1614  // icmp X, X -> true/false
1615  // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
1616  // because X could be 0.
1617  if (LHS == RHS || isa<UndefValue>(RHS))
1618    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1619
1620  // Special case logic when the operands have i1 type.
1621  if (OpTy->getScalarType()->isIntegerTy(1)) {
1622    switch (Pred) {
1623    default: break;
1624    case ICmpInst::ICMP_EQ:
1625      // X == 1 -> X
1626      if (match(RHS, m_One()))
1627        return LHS;
1628      break;
1629    case ICmpInst::ICMP_NE:
1630      // X != 0 -> X
1631      if (match(RHS, m_Zero()))
1632        return LHS;
1633      break;
1634    case ICmpInst::ICMP_UGT:
1635      // X >u 0 -> X
1636      if (match(RHS, m_Zero()))
1637        return LHS;
1638      break;
1639    case ICmpInst::ICMP_UGE:
1640      // X >=u 1 -> X
1641      if (match(RHS, m_One()))
1642        return LHS;
1643      break;
1644    case ICmpInst::ICMP_SLT:
1645      // X <s 0 -> X
1646      if (match(RHS, m_Zero()))
1647        return LHS;
1648      break;
1649    case ICmpInst::ICMP_SLE:
1650      // X <=s -1 -> X
1651      if (match(RHS, m_One()))
1652        return LHS;
1653      break;
1654    }
1655  }
1656
1657  // icmp <object*>, <object*/null> - Different identified objects have
1658  // different addresses (unless null), and what's more the address of an
1659  // identified local is never equal to another argument (again, barring null).
1660  // Note that generalizing to the case where LHS is a global variable address
1661  // or null is pointless, since if both LHS and RHS are constants then we
1662  // already constant folded the compare, and if only one of them is then we
1663  // moved it to RHS already.
1664  Value *LHSPtr = LHS->stripPointerCasts();
1665  Value *RHSPtr = RHS->stripPointerCasts();
1666  if (LHSPtr == RHSPtr)
1667    return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
1668
1669  // Be more aggressive about stripping pointer adjustments when checking a
1670  // comparison of an alloca address to another object.  We can rip off all
1671  // inbounds GEP operations, even if they are variable.
1672  LHSPtr = LHSPtr->stripInBoundsOffsets();
1673  if (llvm::isIdentifiedObject(LHSPtr)) {
1674    RHSPtr = RHSPtr->stripInBoundsOffsets();
1675    if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
1676      // If both sides are different identified objects, they aren't equal
1677      // unless they're null.
1678      if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
1679          Pred == CmpInst::ICMP_EQ)
1680        return ConstantInt::get(ITy, false);
1681
1682      // A local identified object (alloca or noalias call) can't equal any
1683      // incoming argument, unless they're both null.
1684      if (isa<Instruction>(LHSPtr) && isa<Argument>(RHSPtr) &&
1685          Pred == CmpInst::ICMP_EQ)
1686        return ConstantInt::get(ITy, false);
1687    }
1688
1689    // Assume that the constant null is on the right.
1690    if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
1691      if (Pred == CmpInst::ICMP_EQ)
1692        return ConstantInt::get(ITy, false);
1693      else if (Pred == CmpInst::ICMP_NE)
1694        return ConstantInt::get(ITy, true);
1695    }
1696  } else if (isa<Argument>(LHSPtr)) {
1697    RHSPtr = RHSPtr->stripInBoundsOffsets();
1698    // An alloca can't be equal to an argument.
1699    if (isa<AllocaInst>(RHSPtr)) {
1700      if (Pred == CmpInst::ICMP_EQ)
1701        return ConstantInt::get(ITy, false);
1702      else if (Pred == CmpInst::ICMP_NE)
1703        return ConstantInt::get(ITy, true);
1704    }
1705  }
1706
1707  // If we are comparing with zero then try hard since this is a common case.
1708  if (match(RHS, m_Zero())) {
1709    bool LHSKnownNonNegative, LHSKnownNegative;
1710    switch (Pred) {
1711    default: llvm_unreachable("Unknown ICmp predicate!");
1712    case ICmpInst::ICMP_ULT:
1713      return getFalse(ITy);
1714    case ICmpInst::ICMP_UGE:
1715      return getTrue(ITy);
1716    case ICmpInst::ICMP_EQ:
1717    case ICmpInst::ICMP_ULE:
1718      if (isKnownNonZero(LHS, Q.TD))
1719        return getFalse(ITy);
1720      break;
1721    case ICmpInst::ICMP_NE:
1722    case ICmpInst::ICMP_UGT:
1723      if (isKnownNonZero(LHS, Q.TD))
1724        return getTrue(ITy);
1725      break;
1726    case ICmpInst::ICMP_SLT:
1727      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1728      if (LHSKnownNegative)
1729        return getTrue(ITy);
1730      if (LHSKnownNonNegative)
1731        return getFalse(ITy);
1732      break;
1733    case ICmpInst::ICMP_SLE:
1734      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1735      if (LHSKnownNegative)
1736        return getTrue(ITy);
1737      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1738        return getFalse(ITy);
1739      break;
1740    case ICmpInst::ICMP_SGE:
1741      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1742      if (LHSKnownNegative)
1743        return getFalse(ITy);
1744      if (LHSKnownNonNegative)
1745        return getTrue(ITy);
1746      break;
1747    case ICmpInst::ICMP_SGT:
1748      ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
1749      if (LHSKnownNegative)
1750        return getFalse(ITy);
1751      if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
1752        return getTrue(ITy);
1753      break;
1754    }
1755  }
1756
1757  // See if we are doing a comparison with a constant integer.
1758  if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1759    // Rule out tautological comparisons (eg., ult 0 or uge 0).
1760    ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1761    if (RHS_CR.isEmptySet())
1762      return ConstantInt::getFalse(CI->getContext());
1763    if (RHS_CR.isFullSet())
1764      return ConstantInt::getTrue(CI->getContext());
1765
1766    // Many binary operators with constant RHS have easy to compute constant
1767    // range.  Use them to check whether the comparison is a tautology.
1768    uint32_t Width = CI->getBitWidth();
1769    APInt Lower = APInt(Width, 0);
1770    APInt Upper = APInt(Width, 0);
1771    ConstantInt *CI2;
1772    if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1773      // 'urem x, CI2' produces [0, CI2).
1774      Upper = CI2->getValue();
1775    } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1776      // 'srem x, CI2' produces (-|CI2|, |CI2|).
1777      Upper = CI2->getValue().abs();
1778      Lower = (-Upper) + 1;
1779    } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1780      // 'udiv CI2, x' produces [0, CI2].
1781      Upper = CI2->getValue() + 1;
1782    } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1783      // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1784      APInt NegOne = APInt::getAllOnesValue(Width);
1785      if (!CI2->isZero())
1786        Upper = NegOne.udiv(CI2->getValue()) + 1;
1787    } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1788      // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1789      APInt IntMin = APInt::getSignedMinValue(Width);
1790      APInt IntMax = APInt::getSignedMaxValue(Width);
1791      APInt Val = CI2->getValue().abs();
1792      if (!Val.isMinValue()) {
1793        Lower = IntMin.sdiv(Val);
1794        Upper = IntMax.sdiv(Val) + 1;
1795      }
1796    } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1797      // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1798      APInt NegOne = APInt::getAllOnesValue(Width);
1799      if (CI2->getValue().ult(Width))
1800        Upper = NegOne.lshr(CI2->getValue()) + 1;
1801    } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1802      // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1803      APInt IntMin = APInt::getSignedMinValue(Width);
1804      APInt IntMax = APInt::getSignedMaxValue(Width);
1805      if (CI2->getValue().ult(Width)) {
1806        Lower = IntMin.ashr(CI2->getValue());
1807        Upper = IntMax.ashr(CI2->getValue()) + 1;
1808      }
1809    } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1810      // 'or x, CI2' produces [CI2, UINT_MAX].
1811      Lower = CI2->getValue();
1812    } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1813      // 'and x, CI2' produces [0, CI2].
1814      Upper = CI2->getValue() + 1;
1815    }
1816    if (Lower != Upper) {
1817      ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1818      if (RHS_CR.contains(LHS_CR))
1819        return ConstantInt::getTrue(RHS->getContext());
1820      if (RHS_CR.inverse().contains(LHS_CR))
1821        return ConstantInt::getFalse(RHS->getContext());
1822    }
1823  }
1824
1825  // Compare of cast, for example (zext X) != 0 -> X != 0
1826  if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1827    Instruction *LI = cast<CastInst>(LHS);
1828    Value *SrcOp = LI->getOperand(0);
1829    Type *SrcTy = SrcOp->getType();
1830    Type *DstTy = LI->getType();
1831
1832    // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1833    // if the integer type is the same size as the pointer type.
1834    if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
1835        Q.TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
1836      if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1837        // Transfer the cast to the constant.
1838        if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1839                                        ConstantExpr::getIntToPtr(RHSC, SrcTy),
1840                                        Q, MaxRecurse-1))
1841          return V;
1842      } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1843        if (RI->getOperand(0)->getType() == SrcTy)
1844          // Compare without the cast.
1845          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1846                                          Q, MaxRecurse-1))
1847            return V;
1848      }
1849    }
1850
1851    if (isa<ZExtInst>(LHS)) {
1852      // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1853      // same type.
1854      if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1855        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1856          // Compare X and Y.  Note that signed predicates become unsigned.
1857          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1858                                          SrcOp, RI->getOperand(0), Q,
1859                                          MaxRecurse-1))
1860            return V;
1861      }
1862      // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1863      // too.  If not, then try to deduce the result of the comparison.
1864      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1865        // Compute the constant that would happen if we truncated to SrcTy then
1866        // reextended to DstTy.
1867        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1868        Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1869
1870        // If the re-extended constant didn't change then this is effectively
1871        // also a case of comparing two zero-extended values.
1872        if (RExt == CI && MaxRecurse)
1873          if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
1874                                        SrcOp, Trunc, Q, MaxRecurse-1))
1875            return V;
1876
1877        // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1878        // there.  Use this to work out the result of the comparison.
1879        if (RExt != CI) {
1880          switch (Pred) {
1881          default: llvm_unreachable("Unknown ICmp predicate!");
1882          // LHS <u RHS.
1883          case ICmpInst::ICMP_EQ:
1884          case ICmpInst::ICMP_UGT:
1885          case ICmpInst::ICMP_UGE:
1886            return ConstantInt::getFalse(CI->getContext());
1887
1888          case ICmpInst::ICMP_NE:
1889          case ICmpInst::ICMP_ULT:
1890          case ICmpInst::ICMP_ULE:
1891            return ConstantInt::getTrue(CI->getContext());
1892
1893          // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
1894          // is non-negative then LHS <s RHS.
1895          case ICmpInst::ICMP_SGT:
1896          case ICmpInst::ICMP_SGE:
1897            return CI->getValue().isNegative() ?
1898              ConstantInt::getTrue(CI->getContext()) :
1899              ConstantInt::getFalse(CI->getContext());
1900
1901          case ICmpInst::ICMP_SLT:
1902          case ICmpInst::ICMP_SLE:
1903            return CI->getValue().isNegative() ?
1904              ConstantInt::getFalse(CI->getContext()) :
1905              ConstantInt::getTrue(CI->getContext());
1906          }
1907        }
1908      }
1909    }
1910
1911    if (isa<SExtInst>(LHS)) {
1912      // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1913      // same type.
1914      if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1915        if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1916          // Compare X and Y.  Note that the predicate does not change.
1917          if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
1918                                          Q, MaxRecurse-1))
1919            return V;
1920      }
1921      // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1922      // too.  If not, then try to deduce the result of the comparison.
1923      else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1924        // Compute the constant that would happen if we truncated to SrcTy then
1925        // reextended to DstTy.
1926        Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1927        Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1928
1929        // If the re-extended constant didn't change then this is effectively
1930        // also a case of comparing two sign-extended values.
1931        if (RExt == CI && MaxRecurse)
1932          if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
1933            return V;
1934
1935        // Otherwise the upper bits of LHS are all equal, while RHS has varying
1936        // bits there.  Use this to work out the result of the comparison.
1937        if (RExt != CI) {
1938          switch (Pred) {
1939          default: llvm_unreachable("Unknown ICmp predicate!");
1940          case ICmpInst::ICMP_EQ:
1941            return ConstantInt::getFalse(CI->getContext());
1942          case ICmpInst::ICMP_NE:
1943            return ConstantInt::getTrue(CI->getContext());
1944
1945          // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
1946          // LHS >s RHS.
1947          case ICmpInst::ICMP_SGT:
1948          case ICmpInst::ICMP_SGE:
1949            return CI->getValue().isNegative() ?
1950              ConstantInt::getTrue(CI->getContext()) :
1951              ConstantInt::getFalse(CI->getContext());
1952          case ICmpInst::ICMP_SLT:
1953          case ICmpInst::ICMP_SLE:
1954            return CI->getValue().isNegative() ?
1955              ConstantInt::getFalse(CI->getContext()) :
1956              ConstantInt::getTrue(CI->getContext());
1957
1958          // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
1959          // LHS >u RHS.
1960          case ICmpInst::ICMP_UGT:
1961          case ICmpInst::ICMP_UGE:
1962            // Comparison is true iff the LHS <s 0.
1963            if (MaxRecurse)
1964              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
1965                                              Constant::getNullValue(SrcTy),
1966                                              Q, MaxRecurse-1))
1967                return V;
1968            break;
1969          case ICmpInst::ICMP_ULT:
1970          case ICmpInst::ICMP_ULE:
1971            // Comparison is true iff the LHS >=s 0.
1972            if (MaxRecurse)
1973              if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
1974                                              Constant::getNullValue(SrcTy),
1975                                              Q, MaxRecurse-1))
1976                return V;
1977            break;
1978          }
1979        }
1980      }
1981    }
1982  }
1983
1984  // Special logic for binary operators.
1985  BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
1986  BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
1987  if (MaxRecurse && (LBO || RBO)) {
1988    // Analyze the case when either LHS or RHS is an add instruction.
1989    Value *A = 0, *B = 0, *C = 0, *D = 0;
1990    // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
1991    bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
1992    if (LBO && LBO->getOpcode() == Instruction::Add) {
1993      A = LBO->getOperand(0); B = LBO->getOperand(1);
1994      NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
1995        (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
1996        (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
1997    }
1998    if (RBO && RBO->getOpcode() == Instruction::Add) {
1999      C = RBO->getOperand(0); D = RBO->getOperand(1);
2000      NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2001        (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2002        (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2003    }
2004
2005    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2006    if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2007      if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2008                                      Constant::getNullValue(RHS->getType()),
2009                                      Q, MaxRecurse-1))
2010        return V;
2011
2012    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2013    if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2014      if (Value *V = SimplifyICmpInst(Pred,
2015                                      Constant::getNullValue(LHS->getType()),
2016                                      C == LHS ? D : C, Q, MaxRecurse-1))
2017        return V;
2018
2019    // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2020    if (A && C && (A == C || A == D || B == C || B == D) &&
2021        NoLHSWrapProblem && NoRHSWrapProblem) {
2022      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2023      Value *Y = (A == C || A == D) ? B : A;
2024      Value *Z = (C == A || C == B) ? D : C;
2025      if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2026        return V;
2027    }
2028  }
2029
2030  if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2031    bool KnownNonNegative, KnownNegative;
2032    switch (Pred) {
2033    default:
2034      break;
2035    case ICmpInst::ICMP_SGT:
2036    case ICmpInst::ICMP_SGE:
2037      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2038      if (!KnownNonNegative)
2039        break;
2040      // fall-through
2041    case ICmpInst::ICMP_EQ:
2042    case ICmpInst::ICMP_UGT:
2043    case ICmpInst::ICMP_UGE:
2044      return getFalse(ITy);
2045    case ICmpInst::ICMP_SLT:
2046    case ICmpInst::ICMP_SLE:
2047      ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
2048      if (!KnownNonNegative)
2049        break;
2050      // fall-through
2051    case ICmpInst::ICMP_NE:
2052    case ICmpInst::ICMP_ULT:
2053    case ICmpInst::ICMP_ULE:
2054      return getTrue(ITy);
2055    }
2056  }
2057  if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2058    bool KnownNonNegative, KnownNegative;
2059    switch (Pred) {
2060    default:
2061      break;
2062    case ICmpInst::ICMP_SGT:
2063    case ICmpInst::ICMP_SGE:
2064      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2065      if (!KnownNonNegative)
2066        break;
2067      // fall-through
2068    case ICmpInst::ICMP_NE:
2069    case ICmpInst::ICMP_UGT:
2070    case ICmpInst::ICMP_UGE:
2071      return getTrue(ITy);
2072    case ICmpInst::ICMP_SLT:
2073    case ICmpInst::ICMP_SLE:
2074      ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
2075      if (!KnownNonNegative)
2076        break;
2077      // fall-through
2078    case ICmpInst::ICMP_EQ:
2079    case ICmpInst::ICMP_ULT:
2080    case ICmpInst::ICMP_ULE:
2081      return getFalse(ITy);
2082    }
2083  }
2084
2085  // x udiv y <=u x.
2086  if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2087    // icmp pred (X /u Y), X
2088    if (Pred == ICmpInst::ICMP_UGT)
2089      return getFalse(ITy);
2090    if (Pred == ICmpInst::ICMP_ULE)
2091      return getTrue(ITy);
2092  }
2093
2094  if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2095      LBO->getOperand(1) == RBO->getOperand(1)) {
2096    switch (LBO->getOpcode()) {
2097    default: break;
2098    case Instruction::UDiv:
2099    case Instruction::LShr:
2100      if (ICmpInst::isSigned(Pred))
2101        break;
2102      // fall-through
2103    case Instruction::SDiv:
2104    case Instruction::AShr:
2105      if (!LBO->isExact() || !RBO->isExact())
2106        break;
2107      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2108                                      RBO->getOperand(0), Q, MaxRecurse-1))
2109        return V;
2110      break;
2111    case Instruction::Shl: {
2112      bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2113      bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2114      if (!NUW && !NSW)
2115        break;
2116      if (!NSW && ICmpInst::isSigned(Pred))
2117        break;
2118      if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2119                                      RBO->getOperand(0), Q, MaxRecurse-1))
2120        return V;
2121      break;
2122    }
2123    }
2124  }
2125
2126  // Simplify comparisons involving max/min.
2127  Value *A, *B;
2128  CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2129  CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2130
2131  // Signed variants on "max(a,b)>=a -> true".
2132  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2133    if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2134    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2135    // We analyze this as smax(A, B) pred A.
2136    P = Pred;
2137  } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2138             (A == LHS || B == LHS)) {
2139    if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2140    EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2141    // We analyze this as smax(A, B) swapped-pred A.
2142    P = CmpInst::getSwappedPredicate(Pred);
2143  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2144             (A == RHS || B == RHS)) {
2145    if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2146    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2147    // We analyze this as smax(-A, -B) swapped-pred -A.
2148    // Note that we do not need to actually form -A or -B thanks to EqP.
2149    P = CmpInst::getSwappedPredicate(Pred);
2150  } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2151             (A == LHS || B == LHS)) {
2152    if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2153    EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2154    // We analyze this as smax(-A, -B) pred -A.
2155    // Note that we do not need to actually form -A or -B thanks to EqP.
2156    P = Pred;
2157  }
2158  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2159    // Cases correspond to "max(A, B) p A".
2160    switch (P) {
2161    default:
2162      break;
2163    case CmpInst::ICMP_EQ:
2164    case CmpInst::ICMP_SLE:
2165      // Equivalent to "A EqP B".  This may be the same as the condition tested
2166      // in the max/min; if so, we can just return that.
2167      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2168        return V;
2169      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2170        return V;
2171      // Otherwise, see if "A EqP B" simplifies.
2172      if (MaxRecurse)
2173        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2174          return V;
2175      break;
2176    case CmpInst::ICMP_NE:
2177    case CmpInst::ICMP_SGT: {
2178      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2179      // Equivalent to "A InvEqP B".  This may be the same as the condition
2180      // tested in the max/min; if so, we can just return that.
2181      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2182        return V;
2183      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2184        return V;
2185      // Otherwise, see if "A InvEqP B" simplifies.
2186      if (MaxRecurse)
2187        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2188          return V;
2189      break;
2190    }
2191    case CmpInst::ICMP_SGE:
2192      // Always true.
2193      return getTrue(ITy);
2194    case CmpInst::ICMP_SLT:
2195      // Always false.
2196      return getFalse(ITy);
2197    }
2198  }
2199
2200  // Unsigned variants on "max(a,b)>=a -> true".
2201  P = CmpInst::BAD_ICMP_PREDICATE;
2202  if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2203    if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2204    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2205    // We analyze this as umax(A, B) pred A.
2206    P = Pred;
2207  } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2208             (A == LHS || B == LHS)) {
2209    if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2210    EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2211    // We analyze this as umax(A, B) swapped-pred A.
2212    P = CmpInst::getSwappedPredicate(Pred);
2213  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2214             (A == RHS || B == RHS)) {
2215    if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
2216    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2217    // We analyze this as umax(-A, -B) swapped-pred -A.
2218    // Note that we do not need to actually form -A or -B thanks to EqP.
2219    P = CmpInst::getSwappedPredicate(Pred);
2220  } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2221             (A == LHS || B == LHS)) {
2222    if (A != LHS) std::swap(A, B); // A pred umin(A, B).
2223    EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2224    // We analyze this as umax(-A, -B) pred -A.
2225    // Note that we do not need to actually form -A or -B thanks to EqP.
2226    P = Pred;
2227  }
2228  if (P != CmpInst::BAD_ICMP_PREDICATE) {
2229    // Cases correspond to "max(A, B) p A".
2230    switch (P) {
2231    default:
2232      break;
2233    case CmpInst::ICMP_EQ:
2234    case CmpInst::ICMP_ULE:
2235      // Equivalent to "A EqP B".  This may be the same as the condition tested
2236      // in the max/min; if so, we can just return that.
2237      if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2238        return V;
2239      if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2240        return V;
2241      // Otherwise, see if "A EqP B" simplifies.
2242      if (MaxRecurse)
2243        if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2244          return V;
2245      break;
2246    case CmpInst::ICMP_NE:
2247    case CmpInst::ICMP_UGT: {
2248      CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2249      // Equivalent to "A InvEqP B".  This may be the same as the condition
2250      // tested in the max/min; if so, we can just return that.
2251      if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2252        return V;
2253      if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2254        return V;
2255      // Otherwise, see if "A InvEqP B" simplifies.
2256      if (MaxRecurse)
2257        if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2258          return V;
2259      break;
2260    }
2261    case CmpInst::ICMP_UGE:
2262      // Always true.
2263      return getTrue(ITy);
2264    case CmpInst::ICMP_ULT:
2265      // Always false.
2266      return getFalse(ITy);
2267    }
2268  }
2269
2270  // Variants on "max(x,y) >= min(x,z)".
2271  Value *C, *D;
2272  if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2273      match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2274      (A == C || A == D || B == C || B == D)) {
2275    // max(x, ?) pred min(x, ?).
2276    if (Pred == CmpInst::ICMP_SGE)
2277      // Always true.
2278      return getTrue(ITy);
2279    if (Pred == CmpInst::ICMP_SLT)
2280      // Always false.
2281      return getFalse(ITy);
2282  } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2283             match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2284             (A == C || A == D || B == C || B == D)) {
2285    // min(x, ?) pred max(x, ?).
2286    if (Pred == CmpInst::ICMP_SLE)
2287      // Always true.
2288      return getTrue(ITy);
2289    if (Pred == CmpInst::ICMP_SGT)
2290      // Always false.
2291      return getFalse(ITy);
2292  } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2293             match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2294             (A == C || A == D || B == C || B == D)) {
2295    // max(x, ?) pred min(x, ?).
2296    if (Pred == CmpInst::ICMP_UGE)
2297      // Always true.
2298      return getTrue(ITy);
2299    if (Pred == CmpInst::ICMP_ULT)
2300      // Always false.
2301      return getFalse(ITy);
2302  } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2303             match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2304             (A == C || A == D || B == C || B == D)) {
2305    // min(x, ?) pred max(x, ?).
2306    if (Pred == CmpInst::ICMP_ULE)
2307      // Always true.
2308      return getTrue(ITy);
2309    if (Pred == CmpInst::ICMP_UGT)
2310      // Always false.
2311      return getFalse(ITy);
2312  }
2313
2314  // Simplify comparisons of GEPs.
2315  if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2316    if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2317      if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2318          GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2319          (ICmpInst::isEquality(Pred) ||
2320           (GLHS->isInBounds() && GRHS->isInBounds() &&
2321            Pred == ICmpInst::getSignedPredicate(Pred)))) {
2322        // The bases are equal and the indices are constant.  Build a constant
2323        // expression GEP with the same indices and a null base pointer to see
2324        // what constant folding can make out of it.
2325        Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2326        SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2327        Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2328
2329        SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2330        Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2331        return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2332      }
2333    }
2334  }
2335
2336  // If the comparison is with the result of a select instruction, check whether
2337  // comparing with either branch of the select always yields the same value.
2338  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2339    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2340      return V;
2341
2342  // If the comparison is with the result of a phi instruction, check whether
2343  // doing the compare with each incoming phi value yields a common result.
2344  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2345    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2346      return V;
2347
2348  return 0;
2349}
2350
2351Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2352                              const TargetData *TD,
2353                              const TargetLibraryInfo *TLI,
2354                              const DominatorTree *DT) {
2355  return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2356                            RecursionLimit);
2357}
2358
2359/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2360/// fold the result.  If not, this returns null.
2361static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2362                               const Query &Q, unsigned MaxRecurse) {
2363  CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2364  assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2365
2366  if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2367    if (Constant *CRHS = dyn_cast<Constant>(RHS))
2368      return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
2369
2370    // If we have a constant, make sure it is on the RHS.
2371    std::swap(LHS, RHS);
2372    Pred = CmpInst::getSwappedPredicate(Pred);
2373  }
2374
2375  // Fold trivial predicates.
2376  if (Pred == FCmpInst::FCMP_FALSE)
2377    return ConstantInt::get(GetCompareTy(LHS), 0);
2378  if (Pred == FCmpInst::FCMP_TRUE)
2379    return ConstantInt::get(GetCompareTy(LHS), 1);
2380
2381  if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
2382    return UndefValue::get(GetCompareTy(LHS));
2383
2384  // fcmp x,x -> true/false.  Not all compares are foldable.
2385  if (LHS == RHS) {
2386    if (CmpInst::isTrueWhenEqual(Pred))
2387      return ConstantInt::get(GetCompareTy(LHS), 1);
2388    if (CmpInst::isFalseWhenEqual(Pred))
2389      return ConstantInt::get(GetCompareTy(LHS), 0);
2390  }
2391
2392  // Handle fcmp with constant RHS
2393  if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2394    // If the constant is a nan, see if we can fold the comparison based on it.
2395    if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2396      if (CFP->getValueAPF().isNaN()) {
2397        if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
2398          return ConstantInt::getFalse(CFP->getContext());
2399        assert(FCmpInst::isUnordered(Pred) &&
2400               "Comparison must be either ordered or unordered!");
2401        // True if unordered.
2402        return ConstantInt::getTrue(CFP->getContext());
2403      }
2404      // Check whether the constant is an infinity.
2405      if (CFP->getValueAPF().isInfinity()) {
2406        if (CFP->getValueAPF().isNegative()) {
2407          switch (Pred) {
2408          case FCmpInst::FCMP_OLT:
2409            // No value is ordered and less than negative infinity.
2410            return ConstantInt::getFalse(CFP->getContext());
2411          case FCmpInst::FCMP_UGE:
2412            // All values are unordered with or at least negative infinity.
2413            return ConstantInt::getTrue(CFP->getContext());
2414          default:
2415            break;
2416          }
2417        } else {
2418          switch (Pred) {
2419          case FCmpInst::FCMP_OGT:
2420            // No value is ordered and greater than infinity.
2421            return ConstantInt::getFalse(CFP->getContext());
2422          case FCmpInst::FCMP_ULE:
2423            // All values are unordered with and at most infinity.
2424            return ConstantInt::getTrue(CFP->getContext());
2425          default:
2426            break;
2427          }
2428        }
2429      }
2430    }
2431  }
2432
2433  // If the comparison is with the result of a select instruction, check whether
2434  // comparing with either branch of the select always yields the same value.
2435  if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2436    if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
2437      return V;
2438
2439  // If the comparison is with the result of a phi instruction, check whether
2440  // doing the compare with each incoming phi value yields a common result.
2441  if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2442    if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
2443      return V;
2444
2445  return 0;
2446}
2447
2448Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2449                              const TargetData *TD,
2450                              const TargetLibraryInfo *TLI,
2451                              const DominatorTree *DT) {
2452  return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2453                            RecursionLimit);
2454}
2455
2456/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2457/// the result.  If not, this returns null.
2458static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2459                                 Value *FalseVal, const Query &Q,
2460                                 unsigned MaxRecurse) {
2461  // select true, X, Y  -> X
2462  // select false, X, Y -> Y
2463  if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2464    return CB->getZExtValue() ? TrueVal : FalseVal;
2465
2466  // select C, X, X -> X
2467  if (TrueVal == FalseVal)
2468    return TrueVal;
2469
2470  if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
2471    if (isa<Constant>(TrueVal))
2472      return TrueVal;
2473    return FalseVal;
2474  }
2475  if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
2476    return FalseVal;
2477  if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
2478    return TrueVal;
2479
2480  return 0;
2481}
2482
2483Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
2484                                const TargetData *TD,
2485                                const TargetLibraryInfo *TLI,
2486                                const DominatorTree *DT) {
2487  return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2488                              RecursionLimit);
2489}
2490
2491/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2492/// fold the result.  If not, this returns null.
2493static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
2494  // The type of the GEP pointer operand.
2495  PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2496  // The GEP pointer operand is not a pointer, it's a vector of pointers.
2497  if (!PtrTy)
2498    return 0;
2499
2500  // getelementptr P -> P.
2501  if (Ops.size() == 1)
2502    return Ops[0];
2503
2504  if (isa<UndefValue>(Ops[0])) {
2505    // Compute the (pointer) type returned by the GEP instruction.
2506    Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
2507    Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
2508    return UndefValue::get(GEPTy);
2509  }
2510
2511  if (Ops.size() == 2) {
2512    // getelementptr P, 0 -> P.
2513    if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2514      if (C->isZero())
2515        return Ops[0];
2516    // getelementptr P, N -> P if P points to a type of zero size.
2517    if (Q.TD) {
2518      Type *Ty = PtrTy->getElementType();
2519      if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
2520        return Ops[0];
2521    }
2522  }
2523
2524  // Check to see if this is constant foldable.
2525  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2526    if (!isa<Constant>(Ops[i]))
2527      return 0;
2528
2529  return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
2530}
2531
2532Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const TargetData *TD,
2533                             const TargetLibraryInfo *TLI,
2534                             const DominatorTree *DT) {
2535  return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2536}
2537
2538/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2539/// can fold the result.  If not, this returns null.
2540static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2541                                      ArrayRef<unsigned> Idxs, const Query &Q,
2542                                      unsigned) {
2543  if (Constant *CAgg = dyn_cast<Constant>(Agg))
2544    if (Constant *CVal = dyn_cast<Constant>(Val))
2545      return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2546
2547  // insertvalue x, undef, n -> x
2548  if (match(Val, m_Undef()))
2549    return Agg;
2550
2551  // insertvalue x, (extractvalue y, n), n
2552  if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
2553    if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2554        EV->getIndices() == Idxs) {
2555      // insertvalue undef, (extractvalue y, n), n -> y
2556      if (match(Agg, m_Undef()))
2557        return EV->getAggregateOperand();
2558
2559      // insertvalue y, (extractvalue y, n), n -> y
2560      if (Agg == EV->getAggregateOperand())
2561        return Agg;
2562    }
2563
2564  return 0;
2565}
2566
2567Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2568                                     ArrayRef<unsigned> Idxs,
2569                                     const TargetData *TD,
2570                                     const TargetLibraryInfo *TLI,
2571                                     const DominatorTree *DT) {
2572  return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2573                                   RecursionLimit);
2574}
2575
2576/// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
2577static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
2578  // If all of the PHI's incoming values are the same then replace the PHI node
2579  // with the common value.
2580  Value *CommonValue = 0;
2581  bool HasUndefInput = false;
2582  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2583    Value *Incoming = PN->getIncomingValue(i);
2584    // If the incoming value is the phi node itself, it can safely be skipped.
2585    if (Incoming == PN) continue;
2586    if (isa<UndefValue>(Incoming)) {
2587      // Remember that we saw an undef value, but otherwise ignore them.
2588      HasUndefInput = true;
2589      continue;
2590    }
2591    if (CommonValue && Incoming != CommonValue)
2592      return 0;  // Not the same, bail out.
2593    CommonValue = Incoming;
2594  }
2595
2596  // If CommonValue is null then all of the incoming values were either undef or
2597  // equal to the phi node itself.
2598  if (!CommonValue)
2599    return UndefValue::get(PN->getType());
2600
2601  // If we have a PHI node like phi(X, undef, X), where X is defined by some
2602  // instruction, we cannot return X as the result of the PHI node unless it
2603  // dominates the PHI block.
2604  if (HasUndefInput)
2605    return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
2606
2607  return CommonValue;
2608}
2609
2610static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2611  if (Constant *C = dyn_cast<Constant>(Op))
2612    return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2613
2614  return 0;
2615}
2616
2617Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const TargetData *TD,
2618                               const TargetLibraryInfo *TLI,
2619                               const DominatorTree *DT) {
2620  return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2621}
2622
2623//=== Helper functions for higher up the class hierarchy.
2624
2625/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2626/// fold the result.  If not, this returns null.
2627static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2628                            const Query &Q, unsigned MaxRecurse) {
2629  switch (Opcode) {
2630  case Instruction::Add:
2631    return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2632                           Q, MaxRecurse);
2633  case Instruction::Sub:
2634    return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2635                           Q, MaxRecurse);
2636  case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2637  case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2638  case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2639  case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2640  case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2641  case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2642  case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
2643  case Instruction::Shl:
2644    return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
2645                           Q, MaxRecurse);
2646  case Instruction::LShr:
2647    return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2648  case Instruction::AShr:
2649    return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2650  case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2651  case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2652  case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
2653  default:
2654    if (Constant *CLHS = dyn_cast<Constant>(LHS))
2655      if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2656        Constant *COps[] = {CLHS, CRHS};
2657        return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2658                                        Q.TLI);
2659      }
2660
2661    // If the operation is associative, try some generic simplifications.
2662    if (Instruction::isAssociative(Opcode))
2663      if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
2664        return V;
2665
2666    // If the operation is with the result of a select instruction check whether
2667    // operating on either branch of the select always yields the same value.
2668    if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
2669      if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
2670        return V;
2671
2672    // If the operation is with the result of a phi instruction, check whether
2673    // operating on all incoming values of the phi always yields the same value.
2674    if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
2675      if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
2676        return V;
2677
2678    return 0;
2679  }
2680}
2681
2682Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
2683                           const TargetData *TD, const TargetLibraryInfo *TLI,
2684                           const DominatorTree *DT) {
2685  return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
2686}
2687
2688/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2689/// fold the result.
2690static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2691                              const Query &Q, unsigned MaxRecurse) {
2692  if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2693    return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2694  return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2695}
2696
2697Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2698                             const TargetData *TD, const TargetLibraryInfo *TLI,
2699                             const DominatorTree *DT) {
2700  return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2701                           RecursionLimit);
2702}
2703
2704static Value *SimplifyCallInst(CallInst *CI, const Query &) {
2705  // call undef -> undef
2706  if (isa<UndefValue>(CI->getCalledValue()))
2707    return UndefValue::get(CI->getType());
2708
2709  return 0;
2710}
2711
2712/// SimplifyInstruction - See if we can compute a simplified version of this
2713/// instruction.  If not, this returns null.
2714Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
2715                                 const TargetLibraryInfo *TLI,
2716                                 const DominatorTree *DT) {
2717  Value *Result;
2718
2719  switch (I->getOpcode()) {
2720  default:
2721    Result = ConstantFoldInstruction(I, TD, TLI);
2722    break;
2723  case Instruction::Add:
2724    Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2725                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2726                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2727                             TD, TLI, DT);
2728    break;
2729  case Instruction::Sub:
2730    Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2731                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2732                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2733                             TD, TLI, DT);
2734    break;
2735  case Instruction::Mul:
2736    Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2737    break;
2738  case Instruction::SDiv:
2739    Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2740    break;
2741  case Instruction::UDiv:
2742    Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2743    break;
2744  case Instruction::FDiv:
2745    Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2746    break;
2747  case Instruction::SRem:
2748    Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2749    break;
2750  case Instruction::URem:
2751    Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2752    break;
2753  case Instruction::FRem:
2754    Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2755    break;
2756  case Instruction::Shl:
2757    Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2758                             cast<BinaryOperator>(I)->hasNoSignedWrap(),
2759                             cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
2760                             TD, TLI, DT);
2761    break;
2762  case Instruction::LShr:
2763    Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2764                              cast<BinaryOperator>(I)->isExact(),
2765                              TD, TLI, DT);
2766    break;
2767  case Instruction::AShr:
2768    Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2769                              cast<BinaryOperator>(I)->isExact(),
2770                              TD, TLI, DT);
2771    break;
2772  case Instruction::And:
2773    Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2774    break;
2775  case Instruction::Or:
2776    Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2777    break;
2778  case Instruction::Xor:
2779    Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2780    break;
2781  case Instruction::ICmp:
2782    Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
2783                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2784    break;
2785  case Instruction::FCmp:
2786    Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
2787                              I->getOperand(0), I->getOperand(1), TD, TLI, DT);
2788    break;
2789  case Instruction::Select:
2790    Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
2791                                I->getOperand(2), TD, TLI, DT);
2792    break;
2793  case Instruction::GetElementPtr: {
2794    SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
2795    Result = SimplifyGEPInst(Ops, TD, TLI, DT);
2796    break;
2797  }
2798  case Instruction::InsertValue: {
2799    InsertValueInst *IV = cast<InsertValueInst>(I);
2800    Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2801                                     IV->getInsertedValueOperand(),
2802                                     IV->getIndices(), TD, TLI, DT);
2803    break;
2804  }
2805  case Instruction::PHI:
2806    Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
2807    break;
2808  case Instruction::Call:
2809    Result = SimplifyCallInst(cast<CallInst>(I), Query (TD, TLI, DT));
2810    break;
2811  case Instruction::Trunc:
2812    Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
2813    break;
2814  }
2815
2816  /// If called on unreachable code, the above logic may report that the
2817  /// instruction simplified to itself.  Make life easier for users by
2818  /// detecting that case here, returning a safe value instead.
2819  return Result == I ? UndefValue::get(I->getType()) : Result;
2820}
2821
2822/// \brief Implementation of recursive simplification through an instructions
2823/// uses.
2824///
2825/// This is the common implementation of the recursive simplification routines.
2826/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
2827/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
2828/// instructions to process and attempt to simplify it using
2829/// InstructionSimplify.
2830///
2831/// This routine returns 'true' only when *it* simplifies something. The passed
2832/// in simplified value does not count toward this.
2833static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
2834                                              const TargetData *TD,
2835                                              const TargetLibraryInfo *TLI,
2836                                              const DominatorTree *DT) {
2837  bool Simplified = false;
2838  SmallSetVector<Instruction *, 8> Worklist;
2839
2840  // If we have an explicit value to collapse to, do that round of the
2841  // simplification loop by hand initially.
2842  if (SimpleV) {
2843    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2844         ++UI)
2845      if (*UI != I)
2846        Worklist.insert(cast<Instruction>(*UI));
2847
2848    // Replace the instruction with its simplified value.
2849    I->replaceAllUsesWith(SimpleV);
2850
2851    // Gracefully handle edge cases where the instruction is not wired into any
2852    // parent block.
2853    if (I->getParent())
2854      I->eraseFromParent();
2855  } else {
2856    Worklist.insert(I);
2857  }
2858
2859  // Note that we must test the size on each iteration, the worklist can grow.
2860  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
2861    I = Worklist[Idx];
2862
2863    // See if this instruction simplifies.
2864    SimpleV = SimplifyInstruction(I, TD, TLI, DT);
2865    if (!SimpleV)
2866      continue;
2867
2868    Simplified = true;
2869
2870    // Stash away all the uses of the old instruction so we can check them for
2871    // recursive simplifications after a RAUW. This is cheaper than checking all
2872    // uses of To on the recursive step in most cases.
2873    for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2874         ++UI)
2875      Worklist.insert(cast<Instruction>(*UI));
2876
2877    // Replace the instruction with its simplified value.
2878    I->replaceAllUsesWith(SimpleV);
2879
2880    // Gracefully handle edge cases where the instruction is not wired into any
2881    // parent block.
2882    if (I->getParent())
2883      I->eraseFromParent();
2884  }
2885  return Simplified;
2886}
2887
2888bool llvm::recursivelySimplifyInstruction(Instruction *I,
2889                                          const TargetData *TD,
2890                                          const TargetLibraryInfo *TLI,
2891                                          const DominatorTree *DT) {
2892  return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
2893}
2894
2895bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
2896                                         const TargetData *TD,
2897                                         const TargetLibraryInfo *TLI,
2898                                         const DominatorTree *DT) {
2899  assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
2900  assert(SimpleV && "Must provide a simplified value.");
2901  return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
2902}
2903