1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66
67#ifndef NDEBUG
68static cl::opt<bool>
69EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
70          cl::desc("Enable extra verbose messages in the \"fast\" "
71                   "instruction selector"));
72  // Terminators
73STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
74STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
75STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
76STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
77STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
78STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
79STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
80
81  // Standard binary operators...
82STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
83STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
84STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
85STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
86STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
87STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
88STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
89STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
90STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
91STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
92STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
93STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
94
95  // Logical operators...
96STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
97STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
98STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
99
100  // Memory instructions...
101STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
102STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
103STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
104STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
105STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
106STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
107STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
108
109  // Convert instructions...
110STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
111STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
112STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
113STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
114STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
115STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
116STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
117STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
118STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
119STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
120STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
121STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
122
123  // Other instructions...
124STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
125STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
126STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
127STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
128STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
129STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
130STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
131STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
132STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
133STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
134STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
135STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
136STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
137STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
138STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
139#endif
140
141static cl::opt<bool>
142EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
143          cl::desc("Enable verbose messages in the \"fast\" "
144                   "instruction selector"));
145static cl::opt<bool>
146EnableFastISelAbort("fast-isel-abort", cl::Hidden,
147          cl::desc("Enable abort calls when \"fast\" instruction selection "
148                   "fails to lower an instruction"));
149static cl::opt<bool>
150EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
151          cl::desc("Enable abort calls when \"fast\" instruction selection "
152                   "fails to lower a formal argument"));
153
154static cl::opt<bool>
155UseMBPI("use-mbpi",
156        cl::desc("use Machine Branch Probability Info"),
157        cl::init(true), cl::Hidden);
158
159#ifndef NDEBUG
160static cl::opt<bool>
161ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
162          cl::desc("Pop up a window to show dags before the first "
163                   "dag combine pass"));
164static cl::opt<bool>
165ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
166          cl::desc("Pop up a window to show dags before legalize types"));
167static cl::opt<bool>
168ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
169          cl::desc("Pop up a window to show dags before legalize"));
170static cl::opt<bool>
171ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
172          cl::desc("Pop up a window to show dags before the second "
173                   "dag combine pass"));
174static cl::opt<bool>
175ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
176          cl::desc("Pop up a window to show dags before the post legalize types"
177                   " dag combine pass"));
178static cl::opt<bool>
179ViewISelDAGs("view-isel-dags", cl::Hidden,
180          cl::desc("Pop up a window to show isel dags as they are selected"));
181static cl::opt<bool>
182ViewSchedDAGs("view-sched-dags", cl::Hidden,
183          cl::desc("Pop up a window to show sched dags as they are processed"));
184static cl::opt<bool>
185ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
186      cl::desc("Pop up a window to show SUnit dags after they are processed"));
187#else
188static const bool ViewDAGCombine1 = false,
189                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
190                  ViewDAGCombine2 = false,
191                  ViewDAGCombineLT = false,
192                  ViewISelDAGs = false, ViewSchedDAGs = false,
193                  ViewSUnitDAGs = false;
194#endif
195
196//===---------------------------------------------------------------------===//
197///
198/// RegisterScheduler class - Track the registration of instruction schedulers.
199///
200//===---------------------------------------------------------------------===//
201MachinePassRegistry RegisterScheduler::Registry;
202
203//===---------------------------------------------------------------------===//
204///
205/// ISHeuristic command line option for instruction schedulers.
206///
207//===---------------------------------------------------------------------===//
208static cl::opt<RegisterScheduler::FunctionPassCtor, false,
209               RegisterPassParser<RegisterScheduler> >
210ISHeuristic("pre-RA-sched",
211            cl::init(&createDefaultScheduler),
212            cl::desc("Instruction schedulers available (before register"
213                     " allocation):"));
214
215static RegisterScheduler
216defaultListDAGScheduler("default", "Best scheduler for the target",
217                        createDefaultScheduler);
218
219namespace llvm {
220  //===--------------------------------------------------------------------===//
221  /// createDefaultScheduler - This creates an instruction scheduler appropriate
222  /// for the target.
223  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
224                                             CodeGenOpt::Level OptLevel) {
225    const TargetLowering &TLI = IS->getTargetLowering();
226    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
227
228    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
229        TLI.getSchedulingPreference() == Sched::Source)
230      return createSourceListDAGScheduler(IS, OptLevel);
231    if (TLI.getSchedulingPreference() == Sched::RegPressure)
232      return createBURRListDAGScheduler(IS, OptLevel);
233    if (TLI.getSchedulingPreference() == Sched::Hybrid)
234      return createHybridListDAGScheduler(IS, OptLevel);
235    if (TLI.getSchedulingPreference() == Sched::VLIW)
236      return createVLIWDAGScheduler(IS, OptLevel);
237    assert(TLI.getSchedulingPreference() == Sched::ILP &&
238           "Unknown sched type!");
239    return createILPListDAGScheduler(IS, OptLevel);
240  }
241}
242
243// EmitInstrWithCustomInserter - This method should be implemented by targets
244// that mark instructions with the 'usesCustomInserter' flag.  These
245// instructions are special in various ways, which require special support to
246// insert.  The specified MachineInstr is created but not inserted into any
247// basic blocks, and this method is called to expand it into a sequence of
248// instructions, potentially also creating new basic blocks and control flow.
249// When new basic blocks are inserted and the edges from MBB to its successors
250// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
251// DenseMap.
252MachineBasicBlock *
253TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
254                                            MachineBasicBlock *MBB) const {
255#ifndef NDEBUG
256  dbgs() << "If a target marks an instruction with "
257          "'usesCustomInserter', it must implement "
258          "TargetLowering::EmitInstrWithCustomInserter!";
259#endif
260  llvm_unreachable(0);
261}
262
263void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
264                                                   SDNode *Node) const {
265  assert(!MI->hasPostISelHook() &&
266         "If a target marks an instruction with 'hasPostISelHook', "
267         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
268}
269
270//===----------------------------------------------------------------------===//
271// SelectionDAGISel code
272//===----------------------------------------------------------------------===//
273
274SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
275                                   CodeGenOpt::Level OL) :
276  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
277  FuncInfo(new FunctionLoweringInfo(TLI)),
278  CurDAG(new SelectionDAG(tm, OL)),
279  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
280  GFI(),
281  OptLevel(OL),
282  DAGSize(0) {
283    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
284    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
285    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
286    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
287  }
288
289SelectionDAGISel::~SelectionDAGISel() {
290  delete SDB;
291  delete CurDAG;
292  delete FuncInfo;
293}
294
295void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
296  AU.addRequired<AliasAnalysis>();
297  AU.addPreserved<AliasAnalysis>();
298  AU.addRequired<GCModuleInfo>();
299  AU.addPreserved<GCModuleInfo>();
300  AU.addRequired<TargetLibraryInfo>();
301  if (UseMBPI && OptLevel != CodeGenOpt::None)
302    AU.addRequired<BranchProbabilityInfo>();
303  MachineFunctionPass::getAnalysisUsage(AU);
304}
305
306/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
307/// may trap on it.  In this case we have to split the edge so that the path
308/// through the predecessor block that doesn't go to the phi block doesn't
309/// execute the possibly trapping instruction.
310///
311/// This is required for correctness, so it must be done at -O0.
312///
313static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
314  // Loop for blocks with phi nodes.
315  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
316    PHINode *PN = dyn_cast<PHINode>(BB->begin());
317    if (PN == 0) continue;
318
319  ReprocessBlock:
320    // For each block with a PHI node, check to see if any of the input values
321    // are potentially trapping constant expressions.  Constant expressions are
322    // the only potentially trapping value that can occur as the argument to a
323    // PHI.
324    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
325      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
326        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
327        if (CE == 0 || !CE->canTrap()) continue;
328
329        // The only case we have to worry about is when the edge is critical.
330        // Since this block has a PHI Node, we assume it has multiple input
331        // edges: check to see if the pred has multiple successors.
332        BasicBlock *Pred = PN->getIncomingBlock(i);
333        if (Pred->getTerminator()->getNumSuccessors() == 1)
334          continue;
335
336        // Okay, we have to split this edge.
337        SplitCriticalEdge(Pred->getTerminator(),
338                          GetSuccessorNumber(Pred, BB), SDISel, true);
339        goto ReprocessBlock;
340      }
341  }
342}
343
344bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
345  // Do some sanity-checking on the command-line options.
346  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
347         "-fast-isel-verbose requires -fast-isel");
348  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
349         "-fast-isel-abort requires -fast-isel");
350
351  const Function &Fn = *mf.getFunction();
352  const TargetInstrInfo &TII = *TM.getInstrInfo();
353  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
354
355  MF = &mf;
356  RegInfo = &MF->getRegInfo();
357  AA = &getAnalysis<AliasAnalysis>();
358  LibInfo = &getAnalysis<TargetLibraryInfo>();
359  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
360  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
361
362  TargetSubtargetInfo &ST =
363    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
364  ST.resetSubtargetFeatures(MF);
365  TM.resetTargetOptions(MF);
366
367  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
368
369  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
370
371  CurDAG->init(*MF, TTI);
372  FuncInfo->set(Fn, *MF);
373
374  if (UseMBPI && OptLevel != CodeGenOpt::None)
375    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
376  else
377    FuncInfo->BPI = 0;
378
379  SDB->init(GFI, *AA, LibInfo);
380
381  MF->setHasMSInlineAsm(false);
382  SelectAllBasicBlocks(Fn);
383
384  // If the first basic block in the function has live ins that need to be
385  // copied into vregs, emit the copies into the top of the block before
386  // emitting the code for the block.
387  MachineBasicBlock *EntryMBB = MF->begin();
388  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
389
390  DenseMap<unsigned, unsigned> LiveInMap;
391  if (!FuncInfo->ArgDbgValues.empty())
392    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
393           E = RegInfo->livein_end(); LI != E; ++LI)
394      if (LI->second)
395        LiveInMap.insert(std::make_pair(LI->first, LI->second));
396
397  // Insert DBG_VALUE instructions for function arguments to the entry block.
398  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
399    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
400    unsigned Reg = MI->getOperand(0).getReg();
401    if (TargetRegisterInfo::isPhysicalRegister(Reg))
402      EntryMBB->insert(EntryMBB->begin(), MI);
403    else {
404      MachineInstr *Def = RegInfo->getVRegDef(Reg);
405      MachineBasicBlock::iterator InsertPos = Def;
406      // FIXME: VR def may not be in entry block.
407      Def->getParent()->insert(llvm::next(InsertPos), MI);
408    }
409
410    // If Reg is live-in then update debug info to track its copy in a vreg.
411    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
412    if (LDI != LiveInMap.end()) {
413      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
414      MachineBasicBlock::iterator InsertPos = Def;
415      const MDNode *Variable =
416        MI->getOperand(MI->getNumOperands()-1).getMetadata();
417      unsigned Offset = MI->getOperand(1).getImm();
418      // Def is never a terminator here, so it is ok to increment InsertPos.
419      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
420              TII.get(TargetOpcode::DBG_VALUE))
421        .addReg(LDI->second, RegState::Debug)
422        .addImm(Offset).addMetadata(Variable);
423
424      // If this vreg is directly copied into an exported register then
425      // that COPY instructions also need DBG_VALUE, if it is the only
426      // user of LDI->second.
427      MachineInstr *CopyUseMI = NULL;
428      for (MachineRegisterInfo::use_iterator
429             UI = RegInfo->use_begin(LDI->second);
430           MachineInstr *UseMI = UI.skipInstruction();) {
431        if (UseMI->isDebugValue()) continue;
432        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
433          CopyUseMI = UseMI; continue;
434        }
435        // Otherwise this is another use or second copy use.
436        CopyUseMI = NULL; break;
437      }
438      if (CopyUseMI) {
439        MachineInstr *NewMI =
440          BuildMI(*MF, CopyUseMI->getDebugLoc(),
441                  TII.get(TargetOpcode::DBG_VALUE))
442          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
443          .addImm(Offset).addMetadata(Variable);
444        MachineBasicBlock::iterator Pos = CopyUseMI;
445        EntryMBB->insertAfter(Pos, NewMI);
446      }
447    }
448  }
449
450  // Determine if there are any calls in this machine function.
451  MachineFrameInfo *MFI = MF->getFrameInfo();
452  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
453       ++I) {
454
455    if (MFI->hasCalls() && MF->hasMSInlineAsm())
456      break;
457
458    const MachineBasicBlock *MBB = I;
459    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
460         II != IE; ++II) {
461      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
462      if ((MCID.isCall() && !MCID.isReturn()) ||
463          II->isStackAligningInlineAsm()) {
464        MFI->setHasCalls(true);
465      }
466      if (II->isMSInlineAsm()) {
467        MF->setHasMSInlineAsm(true);
468      }
469    }
470  }
471
472  // Determine if there is a call to setjmp in the machine function.
473  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
474
475  // Replace forward-declared registers with the registers containing
476  // the desired value.
477  MachineRegisterInfo &MRI = MF->getRegInfo();
478  for (DenseMap<unsigned, unsigned>::iterator
479       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
480       I != E; ++I) {
481    unsigned From = I->first;
482    unsigned To = I->second;
483    // If To is also scheduled to be replaced, find what its ultimate
484    // replacement is.
485    for (;;) {
486      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
487      if (J == E) break;
488      To = J->second;
489    }
490    // Replace it.
491    MRI.replaceRegWith(From, To);
492  }
493
494  // Freeze the set of reserved registers now that MachineFrameInfo has been
495  // set up. All the information required by getReservedRegs() should be
496  // available now.
497  MRI.freezeReservedRegs(*MF);
498
499  // Release function-specific state. SDB and CurDAG are already cleared
500  // at this point.
501  FuncInfo->clear();
502
503  return true;
504}
505
506void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
507                                        BasicBlock::const_iterator End,
508                                        bool &HadTailCall) {
509  // Lower all of the non-terminator instructions. If a call is emitted
510  // as a tail call, cease emitting nodes for this block. Terminators
511  // are handled below.
512  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
513    SDB->visit(*I);
514
515  // Make sure the root of the DAG is up-to-date.
516  CurDAG->setRoot(SDB->getControlRoot());
517  HadTailCall = SDB->HasTailCall;
518  SDB->clear();
519
520  // Final step, emit the lowered DAG as machine code.
521  CodeGenAndEmitDAG();
522}
523
524void SelectionDAGISel::ComputeLiveOutVRegInfo() {
525  SmallPtrSet<SDNode*, 128> VisitedNodes;
526  SmallVector<SDNode*, 128> Worklist;
527
528  Worklist.push_back(CurDAG->getRoot().getNode());
529
530  APInt KnownZero;
531  APInt KnownOne;
532
533  do {
534    SDNode *N = Worklist.pop_back_val();
535
536    // If we've already seen this node, ignore it.
537    if (!VisitedNodes.insert(N))
538      continue;
539
540    // Otherwise, add all chain operands to the worklist.
541    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
542      if (N->getOperand(i).getValueType() == MVT::Other)
543        Worklist.push_back(N->getOperand(i).getNode());
544
545    // If this is a CopyToReg with a vreg dest, process it.
546    if (N->getOpcode() != ISD::CopyToReg)
547      continue;
548
549    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
550    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
551      continue;
552
553    // Ignore non-scalar or non-integer values.
554    SDValue Src = N->getOperand(2);
555    EVT SrcVT = Src.getValueType();
556    if (!SrcVT.isInteger() || SrcVT.isVector())
557      continue;
558
559    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
560    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
561    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
562  } while (!Worklist.empty());
563}
564
565void SelectionDAGISel::CodeGenAndEmitDAG() {
566  std::string GroupName;
567  if (TimePassesIsEnabled)
568    GroupName = "Instruction Selection and Scheduling";
569  std::string BlockName;
570  int BlockNumber = -1;
571  (void)BlockNumber;
572#ifdef NDEBUG
573  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
574      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
575      ViewSUnitDAGs)
576#endif
577  {
578    BlockNumber = FuncInfo->MBB->getNumber();
579    BlockName = MF->getName().str() + ":" +
580                FuncInfo->MBB->getBasicBlock()->getName().str();
581  }
582  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
583        << " '" << BlockName << "'\n"; CurDAG->dump());
584
585  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
586
587  // Run the DAG combiner in pre-legalize mode.
588  {
589    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
590    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
591  }
592
593  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
594        << " '" << BlockName << "'\n"; CurDAG->dump());
595
596  // Second step, hack on the DAG until it only uses operations and types that
597  // the target supports.
598  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
599                                               BlockName);
600
601  bool Changed;
602  {
603    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
604    Changed = CurDAG->LegalizeTypes();
605  }
606
607  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
608        << " '" << BlockName << "'\n"; CurDAG->dump());
609
610  if (Changed) {
611    if (ViewDAGCombineLT)
612      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
613
614    // Run the DAG combiner in post-type-legalize mode.
615    {
616      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
617                         TimePassesIsEnabled);
618      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
619    }
620
621    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
622          << " '" << BlockName << "'\n"; CurDAG->dump());
623  }
624
625  {
626    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
627    Changed = CurDAG->LegalizeVectors();
628  }
629
630  if (Changed) {
631    {
632      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
633      CurDAG->LegalizeTypes();
634    }
635
636    if (ViewDAGCombineLT)
637      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
638
639    // Run the DAG combiner in post-type-legalize mode.
640    {
641      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
642                         TimePassesIsEnabled);
643      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
644    }
645
646    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
647          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
648  }
649
650  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
651
652  {
653    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
654    CurDAG->Legalize();
655  }
656
657  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
658        << " '" << BlockName << "'\n"; CurDAG->dump());
659
660  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
661
662  // Run the DAG combiner in post-legalize mode.
663  {
664    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
665    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
666  }
667
668  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
669        << " '" << BlockName << "'\n"; CurDAG->dump());
670
671  if (OptLevel != CodeGenOpt::None)
672    ComputeLiveOutVRegInfo();
673
674  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
675
676  // Third, instruction select all of the operations to machine code, adding the
677  // code to the MachineBasicBlock.
678  {
679    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
680    DoInstructionSelection();
681  }
682
683  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
684        << " '" << BlockName << "'\n"; CurDAG->dump());
685
686  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
687
688  // Schedule machine code.
689  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
690  {
691    NamedRegionTimer T("Instruction Scheduling", GroupName,
692                       TimePassesIsEnabled);
693    Scheduler->Run(CurDAG, FuncInfo->MBB);
694  }
695
696  if (ViewSUnitDAGs) Scheduler->viewGraph();
697
698  // Emit machine code to BB.  This can change 'BB' to the last block being
699  // inserted into.
700  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
701  {
702    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
703
704    // FuncInfo->InsertPt is passed by reference and set to the end of the
705    // scheduled instructions.
706    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
707  }
708
709  // If the block was split, make sure we update any references that are used to
710  // update PHI nodes later on.
711  if (FirstMBB != LastMBB)
712    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
713
714  // Free the scheduler state.
715  {
716    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
717                       TimePassesIsEnabled);
718    delete Scheduler;
719  }
720
721  // Free the SelectionDAG state, now that we're finished with it.
722  CurDAG->clear();
723}
724
725namespace {
726/// ISelUpdater - helper class to handle updates of the instruction selection
727/// graph.
728class ISelUpdater : public SelectionDAG::DAGUpdateListener {
729  SelectionDAG::allnodes_iterator &ISelPosition;
730public:
731  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
732    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
733
734  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
735  /// deleted is the current ISelPosition node, update ISelPosition.
736  ///
737  virtual void NodeDeleted(SDNode *N, SDNode *E) {
738    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
739      ++ISelPosition;
740  }
741};
742} // end anonymous namespace
743
744void SelectionDAGISel::DoInstructionSelection() {
745  DEBUG(errs() << "===== Instruction selection begins: BB#"
746        << FuncInfo->MBB->getNumber()
747        << " '" << FuncInfo->MBB->getName() << "'\n");
748
749  PreprocessISelDAG();
750
751  // Select target instructions for the DAG.
752  {
753    // Number all nodes with a topological order and set DAGSize.
754    DAGSize = CurDAG->AssignTopologicalOrder();
755
756    // Create a dummy node (which is not added to allnodes), that adds
757    // a reference to the root node, preventing it from being deleted,
758    // and tracking any changes of the root.
759    HandleSDNode Dummy(CurDAG->getRoot());
760    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
761    ++ISelPosition;
762
763    // Make sure that ISelPosition gets properly updated when nodes are deleted
764    // in calls made from this function.
765    ISelUpdater ISU(*CurDAG, ISelPosition);
766
767    // The AllNodes list is now topological-sorted. Visit the
768    // nodes by starting at the end of the list (the root of the
769    // graph) and preceding back toward the beginning (the entry
770    // node).
771    while (ISelPosition != CurDAG->allnodes_begin()) {
772      SDNode *Node = --ISelPosition;
773      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
774      // but there are currently some corner cases that it misses. Also, this
775      // makes it theoretically possible to disable the DAGCombiner.
776      if (Node->use_empty())
777        continue;
778
779      SDNode *ResNode = Select(Node);
780
781      // FIXME: This is pretty gross.  'Select' should be changed to not return
782      // anything at all and this code should be nuked with a tactical strike.
783
784      // If node should not be replaced, continue with the next one.
785      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
786        continue;
787      // Replace node.
788      if (ResNode)
789        ReplaceUses(Node, ResNode);
790
791      // If after the replacement this node is not used any more,
792      // remove this dead node.
793      if (Node->use_empty()) // Don't delete EntryToken, etc.
794        CurDAG->RemoveDeadNode(Node);
795    }
796
797    CurDAG->setRoot(Dummy.getValue());
798  }
799
800  DEBUG(errs() << "===== Instruction selection ends:\n");
801
802  PostprocessISelDAG();
803}
804
805/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
806/// do other setup for EH landing-pad blocks.
807void SelectionDAGISel::PrepareEHLandingPad() {
808  MachineBasicBlock *MBB = FuncInfo->MBB;
809
810  // Add a label to mark the beginning of the landing pad.  Deletion of the
811  // landing pad can thus be detected via the MachineModuleInfo.
812  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
813
814  // Assign the call site to the landing pad's begin label.
815  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
816
817  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
818  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
819    .addSym(Label);
820
821  // Mark exception register as live in.
822  unsigned Reg = TLI.getExceptionPointerRegister();
823  if (Reg) MBB->addLiveIn(Reg);
824
825  // Mark exception selector register as live in.
826  Reg = TLI.getExceptionSelectorRegister();
827  if (Reg) MBB->addLiveIn(Reg);
828}
829
830/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
831/// load into the specified FoldInst.  Note that we could have a sequence where
832/// multiple LLVM IR instructions are folded into the same machineinstr.  For
833/// example we could have:
834///   A: x = load i32 *P
835///   B: y = icmp A, 42
836///   C: br y, ...
837///
838/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
839/// any other folded instructions) because it is between A and C.
840///
841/// If we succeed in folding the load into the operation, return true.
842///
843bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
844                                             const Instruction *FoldInst,
845                                             FastISel *FastIS) {
846  // We know that the load has a single use, but don't know what it is.  If it
847  // isn't one of the folded instructions, then we can't succeed here.  Handle
848  // this by scanning the single-use users of the load until we get to FoldInst.
849  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
850
851  const Instruction *TheUser = LI->use_back();
852  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
853         // Stay in the right block.
854         TheUser->getParent() == FoldInst->getParent() &&
855         --MaxUsers) {  // Don't scan too far.
856    // If there are multiple or no uses of this instruction, then bail out.
857    if (!TheUser->hasOneUse())
858      return false;
859
860    TheUser = TheUser->use_back();
861  }
862
863  // If we didn't find the fold instruction, then we failed to collapse the
864  // sequence.
865  if (TheUser != FoldInst)
866    return false;
867
868  // Don't try to fold volatile loads.  Target has to deal with alignment
869  // constraints.
870  if (LI->isVolatile()) return false;
871
872  // Figure out which vreg this is going into.  If there is no assigned vreg yet
873  // then there actually was no reference to it.  Perhaps the load is referenced
874  // by a dead instruction.
875  unsigned LoadReg = FastIS->getRegForValue(LI);
876  if (LoadReg == 0)
877    return false;
878
879  // Check to see what the uses of this vreg are.  If it has no uses, or more
880  // than one use (at the machine instr level) then we can't fold it.
881  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
882  if (RI == RegInfo->reg_end())
883    return false;
884
885  // See if there is exactly one use of the vreg.  If there are multiple uses,
886  // then the instruction got lowered to multiple machine instructions or the
887  // use of the loaded value ended up being multiple operands of the result, in
888  // either case, we can't fold this.
889  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
890  if (PostRI != RegInfo->reg_end())
891    return false;
892
893  assert(RI.getOperand().isUse() &&
894         "The only use of the vreg must be a use, we haven't emitted the def!");
895
896  MachineInstr *User = &*RI;
897
898  // Set the insertion point properly.  Folding the load can cause generation of
899  // other random instructions (like sign extends) for addressing modes, make
900  // sure they get inserted in a logical place before the new instruction.
901  FuncInfo->InsertPt = User;
902  FuncInfo->MBB = User->getParent();
903
904  // Ask the target to try folding the load.
905  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
906}
907
908/// isFoldedOrDeadInstruction - Return true if the specified instruction is
909/// side-effect free and is either dead or folded into a generated instruction.
910/// Return false if it needs to be emitted.
911static bool isFoldedOrDeadInstruction(const Instruction *I,
912                                      FunctionLoweringInfo *FuncInfo) {
913  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
914         !isa<TerminatorInst>(I) && // Terminators aren't folded.
915         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
916         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
917         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
918}
919
920#ifndef NDEBUG
921// Collect per Instruction statistics for fast-isel misses.  Only those
922// instructions that cause the bail are accounted for.  It does not account for
923// instructions higher in the block.  Thus, summing the per instructions stats
924// will not add up to what is reported by NumFastIselFailures.
925static void collectFailStats(const Instruction *I) {
926  switch (I->getOpcode()) {
927  default: assert (0 && "<Invalid operator> ");
928
929  // Terminators
930  case Instruction::Ret:         NumFastIselFailRet++; return;
931  case Instruction::Br:          NumFastIselFailBr++; return;
932  case Instruction::Switch:      NumFastIselFailSwitch++; return;
933  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
934  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
935  case Instruction::Resume:      NumFastIselFailResume++; return;
936  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
937
938  // Standard binary operators...
939  case Instruction::Add:  NumFastIselFailAdd++; return;
940  case Instruction::FAdd: NumFastIselFailFAdd++; return;
941  case Instruction::Sub:  NumFastIselFailSub++; return;
942  case Instruction::FSub: NumFastIselFailFSub++; return;
943  case Instruction::Mul:  NumFastIselFailMul++; return;
944  case Instruction::FMul: NumFastIselFailFMul++; return;
945  case Instruction::UDiv: NumFastIselFailUDiv++; return;
946  case Instruction::SDiv: NumFastIselFailSDiv++; return;
947  case Instruction::FDiv: NumFastIselFailFDiv++; return;
948  case Instruction::URem: NumFastIselFailURem++; return;
949  case Instruction::SRem: NumFastIselFailSRem++; return;
950  case Instruction::FRem: NumFastIselFailFRem++; return;
951
952  // Logical operators...
953  case Instruction::And: NumFastIselFailAnd++; return;
954  case Instruction::Or:  NumFastIselFailOr++; return;
955  case Instruction::Xor: NumFastIselFailXor++; return;
956
957  // Memory instructions...
958  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
959  case Instruction::Load:          NumFastIselFailLoad++; return;
960  case Instruction::Store:         NumFastIselFailStore++; return;
961  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
962  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
963  case Instruction::Fence:         NumFastIselFailFence++; return;
964  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
965
966  // Convert instructions...
967  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
968  case Instruction::ZExt:     NumFastIselFailZExt++; return;
969  case Instruction::SExt:     NumFastIselFailSExt++; return;
970  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
971  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
972  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
973  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
974  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
975  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
976  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
977  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
978  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
979
980  // Other instructions...
981  case Instruction::ICmp:           NumFastIselFailICmp++; return;
982  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
983  case Instruction::PHI:            NumFastIselFailPHI++; return;
984  case Instruction::Select:         NumFastIselFailSelect++; return;
985  case Instruction::Call:           NumFastIselFailCall++; return;
986  case Instruction::Shl:            NumFastIselFailShl++; return;
987  case Instruction::LShr:           NumFastIselFailLShr++; return;
988  case Instruction::AShr:           NumFastIselFailAShr++; return;
989  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
990  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
991  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
992  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
993  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
994  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
995  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
996  }
997}
998#endif
999
1000void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1001  // Initialize the Fast-ISel state, if needed.
1002  FastISel *FastIS = 0;
1003  if (TM.Options.EnableFastISel)
1004    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
1005
1006  // Iterate over all basic blocks in the function.
1007  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1008  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1009       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1010    const BasicBlock *LLVMBB = *I;
1011
1012    if (OptLevel != CodeGenOpt::None) {
1013      bool AllPredsVisited = true;
1014      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1015           PI != PE; ++PI) {
1016        if (!FuncInfo->VisitedBBs.count(*PI)) {
1017          AllPredsVisited = false;
1018          break;
1019        }
1020      }
1021
1022      if (AllPredsVisited) {
1023        for (BasicBlock::const_iterator I = LLVMBB->begin();
1024             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1025          FuncInfo->ComputePHILiveOutRegInfo(PN);
1026      } else {
1027        for (BasicBlock::const_iterator I = LLVMBB->begin();
1028             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1029          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1030      }
1031
1032      FuncInfo->VisitedBBs.insert(LLVMBB);
1033    }
1034
1035    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1036    BasicBlock::const_iterator const End = LLVMBB->end();
1037    BasicBlock::const_iterator BI = End;
1038
1039    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1040    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1041
1042    // Setup an EH landing-pad block.
1043    if (FuncInfo->MBB->isLandingPad())
1044      PrepareEHLandingPad();
1045
1046    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1047    if (FastIS) {
1048      FastIS->startNewBlock();
1049
1050      // Emit code for any incoming arguments. This must happen before
1051      // beginning FastISel on the entry block.
1052      if (LLVMBB == &Fn.getEntryBlock()) {
1053        // Lower any arguments needed in this block if this is the entry block.
1054        if (!FastIS->LowerArguments()) {
1055          // Fast isel failed to lower these arguments
1056          if (EnableFastISelAbortArgs)
1057            llvm_unreachable("FastISel didn't lower all arguments");
1058
1059          // Use SelectionDAG argument lowering
1060          LowerArguments(Fn);
1061          CurDAG->setRoot(SDB->getControlRoot());
1062          SDB->clear();
1063          CodeGenAndEmitDAG();
1064        }
1065
1066        // If we inserted any instructions at the beginning, make a note of
1067        // where they are, so we can be sure to emit subsequent instructions
1068        // after them.
1069        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1070          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1071        else
1072          FastIS->setLastLocalValue(0);
1073      }
1074
1075      unsigned NumFastIselRemaining = std::distance(Begin, End);
1076      // Do FastISel on as many instructions as possible.
1077      for (; BI != Begin; --BI) {
1078        const Instruction *Inst = llvm::prior(BI);
1079
1080        // If we no longer require this instruction, skip it.
1081        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1082          --NumFastIselRemaining;
1083          continue;
1084        }
1085
1086        // Bottom-up: reset the insert pos at the top, after any local-value
1087        // instructions.
1088        FastIS->recomputeInsertPt();
1089
1090        // Try to select the instruction with FastISel.
1091        if (FastIS->SelectInstruction(Inst)) {
1092          --NumFastIselRemaining;
1093          ++NumFastIselSuccess;
1094          // If fast isel succeeded, skip over all the folded instructions, and
1095          // then see if there is a load right before the selected instructions.
1096          // Try to fold the load if so.
1097          const Instruction *BeforeInst = Inst;
1098          while (BeforeInst != Begin) {
1099            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1100            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1101              break;
1102          }
1103          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1104              BeforeInst->hasOneUse() &&
1105              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1106            // If we succeeded, don't re-select the load.
1107            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1108            --NumFastIselRemaining;
1109            ++NumFastIselSuccess;
1110          }
1111          continue;
1112        }
1113
1114#ifndef NDEBUG
1115        if (EnableFastISelVerbose2)
1116          collectFailStats(Inst);
1117#endif
1118
1119        // Then handle certain instructions as single-LLVM-Instruction blocks.
1120        if (isa<CallInst>(Inst)) {
1121
1122          if (EnableFastISelVerbose || EnableFastISelAbort) {
1123            dbgs() << "FastISel missed call: ";
1124            Inst->dump();
1125          }
1126
1127          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1128            unsigned &R = FuncInfo->ValueMap[Inst];
1129            if (!R)
1130              R = FuncInfo->CreateRegs(Inst->getType());
1131          }
1132
1133          bool HadTailCall = false;
1134          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1135          SelectBasicBlock(Inst, BI, HadTailCall);
1136
1137          // If the call was emitted as a tail call, we're done with the block.
1138          // We also need to delete any previously emitted instructions.
1139          if (HadTailCall) {
1140            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1141            --BI;
1142            break;
1143          }
1144
1145          // Recompute NumFastIselRemaining as Selection DAG instruction
1146          // selection may have handled the call, input args, etc.
1147          unsigned RemainingNow = std::distance(Begin, BI);
1148          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1149          NumFastIselRemaining = RemainingNow;
1150          continue;
1151        }
1152
1153        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1154          // Don't abort, and use a different message for terminator misses.
1155          NumFastIselFailures += NumFastIselRemaining;
1156          if (EnableFastISelVerbose || EnableFastISelAbort) {
1157            dbgs() << "FastISel missed terminator: ";
1158            Inst->dump();
1159          }
1160        } else {
1161          NumFastIselFailures += NumFastIselRemaining;
1162          if (EnableFastISelVerbose || EnableFastISelAbort) {
1163            dbgs() << "FastISel miss: ";
1164            Inst->dump();
1165          }
1166          if (EnableFastISelAbort)
1167            // The "fast" selector couldn't handle something and bailed.
1168            // For the purpose of debugging, just abort.
1169            llvm_unreachable("FastISel didn't select the entire block");
1170        }
1171        break;
1172      }
1173
1174      FastIS->recomputeInsertPt();
1175    } else {
1176      // Lower any arguments needed in this block if this is the entry block.
1177      if (LLVMBB == &Fn.getEntryBlock())
1178        LowerArguments(Fn);
1179    }
1180
1181    if (Begin != BI)
1182      ++NumDAGBlocks;
1183    else
1184      ++NumFastIselBlocks;
1185
1186    if (Begin != BI) {
1187      // Run SelectionDAG instruction selection on the remainder of the block
1188      // not handled by FastISel. If FastISel is not run, this is the entire
1189      // block.
1190      bool HadTailCall;
1191      SelectBasicBlock(Begin, BI, HadTailCall);
1192    }
1193
1194    FinishBasicBlock();
1195    FuncInfo->PHINodesToUpdate.clear();
1196  }
1197
1198  delete FastIS;
1199  SDB->clearDanglingDebugInfo();
1200}
1201
1202void
1203SelectionDAGISel::FinishBasicBlock() {
1204
1205  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1206               << FuncInfo->PHINodesToUpdate.size() << "\n";
1207        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1208          dbgs() << "Node " << i << " : ("
1209                 << FuncInfo->PHINodesToUpdate[i].first
1210                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1211
1212  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1213  // PHI nodes in successors.
1214  if (SDB->SwitchCases.empty() &&
1215      SDB->JTCases.empty() &&
1216      SDB->BitTestCases.empty()) {
1217    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1218      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1219      assert(PHI->isPHI() &&
1220             "This is not a machine PHI node that we are updating!");
1221      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1222        continue;
1223      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1224    }
1225    return;
1226  }
1227
1228  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1229    // Lower header first, if it wasn't already lowered
1230    if (!SDB->BitTestCases[i].Emitted) {
1231      // Set the current basic block to the mbb we wish to insert the code into
1232      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1233      FuncInfo->InsertPt = FuncInfo->MBB->end();
1234      // Emit the code
1235      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1236      CurDAG->setRoot(SDB->getRoot());
1237      SDB->clear();
1238      CodeGenAndEmitDAG();
1239    }
1240
1241    uint32_t UnhandledWeight = 0;
1242    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1243      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1244
1245    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1246      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1247      // Set the current basic block to the mbb we wish to insert the code into
1248      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1249      FuncInfo->InsertPt = FuncInfo->MBB->end();
1250      // Emit the code
1251      if (j+1 != ej)
1252        SDB->visitBitTestCase(SDB->BitTestCases[i],
1253                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1254                              UnhandledWeight,
1255                              SDB->BitTestCases[i].Reg,
1256                              SDB->BitTestCases[i].Cases[j],
1257                              FuncInfo->MBB);
1258      else
1259        SDB->visitBitTestCase(SDB->BitTestCases[i],
1260                              SDB->BitTestCases[i].Default,
1261                              UnhandledWeight,
1262                              SDB->BitTestCases[i].Reg,
1263                              SDB->BitTestCases[i].Cases[j],
1264                              FuncInfo->MBB);
1265
1266
1267      CurDAG->setRoot(SDB->getRoot());
1268      SDB->clear();
1269      CodeGenAndEmitDAG();
1270    }
1271
1272    // Update PHI Nodes
1273    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1274         pi != pe; ++pi) {
1275      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1276      MachineBasicBlock *PHIBB = PHI->getParent();
1277      assert(PHI->isPHI() &&
1278             "This is not a machine PHI node that we are updating!");
1279      // This is "default" BB. We have two jumps to it. From "header" BB and
1280      // from last "case" BB.
1281      if (PHIBB == SDB->BitTestCases[i].Default)
1282        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1283           .addMBB(SDB->BitTestCases[i].Parent)
1284           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1285           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1286      // One of "cases" BB.
1287      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1288           j != ej; ++j) {
1289        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1290        if (cBB->isSuccessor(PHIBB))
1291          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1292      }
1293    }
1294  }
1295  SDB->BitTestCases.clear();
1296
1297  // If the JumpTable record is filled in, then we need to emit a jump table.
1298  // Updating the PHI nodes is tricky in this case, since we need to determine
1299  // whether the PHI is a successor of the range check MBB or the jump table MBB
1300  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1301    // Lower header first, if it wasn't already lowered
1302    if (!SDB->JTCases[i].first.Emitted) {
1303      // Set the current basic block to the mbb we wish to insert the code into
1304      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1305      FuncInfo->InsertPt = FuncInfo->MBB->end();
1306      // Emit the code
1307      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1308                                FuncInfo->MBB);
1309      CurDAG->setRoot(SDB->getRoot());
1310      SDB->clear();
1311      CodeGenAndEmitDAG();
1312    }
1313
1314    // Set the current basic block to the mbb we wish to insert the code into
1315    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1316    FuncInfo->InsertPt = FuncInfo->MBB->end();
1317    // Emit the code
1318    SDB->visitJumpTable(SDB->JTCases[i].second);
1319    CurDAG->setRoot(SDB->getRoot());
1320    SDB->clear();
1321    CodeGenAndEmitDAG();
1322
1323    // Update PHI Nodes
1324    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1325         pi != pe; ++pi) {
1326      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1327      MachineBasicBlock *PHIBB = PHI->getParent();
1328      assert(PHI->isPHI() &&
1329             "This is not a machine PHI node that we are updating!");
1330      // "default" BB. We can go there only from header BB.
1331      if (PHIBB == SDB->JTCases[i].second.Default)
1332        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1333           .addMBB(SDB->JTCases[i].first.HeaderBB);
1334      // JT BB. Just iterate over successors here
1335      if (FuncInfo->MBB->isSuccessor(PHIBB))
1336        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1337    }
1338  }
1339  SDB->JTCases.clear();
1340
1341  // If the switch block involved a branch to one of the actual successors, we
1342  // need to update PHI nodes in that block.
1343  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1344    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1345    assert(PHI->isPHI() &&
1346           "This is not a machine PHI node that we are updating!");
1347    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1348      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1349  }
1350
1351  // If we generated any switch lowering information, build and codegen any
1352  // additional DAGs necessary.
1353  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1354    // Set the current basic block to the mbb we wish to insert the code into
1355    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1356    FuncInfo->InsertPt = FuncInfo->MBB->end();
1357
1358    // Determine the unique successors.
1359    SmallVector<MachineBasicBlock *, 2> Succs;
1360    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1361    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1362      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1363
1364    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1365    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1366    CurDAG->setRoot(SDB->getRoot());
1367    SDB->clear();
1368    CodeGenAndEmitDAG();
1369
1370    // Remember the last block, now that any splitting is done, for use in
1371    // populating PHI nodes in successors.
1372    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1373
1374    // Handle any PHI nodes in successors of this chunk, as if we were coming
1375    // from the original BB before switch expansion.  Note that PHI nodes can
1376    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1377    // handle them the right number of times.
1378    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1379      FuncInfo->MBB = Succs[i];
1380      FuncInfo->InsertPt = FuncInfo->MBB->end();
1381      // FuncInfo->MBB may have been removed from the CFG if a branch was
1382      // constant folded.
1383      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1384        for (MachineBasicBlock::iterator
1385             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1386             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1387          MachineInstrBuilder PHI(*MF, MBBI);
1388          // This value for this PHI node is recorded in PHINodesToUpdate.
1389          for (unsigned pn = 0; ; ++pn) {
1390            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1391                   "Didn't find PHI entry!");
1392            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1393              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1394              break;
1395            }
1396          }
1397        }
1398      }
1399    }
1400  }
1401  SDB->SwitchCases.clear();
1402}
1403
1404
1405/// Create the scheduler. If a specific scheduler was specified
1406/// via the SchedulerRegistry, use it, otherwise select the
1407/// one preferred by the target.
1408///
1409ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1410  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1411
1412  if (!Ctor) {
1413    Ctor = ISHeuristic;
1414    RegisterScheduler::setDefault(Ctor);
1415  }
1416
1417  return Ctor(this, OptLevel);
1418}
1419
1420//===----------------------------------------------------------------------===//
1421// Helper functions used by the generated instruction selector.
1422//===----------------------------------------------------------------------===//
1423// Calls to these methods are generated by tblgen.
1424
1425/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1426/// the dag combiner simplified the 255, we still want to match.  RHS is the
1427/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1428/// specified in the .td file (e.g. 255).
1429bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1430                                    int64_t DesiredMaskS) const {
1431  const APInt &ActualMask = RHS->getAPIntValue();
1432  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1433
1434  // If the actual mask exactly matches, success!
1435  if (ActualMask == DesiredMask)
1436    return true;
1437
1438  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1439  if (ActualMask.intersects(~DesiredMask))
1440    return false;
1441
1442  // Otherwise, the DAG Combiner may have proven that the value coming in is
1443  // either already zero or is not demanded.  Check for known zero input bits.
1444  APInt NeededMask = DesiredMask & ~ActualMask;
1445  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1446    return true;
1447
1448  // TODO: check to see if missing bits are just not demanded.
1449
1450  // Otherwise, this pattern doesn't match.
1451  return false;
1452}
1453
1454/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1455/// the dag combiner simplified the 255, we still want to match.  RHS is the
1456/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1457/// specified in the .td file (e.g. 255).
1458bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1459                                   int64_t DesiredMaskS) const {
1460  const APInt &ActualMask = RHS->getAPIntValue();
1461  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1462
1463  // If the actual mask exactly matches, success!
1464  if (ActualMask == DesiredMask)
1465    return true;
1466
1467  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1468  if (ActualMask.intersects(~DesiredMask))
1469    return false;
1470
1471  // Otherwise, the DAG Combiner may have proven that the value coming in is
1472  // either already zero or is not demanded.  Check for known zero input bits.
1473  APInt NeededMask = DesiredMask & ~ActualMask;
1474
1475  APInt KnownZero, KnownOne;
1476  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1477
1478  // If all the missing bits in the or are already known to be set, match!
1479  if ((NeededMask & KnownOne) == NeededMask)
1480    return true;
1481
1482  // TODO: check to see if missing bits are just not demanded.
1483
1484  // Otherwise, this pattern doesn't match.
1485  return false;
1486}
1487
1488
1489/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1490/// by tblgen.  Others should not call it.
1491void SelectionDAGISel::
1492SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1493  std::vector<SDValue> InOps;
1494  std::swap(InOps, Ops);
1495
1496  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1497  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1498  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1499  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1500
1501  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1502  if (InOps[e-1].getValueType() == MVT::Glue)
1503    --e;  // Don't process a glue operand if it is here.
1504
1505  while (i != e) {
1506    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1507    if (!InlineAsm::isMemKind(Flags)) {
1508      // Just skip over this operand, copying the operands verbatim.
1509      Ops.insert(Ops.end(), InOps.begin()+i,
1510                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1511      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1512    } else {
1513      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1514             "Memory operand with multiple values?");
1515      // Otherwise, this is a memory operand.  Ask the target to select it.
1516      std::vector<SDValue> SelOps;
1517      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1518        report_fatal_error("Could not match memory address.  Inline asm"
1519                           " failure!");
1520
1521      // Add this to the output node.
1522      unsigned NewFlags =
1523        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1524      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1525      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1526      i += 2;
1527    }
1528  }
1529
1530  // Add the glue input back if present.
1531  if (e != InOps.size())
1532    Ops.push_back(InOps.back());
1533}
1534
1535/// findGlueUse - Return use of MVT::Glue value produced by the specified
1536/// SDNode.
1537///
1538static SDNode *findGlueUse(SDNode *N) {
1539  unsigned FlagResNo = N->getNumValues()-1;
1540  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1541    SDUse &Use = I.getUse();
1542    if (Use.getResNo() == FlagResNo)
1543      return Use.getUser();
1544  }
1545  return NULL;
1546}
1547
1548/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1549/// This function recursively traverses up the operand chain, ignoring
1550/// certain nodes.
1551static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1552                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1553                          bool IgnoreChains) {
1554  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1555  // greater than all of its (recursive) operands.  If we scan to a point where
1556  // 'use' is smaller than the node we're scanning for, then we know we will
1557  // never find it.
1558  //
1559  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1560  // happen because we scan down to newly selected nodes in the case of glue
1561  // uses.
1562  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1563    return false;
1564
1565  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1566  // won't fail if we scan it again.
1567  if (!Visited.insert(Use))
1568    return false;
1569
1570  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1571    // Ignore chain uses, they are validated by HandleMergeInputChains.
1572    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1573      continue;
1574
1575    SDNode *N = Use->getOperand(i).getNode();
1576    if (N == Def) {
1577      if (Use == ImmedUse || Use == Root)
1578        continue;  // We are not looking for immediate use.
1579      assert(N != Root);
1580      return true;
1581    }
1582
1583    // Traverse up the operand chain.
1584    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1585      return true;
1586  }
1587  return false;
1588}
1589
1590/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1591/// operand node N of U during instruction selection that starts at Root.
1592bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1593                                          SDNode *Root) const {
1594  if (OptLevel == CodeGenOpt::None) return false;
1595  return N.hasOneUse();
1596}
1597
1598/// IsLegalToFold - Returns true if the specific operand node N of
1599/// U can be folded during instruction selection that starts at Root.
1600bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1601                                     CodeGenOpt::Level OptLevel,
1602                                     bool IgnoreChains) {
1603  if (OptLevel == CodeGenOpt::None) return false;
1604
1605  // If Root use can somehow reach N through a path that that doesn't contain
1606  // U then folding N would create a cycle. e.g. In the following
1607  // diagram, Root can reach N through X. If N is folded into into Root, then
1608  // X is both a predecessor and a successor of U.
1609  //
1610  //          [N*]           //
1611  //         ^   ^           //
1612  //        /     \          //
1613  //      [U*]    [X]?       //
1614  //        ^     ^          //
1615  //         \   /           //
1616  //          \ /            //
1617  //         [Root*]         //
1618  //
1619  // * indicates nodes to be folded together.
1620  //
1621  // If Root produces glue, then it gets (even more) interesting. Since it
1622  // will be "glued" together with its glue use in the scheduler, we need to
1623  // check if it might reach N.
1624  //
1625  //          [N*]           //
1626  //         ^   ^           //
1627  //        /     \          //
1628  //      [U*]    [X]?       //
1629  //        ^       ^        //
1630  //         \       \       //
1631  //          \      |       //
1632  //         [Root*] |       //
1633  //          ^      |       //
1634  //          f      |       //
1635  //          |      /       //
1636  //         [Y]    /        //
1637  //           ^   /         //
1638  //           f  /          //
1639  //           | /           //
1640  //          [GU]           //
1641  //
1642  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1643  // (call it Fold), then X is a predecessor of GU and a successor of
1644  // Fold. But since Fold and GU are glued together, this will create
1645  // a cycle in the scheduling graph.
1646
1647  // If the node has glue, walk down the graph to the "lowest" node in the
1648  // glueged set.
1649  EVT VT = Root->getValueType(Root->getNumValues()-1);
1650  while (VT == MVT::Glue) {
1651    SDNode *GU = findGlueUse(Root);
1652    if (GU == NULL)
1653      break;
1654    Root = GU;
1655    VT = Root->getValueType(Root->getNumValues()-1);
1656
1657    // If our query node has a glue result with a use, we've walked up it.  If
1658    // the user (which has already been selected) has a chain or indirectly uses
1659    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1660    // this, we cannot ignore chains in this predicate.
1661    IgnoreChains = false;
1662  }
1663
1664
1665  SmallPtrSet<SDNode*, 16> Visited;
1666  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1667}
1668
1669SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1670  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1671  SelectInlineAsmMemoryOperands(Ops);
1672
1673  EVT VTs[] = { MVT::Other, MVT::Glue };
1674  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1675                                VTs, &Ops[0], Ops.size());
1676  New->setNodeId(-1);
1677  return New.getNode();
1678}
1679
1680SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1681  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1682}
1683
1684/// GetVBR - decode a vbr encoding whose top bit is set.
1685LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1686GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1687  assert(Val >= 128 && "Not a VBR");
1688  Val &= 127;  // Remove first vbr bit.
1689
1690  unsigned Shift = 7;
1691  uint64_t NextBits;
1692  do {
1693    NextBits = MatcherTable[Idx++];
1694    Val |= (NextBits&127) << Shift;
1695    Shift += 7;
1696  } while (NextBits & 128);
1697
1698  return Val;
1699}
1700
1701
1702/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1703/// interior glue and chain results to use the new glue and chain results.
1704void SelectionDAGISel::
1705UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1706                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1707                    SDValue InputGlue,
1708                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1709                    bool isMorphNodeTo) {
1710  SmallVector<SDNode*, 4> NowDeadNodes;
1711
1712  // Now that all the normal results are replaced, we replace the chain and
1713  // glue results if present.
1714  if (!ChainNodesMatched.empty()) {
1715    assert(InputChain.getNode() != 0 &&
1716           "Matched input chains but didn't produce a chain");
1717    // Loop over all of the nodes we matched that produced a chain result.
1718    // Replace all the chain results with the final chain we ended up with.
1719    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1720      SDNode *ChainNode = ChainNodesMatched[i];
1721
1722      // If this node was already deleted, don't look at it.
1723      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1724        continue;
1725
1726      // Don't replace the results of the root node if we're doing a
1727      // MorphNodeTo.
1728      if (ChainNode == NodeToMatch && isMorphNodeTo)
1729        continue;
1730
1731      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1732      if (ChainVal.getValueType() == MVT::Glue)
1733        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1734      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1735      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1736
1737      // If the node became dead and we haven't already seen it, delete it.
1738      if (ChainNode->use_empty() &&
1739          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1740        NowDeadNodes.push_back(ChainNode);
1741    }
1742  }
1743
1744  // If the result produces glue, update any glue results in the matched
1745  // pattern with the glue result.
1746  if (InputGlue.getNode() != 0) {
1747    // Handle any interior nodes explicitly marked.
1748    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1749      SDNode *FRN = GlueResultNodesMatched[i];
1750
1751      // If this node was already deleted, don't look at it.
1752      if (FRN->getOpcode() == ISD::DELETED_NODE)
1753        continue;
1754
1755      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1756             "Doesn't have a glue result");
1757      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1758                                        InputGlue);
1759
1760      // If the node became dead and we haven't already seen it, delete it.
1761      if (FRN->use_empty() &&
1762          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1763        NowDeadNodes.push_back(FRN);
1764    }
1765  }
1766
1767  if (!NowDeadNodes.empty())
1768    CurDAG->RemoveDeadNodes(NowDeadNodes);
1769
1770  DEBUG(errs() << "ISEL: Match complete!\n");
1771}
1772
1773enum ChainResult {
1774  CR_Simple,
1775  CR_InducesCycle,
1776  CR_LeadsToInteriorNode
1777};
1778
1779/// WalkChainUsers - Walk down the users of the specified chained node that is
1780/// part of the pattern we're matching, looking at all of the users we find.
1781/// This determines whether something is an interior node, whether we have a
1782/// non-pattern node in between two pattern nodes (which prevent folding because
1783/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1784/// between pattern nodes (in which case the TF becomes part of the pattern).
1785///
1786/// The walk we do here is guaranteed to be small because we quickly get down to
1787/// already selected nodes "below" us.
1788static ChainResult
1789WalkChainUsers(const SDNode *ChainedNode,
1790               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1791               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1792  ChainResult Result = CR_Simple;
1793
1794  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1795         E = ChainedNode->use_end(); UI != E; ++UI) {
1796    // Make sure the use is of the chain, not some other value we produce.
1797    if (UI.getUse().getValueType() != MVT::Other) continue;
1798
1799    SDNode *User = *UI;
1800
1801    // If we see an already-selected machine node, then we've gone beyond the
1802    // pattern that we're selecting down into the already selected chunk of the
1803    // DAG.
1804    if (User->isMachineOpcode() ||
1805        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1806      continue;
1807
1808    unsigned UserOpcode = User->getOpcode();
1809    if (UserOpcode == ISD::CopyToReg ||
1810        UserOpcode == ISD::CopyFromReg ||
1811        UserOpcode == ISD::INLINEASM ||
1812        UserOpcode == ISD::EH_LABEL ||
1813        UserOpcode == ISD::LIFETIME_START ||
1814        UserOpcode == ISD::LIFETIME_END) {
1815      // If their node ID got reset to -1 then they've already been selected.
1816      // Treat them like a MachineOpcode.
1817      if (User->getNodeId() == -1)
1818        continue;
1819    }
1820
1821    // If we have a TokenFactor, we handle it specially.
1822    if (User->getOpcode() != ISD::TokenFactor) {
1823      // If the node isn't a token factor and isn't part of our pattern, then it
1824      // must be a random chained node in between two nodes we're selecting.
1825      // This happens when we have something like:
1826      //   x = load ptr
1827      //   call
1828      //   y = x+4
1829      //   store y -> ptr
1830      // Because we structurally match the load/store as a read/modify/write,
1831      // but the call is chained between them.  We cannot fold in this case
1832      // because it would induce a cycle in the graph.
1833      if (!std::count(ChainedNodesInPattern.begin(),
1834                      ChainedNodesInPattern.end(), User))
1835        return CR_InducesCycle;
1836
1837      // Otherwise we found a node that is part of our pattern.  For example in:
1838      //   x = load ptr
1839      //   y = x+4
1840      //   store y -> ptr
1841      // This would happen when we're scanning down from the load and see the
1842      // store as a user.  Record that there is a use of ChainedNode that is
1843      // part of the pattern and keep scanning uses.
1844      Result = CR_LeadsToInteriorNode;
1845      InteriorChainedNodes.push_back(User);
1846      continue;
1847    }
1848
1849    // If we found a TokenFactor, there are two cases to consider: first if the
1850    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1851    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1852    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1853    //     [Load chain]
1854    //         ^
1855    //         |
1856    //       [Load]
1857    //       ^    ^
1858    //       |    \                    DAG's like cheese
1859    //      /       \                       do you?
1860    //     /         |
1861    // [TokenFactor] [Op]
1862    //     ^          ^
1863    //     |          |
1864    //      \        /
1865    //       \      /
1866    //       [Store]
1867    //
1868    // In this case, the TokenFactor becomes part of our match and we rewrite it
1869    // as a new TokenFactor.
1870    //
1871    // To distinguish these two cases, do a recursive walk down the uses.
1872    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1873    case CR_Simple:
1874      // If the uses of the TokenFactor are just already-selected nodes, ignore
1875      // it, it is "below" our pattern.
1876      continue;
1877    case CR_InducesCycle:
1878      // If the uses of the TokenFactor lead to nodes that are not part of our
1879      // pattern that are not selected, folding would turn this into a cycle,
1880      // bail out now.
1881      return CR_InducesCycle;
1882    case CR_LeadsToInteriorNode:
1883      break;  // Otherwise, keep processing.
1884    }
1885
1886    // Okay, we know we're in the interesting interior case.  The TokenFactor
1887    // is now going to be considered part of the pattern so that we rewrite its
1888    // uses (it may have uses that are not part of the pattern) with the
1889    // ultimate chain result of the generated code.  We will also add its chain
1890    // inputs as inputs to the ultimate TokenFactor we create.
1891    Result = CR_LeadsToInteriorNode;
1892    ChainedNodesInPattern.push_back(User);
1893    InteriorChainedNodes.push_back(User);
1894    continue;
1895  }
1896
1897  return Result;
1898}
1899
1900/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1901/// operation for when the pattern matched at least one node with a chains.  The
1902/// input vector contains a list of all of the chained nodes that we match.  We
1903/// must determine if this is a valid thing to cover (i.e. matching it won't
1904/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1905/// be used as the input node chain for the generated nodes.
1906static SDValue
1907HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1908                       SelectionDAG *CurDAG) {
1909  // Walk all of the chained nodes we've matched, recursively scanning down the
1910  // users of the chain result. This adds any TokenFactor nodes that are caught
1911  // in between chained nodes to the chained and interior nodes list.
1912  SmallVector<SDNode*, 3> InteriorChainedNodes;
1913  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1914    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1915                       InteriorChainedNodes) == CR_InducesCycle)
1916      return SDValue(); // Would induce a cycle.
1917  }
1918
1919  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1920  // that we are interested in.  Form our input TokenFactor node.
1921  SmallVector<SDValue, 3> InputChains;
1922  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1923    // Add the input chain of this node to the InputChains list (which will be
1924    // the operands of the generated TokenFactor) if it's not an interior node.
1925    SDNode *N = ChainNodesMatched[i];
1926    if (N->getOpcode() != ISD::TokenFactor) {
1927      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1928        continue;
1929
1930      // Otherwise, add the input chain.
1931      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1932      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1933      InputChains.push_back(InChain);
1934      continue;
1935    }
1936
1937    // If we have a token factor, we want to add all inputs of the token factor
1938    // that are not part of the pattern we're matching.
1939    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1940      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1941                      N->getOperand(op).getNode()))
1942        InputChains.push_back(N->getOperand(op));
1943    }
1944  }
1945
1946  SDValue Res;
1947  if (InputChains.size() == 1)
1948    return InputChains[0];
1949  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1950                         MVT::Other, &InputChains[0], InputChains.size());
1951}
1952
1953/// MorphNode - Handle morphing a node in place for the selector.
1954SDNode *SelectionDAGISel::
1955MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1956          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1957  // It is possible we're using MorphNodeTo to replace a node with no
1958  // normal results with one that has a normal result (or we could be
1959  // adding a chain) and the input could have glue and chains as well.
1960  // In this case we need to shift the operands down.
1961  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1962  // than the old isel though.
1963  int OldGlueResultNo = -1, OldChainResultNo = -1;
1964
1965  unsigned NTMNumResults = Node->getNumValues();
1966  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1967    OldGlueResultNo = NTMNumResults-1;
1968    if (NTMNumResults != 1 &&
1969        Node->getValueType(NTMNumResults-2) == MVT::Other)
1970      OldChainResultNo = NTMNumResults-2;
1971  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1972    OldChainResultNo = NTMNumResults-1;
1973
1974  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1975  // that this deletes operands of the old node that become dead.
1976  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1977
1978  // MorphNodeTo can operate in two ways: if an existing node with the
1979  // specified operands exists, it can just return it.  Otherwise, it
1980  // updates the node in place to have the requested operands.
1981  if (Res == Node) {
1982    // If we updated the node in place, reset the node ID.  To the isel,
1983    // this should be just like a newly allocated machine node.
1984    Res->setNodeId(-1);
1985  }
1986
1987  unsigned ResNumResults = Res->getNumValues();
1988  // Move the glue if needed.
1989  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1990      (unsigned)OldGlueResultNo != ResNumResults-1)
1991    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1992                                      SDValue(Res, ResNumResults-1));
1993
1994  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1995    --ResNumResults;
1996
1997  // Move the chain reference if needed.
1998  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1999      (unsigned)OldChainResultNo != ResNumResults-1)
2000    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2001                                      SDValue(Res, ResNumResults-1));
2002
2003  // Otherwise, no replacement happened because the node already exists. Replace
2004  // Uses of the old node with the new one.
2005  if (Res != Node)
2006    CurDAG->ReplaceAllUsesWith(Node, Res);
2007
2008  return Res;
2009}
2010
2011/// CheckSame - Implements OP_CheckSame.
2012LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2013CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2014          SDValue N,
2015          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2016  // Accept if it is exactly the same as a previously recorded node.
2017  unsigned RecNo = MatcherTable[MatcherIndex++];
2018  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2019  return N == RecordedNodes[RecNo].first;
2020}
2021
2022/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2023LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2024CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2025                      const SelectionDAGISel &SDISel) {
2026  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2027}
2028
2029/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2030LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2031CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2032                   const SelectionDAGISel &SDISel, SDNode *N) {
2033  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2034}
2035
2036LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2037CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2038            SDNode *N) {
2039  uint16_t Opc = MatcherTable[MatcherIndex++];
2040  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2041  return N->getOpcode() == Opc;
2042}
2043
2044LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2045CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2046          SDValue N, const TargetLowering &TLI) {
2047  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2048  if (N.getValueType() == VT) return true;
2049
2050  // Handle the case when VT is iPTR.
2051  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2052}
2053
2054LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2055CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2056               SDValue N, const TargetLowering &TLI,
2057               unsigned ChildNo) {
2058  if (ChildNo >= N.getNumOperands())
2059    return false;  // Match fails if out of range child #.
2060  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2061}
2062
2063
2064LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2065CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2066              SDValue N) {
2067  return cast<CondCodeSDNode>(N)->get() ==
2068      (ISD::CondCode)MatcherTable[MatcherIndex++];
2069}
2070
2071LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2072CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2073               SDValue N, const TargetLowering &TLI) {
2074  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2075  if (cast<VTSDNode>(N)->getVT() == VT)
2076    return true;
2077
2078  // Handle the case when VT is iPTR.
2079  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2080}
2081
2082LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2083CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2084             SDValue N) {
2085  int64_t Val = MatcherTable[MatcherIndex++];
2086  if (Val & 128)
2087    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2088
2089  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2090  return C != 0 && C->getSExtValue() == Val;
2091}
2092
2093LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2094CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2095            SDValue N, const SelectionDAGISel &SDISel) {
2096  int64_t Val = MatcherTable[MatcherIndex++];
2097  if (Val & 128)
2098    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2099
2100  if (N->getOpcode() != ISD::AND) return false;
2101
2102  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2103  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2104}
2105
2106LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2107CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2108           SDValue N, const SelectionDAGISel &SDISel) {
2109  int64_t Val = MatcherTable[MatcherIndex++];
2110  if (Val & 128)
2111    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2112
2113  if (N->getOpcode() != ISD::OR) return false;
2114
2115  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2116  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2117}
2118
2119/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2120/// scope, evaluate the current node.  If the current predicate is known to
2121/// fail, set Result=true and return anything.  If the current predicate is
2122/// known to pass, set Result=false and return the MatcherIndex to continue
2123/// with.  If the current predicate is unknown, set Result=false and return the
2124/// MatcherIndex to continue with.
2125static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2126                                       unsigned Index, SDValue N,
2127                                       bool &Result,
2128                                       const SelectionDAGISel &SDISel,
2129                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2130  switch (Table[Index++]) {
2131  default:
2132    Result = false;
2133    return Index-1;  // Could not evaluate this predicate.
2134  case SelectionDAGISel::OPC_CheckSame:
2135    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2136    return Index;
2137  case SelectionDAGISel::OPC_CheckPatternPredicate:
2138    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2139    return Index;
2140  case SelectionDAGISel::OPC_CheckPredicate:
2141    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2142    return Index;
2143  case SelectionDAGISel::OPC_CheckOpcode:
2144    Result = !::CheckOpcode(Table, Index, N.getNode());
2145    return Index;
2146  case SelectionDAGISel::OPC_CheckType:
2147    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2148    return Index;
2149  case SelectionDAGISel::OPC_CheckChild0Type:
2150  case SelectionDAGISel::OPC_CheckChild1Type:
2151  case SelectionDAGISel::OPC_CheckChild2Type:
2152  case SelectionDAGISel::OPC_CheckChild3Type:
2153  case SelectionDAGISel::OPC_CheckChild4Type:
2154  case SelectionDAGISel::OPC_CheckChild5Type:
2155  case SelectionDAGISel::OPC_CheckChild6Type:
2156  case SelectionDAGISel::OPC_CheckChild7Type:
2157    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2158                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2159    return Index;
2160  case SelectionDAGISel::OPC_CheckCondCode:
2161    Result = !::CheckCondCode(Table, Index, N);
2162    return Index;
2163  case SelectionDAGISel::OPC_CheckValueType:
2164    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2165    return Index;
2166  case SelectionDAGISel::OPC_CheckInteger:
2167    Result = !::CheckInteger(Table, Index, N);
2168    return Index;
2169  case SelectionDAGISel::OPC_CheckAndImm:
2170    Result = !::CheckAndImm(Table, Index, N, SDISel);
2171    return Index;
2172  case SelectionDAGISel::OPC_CheckOrImm:
2173    Result = !::CheckOrImm(Table, Index, N, SDISel);
2174    return Index;
2175  }
2176}
2177
2178namespace {
2179
2180struct MatchScope {
2181  /// FailIndex - If this match fails, this is the index to continue with.
2182  unsigned FailIndex;
2183
2184  /// NodeStack - The node stack when the scope was formed.
2185  SmallVector<SDValue, 4> NodeStack;
2186
2187  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2188  unsigned NumRecordedNodes;
2189
2190  /// NumMatchedMemRefs - The number of matched memref entries.
2191  unsigned NumMatchedMemRefs;
2192
2193  /// InputChain/InputGlue - The current chain/glue
2194  SDValue InputChain, InputGlue;
2195
2196  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2197  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2198};
2199
2200}
2201
2202SDNode *SelectionDAGISel::
2203SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2204                 unsigned TableSize) {
2205  // FIXME: Should these even be selected?  Handle these cases in the caller?
2206  switch (NodeToMatch->getOpcode()) {
2207  default:
2208    break;
2209  case ISD::EntryToken:       // These nodes remain the same.
2210  case ISD::BasicBlock:
2211  case ISD::Register:
2212  case ISD::RegisterMask:
2213  //case ISD::VALUETYPE:
2214  //case ISD::CONDCODE:
2215  case ISD::HANDLENODE:
2216  case ISD::MDNODE_SDNODE:
2217  case ISD::TargetConstant:
2218  case ISD::TargetConstantFP:
2219  case ISD::TargetConstantPool:
2220  case ISD::TargetFrameIndex:
2221  case ISD::TargetExternalSymbol:
2222  case ISD::TargetBlockAddress:
2223  case ISD::TargetJumpTable:
2224  case ISD::TargetGlobalTLSAddress:
2225  case ISD::TargetGlobalAddress:
2226  case ISD::TokenFactor:
2227  case ISD::CopyFromReg:
2228  case ISD::CopyToReg:
2229  case ISD::EH_LABEL:
2230  case ISD::LIFETIME_START:
2231  case ISD::LIFETIME_END:
2232    NodeToMatch->setNodeId(-1); // Mark selected.
2233    return 0;
2234  case ISD::AssertSext:
2235  case ISD::AssertZext:
2236    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2237                                      NodeToMatch->getOperand(0));
2238    return 0;
2239  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2240  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2241  }
2242
2243  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2244
2245  // Set up the node stack with NodeToMatch as the only node on the stack.
2246  SmallVector<SDValue, 8> NodeStack;
2247  SDValue N = SDValue(NodeToMatch, 0);
2248  NodeStack.push_back(N);
2249
2250  // MatchScopes - Scopes used when matching, if a match failure happens, this
2251  // indicates where to continue checking.
2252  SmallVector<MatchScope, 8> MatchScopes;
2253
2254  // RecordedNodes - This is the set of nodes that have been recorded by the
2255  // state machine.  The second value is the parent of the node, or null if the
2256  // root is recorded.
2257  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2258
2259  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2260  // pattern.
2261  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2262
2263  // These are the current input chain and glue for use when generating nodes.
2264  // Various Emit operations change these.  For example, emitting a copytoreg
2265  // uses and updates these.
2266  SDValue InputChain, InputGlue;
2267
2268  // ChainNodesMatched - If a pattern matches nodes that have input/output
2269  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2270  // which ones they are.  The result is captured into this list so that we can
2271  // update the chain results when the pattern is complete.
2272  SmallVector<SDNode*, 3> ChainNodesMatched;
2273  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2274
2275  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2276        NodeToMatch->dump(CurDAG);
2277        errs() << '\n');
2278
2279  // Determine where to start the interpreter.  Normally we start at opcode #0,
2280  // but if the state machine starts with an OPC_SwitchOpcode, then we
2281  // accelerate the first lookup (which is guaranteed to be hot) with the
2282  // OpcodeOffset table.
2283  unsigned MatcherIndex = 0;
2284
2285  if (!OpcodeOffset.empty()) {
2286    // Already computed the OpcodeOffset table, just index into it.
2287    if (N.getOpcode() < OpcodeOffset.size())
2288      MatcherIndex = OpcodeOffset[N.getOpcode()];
2289    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2290
2291  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2292    // Otherwise, the table isn't computed, but the state machine does start
2293    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2294    // is the first time we're selecting an instruction.
2295    unsigned Idx = 1;
2296    while (1) {
2297      // Get the size of this case.
2298      unsigned CaseSize = MatcherTable[Idx++];
2299      if (CaseSize & 128)
2300        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2301      if (CaseSize == 0) break;
2302
2303      // Get the opcode, add the index to the table.
2304      uint16_t Opc = MatcherTable[Idx++];
2305      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2306      if (Opc >= OpcodeOffset.size())
2307        OpcodeOffset.resize((Opc+1)*2);
2308      OpcodeOffset[Opc] = Idx;
2309      Idx += CaseSize;
2310    }
2311
2312    // Okay, do the lookup for the first opcode.
2313    if (N.getOpcode() < OpcodeOffset.size())
2314      MatcherIndex = OpcodeOffset[N.getOpcode()];
2315  }
2316
2317  while (1) {
2318    assert(MatcherIndex < TableSize && "Invalid index");
2319#ifndef NDEBUG
2320    unsigned CurrentOpcodeIndex = MatcherIndex;
2321#endif
2322    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2323    switch (Opcode) {
2324    case OPC_Scope: {
2325      // Okay, the semantics of this operation are that we should push a scope
2326      // then evaluate the first child.  However, pushing a scope only to have
2327      // the first check fail (which then pops it) is inefficient.  If we can
2328      // determine immediately that the first check (or first several) will
2329      // immediately fail, don't even bother pushing a scope for them.
2330      unsigned FailIndex;
2331
2332      while (1) {
2333        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2334        if (NumToSkip & 128)
2335          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2336        // Found the end of the scope with no match.
2337        if (NumToSkip == 0) {
2338          FailIndex = 0;
2339          break;
2340        }
2341
2342        FailIndex = MatcherIndex+NumToSkip;
2343
2344        unsigned MatcherIndexOfPredicate = MatcherIndex;
2345        (void)MatcherIndexOfPredicate; // silence warning.
2346
2347        // If we can't evaluate this predicate without pushing a scope (e.g. if
2348        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2349        // push the scope and evaluate the full predicate chain.
2350        bool Result;
2351        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2352                                              Result, *this, RecordedNodes);
2353        if (!Result)
2354          break;
2355
2356        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2357                     << "index " << MatcherIndexOfPredicate
2358                     << ", continuing at " << FailIndex << "\n");
2359        ++NumDAGIselRetries;
2360
2361        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2362        // move to the next case.
2363        MatcherIndex = FailIndex;
2364      }
2365
2366      // If the whole scope failed to match, bail.
2367      if (FailIndex == 0) break;
2368
2369      // Push a MatchScope which indicates where to go if the first child fails
2370      // to match.
2371      MatchScope NewEntry;
2372      NewEntry.FailIndex = FailIndex;
2373      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2374      NewEntry.NumRecordedNodes = RecordedNodes.size();
2375      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2376      NewEntry.InputChain = InputChain;
2377      NewEntry.InputGlue = InputGlue;
2378      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2379      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2380      MatchScopes.push_back(NewEntry);
2381      continue;
2382    }
2383    case OPC_RecordNode: {
2384      // Remember this node, it may end up being an operand in the pattern.
2385      SDNode *Parent = 0;
2386      if (NodeStack.size() > 1)
2387        Parent = NodeStack[NodeStack.size()-2].getNode();
2388      RecordedNodes.push_back(std::make_pair(N, Parent));
2389      continue;
2390    }
2391
2392    case OPC_RecordChild0: case OPC_RecordChild1:
2393    case OPC_RecordChild2: case OPC_RecordChild3:
2394    case OPC_RecordChild4: case OPC_RecordChild5:
2395    case OPC_RecordChild6: case OPC_RecordChild7: {
2396      unsigned ChildNo = Opcode-OPC_RecordChild0;
2397      if (ChildNo >= N.getNumOperands())
2398        break;  // Match fails if out of range child #.
2399
2400      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2401                                             N.getNode()));
2402      continue;
2403    }
2404    case OPC_RecordMemRef:
2405      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2406      continue;
2407
2408    case OPC_CaptureGlueInput:
2409      // If the current node has an input glue, capture it in InputGlue.
2410      if (N->getNumOperands() != 0 &&
2411          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2412        InputGlue = N->getOperand(N->getNumOperands()-1);
2413      continue;
2414
2415    case OPC_MoveChild: {
2416      unsigned ChildNo = MatcherTable[MatcherIndex++];
2417      if (ChildNo >= N.getNumOperands())
2418        break;  // Match fails if out of range child #.
2419      N = N.getOperand(ChildNo);
2420      NodeStack.push_back(N);
2421      continue;
2422    }
2423
2424    case OPC_MoveParent:
2425      // Pop the current node off the NodeStack.
2426      NodeStack.pop_back();
2427      assert(!NodeStack.empty() && "Node stack imbalance!");
2428      N = NodeStack.back();
2429      continue;
2430
2431    case OPC_CheckSame:
2432      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2433      continue;
2434    case OPC_CheckPatternPredicate:
2435      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2436      continue;
2437    case OPC_CheckPredicate:
2438      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2439                                N.getNode()))
2440        break;
2441      continue;
2442    case OPC_CheckComplexPat: {
2443      unsigned CPNum = MatcherTable[MatcherIndex++];
2444      unsigned RecNo = MatcherTable[MatcherIndex++];
2445      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2446      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2447                               RecordedNodes[RecNo].first, CPNum,
2448                               RecordedNodes))
2449        break;
2450      continue;
2451    }
2452    case OPC_CheckOpcode:
2453      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2454      continue;
2455
2456    case OPC_CheckType:
2457      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2458      continue;
2459
2460    case OPC_SwitchOpcode: {
2461      unsigned CurNodeOpcode = N.getOpcode();
2462      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2463      unsigned CaseSize;
2464      while (1) {
2465        // Get the size of this case.
2466        CaseSize = MatcherTable[MatcherIndex++];
2467        if (CaseSize & 128)
2468          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2469        if (CaseSize == 0) break;
2470
2471        uint16_t Opc = MatcherTable[MatcherIndex++];
2472        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2473
2474        // If the opcode matches, then we will execute this case.
2475        if (CurNodeOpcode == Opc)
2476          break;
2477
2478        // Otherwise, skip over this case.
2479        MatcherIndex += CaseSize;
2480      }
2481
2482      // If no cases matched, bail out.
2483      if (CaseSize == 0) break;
2484
2485      // Otherwise, execute the case we found.
2486      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2487                   << " to " << MatcherIndex << "\n");
2488      continue;
2489    }
2490
2491    case OPC_SwitchType: {
2492      MVT CurNodeVT = N.getValueType().getSimpleVT();
2493      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2494      unsigned CaseSize;
2495      while (1) {
2496        // Get the size of this case.
2497        CaseSize = MatcherTable[MatcherIndex++];
2498        if (CaseSize & 128)
2499          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2500        if (CaseSize == 0) break;
2501
2502        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2503        if (CaseVT == MVT::iPTR)
2504          CaseVT = TLI.getPointerTy();
2505
2506        // If the VT matches, then we will execute this case.
2507        if (CurNodeVT == CaseVT)
2508          break;
2509
2510        // Otherwise, skip over this case.
2511        MatcherIndex += CaseSize;
2512      }
2513
2514      // If no cases matched, bail out.
2515      if (CaseSize == 0) break;
2516
2517      // Otherwise, execute the case we found.
2518      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2519                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2520      continue;
2521    }
2522    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2523    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2524    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2525    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2526      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2527                            Opcode-OPC_CheckChild0Type))
2528        break;
2529      continue;
2530    case OPC_CheckCondCode:
2531      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2532      continue;
2533    case OPC_CheckValueType:
2534      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2535      continue;
2536    case OPC_CheckInteger:
2537      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2538      continue;
2539    case OPC_CheckAndImm:
2540      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2541      continue;
2542    case OPC_CheckOrImm:
2543      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2544      continue;
2545
2546    case OPC_CheckFoldableChainNode: {
2547      assert(NodeStack.size() != 1 && "No parent node");
2548      // Verify that all intermediate nodes between the root and this one have
2549      // a single use.
2550      bool HasMultipleUses = false;
2551      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2552        if (!NodeStack[i].hasOneUse()) {
2553          HasMultipleUses = true;
2554          break;
2555        }
2556      if (HasMultipleUses) break;
2557
2558      // Check to see that the target thinks this is profitable to fold and that
2559      // we can fold it without inducing cycles in the graph.
2560      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2561                              NodeToMatch) ||
2562          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2563                         NodeToMatch, OptLevel,
2564                         true/*We validate our own chains*/))
2565        break;
2566
2567      continue;
2568    }
2569    case OPC_EmitInteger: {
2570      MVT::SimpleValueType VT =
2571        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2572      int64_t Val = MatcherTable[MatcherIndex++];
2573      if (Val & 128)
2574        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2575      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2576                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2577      continue;
2578    }
2579    case OPC_EmitRegister: {
2580      MVT::SimpleValueType VT =
2581        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2582      unsigned RegNo = MatcherTable[MatcherIndex++];
2583      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2584                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2585      continue;
2586    }
2587    case OPC_EmitRegister2: {
2588      // For targets w/ more than 256 register names, the register enum
2589      // values are stored in two bytes in the matcher table (just like
2590      // opcodes).
2591      MVT::SimpleValueType VT =
2592        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2593      unsigned RegNo = MatcherTable[MatcherIndex++];
2594      RegNo |= MatcherTable[MatcherIndex++] << 8;
2595      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2596                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2597      continue;
2598    }
2599
2600    case OPC_EmitConvertToTarget:  {
2601      // Convert from IMM/FPIMM to target version.
2602      unsigned RecNo = MatcherTable[MatcherIndex++];
2603      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2604      SDValue Imm = RecordedNodes[RecNo].first;
2605
2606      if (Imm->getOpcode() == ISD::Constant) {
2607        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2608        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2609      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2610        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2611        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2612      }
2613
2614      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2615      continue;
2616    }
2617
2618    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2619    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2620      // These are space-optimized forms of OPC_EmitMergeInputChains.
2621      assert(InputChain.getNode() == 0 &&
2622             "EmitMergeInputChains should be the first chain producing node");
2623      assert(ChainNodesMatched.empty() &&
2624             "Should only have one EmitMergeInputChains per match");
2625
2626      // Read all of the chained nodes.
2627      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2628      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2629      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2630
2631      // FIXME: What if other value results of the node have uses not matched
2632      // by this pattern?
2633      if (ChainNodesMatched.back() != NodeToMatch &&
2634          !RecordedNodes[RecNo].first.hasOneUse()) {
2635        ChainNodesMatched.clear();
2636        break;
2637      }
2638
2639      // Merge the input chains if they are not intra-pattern references.
2640      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2641
2642      if (InputChain.getNode() == 0)
2643        break;  // Failed to merge.
2644      continue;
2645    }
2646
2647    case OPC_EmitMergeInputChains: {
2648      assert(InputChain.getNode() == 0 &&
2649             "EmitMergeInputChains should be the first chain producing node");
2650      // This node gets a list of nodes we matched in the input that have
2651      // chains.  We want to token factor all of the input chains to these nodes
2652      // together.  However, if any of the input chains is actually one of the
2653      // nodes matched in this pattern, then we have an intra-match reference.
2654      // Ignore these because the newly token factored chain should not refer to
2655      // the old nodes.
2656      unsigned NumChains = MatcherTable[MatcherIndex++];
2657      assert(NumChains != 0 && "Can't TF zero chains");
2658
2659      assert(ChainNodesMatched.empty() &&
2660             "Should only have one EmitMergeInputChains per match");
2661
2662      // Read all of the chained nodes.
2663      for (unsigned i = 0; i != NumChains; ++i) {
2664        unsigned RecNo = MatcherTable[MatcherIndex++];
2665        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2666        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2667
2668        // FIXME: What if other value results of the node have uses not matched
2669        // by this pattern?
2670        if (ChainNodesMatched.back() != NodeToMatch &&
2671            !RecordedNodes[RecNo].first.hasOneUse()) {
2672          ChainNodesMatched.clear();
2673          break;
2674        }
2675      }
2676
2677      // If the inner loop broke out, the match fails.
2678      if (ChainNodesMatched.empty())
2679        break;
2680
2681      // Merge the input chains if they are not intra-pattern references.
2682      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2683
2684      if (InputChain.getNode() == 0)
2685        break;  // Failed to merge.
2686
2687      continue;
2688    }
2689
2690    case OPC_EmitCopyToReg: {
2691      unsigned RecNo = MatcherTable[MatcherIndex++];
2692      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2693      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2694
2695      if (InputChain.getNode() == 0)
2696        InputChain = CurDAG->getEntryNode();
2697
2698      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2699                                        DestPhysReg, RecordedNodes[RecNo].first,
2700                                        InputGlue);
2701
2702      InputGlue = InputChain.getValue(1);
2703      continue;
2704    }
2705
2706    case OPC_EmitNodeXForm: {
2707      unsigned XFormNo = MatcherTable[MatcherIndex++];
2708      unsigned RecNo = MatcherTable[MatcherIndex++];
2709      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2710      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2711      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2712      continue;
2713    }
2714
2715    case OPC_EmitNode:
2716    case OPC_MorphNodeTo: {
2717      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2718      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2719      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2720      // Get the result VT list.
2721      unsigned NumVTs = MatcherTable[MatcherIndex++];
2722      SmallVector<EVT, 4> VTs;
2723      for (unsigned i = 0; i != NumVTs; ++i) {
2724        MVT::SimpleValueType VT =
2725          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2726        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2727        VTs.push_back(VT);
2728      }
2729
2730      if (EmitNodeInfo & OPFL_Chain)
2731        VTs.push_back(MVT::Other);
2732      if (EmitNodeInfo & OPFL_GlueOutput)
2733        VTs.push_back(MVT::Glue);
2734
2735      // This is hot code, so optimize the two most common cases of 1 and 2
2736      // results.
2737      SDVTList VTList;
2738      if (VTs.size() == 1)
2739        VTList = CurDAG->getVTList(VTs[0]);
2740      else if (VTs.size() == 2)
2741        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2742      else
2743        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2744
2745      // Get the operand list.
2746      unsigned NumOps = MatcherTable[MatcherIndex++];
2747      SmallVector<SDValue, 8> Ops;
2748      for (unsigned i = 0; i != NumOps; ++i) {
2749        unsigned RecNo = MatcherTable[MatcherIndex++];
2750        if (RecNo & 128)
2751          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2752
2753        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2754        Ops.push_back(RecordedNodes[RecNo].first);
2755      }
2756
2757      // If there are variadic operands to add, handle them now.
2758      if (EmitNodeInfo & OPFL_VariadicInfo) {
2759        // Determine the start index to copy from.
2760        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2761        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2762        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2763               "Invalid variadic node");
2764        // Copy all of the variadic operands, not including a potential glue
2765        // input.
2766        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2767             i != e; ++i) {
2768          SDValue V = NodeToMatch->getOperand(i);
2769          if (V.getValueType() == MVT::Glue) break;
2770          Ops.push_back(V);
2771        }
2772      }
2773
2774      // If this has chain/glue inputs, add them.
2775      if (EmitNodeInfo & OPFL_Chain)
2776        Ops.push_back(InputChain);
2777      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2778        Ops.push_back(InputGlue);
2779
2780      // Create the node.
2781      SDNode *Res = 0;
2782      if (Opcode != OPC_MorphNodeTo) {
2783        // If this is a normal EmitNode command, just create the new node and
2784        // add the results to the RecordedNodes list.
2785        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2786                                     VTList, Ops.data(), Ops.size());
2787
2788        // Add all the non-glue/non-chain results to the RecordedNodes list.
2789        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2790          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2791          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2792                                                             (SDNode*) 0));
2793        }
2794
2795      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2796        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2797                        EmitNodeInfo);
2798      } else {
2799        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2800        // We will visit the equivalent node later.
2801        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2802        return 0;
2803      }
2804
2805      // If the node had chain/glue results, update our notion of the current
2806      // chain and glue.
2807      if (EmitNodeInfo & OPFL_GlueOutput) {
2808        InputGlue = SDValue(Res, VTs.size()-1);
2809        if (EmitNodeInfo & OPFL_Chain)
2810          InputChain = SDValue(Res, VTs.size()-2);
2811      } else if (EmitNodeInfo & OPFL_Chain)
2812        InputChain = SDValue(Res, VTs.size()-1);
2813
2814      // If the OPFL_MemRefs glue is set on this node, slap all of the
2815      // accumulated memrefs onto it.
2816      //
2817      // FIXME: This is vastly incorrect for patterns with multiple outputs
2818      // instructions that access memory and for ComplexPatterns that match
2819      // loads.
2820      if (EmitNodeInfo & OPFL_MemRefs) {
2821        // Only attach load or store memory operands if the generated
2822        // instruction may load or store.
2823        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2824        bool mayLoad = MCID.mayLoad();
2825        bool mayStore = MCID.mayStore();
2826
2827        unsigned NumMemRefs = 0;
2828        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2829             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2830          if ((*I)->isLoad()) {
2831            if (mayLoad)
2832              ++NumMemRefs;
2833          } else if ((*I)->isStore()) {
2834            if (mayStore)
2835              ++NumMemRefs;
2836          } else {
2837            ++NumMemRefs;
2838          }
2839        }
2840
2841        MachineSDNode::mmo_iterator MemRefs =
2842          MF->allocateMemRefsArray(NumMemRefs);
2843
2844        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2845        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2846             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2847          if ((*I)->isLoad()) {
2848            if (mayLoad)
2849              *MemRefsPos++ = *I;
2850          } else if ((*I)->isStore()) {
2851            if (mayStore)
2852              *MemRefsPos++ = *I;
2853          } else {
2854            *MemRefsPos++ = *I;
2855          }
2856        }
2857
2858        cast<MachineSDNode>(Res)
2859          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2860      }
2861
2862      DEBUG(errs() << "  "
2863                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2864                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2865
2866      // If this was a MorphNodeTo then we're completely done!
2867      if (Opcode == OPC_MorphNodeTo) {
2868        // Update chain and glue uses.
2869        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2870                            InputGlue, GlueResultNodesMatched, true);
2871        return Res;
2872      }
2873
2874      continue;
2875    }
2876
2877    case OPC_MarkGlueResults: {
2878      unsigned NumNodes = MatcherTable[MatcherIndex++];
2879
2880      // Read and remember all the glue-result nodes.
2881      for (unsigned i = 0; i != NumNodes; ++i) {
2882        unsigned RecNo = MatcherTable[MatcherIndex++];
2883        if (RecNo & 128)
2884          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2885
2886        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2887        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2888      }
2889      continue;
2890    }
2891
2892    case OPC_CompleteMatch: {
2893      // The match has been completed, and any new nodes (if any) have been
2894      // created.  Patch up references to the matched dag to use the newly
2895      // created nodes.
2896      unsigned NumResults = MatcherTable[MatcherIndex++];
2897
2898      for (unsigned i = 0; i != NumResults; ++i) {
2899        unsigned ResSlot = MatcherTable[MatcherIndex++];
2900        if (ResSlot & 128)
2901          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2902
2903        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2904        SDValue Res = RecordedNodes[ResSlot].first;
2905
2906        assert(i < NodeToMatch->getNumValues() &&
2907               NodeToMatch->getValueType(i) != MVT::Other &&
2908               NodeToMatch->getValueType(i) != MVT::Glue &&
2909               "Invalid number of results to complete!");
2910        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2911                NodeToMatch->getValueType(i) == MVT::iPTR ||
2912                Res.getValueType() == MVT::iPTR ||
2913                NodeToMatch->getValueType(i).getSizeInBits() ==
2914                    Res.getValueType().getSizeInBits()) &&
2915               "invalid replacement");
2916        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2917      }
2918
2919      // If the root node defines glue, add it to the glue nodes to update list.
2920      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2921        GlueResultNodesMatched.push_back(NodeToMatch);
2922
2923      // Update chain and glue uses.
2924      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2925                          InputGlue, GlueResultNodesMatched, false);
2926
2927      assert(NodeToMatch->use_empty() &&
2928             "Didn't replace all uses of the node?");
2929
2930      // FIXME: We just return here, which interacts correctly with SelectRoot
2931      // above.  We should fix this to not return an SDNode* anymore.
2932      return 0;
2933    }
2934    }
2935
2936    // If the code reached this point, then the match failed.  See if there is
2937    // another child to try in the current 'Scope', otherwise pop it until we
2938    // find a case to check.
2939    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2940    ++NumDAGIselRetries;
2941    while (1) {
2942      if (MatchScopes.empty()) {
2943        CannotYetSelect(NodeToMatch);
2944        return 0;
2945      }
2946
2947      // Restore the interpreter state back to the point where the scope was
2948      // formed.
2949      MatchScope &LastScope = MatchScopes.back();
2950      RecordedNodes.resize(LastScope.NumRecordedNodes);
2951      NodeStack.clear();
2952      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2953      N = NodeStack.back();
2954
2955      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2956        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2957      MatcherIndex = LastScope.FailIndex;
2958
2959      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2960
2961      InputChain = LastScope.InputChain;
2962      InputGlue = LastScope.InputGlue;
2963      if (!LastScope.HasChainNodesMatched)
2964        ChainNodesMatched.clear();
2965      if (!LastScope.HasGlueResultNodesMatched)
2966        GlueResultNodesMatched.clear();
2967
2968      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2969      // we have reached the end of this scope, otherwise we have another child
2970      // in the current scope to try.
2971      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2972      if (NumToSkip & 128)
2973        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2974
2975      // If we have another child in this scope to match, update FailIndex and
2976      // try it.
2977      if (NumToSkip != 0) {
2978        LastScope.FailIndex = MatcherIndex+NumToSkip;
2979        break;
2980      }
2981
2982      // End of this scope, pop it and try the next child in the containing
2983      // scope.
2984      MatchScopes.pop_back();
2985    }
2986  }
2987}
2988
2989
2990
2991void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2992  std::string msg;
2993  raw_string_ostream Msg(msg);
2994  Msg << "Cannot select: ";
2995
2996  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2997      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2998      N->getOpcode() != ISD::INTRINSIC_VOID) {
2999    N->printrFull(Msg, CurDAG);
3000    Msg << "\nIn function: " << MF->getName();
3001  } else {
3002    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3003    unsigned iid =
3004      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3005    if (iid < Intrinsic::num_intrinsics)
3006      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3007    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3008      Msg << "target intrinsic %" << TII->getName(iid);
3009    else
3010      Msg << "unknown intrinsic #" << iid;
3011  }
3012  report_fatal_error(Msg.str());
3013}
3014
3015char SelectionDAGISel::ID = 0;
3016