1//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the ARM target.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "arm-isel"
15#include "ARM.h"
16#include "ARMBaseInstrInfo.h"
17#include "ARMTargetMachine.h"
18#include "MCTargetDesc/ARMAddressingModes.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/CodeGen/SelectionDAGISel.h"
25#include "llvm/IR/CallingConv.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetLowering.h"
37#include "llvm/Target/TargetOptions.h"
38
39using namespace llvm;
40
41static cl::opt<bool>
42DisableShifterOp("disable-shifter-op", cl::Hidden,
43  cl::desc("Disable isel of shifter-op"),
44  cl::init(false));
45
46static cl::opt<bool>
47CheckVMLxHazard("check-vmlx-hazard", cl::Hidden,
48  cl::desc("Check fp vmla / vmls hazard at isel time"),
49  cl::init(true));
50
51//===--------------------------------------------------------------------===//
52/// ARMDAGToDAGISel - ARM specific code to select ARM machine
53/// instructions for SelectionDAG operations.
54///
55namespace {
56
57enum AddrMode2Type {
58  AM2_BASE, // Simple AM2 (+-imm12)
59  AM2_SHOP  // Shifter-op AM2
60};
61
62class ARMDAGToDAGISel : public SelectionDAGISel {
63  ARMBaseTargetMachine &TM;
64  const ARMBaseInstrInfo *TII;
65
66  /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
67  /// make the right decision when generating code for different targets.
68  const ARMSubtarget *Subtarget;
69
70public:
71  explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
72                           CodeGenOpt::Level OptLevel)
73    : SelectionDAGISel(tm, OptLevel), TM(tm),
74      TII(static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo())),
75      Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
76  }
77
78  virtual const char *getPassName() const {
79    return "ARM Instruction Selection";
80  }
81
82  virtual void PreprocessISelDAG();
83
84  /// getI32Imm - Return a target constant of type i32 with the specified
85  /// value.
86  inline SDValue getI32Imm(unsigned Imm) {
87    return CurDAG->getTargetConstant(Imm, MVT::i32);
88  }
89
90  SDNode *Select(SDNode *N);
91
92
93  bool hasNoVMLxHazardUse(SDNode *N) const;
94  bool isShifterOpProfitable(const SDValue &Shift,
95                             ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
96  bool SelectRegShifterOperand(SDValue N, SDValue &A,
97                               SDValue &B, SDValue &C,
98                               bool CheckProfitability = true);
99  bool SelectImmShifterOperand(SDValue N, SDValue &A,
100                               SDValue &B, bool CheckProfitability = true);
101  bool SelectShiftRegShifterOperand(SDValue N, SDValue &A,
102                                    SDValue &B, SDValue &C) {
103    // Don't apply the profitability check
104    return SelectRegShifterOperand(N, A, B, C, false);
105  }
106  bool SelectShiftImmShifterOperand(SDValue N, SDValue &A,
107                                    SDValue &B) {
108    // Don't apply the profitability check
109    return SelectImmShifterOperand(N, A, B, false);
110  }
111
112  bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
113  bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
114
115  AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base,
116                                      SDValue &Offset, SDValue &Opc);
117  bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset,
118                           SDValue &Opc) {
119    return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE;
120  }
121
122  bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset,
123                           SDValue &Opc) {
124    return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP;
125  }
126
127  bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset,
128                       SDValue &Opc) {
129    SelectAddrMode2Worker(N, Base, Offset, Opc);
130//    return SelectAddrMode2ShOp(N, Base, Offset, Opc);
131    // This always matches one way or another.
132    return true;
133  }
134
135  bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
136                             SDValue &Offset, SDValue &Opc);
137  bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
138                             SDValue &Offset, SDValue &Opc);
139  bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
140                             SDValue &Offset, SDValue &Opc);
141  bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
142  bool SelectAddrMode3(SDValue N, SDValue &Base,
143                       SDValue &Offset, SDValue &Opc);
144  bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
145                             SDValue &Offset, SDValue &Opc);
146  bool SelectAddrMode5(SDValue N, SDValue &Base,
147                       SDValue &Offset);
148  bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
149  bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
150
151  bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
152
153  // Thumb Addressing Modes:
154  bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
155  bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset,
156                             unsigned Scale);
157  bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset);
158  bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset);
159  bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset);
160  bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
161                                SDValue &OffImm);
162  bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
163                                 SDValue &OffImm);
164  bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
165                                 SDValue &OffImm);
166  bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
167                                 SDValue &OffImm);
168  bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
169
170  // Thumb 2 Addressing Modes:
171  bool SelectT2ShifterOperandReg(SDValue N,
172                                 SDValue &BaseReg, SDValue &Opc);
173  bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
174  bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
175                            SDValue &OffImm);
176  bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
177                                 SDValue &OffImm);
178  bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
179                             SDValue &OffReg, SDValue &ShImm);
180
181  inline bool is_so_imm(unsigned Imm) const {
182    return ARM_AM::getSOImmVal(Imm) != -1;
183  }
184
185  inline bool is_so_imm_not(unsigned Imm) const {
186    return ARM_AM::getSOImmVal(~Imm) != -1;
187  }
188
189  inline bool is_t2_so_imm(unsigned Imm) const {
190    return ARM_AM::getT2SOImmVal(Imm) != -1;
191  }
192
193  inline bool is_t2_so_imm_not(unsigned Imm) const {
194    return ARM_AM::getT2SOImmVal(~Imm) != -1;
195  }
196
197  // Include the pieces autogenerated from the target description.
198#include "ARMGenDAGISel.inc"
199
200private:
201  /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
202  /// ARM.
203  SDNode *SelectARMIndexedLoad(SDNode *N);
204  SDNode *SelectT2IndexedLoad(SDNode *N);
205
206  /// SelectVLD - Select NEON load intrinsics.  NumVecs should be
207  /// 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
208  /// loads of D registers and even subregs and odd subregs of Q registers.
209  /// For NumVecs <= 2, QOpcodes1 is not used.
210  SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
211                    const uint16_t *DOpcodes,
212                    const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
213
214  /// SelectVST - Select NEON store intrinsics.  NumVecs should
215  /// be 1, 2, 3 or 4.  The opcode arrays specify the instructions used for
216  /// stores of D registers and even subregs and odd subregs of Q registers.
217  /// For NumVecs <= 2, QOpcodes1 is not used.
218  SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
219                    const uint16_t *DOpcodes,
220                    const uint16_t *QOpcodes0, const uint16_t *QOpcodes1);
221
222  /// SelectVLDSTLane - Select NEON load/store lane intrinsics.  NumVecs should
223  /// be 2, 3 or 4.  The opcode arrays specify the instructions used for
224  /// load/store of D registers and Q registers.
225  SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad,
226                          bool isUpdating, unsigned NumVecs,
227                          const uint16_t *DOpcodes, const uint16_t *QOpcodes);
228
229  /// SelectVLDDup - Select NEON load-duplicate intrinsics.  NumVecs
230  /// should be 2, 3 or 4.  The opcode array specifies the instructions used
231  /// for loading D registers.  (Q registers are not supported.)
232  SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs,
233                       const uint16_t *Opcodes);
234
235  /// SelectVTBL - Select NEON VTBL and VTBX intrinsics.  NumVecs should be 2,
236  /// 3 or 4.  These are custom-selected so that a REG_SEQUENCE can be
237  /// generated to force the table registers to be consecutive.
238  SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc);
239
240  /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
241  SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
242
243  /// SelectCMOVOp - Select CMOV instructions for ARM.
244  SDNode *SelectCMOVOp(SDNode *N);
245  SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
246                              ARMCC::CondCodes CCVal, SDValue CCR,
247                              SDValue InFlag);
248  SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
249                               ARMCC::CondCodes CCVal, SDValue CCR,
250                               SDValue InFlag);
251  SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
252                              ARMCC::CondCodes CCVal, SDValue CCR,
253                              SDValue InFlag);
254  SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
255                               ARMCC::CondCodes CCVal, SDValue CCR,
256                               SDValue InFlag);
257
258  // Select special operations if node forms integer ABS pattern
259  SDNode *SelectABSOp(SDNode *N);
260
261  SDNode *SelectInlineAsm(SDNode *N);
262
263  SDNode *SelectConcatVector(SDNode *N);
264
265  SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
266
267  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
268  /// inline asm expressions.
269  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
270                                            char ConstraintCode,
271                                            std::vector<SDValue> &OutOps);
272
273  // Form pairs of consecutive R, S, D, or Q registers.
274  SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
275  SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
276  SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
277  SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
278
279  // Form sequences of 4 consecutive S, D, or Q registers.
280  SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
281  SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
282  SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
283
284  // Get the alignment operand for a NEON VLD or VST instruction.
285  SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector);
286};
287}
288
289/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
290/// operand. If so Imm will receive the 32-bit value.
291static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
292  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
293    Imm = cast<ConstantSDNode>(N)->getZExtValue();
294    return true;
295  }
296  return false;
297}
298
299// isInt32Immediate - This method tests to see if a constant operand.
300// If so Imm will receive the 32 bit value.
301static bool isInt32Immediate(SDValue N, unsigned &Imm) {
302  return isInt32Immediate(N.getNode(), Imm);
303}
304
305// isOpcWithIntImmediate - This method tests to see if the node is a specific
306// opcode and that it has a immediate integer right operand.
307// If so Imm will receive the 32 bit value.
308static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
309  return N->getOpcode() == Opc &&
310         isInt32Immediate(N->getOperand(1).getNode(), Imm);
311}
312
313/// \brief Check whether a particular node is a constant value representable as
314/// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
315///
316/// \param ScaledConstant [out] - On success, the pre-scaled constant value.
317static bool isScaledConstantInRange(SDValue Node, int Scale,
318                                    int RangeMin, int RangeMax,
319                                    int &ScaledConstant) {
320  assert(Scale > 0 && "Invalid scale!");
321
322  // Check that this is a constant.
323  const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
324  if (!C)
325    return false;
326
327  ScaledConstant = (int) C->getZExtValue();
328  if ((ScaledConstant % Scale) != 0)
329    return false;
330
331  ScaledConstant /= Scale;
332  return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
333}
334
335void ARMDAGToDAGISel::PreprocessISelDAG() {
336  if (!Subtarget->hasV6T2Ops())
337    return;
338
339  bool isThumb2 = Subtarget->isThumb();
340  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
341       E = CurDAG->allnodes_end(); I != E; ) {
342    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
343
344    if (N->getOpcode() != ISD::ADD)
345      continue;
346
347    // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
348    // leading zeros, followed by consecutive set bits, followed by 1 or 2
349    // trailing zeros, e.g. 1020.
350    // Transform the expression to
351    // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
352    // of trailing zeros of c2. The left shift would be folded as an shifter
353    // operand of 'add' and the 'and' and 'srl' would become a bits extraction
354    // node (UBFX).
355
356    SDValue N0 = N->getOperand(0);
357    SDValue N1 = N->getOperand(1);
358    unsigned And_imm = 0;
359    if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
360      if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
361        std::swap(N0, N1);
362    }
363    if (!And_imm)
364      continue;
365
366    // Check if the AND mask is an immediate of the form: 000.....1111111100
367    unsigned TZ = CountTrailingZeros_32(And_imm);
368    if (TZ != 1 && TZ != 2)
369      // Be conservative here. Shifter operands aren't always free. e.g. On
370      // Swift, left shifter operand of 1 / 2 for free but others are not.
371      // e.g.
372      //  ubfx   r3, r1, #16, #8
373      //  ldr.w  r3, [r0, r3, lsl #2]
374      // vs.
375      //  mov.w  r9, #1020
376      //  and.w  r2, r9, r1, lsr #14
377      //  ldr    r2, [r0, r2]
378      continue;
379    And_imm >>= TZ;
380    if (And_imm & (And_imm + 1))
381      continue;
382
383    // Look for (and (srl X, c1), c2).
384    SDValue Srl = N1.getOperand(0);
385    unsigned Srl_imm = 0;
386    if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
387        (Srl_imm <= 2))
388      continue;
389
390    // Make sure first operand is not a shifter operand which would prevent
391    // folding of the left shift.
392    SDValue CPTmp0;
393    SDValue CPTmp1;
394    SDValue CPTmp2;
395    if (isThumb2) {
396      if (SelectT2ShifterOperandReg(N0, CPTmp0, CPTmp1))
397        continue;
398    } else {
399      if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
400          SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
401        continue;
402    }
403
404    // Now make the transformation.
405    Srl = CurDAG->getNode(ISD::SRL, Srl.getDebugLoc(), MVT::i32,
406                          Srl.getOperand(0),
407                          CurDAG->getConstant(Srl_imm+TZ, MVT::i32));
408    N1 = CurDAG->getNode(ISD::AND, N1.getDebugLoc(), MVT::i32,
409                         Srl, CurDAG->getConstant(And_imm, MVT::i32));
410    N1 = CurDAG->getNode(ISD::SHL, N1.getDebugLoc(), MVT::i32,
411                         N1, CurDAG->getConstant(TZ, MVT::i32));
412    CurDAG->UpdateNodeOperands(N, N0, N1);
413  }
414}
415
416/// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
417/// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
418/// least on current ARM implementations) which should be avoidded.
419bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
420  if (OptLevel == CodeGenOpt::None)
421    return true;
422
423  if (!CheckVMLxHazard)
424    return true;
425
426  if (!Subtarget->isCortexA8() && !Subtarget->isLikeA9() &&
427      !Subtarget->isSwift())
428    return true;
429
430  if (!N->hasOneUse())
431    return false;
432
433  SDNode *Use = *N->use_begin();
434  if (Use->getOpcode() == ISD::CopyToReg)
435    return true;
436  if (Use->isMachineOpcode()) {
437    const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
438    if (MCID.mayStore())
439      return true;
440    unsigned Opcode = MCID.getOpcode();
441    if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
442      return true;
443    // vmlx feeding into another vmlx. We actually want to unfold
444    // the use later in the MLxExpansion pass. e.g.
445    // vmla
446    // vmla (stall 8 cycles)
447    //
448    // vmul (5 cycles)
449    // vadd (5 cycles)
450    // vmla
451    // This adds up to about 18 - 19 cycles.
452    //
453    // vmla
454    // vmul (stall 4 cycles)
455    // vadd adds up to about 14 cycles.
456    return TII->isFpMLxInstruction(Opcode);
457  }
458
459  return false;
460}
461
462bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
463                                            ARM_AM::ShiftOpc ShOpcVal,
464                                            unsigned ShAmt) {
465  if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
466    return true;
467  if (Shift.hasOneUse())
468    return true;
469  // R << 2 is free.
470  return ShOpcVal == ARM_AM::lsl &&
471         (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
472}
473
474bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
475                                              SDValue &BaseReg,
476                                              SDValue &Opc,
477                                              bool CheckProfitability) {
478  if (DisableShifterOp)
479    return false;
480
481  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
482
483  // Don't match base register only case. That is matched to a separate
484  // lower complexity pattern with explicit register operand.
485  if (ShOpcVal == ARM_AM::no_shift) return false;
486
487  BaseReg = N.getOperand(0);
488  unsigned ShImmVal = 0;
489  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
490  if (!RHS) return false;
491  ShImmVal = RHS->getZExtValue() & 31;
492  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
493                                  MVT::i32);
494  return true;
495}
496
497bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
498                                              SDValue &BaseReg,
499                                              SDValue &ShReg,
500                                              SDValue &Opc,
501                                              bool CheckProfitability) {
502  if (DisableShifterOp)
503    return false;
504
505  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
506
507  // Don't match base register only case. That is matched to a separate
508  // lower complexity pattern with explicit register operand.
509  if (ShOpcVal == ARM_AM::no_shift) return false;
510
511  BaseReg = N.getOperand(0);
512  unsigned ShImmVal = 0;
513  ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
514  if (RHS) return false;
515
516  ShReg = N.getOperand(1);
517  if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
518    return false;
519  Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
520                                  MVT::i32);
521  return true;
522}
523
524
525bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
526                                          SDValue &Base,
527                                          SDValue &OffImm) {
528  // Match simple R + imm12 operands.
529
530  // Base only.
531  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
532      !CurDAG->isBaseWithConstantOffset(N)) {
533    if (N.getOpcode() == ISD::FrameIndex) {
534      // Match frame index.
535      int FI = cast<FrameIndexSDNode>(N)->getIndex();
536      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
537      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
538      return true;
539    }
540
541    if (N.getOpcode() == ARMISD::Wrapper &&
542        !(Subtarget->useMovt() &&
543                     N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
544      Base = N.getOperand(0);
545    } else
546      Base = N;
547    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
548    return true;
549  }
550
551  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
552    int RHSC = (int)RHS->getZExtValue();
553    if (N.getOpcode() == ISD::SUB)
554      RHSC = -RHSC;
555
556    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
557      Base   = N.getOperand(0);
558      if (Base.getOpcode() == ISD::FrameIndex) {
559        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
560        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
561      }
562      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
563      return true;
564    }
565  }
566
567  // Base only.
568  Base = N;
569  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
570  return true;
571}
572
573
574
575bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
576                                      SDValue &Opc) {
577  if (N.getOpcode() == ISD::MUL &&
578      ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
579    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
580      // X * [3,5,9] -> X + X * [2,4,8] etc.
581      int RHSC = (int)RHS->getZExtValue();
582      if (RHSC & 1) {
583        RHSC = RHSC & ~1;
584        ARM_AM::AddrOpc AddSub = ARM_AM::add;
585        if (RHSC < 0) {
586          AddSub = ARM_AM::sub;
587          RHSC = - RHSC;
588        }
589        if (isPowerOf2_32(RHSC)) {
590          unsigned ShAmt = Log2_32(RHSC);
591          Base = Offset = N.getOperand(0);
592          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
593                                                            ARM_AM::lsl),
594                                          MVT::i32);
595          return true;
596        }
597      }
598    }
599  }
600
601  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
602      // ISD::OR that is equivalent to an ISD::ADD.
603      !CurDAG->isBaseWithConstantOffset(N))
604    return false;
605
606  // Leave simple R +/- imm12 operands for LDRi12
607  if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
608    int RHSC;
609    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
610                                -0x1000+1, 0x1000, RHSC)) // 12 bits.
611      return false;
612  }
613
614  // Otherwise this is R +/- [possibly shifted] R.
615  ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
616  ARM_AM::ShiftOpc ShOpcVal =
617    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
618  unsigned ShAmt = 0;
619
620  Base   = N.getOperand(0);
621  Offset = N.getOperand(1);
622
623  if (ShOpcVal != ARM_AM::no_shift) {
624    // Check to see if the RHS of the shift is a constant, if not, we can't fold
625    // it.
626    if (ConstantSDNode *Sh =
627           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
628      ShAmt = Sh->getZExtValue();
629      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
630        Offset = N.getOperand(1).getOperand(0);
631      else {
632        ShAmt = 0;
633        ShOpcVal = ARM_AM::no_shift;
634      }
635    } else {
636      ShOpcVal = ARM_AM::no_shift;
637    }
638  }
639
640  // Try matching (R shl C) + (R).
641  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
642      !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
643        N.getOperand(0).hasOneUse())) {
644    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
645    if (ShOpcVal != ARM_AM::no_shift) {
646      // Check to see if the RHS of the shift is a constant, if not, we can't
647      // fold it.
648      if (ConstantSDNode *Sh =
649          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
650        ShAmt = Sh->getZExtValue();
651        if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
652          Offset = N.getOperand(0).getOperand(0);
653          Base = N.getOperand(1);
654        } else {
655          ShAmt = 0;
656          ShOpcVal = ARM_AM::no_shift;
657        }
658      } else {
659        ShOpcVal = ARM_AM::no_shift;
660      }
661    }
662  }
663
664  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
665                                  MVT::i32);
666  return true;
667}
668
669
670//-----
671
672AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N,
673                                                     SDValue &Base,
674                                                     SDValue &Offset,
675                                                     SDValue &Opc) {
676  if (N.getOpcode() == ISD::MUL &&
677      (!(Subtarget->isLikeA9() || Subtarget->isSwift()) || N.hasOneUse())) {
678    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
679      // X * [3,5,9] -> X + X * [2,4,8] etc.
680      int RHSC = (int)RHS->getZExtValue();
681      if (RHSC & 1) {
682        RHSC = RHSC & ~1;
683        ARM_AM::AddrOpc AddSub = ARM_AM::add;
684        if (RHSC < 0) {
685          AddSub = ARM_AM::sub;
686          RHSC = - RHSC;
687        }
688        if (isPowerOf2_32(RHSC)) {
689          unsigned ShAmt = Log2_32(RHSC);
690          Base = Offset = N.getOperand(0);
691          Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
692                                                            ARM_AM::lsl),
693                                          MVT::i32);
694          return AM2_SHOP;
695        }
696      }
697    }
698  }
699
700  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
701      // ISD::OR that is equivalent to an ADD.
702      !CurDAG->isBaseWithConstantOffset(N)) {
703    Base = N;
704    if (N.getOpcode() == ISD::FrameIndex) {
705      int FI = cast<FrameIndexSDNode>(N)->getIndex();
706      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
707    } else if (N.getOpcode() == ARMISD::Wrapper &&
708               !(Subtarget->useMovt() &&
709                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
710      Base = N.getOperand(0);
711    }
712    Offset = CurDAG->getRegister(0, MVT::i32);
713    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
714                                                      ARM_AM::no_shift),
715                                    MVT::i32);
716    return AM2_BASE;
717  }
718
719  // Match simple R +/- imm12 operands.
720  if (N.getOpcode() != ISD::SUB) {
721    int RHSC;
722    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
723                                -0x1000+1, 0x1000, RHSC)) { // 12 bits.
724      Base = N.getOperand(0);
725      if (Base.getOpcode() == ISD::FrameIndex) {
726        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
727        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
728      }
729      Offset = CurDAG->getRegister(0, MVT::i32);
730
731      ARM_AM::AddrOpc AddSub = ARM_AM::add;
732      if (RHSC < 0) {
733        AddSub = ARM_AM::sub;
734        RHSC = - RHSC;
735      }
736      Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
737                                                        ARM_AM::no_shift),
738                                      MVT::i32);
739      return AM2_BASE;
740    }
741  }
742
743  if ((Subtarget->isLikeA9() || Subtarget->isSwift()) && !N.hasOneUse()) {
744    // Compute R +/- (R << N) and reuse it.
745    Base = N;
746    Offset = CurDAG->getRegister(0, MVT::i32);
747    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
748                                                      ARM_AM::no_shift),
749                                    MVT::i32);
750    return AM2_BASE;
751  }
752
753  // Otherwise this is R +/- [possibly shifted] R.
754  ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub;
755  ARM_AM::ShiftOpc ShOpcVal =
756    ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
757  unsigned ShAmt = 0;
758
759  Base   = N.getOperand(0);
760  Offset = N.getOperand(1);
761
762  if (ShOpcVal != ARM_AM::no_shift) {
763    // Check to see if the RHS of the shift is a constant, if not, we can't fold
764    // it.
765    if (ConstantSDNode *Sh =
766           dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
767      ShAmt = Sh->getZExtValue();
768      if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
769        Offset = N.getOperand(1).getOperand(0);
770      else {
771        ShAmt = 0;
772        ShOpcVal = ARM_AM::no_shift;
773      }
774    } else {
775      ShOpcVal = ARM_AM::no_shift;
776    }
777  }
778
779  // Try matching (R shl C) + (R).
780  if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
781      !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
782        N.getOperand(0).hasOneUse())) {
783    ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
784    if (ShOpcVal != ARM_AM::no_shift) {
785      // Check to see if the RHS of the shift is a constant, if not, we can't
786      // fold it.
787      if (ConstantSDNode *Sh =
788          dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
789        ShAmt = Sh->getZExtValue();
790        if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
791          Offset = N.getOperand(0).getOperand(0);
792          Base = N.getOperand(1);
793        } else {
794          ShAmt = 0;
795          ShOpcVal = ARM_AM::no_shift;
796        }
797      } else {
798        ShOpcVal = ARM_AM::no_shift;
799      }
800    }
801  }
802
803  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
804                                  MVT::i32);
805  return AM2_SHOP;
806}
807
808bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
809                                            SDValue &Offset, SDValue &Opc) {
810  unsigned Opcode = Op->getOpcode();
811  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
812    ? cast<LoadSDNode>(Op)->getAddressingMode()
813    : cast<StoreSDNode>(Op)->getAddressingMode();
814  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
815    ? ARM_AM::add : ARM_AM::sub;
816  int Val;
817  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
818    return false;
819
820  Offset = N;
821  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
822  unsigned ShAmt = 0;
823  if (ShOpcVal != ARM_AM::no_shift) {
824    // Check to see if the RHS of the shift is a constant, if not, we can't fold
825    // it.
826    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
827      ShAmt = Sh->getZExtValue();
828      if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
829        Offset = N.getOperand(0);
830      else {
831        ShAmt = 0;
832        ShOpcVal = ARM_AM::no_shift;
833      }
834    } else {
835      ShOpcVal = ARM_AM::no_shift;
836    }
837  }
838
839  Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
840                                  MVT::i32);
841  return true;
842}
843
844bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
845                                            SDValue &Offset, SDValue &Opc) {
846  unsigned Opcode = Op->getOpcode();
847  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
848    ? cast<LoadSDNode>(Op)->getAddressingMode()
849    : cast<StoreSDNode>(Op)->getAddressingMode();
850  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
851    ? ARM_AM::add : ARM_AM::sub;
852  int Val;
853  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
854    if (AddSub == ARM_AM::sub) Val *= -1;
855    Offset = CurDAG->getRegister(0, MVT::i32);
856    Opc = CurDAG->getTargetConstant(Val, MVT::i32);
857    return true;
858  }
859
860  return false;
861}
862
863
864bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
865                                            SDValue &Offset, SDValue &Opc) {
866  unsigned Opcode = Op->getOpcode();
867  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
868    ? cast<LoadSDNode>(Op)->getAddressingMode()
869    : cast<StoreSDNode>(Op)->getAddressingMode();
870  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
871    ? ARM_AM::add : ARM_AM::sub;
872  int Val;
873  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
874    Offset = CurDAG->getRegister(0, MVT::i32);
875    Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
876                                                      ARM_AM::no_shift),
877                                    MVT::i32);
878    return true;
879  }
880
881  return false;
882}
883
884bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
885  Base = N;
886  return true;
887}
888
889bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
890                                      SDValue &Base, SDValue &Offset,
891                                      SDValue &Opc) {
892  if (N.getOpcode() == ISD::SUB) {
893    // X - C  is canonicalize to X + -C, no need to handle it here.
894    Base = N.getOperand(0);
895    Offset = N.getOperand(1);
896    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
897    return true;
898  }
899
900  if (!CurDAG->isBaseWithConstantOffset(N)) {
901    Base = N;
902    if (N.getOpcode() == ISD::FrameIndex) {
903      int FI = cast<FrameIndexSDNode>(N)->getIndex();
904      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
905    }
906    Offset = CurDAG->getRegister(0, MVT::i32);
907    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
908    return true;
909  }
910
911  // If the RHS is +/- imm8, fold into addr mode.
912  int RHSC;
913  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
914                              -256 + 1, 256, RHSC)) { // 8 bits.
915    Base = N.getOperand(0);
916    if (Base.getOpcode() == ISD::FrameIndex) {
917      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
918      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
919    }
920    Offset = CurDAG->getRegister(0, MVT::i32);
921
922    ARM_AM::AddrOpc AddSub = ARM_AM::add;
923    if (RHSC < 0) {
924      AddSub = ARM_AM::sub;
925      RHSC = -RHSC;
926    }
927    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
928    return true;
929  }
930
931  Base = N.getOperand(0);
932  Offset = N.getOperand(1);
933  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
934  return true;
935}
936
937bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
938                                            SDValue &Offset, SDValue &Opc) {
939  unsigned Opcode = Op->getOpcode();
940  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
941    ? cast<LoadSDNode>(Op)->getAddressingMode()
942    : cast<StoreSDNode>(Op)->getAddressingMode();
943  ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
944    ? ARM_AM::add : ARM_AM::sub;
945  int Val;
946  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
947    Offset = CurDAG->getRegister(0, MVT::i32);
948    Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
949    return true;
950  }
951
952  Offset = N;
953  Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
954  return true;
955}
956
957bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
958                                      SDValue &Base, SDValue &Offset) {
959  if (!CurDAG->isBaseWithConstantOffset(N)) {
960    Base = N;
961    if (N.getOpcode() == ISD::FrameIndex) {
962      int FI = cast<FrameIndexSDNode>(N)->getIndex();
963      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
964    } else if (N.getOpcode() == ARMISD::Wrapper &&
965               !(Subtarget->useMovt() &&
966                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
967      Base = N.getOperand(0);
968    }
969    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
970                                       MVT::i32);
971    return true;
972  }
973
974  // If the RHS is +/- imm8, fold into addr mode.
975  int RHSC;
976  if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4,
977                              -256 + 1, 256, RHSC)) {
978    Base = N.getOperand(0);
979    if (Base.getOpcode() == ISD::FrameIndex) {
980      int FI = cast<FrameIndexSDNode>(Base)->getIndex();
981      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
982    }
983
984    ARM_AM::AddrOpc AddSub = ARM_AM::add;
985    if (RHSC < 0) {
986      AddSub = ARM_AM::sub;
987      RHSC = -RHSC;
988    }
989    Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
990                                       MVT::i32);
991    return true;
992  }
993
994  Base = N;
995  Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
996                                     MVT::i32);
997  return true;
998}
999
1000bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
1001                                      SDValue &Align) {
1002  Addr = N;
1003
1004  unsigned Alignment = 0;
1005  if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) {
1006    // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
1007    // The maximum alignment is equal to the memory size being referenced.
1008    unsigned LSNAlign = LSN->getAlignment();
1009    unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8;
1010    if (LSNAlign >= MemSize && MemSize > 1)
1011      Alignment = MemSize;
1012  } else {
1013    // All other uses of addrmode6 are for intrinsics.  For now just record
1014    // the raw alignment value; it will be refined later based on the legal
1015    // alignment operands for the intrinsic.
1016    Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment();
1017  }
1018
1019  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
1020  return true;
1021}
1022
1023bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
1024                                            SDValue &Offset) {
1025  LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
1026  ISD::MemIndexedMode AM = LdSt->getAddressingMode();
1027  if (AM != ISD::POST_INC)
1028    return false;
1029  Offset = N;
1030  if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
1031    if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
1032      Offset = CurDAG->getRegister(0, MVT::i32);
1033  }
1034  return true;
1035}
1036
1037bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
1038                                       SDValue &Offset, SDValue &Label) {
1039  if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
1040    Offset = N.getOperand(0);
1041    SDValue N1 = N.getOperand(1);
1042    Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
1043                                      MVT::i32);
1044    return true;
1045  }
1046
1047  return false;
1048}
1049
1050
1051//===----------------------------------------------------------------------===//
1052//                         Thumb Addressing Modes
1053//===----------------------------------------------------------------------===//
1054
1055bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N,
1056                                            SDValue &Base, SDValue &Offset){
1057  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
1058    ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
1059    if (!NC || !NC->isNullValue())
1060      return false;
1061
1062    Base = Offset = N;
1063    return true;
1064  }
1065
1066  Base = N.getOperand(0);
1067  Offset = N.getOperand(1);
1068  return true;
1069}
1070
1071bool
1072ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base,
1073                                       SDValue &Offset, unsigned Scale) {
1074  if (Scale == 4) {
1075    SDValue TmpBase, TmpOffImm;
1076    if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1077      return false;  // We want to select tLDRspi / tSTRspi instead.
1078
1079    if (N.getOpcode() == ARMISD::Wrapper &&
1080        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1081      return false;  // We want to select tLDRpci instead.
1082  }
1083
1084  if (!CurDAG->isBaseWithConstantOffset(N))
1085    return false;
1086
1087  // Thumb does not have [sp, r] address mode.
1088  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1089  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1090  if ((LHSR && LHSR->getReg() == ARM::SP) ||
1091      (RHSR && RHSR->getReg() == ARM::SP))
1092    return false;
1093
1094  // FIXME: Why do we explicitly check for a match here and then return false?
1095  // Presumably to allow something else to match, but shouldn't this be
1096  // documented?
1097  int RHSC;
1098  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC))
1099    return false;
1100
1101  Base = N.getOperand(0);
1102  Offset = N.getOperand(1);
1103  return true;
1104}
1105
1106bool
1107ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N,
1108                                          SDValue &Base,
1109                                          SDValue &Offset) {
1110  return SelectThumbAddrModeRI(N, Base, Offset, 1);
1111}
1112
1113bool
1114ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N,
1115                                          SDValue &Base,
1116                                          SDValue &Offset) {
1117  return SelectThumbAddrModeRI(N, Base, Offset, 2);
1118}
1119
1120bool
1121ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N,
1122                                          SDValue &Base,
1123                                          SDValue &Offset) {
1124  return SelectThumbAddrModeRI(N, Base, Offset, 4);
1125}
1126
1127bool
1128ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1129                                          SDValue &Base, SDValue &OffImm) {
1130  if (Scale == 4) {
1131    SDValue TmpBase, TmpOffImm;
1132    if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm))
1133      return false;  // We want to select tLDRspi / tSTRspi instead.
1134
1135    if (N.getOpcode() == ARMISD::Wrapper &&
1136        N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
1137      return false;  // We want to select tLDRpci instead.
1138  }
1139
1140  if (!CurDAG->isBaseWithConstantOffset(N)) {
1141    if (N.getOpcode() == ARMISD::Wrapper &&
1142        !(Subtarget->useMovt() &&
1143          N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
1144      Base = N.getOperand(0);
1145    } else {
1146      Base = N;
1147    }
1148
1149    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1150    return true;
1151  }
1152
1153  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1154  RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
1155  if ((LHSR && LHSR->getReg() == ARM::SP) ||
1156      (RHSR && RHSR->getReg() == ARM::SP)) {
1157    ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0));
1158    ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1159    unsigned LHSC = LHS ? LHS->getZExtValue() : 0;
1160    unsigned RHSC = RHS ? RHS->getZExtValue() : 0;
1161
1162    // Thumb does not have [sp, #imm5] address mode for non-zero imm5.
1163    if (LHSC != 0 || RHSC != 0) return false;
1164
1165    Base = N;
1166    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1167    return true;
1168  }
1169
1170  // If the RHS is + imm5 * scale, fold into addr mode.
1171  int RHSC;
1172  if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1173    Base = N.getOperand(0);
1174    OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1175    return true;
1176  }
1177
1178  Base = N.getOperand(0);
1179  OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1180  return true;
1181}
1182
1183bool
1184ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1185                                           SDValue &OffImm) {
1186  return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1187}
1188
1189bool
1190ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1191                                           SDValue &OffImm) {
1192  return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1193}
1194
1195bool
1196ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1197                                           SDValue &OffImm) {
1198  return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1199}
1200
1201bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1202                                            SDValue &Base, SDValue &OffImm) {
1203  if (N.getOpcode() == ISD::FrameIndex) {
1204    int FI = cast<FrameIndexSDNode>(N)->getIndex();
1205    Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1206    OffImm = CurDAG->getTargetConstant(0, MVT::i32);
1207    return true;
1208  }
1209
1210  if (!CurDAG->isBaseWithConstantOffset(N))
1211    return false;
1212
1213  RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
1214  if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
1215      (LHSR && LHSR->getReg() == ARM::SP)) {
1216    // If the RHS is + imm8 * scale, fold into addr mode.
1217    int RHSC;
1218    if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1219      Base = N.getOperand(0);
1220      if (Base.getOpcode() == ISD::FrameIndex) {
1221        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1222        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1223      }
1224      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1225      return true;
1226    }
1227  }
1228
1229  return false;
1230}
1231
1232
1233//===----------------------------------------------------------------------===//
1234//                        Thumb 2 Addressing Modes
1235//===----------------------------------------------------------------------===//
1236
1237
1238bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg,
1239                                                SDValue &Opc) {
1240  if (DisableShifterOp)
1241    return false;
1242
1243  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
1244
1245  // Don't match base register only case. That is matched to a separate
1246  // lower complexity pattern with explicit register operand.
1247  if (ShOpcVal == ARM_AM::no_shift) return false;
1248
1249  BaseReg = N.getOperand(0);
1250  unsigned ShImmVal = 0;
1251  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1252    ShImmVal = RHS->getZExtValue() & 31;
1253    Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
1254    return true;
1255  }
1256
1257  return false;
1258}
1259
1260bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1261                                            SDValue &Base, SDValue &OffImm) {
1262  // Match simple R + imm12 operands.
1263
1264  // Base only.
1265  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1266      !CurDAG->isBaseWithConstantOffset(N)) {
1267    if (N.getOpcode() == ISD::FrameIndex) {
1268      // Match frame index.
1269      int FI = cast<FrameIndexSDNode>(N)->getIndex();
1270      Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1271      OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1272      return true;
1273    }
1274
1275    if (N.getOpcode() == ARMISD::Wrapper &&
1276               !(Subtarget->useMovt() &&
1277                 N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
1278      Base = N.getOperand(0);
1279      if (Base.getOpcode() == ISD::TargetConstantPool)
1280        return false;  // We want to select t2LDRpci instead.
1281    } else
1282      Base = N;
1283    OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1284    return true;
1285  }
1286
1287  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1288    if (SelectT2AddrModeImm8(N, Base, OffImm))
1289      // Let t2LDRi8 handle (R - imm8).
1290      return false;
1291
1292    int RHSC = (int)RHS->getZExtValue();
1293    if (N.getOpcode() == ISD::SUB)
1294      RHSC = -RHSC;
1295
1296    if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1297      Base   = N.getOperand(0);
1298      if (Base.getOpcode() == ISD::FrameIndex) {
1299        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1300        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1301      }
1302      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1303      return true;
1304    }
1305  }
1306
1307  // Base only.
1308  Base = N;
1309  OffImm  = CurDAG->getTargetConstant(0, MVT::i32);
1310  return true;
1311}
1312
1313bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1314                                           SDValue &Base, SDValue &OffImm) {
1315  // Match simple R - imm8 operands.
1316  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1317      !CurDAG->isBaseWithConstantOffset(N))
1318    return false;
1319
1320  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1321    int RHSC = (int)RHS->getSExtValue();
1322    if (N.getOpcode() == ISD::SUB)
1323      RHSC = -RHSC;
1324
1325    if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1326      Base = N.getOperand(0);
1327      if (Base.getOpcode() == ISD::FrameIndex) {
1328        int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1329        Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
1330      }
1331      OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
1332      return true;
1333    }
1334  }
1335
1336  return false;
1337}
1338
1339bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1340                                                 SDValue &OffImm){
1341  unsigned Opcode = Op->getOpcode();
1342  ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1343    ? cast<LoadSDNode>(Op)->getAddressingMode()
1344    : cast<StoreSDNode>(Op)->getAddressingMode();
1345  int RHSC;
1346  if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1347    OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1348      ? CurDAG->getTargetConstant(RHSC, MVT::i32)
1349      : CurDAG->getTargetConstant(-RHSC, MVT::i32);
1350    return true;
1351  }
1352
1353  return false;
1354}
1355
1356bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1357                                            SDValue &Base,
1358                                            SDValue &OffReg, SDValue &ShImm) {
1359  // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1360  if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1361    return false;
1362
1363  // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1364  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1365    int RHSC = (int)RHS->getZExtValue();
1366    if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1367      return false;
1368    else if (RHSC < 0 && RHSC >= -255) // 8 bits
1369      return false;
1370  }
1371
1372  // Look for (R + R) or (R + (R << [1,2,3])).
1373  unsigned ShAmt = 0;
1374  Base   = N.getOperand(0);
1375  OffReg = N.getOperand(1);
1376
1377  // Swap if it is ((R << c) + R).
1378  ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1379  if (ShOpcVal != ARM_AM::lsl) {
1380    ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1381    if (ShOpcVal == ARM_AM::lsl)
1382      std::swap(Base, OffReg);
1383  }
1384
1385  if (ShOpcVal == ARM_AM::lsl) {
1386    // Check to see if the RHS of the shift is a constant, if not, we can't fold
1387    // it.
1388    if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1389      ShAmt = Sh->getZExtValue();
1390      if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1391        OffReg = OffReg.getOperand(0);
1392      else {
1393        ShAmt = 0;
1394        ShOpcVal = ARM_AM::no_shift;
1395      }
1396    } else {
1397      ShOpcVal = ARM_AM::no_shift;
1398    }
1399  }
1400
1401  ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
1402
1403  return true;
1404}
1405
1406//===--------------------------------------------------------------------===//
1407
1408/// getAL - Returns a ARMCC::AL immediate node.
1409static inline SDValue getAL(SelectionDAG *CurDAG) {
1410  return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
1411}
1412
1413SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
1414  LoadSDNode *LD = cast<LoadSDNode>(N);
1415  ISD::MemIndexedMode AM = LD->getAddressingMode();
1416  if (AM == ISD::UNINDEXED)
1417    return NULL;
1418
1419  EVT LoadedVT = LD->getMemoryVT();
1420  SDValue Offset, AMOpc;
1421  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1422  unsigned Opcode = 0;
1423  bool Match = false;
1424  if (LoadedVT == MVT::i32 && isPre &&
1425      SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1426    Opcode = ARM::LDR_PRE_IMM;
1427    Match = true;
1428  } else if (LoadedVT == MVT::i32 && !isPre &&
1429      SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1430    Opcode = ARM::LDR_POST_IMM;
1431    Match = true;
1432  } else if (LoadedVT == MVT::i32 &&
1433      SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1434    Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1435    Match = true;
1436
1437  } else if (LoadedVT == MVT::i16 &&
1438             SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1439    Match = true;
1440    Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1441      ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1442      : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1443  } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1444    if (LD->getExtensionType() == ISD::SEXTLOAD) {
1445      if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1446        Match = true;
1447        Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1448      }
1449    } else {
1450      if (isPre &&
1451          SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1452        Match = true;
1453        Opcode = ARM::LDRB_PRE_IMM;
1454      } else if (!isPre &&
1455                  SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1456        Match = true;
1457        Opcode = ARM::LDRB_POST_IMM;
1458      } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1459        Match = true;
1460        Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1461      }
1462    }
1463  }
1464
1465  if (Match) {
1466    if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1467      SDValue Chain = LD->getChain();
1468      SDValue Base = LD->getBasePtr();
1469      SDValue Ops[]= { Base, AMOpc, getAL(CurDAG),
1470                       CurDAG->getRegister(0, MVT::i32), Chain };
1471      return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
1472                                    MVT::i32, MVT::Other, Ops, 5);
1473    } else {
1474      SDValue Chain = LD->getChain();
1475      SDValue Base = LD->getBasePtr();
1476      SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
1477                       CurDAG->getRegister(0, MVT::i32), Chain };
1478      return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32,
1479                                    MVT::i32, MVT::Other, Ops, 6);
1480    }
1481  }
1482
1483  return NULL;
1484}
1485
1486SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
1487  LoadSDNode *LD = cast<LoadSDNode>(N);
1488  ISD::MemIndexedMode AM = LD->getAddressingMode();
1489  if (AM == ISD::UNINDEXED)
1490    return NULL;
1491
1492  EVT LoadedVT = LD->getMemoryVT();
1493  bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1494  SDValue Offset;
1495  bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1496  unsigned Opcode = 0;
1497  bool Match = false;
1498  if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1499    switch (LoadedVT.getSimpleVT().SimpleTy) {
1500    case MVT::i32:
1501      Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1502      break;
1503    case MVT::i16:
1504      if (isSExtLd)
1505        Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1506      else
1507        Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1508      break;
1509    case MVT::i8:
1510    case MVT::i1:
1511      if (isSExtLd)
1512        Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1513      else
1514        Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1515      break;
1516    default:
1517      return NULL;
1518    }
1519    Match = true;
1520  }
1521
1522  if (Match) {
1523    SDValue Chain = LD->getChain();
1524    SDValue Base = LD->getBasePtr();
1525    SDValue Ops[]= { Base, Offset, getAL(CurDAG),
1526                     CurDAG->getRegister(0, MVT::i32), Chain };
1527    return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
1528                                  MVT::Other, Ops, 5);
1529  }
1530
1531  return NULL;
1532}
1533
1534/// \brief Form a GPRPair pseudo register from a pair of GPR regs.
1535SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
1536  DebugLoc dl = V0.getNode()->getDebugLoc();
1537  SDValue RegClass =
1538    CurDAG->getTargetConstant(ARM::GPRPairRegClassID, MVT::i32);
1539  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
1540  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
1541  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1542  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1543}
1544
1545/// \brief Form a D register from a pair of S registers.
1546SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1547  DebugLoc dl = V0.getNode()->getDebugLoc();
1548  SDValue RegClass =
1549    CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32);
1550  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1551  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1552  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1553  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1554}
1555
1556/// \brief Form a quad register from a pair of D registers.
1557SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1558  DebugLoc dl = V0.getNode()->getDebugLoc();
1559  SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32);
1560  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1561  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1562  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1563  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1564}
1565
1566/// \brief Form 4 consecutive D registers from a pair of Q registers.
1567SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1568  DebugLoc dl = V0.getNode()->getDebugLoc();
1569  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1570  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1571  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1572  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1573  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5);
1574}
1575
1576/// \brief Form 4 consecutive S registers.
1577SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
1578                                   SDValue V2, SDValue V3) {
1579  DebugLoc dl = V0.getNode()->getDebugLoc();
1580  SDValue RegClass =
1581    CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32);
1582  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32);
1583  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32);
1584  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32);
1585  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32);
1586  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1587                                    V2, SubReg2, V3, SubReg3 };
1588  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1589}
1590
1591/// \brief Form 4 consecutive D registers.
1592SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
1593                                   SDValue V2, SDValue V3) {
1594  DebugLoc dl = V0.getNode()->getDebugLoc();
1595  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32);
1596  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32);
1597  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32);
1598  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32);
1599  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32);
1600  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1601                                    V2, SubReg2, V3, SubReg3 };
1602  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1603}
1604
1605/// \brief Form 4 consecutive Q registers.
1606SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
1607                                   SDValue V2, SDValue V3) {
1608  DebugLoc dl = V0.getNode()->getDebugLoc();
1609  SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32);
1610  SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32);
1611  SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32);
1612  SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32);
1613  SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32);
1614  const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1615                                    V2, SubReg2, V3, SubReg3 };
1616  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9);
1617}
1618
1619/// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1620/// of a NEON VLD or VST instruction.  The supported values depend on the
1621/// number of registers being loaded.
1622SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs,
1623                                       bool is64BitVector) {
1624  unsigned NumRegs = NumVecs;
1625  if (!is64BitVector && NumVecs < 3)
1626    NumRegs *= 2;
1627
1628  unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1629  if (Alignment >= 32 && NumRegs == 4)
1630    Alignment = 32;
1631  else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1632    Alignment = 16;
1633  else if (Alignment >= 8)
1634    Alignment = 8;
1635  else
1636    Alignment = 0;
1637
1638  return CurDAG->getTargetConstant(Alignment, MVT::i32);
1639}
1640
1641// Get the register stride update opcode of a VLD/VST instruction that
1642// is otherwise equivalent to the given fixed stride updating instruction.
1643static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
1644  switch (Opc) {
1645  default: break;
1646  case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
1647  case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
1648  case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
1649  case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
1650  case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
1651  case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
1652  case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
1653  case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
1654
1655  case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
1656  case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
1657  case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
1658  case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
1659  case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
1660  case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
1661  case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
1662  case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
1663  case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
1664  case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
1665
1666  case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
1667  case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
1668  case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
1669  case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
1670  case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
1671  case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
1672
1673  case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
1674  case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
1675  case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
1676  case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
1677  case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
1678  case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
1679
1680  case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
1681  case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
1682  case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
1683  }
1684  return Opc; // If not one we handle, return it unchanged.
1685}
1686
1687SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
1688                                   const uint16_t *DOpcodes,
1689                                   const uint16_t *QOpcodes0,
1690                                   const uint16_t *QOpcodes1) {
1691  assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
1692  DebugLoc dl = N->getDebugLoc();
1693
1694  SDValue MemAddr, Align;
1695  unsigned AddrOpIdx = isUpdating ? 1 : 2;
1696  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1697    return NULL;
1698
1699  SDValue Chain = N->getOperand(0);
1700  EVT VT = N->getValueType(0);
1701  bool is64BitVector = VT.is64BitVector();
1702  Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1703
1704  unsigned OpcodeIndex;
1705  switch (VT.getSimpleVT().SimpleTy) {
1706  default: llvm_unreachable("unhandled vld type");
1707    // Double-register operations:
1708  case MVT::v8i8:  OpcodeIndex = 0; break;
1709  case MVT::v4i16: OpcodeIndex = 1; break;
1710  case MVT::v2f32:
1711  case MVT::v2i32: OpcodeIndex = 2; break;
1712  case MVT::v1i64: OpcodeIndex = 3; break;
1713    // Quad-register operations:
1714  case MVT::v16i8: OpcodeIndex = 0; break;
1715  case MVT::v8i16: OpcodeIndex = 1; break;
1716  case MVT::v4f32:
1717  case MVT::v4i32: OpcodeIndex = 2; break;
1718  case MVT::v2i64: OpcodeIndex = 3;
1719    assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
1720    break;
1721  }
1722
1723  EVT ResTy;
1724  if (NumVecs == 1)
1725    ResTy = VT;
1726  else {
1727    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
1728    if (!is64BitVector)
1729      ResTyElts *= 2;
1730    ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
1731  }
1732  std::vector<EVT> ResTys;
1733  ResTys.push_back(ResTy);
1734  if (isUpdating)
1735    ResTys.push_back(MVT::i32);
1736  ResTys.push_back(MVT::Other);
1737
1738  SDValue Pred = getAL(CurDAG);
1739  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1740  SDNode *VLd;
1741  SmallVector<SDValue, 7> Ops;
1742
1743  // Double registers and VLD1/VLD2 quad registers are directly supported.
1744  if (is64BitVector || NumVecs <= 2) {
1745    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1746                    QOpcodes0[OpcodeIndex]);
1747    Ops.push_back(MemAddr);
1748    Ops.push_back(Align);
1749    if (isUpdating) {
1750      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1751      // FIXME: VLD1/VLD2 fixed increment doesn't need Reg0. Remove the reg0
1752      // case entirely when the rest are updated to that form, too.
1753      if ((NumVecs == 1 || NumVecs == 2) && !isa<ConstantSDNode>(Inc.getNode()))
1754        Opc = getVLDSTRegisterUpdateOpcode(Opc);
1755      // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
1756      // check for that explicitly too. Horribly hacky, but temporary.
1757      if ((NumVecs != 1 && NumVecs != 2 && Opc != ARM::VLD1q64wb_fixed) ||
1758          !isa<ConstantSDNode>(Inc.getNode()))
1759        Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1760    }
1761    Ops.push_back(Pred);
1762    Ops.push_back(Reg0);
1763    Ops.push_back(Chain);
1764    VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
1765
1766  } else {
1767    // Otherwise, quad registers are loaded with two separate instructions,
1768    // where one loads the even registers and the other loads the odd registers.
1769    EVT AddrTy = MemAddr.getValueType();
1770
1771    // Load the even subregs.  This is always an updating load, so that it
1772    // provides the address to the second load for the odd subregs.
1773    SDValue ImplDef =
1774      SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
1775    const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
1776    SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1777                                          ResTy, AddrTy, MVT::Other, OpsA, 7);
1778    Chain = SDValue(VLdA, 2);
1779
1780    // Load the odd subregs.
1781    Ops.push_back(SDValue(VLdA, 1));
1782    Ops.push_back(Align);
1783    if (isUpdating) {
1784      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1785      assert(isa<ConstantSDNode>(Inc.getNode()) &&
1786             "only constant post-increment update allowed for VLD3/4");
1787      (void)Inc;
1788      Ops.push_back(Reg0);
1789    }
1790    Ops.push_back(SDValue(VLdA, 0));
1791    Ops.push_back(Pred);
1792    Ops.push_back(Reg0);
1793    Ops.push_back(Chain);
1794    VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
1795                                 Ops.data(), Ops.size());
1796  }
1797
1798  // Transfer memoperands.
1799  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1800  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1801  cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
1802
1803  if (NumVecs == 1)
1804    return VLd;
1805
1806  // Extract out the subregisters.
1807  SDValue SuperReg = SDValue(VLd, 0);
1808  assert(ARM::dsub_7 == ARM::dsub_0+7 &&
1809         ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
1810  unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
1811  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
1812    ReplaceUses(SDValue(N, Vec),
1813                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
1814  ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
1815  if (isUpdating)
1816    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
1817  return NULL;
1818}
1819
1820SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
1821                                   const uint16_t *DOpcodes,
1822                                   const uint16_t *QOpcodes0,
1823                                   const uint16_t *QOpcodes1) {
1824  assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
1825  DebugLoc dl = N->getDebugLoc();
1826
1827  SDValue MemAddr, Align;
1828  unsigned AddrOpIdx = isUpdating ? 1 : 2;
1829  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1830  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1831    return NULL;
1832
1833  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1834  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1835
1836  SDValue Chain = N->getOperand(0);
1837  EVT VT = N->getOperand(Vec0Idx).getValueType();
1838  bool is64BitVector = VT.is64BitVector();
1839  Align = GetVLDSTAlign(Align, NumVecs, is64BitVector);
1840
1841  unsigned OpcodeIndex;
1842  switch (VT.getSimpleVT().SimpleTy) {
1843  default: llvm_unreachable("unhandled vst type");
1844    // Double-register operations:
1845  case MVT::v8i8:  OpcodeIndex = 0; break;
1846  case MVT::v4i16: OpcodeIndex = 1; break;
1847  case MVT::v2f32:
1848  case MVT::v2i32: OpcodeIndex = 2; break;
1849  case MVT::v1i64: OpcodeIndex = 3; break;
1850    // Quad-register operations:
1851  case MVT::v16i8: OpcodeIndex = 0; break;
1852  case MVT::v8i16: OpcodeIndex = 1; break;
1853  case MVT::v4f32:
1854  case MVT::v4i32: OpcodeIndex = 2; break;
1855  case MVT::v2i64: OpcodeIndex = 3;
1856    assert(NumVecs == 1 && "v2i64 type only supported for VST1");
1857    break;
1858  }
1859
1860  std::vector<EVT> ResTys;
1861  if (isUpdating)
1862    ResTys.push_back(MVT::i32);
1863  ResTys.push_back(MVT::Other);
1864
1865  SDValue Pred = getAL(CurDAG);
1866  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
1867  SmallVector<SDValue, 7> Ops;
1868
1869  // Double registers and VST1/VST2 quad registers are directly supported.
1870  if (is64BitVector || NumVecs <= 2) {
1871    SDValue SrcReg;
1872    if (NumVecs == 1) {
1873      SrcReg = N->getOperand(Vec0Idx);
1874    } else if (is64BitVector) {
1875      // Form a REG_SEQUENCE to force register allocation.
1876      SDValue V0 = N->getOperand(Vec0Idx + 0);
1877      SDValue V1 = N->getOperand(Vec0Idx + 1);
1878      if (NumVecs == 2)
1879        SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
1880      else {
1881        SDValue V2 = N->getOperand(Vec0Idx + 2);
1882        // If it's a vst3, form a quad D-register and leave the last part as
1883        // an undef.
1884        SDValue V3 = (NumVecs == 3)
1885          ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
1886          : N->getOperand(Vec0Idx + 3);
1887        SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
1888      }
1889    } else {
1890      // Form a QQ register.
1891      SDValue Q0 = N->getOperand(Vec0Idx);
1892      SDValue Q1 = N->getOperand(Vec0Idx + 1);
1893      SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
1894    }
1895
1896    unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
1897                    QOpcodes0[OpcodeIndex]);
1898    Ops.push_back(MemAddr);
1899    Ops.push_back(Align);
1900    if (isUpdating) {
1901      SDValue Inc = N->getOperand(AddrOpIdx + 1);
1902      // FIXME: VST1/VST2 fixed increment doesn't need Reg0. Remove the reg0
1903      // case entirely when the rest are updated to that form, too.
1904      if (NumVecs <= 2 && !isa<ConstantSDNode>(Inc.getNode()))
1905        Opc = getVLDSTRegisterUpdateOpcode(Opc);
1906      // We use a VST1 for v1i64 even if the pseudo says vld2/3/4, so
1907      // check for that explicitly too. Horribly hacky, but temporary.
1908      if ((NumVecs > 2 && Opc != ARM::VST1q64wb_fixed) ||
1909          !isa<ConstantSDNode>(Inc.getNode()))
1910        Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
1911    }
1912    Ops.push_back(SrcReg);
1913    Ops.push_back(Pred);
1914    Ops.push_back(Reg0);
1915    Ops.push_back(Chain);
1916    SDNode *VSt =
1917      CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
1918
1919    // Transfer memoperands.
1920    cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
1921
1922    return VSt;
1923  }
1924
1925  // Otherwise, quad registers are stored with two separate instructions,
1926  // where one stores the even registers and the other stores the odd registers.
1927
1928  // Form the QQQQ REG_SEQUENCE.
1929  SDValue V0 = N->getOperand(Vec0Idx + 0);
1930  SDValue V1 = N->getOperand(Vec0Idx + 1);
1931  SDValue V2 = N->getOperand(Vec0Idx + 2);
1932  SDValue V3 = (NumVecs == 3)
1933    ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
1934    : N->getOperand(Vec0Idx + 3);
1935  SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
1936
1937  // Store the even D registers.  This is always an updating store, so that it
1938  // provides the address to the second store for the odd subregs.
1939  const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
1940  SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
1941                                        MemAddr.getValueType(),
1942                                        MVT::Other, OpsA, 7);
1943  cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1);
1944  Chain = SDValue(VStA, 1);
1945
1946  // Store the odd D registers.
1947  Ops.push_back(SDValue(VStA, 0));
1948  Ops.push_back(Align);
1949  if (isUpdating) {
1950    SDValue Inc = N->getOperand(AddrOpIdx + 1);
1951    assert(isa<ConstantSDNode>(Inc.getNode()) &&
1952           "only constant post-increment update allowed for VST3/4");
1953    (void)Inc;
1954    Ops.push_back(Reg0);
1955  }
1956  Ops.push_back(RegSeq);
1957  Ops.push_back(Pred);
1958  Ops.push_back(Reg0);
1959  Ops.push_back(Chain);
1960  SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
1961                                        Ops.data(), Ops.size());
1962  cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1);
1963  return VStB;
1964}
1965
1966SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
1967                                         bool isUpdating, unsigned NumVecs,
1968                                         const uint16_t *DOpcodes,
1969                                         const uint16_t *QOpcodes) {
1970  assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
1971  DebugLoc dl = N->getDebugLoc();
1972
1973  SDValue MemAddr, Align;
1974  unsigned AddrOpIdx = isUpdating ? 1 : 2;
1975  unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
1976  if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
1977    return NULL;
1978
1979  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1980  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
1981
1982  SDValue Chain = N->getOperand(0);
1983  unsigned Lane =
1984    cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
1985  EVT VT = N->getOperand(Vec0Idx).getValueType();
1986  bool is64BitVector = VT.is64BitVector();
1987
1988  unsigned Alignment = 0;
1989  if (NumVecs != 3) {
1990    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1991    unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
1992    if (Alignment > NumBytes)
1993      Alignment = NumBytes;
1994    if (Alignment < 8 && Alignment < NumBytes)
1995      Alignment = 0;
1996    // Alignment must be a power of two; make sure of that.
1997    Alignment = (Alignment & -Alignment);
1998    if (Alignment == 1)
1999      Alignment = 0;
2000  }
2001  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
2002
2003  unsigned OpcodeIndex;
2004  switch (VT.getSimpleVT().SimpleTy) {
2005  default: llvm_unreachable("unhandled vld/vst lane type");
2006    // Double-register operations:
2007  case MVT::v8i8:  OpcodeIndex = 0; break;
2008  case MVT::v4i16: OpcodeIndex = 1; break;
2009  case MVT::v2f32:
2010  case MVT::v2i32: OpcodeIndex = 2; break;
2011    // Quad-register operations:
2012  case MVT::v8i16: OpcodeIndex = 0; break;
2013  case MVT::v4f32:
2014  case MVT::v4i32: OpcodeIndex = 1; break;
2015  }
2016
2017  std::vector<EVT> ResTys;
2018  if (IsLoad) {
2019    unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2020    if (!is64BitVector)
2021      ResTyElts *= 2;
2022    ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
2023                                      MVT::i64, ResTyElts));
2024  }
2025  if (isUpdating)
2026    ResTys.push_back(MVT::i32);
2027  ResTys.push_back(MVT::Other);
2028
2029  SDValue Pred = getAL(CurDAG);
2030  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2031
2032  SmallVector<SDValue, 8> Ops;
2033  Ops.push_back(MemAddr);
2034  Ops.push_back(Align);
2035  if (isUpdating) {
2036    SDValue Inc = N->getOperand(AddrOpIdx + 1);
2037    Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc);
2038  }
2039
2040  SDValue SuperReg;
2041  SDValue V0 = N->getOperand(Vec0Idx + 0);
2042  SDValue V1 = N->getOperand(Vec0Idx + 1);
2043  if (NumVecs == 2) {
2044    if (is64BitVector)
2045      SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2046    else
2047      SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
2048  } else {
2049    SDValue V2 = N->getOperand(Vec0Idx + 2);
2050    SDValue V3 = (NumVecs == 3)
2051      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2052      : N->getOperand(Vec0Idx + 3);
2053    if (is64BitVector)
2054      SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2055    else
2056      SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2057  }
2058  Ops.push_back(SuperReg);
2059  Ops.push_back(getI32Imm(Lane));
2060  Ops.push_back(Pred);
2061  Ops.push_back(Reg0);
2062  Ops.push_back(Chain);
2063
2064  unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2065                                  QOpcodes[OpcodeIndex]);
2066  SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys,
2067                                         Ops.data(), Ops.size());
2068  cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1);
2069  if (!IsLoad)
2070    return VLdLn;
2071
2072  // Extract the subregisters.
2073  SuperReg = SDValue(VLdLn, 0);
2074  assert(ARM::dsub_7 == ARM::dsub_0+7 &&
2075         ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering");
2076  unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2077  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2078    ReplaceUses(SDValue(N, Vec),
2079                CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2080  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
2081  if (isUpdating)
2082    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
2083  return NULL;
2084}
2085
2086SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating,
2087                                      unsigned NumVecs,
2088                                      const uint16_t *Opcodes) {
2089  assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
2090  DebugLoc dl = N->getDebugLoc();
2091
2092  SDValue MemAddr, Align;
2093  if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align))
2094    return NULL;
2095
2096  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2097  MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2098
2099  SDValue Chain = N->getOperand(0);
2100  EVT VT = N->getValueType(0);
2101
2102  unsigned Alignment = 0;
2103  if (NumVecs != 3) {
2104    Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2105    unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8;
2106    if (Alignment > NumBytes)
2107      Alignment = NumBytes;
2108    if (Alignment < 8 && Alignment < NumBytes)
2109      Alignment = 0;
2110    // Alignment must be a power of two; make sure of that.
2111    Alignment = (Alignment & -Alignment);
2112    if (Alignment == 1)
2113      Alignment = 0;
2114  }
2115  Align = CurDAG->getTargetConstant(Alignment, MVT::i32);
2116
2117  unsigned OpcodeIndex;
2118  switch (VT.getSimpleVT().SimpleTy) {
2119  default: llvm_unreachable("unhandled vld-dup type");
2120  case MVT::v8i8:  OpcodeIndex = 0; break;
2121  case MVT::v4i16: OpcodeIndex = 1; break;
2122  case MVT::v2f32:
2123  case MVT::v2i32: OpcodeIndex = 2; break;
2124  }
2125
2126  SDValue Pred = getAL(CurDAG);
2127  SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2128  SDValue SuperReg;
2129  unsigned Opc = Opcodes[OpcodeIndex];
2130  SmallVector<SDValue, 6> Ops;
2131  Ops.push_back(MemAddr);
2132  Ops.push_back(Align);
2133  if (isUpdating) {
2134    // fixed-stride update instructions don't have an explicit writeback
2135    // operand. It's implicit in the opcode itself.
2136    SDValue Inc = N->getOperand(2);
2137    if (!isa<ConstantSDNode>(Inc.getNode()))
2138      Ops.push_back(Inc);
2139    // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
2140    else if (NumVecs > 2)
2141      Ops.push_back(Reg0);
2142  }
2143  Ops.push_back(Pred);
2144  Ops.push_back(Reg0);
2145  Ops.push_back(Chain);
2146
2147  unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2148  std::vector<EVT> ResTys;
2149  ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts));
2150  if (isUpdating)
2151    ResTys.push_back(MVT::i32);
2152  ResTys.push_back(MVT::Other);
2153  SDNode *VLdDup =
2154    CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size());
2155  cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1);
2156  SuperReg = SDValue(VLdDup, 0);
2157
2158  // Extract the subregisters.
2159  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
2160  unsigned SubIdx = ARM::dsub_0;
2161  for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2162    ReplaceUses(SDValue(N, Vec),
2163                CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
2164  ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
2165  if (isUpdating)
2166    ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
2167  return NULL;
2168}
2169
2170SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs,
2171                                    unsigned Opc) {
2172  assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range");
2173  DebugLoc dl = N->getDebugLoc();
2174  EVT VT = N->getValueType(0);
2175  unsigned FirstTblReg = IsExt ? 2 : 1;
2176
2177  // Form a REG_SEQUENCE to force register allocation.
2178  SDValue RegSeq;
2179  SDValue V0 = N->getOperand(FirstTblReg + 0);
2180  SDValue V1 = N->getOperand(FirstTblReg + 1);
2181  if (NumVecs == 2)
2182    RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
2183  else {
2184    SDValue V2 = N->getOperand(FirstTblReg + 2);
2185    // If it's a vtbl3, form a quad D-register and leave the last part as
2186    // an undef.
2187    SDValue V3 = (NumVecs == 3)
2188      ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2189      : N->getOperand(FirstTblReg + 3);
2190    RegSeq = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2191  }
2192
2193  SmallVector<SDValue, 6> Ops;
2194  if (IsExt)
2195    Ops.push_back(N->getOperand(1));
2196  Ops.push_back(RegSeq);
2197  Ops.push_back(N->getOperand(FirstTblReg + NumVecs));
2198  Ops.push_back(getAL(CurDAG)); // predicate
2199  Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register
2200  return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size());
2201}
2202
2203SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
2204                                                     bool isSigned) {
2205  if (!Subtarget->hasV6T2Ops())
2206    return NULL;
2207
2208  unsigned Opc = isSigned
2209    ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
2210    : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
2211
2212  // For unsigned extracts, check for a shift right and mask
2213  unsigned And_imm = 0;
2214  if (N->getOpcode() == ISD::AND) {
2215    if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
2216
2217      // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2218      if (And_imm & (And_imm + 1))
2219        return NULL;
2220
2221      unsigned Srl_imm = 0;
2222      if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
2223                                Srl_imm)) {
2224        assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2225
2226        // Note: The width operand is encoded as width-1.
2227        unsigned Width = CountTrailingOnes_32(And_imm) - 1;
2228        unsigned LSB = Srl_imm;
2229
2230        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2231
2232        if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
2233          // It's cheaper to use a right shift to extract the top bits.
2234          if (Subtarget->isThumb()) {
2235            Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
2236            SDValue Ops[] = { N->getOperand(0).getOperand(0),
2237                              CurDAG->getTargetConstant(LSB, MVT::i32),
2238                              getAL(CurDAG), Reg0, Reg0 };
2239            return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2240          }
2241
2242          // ARM models shift instructions as MOVsi with shifter operand.
2243          ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
2244          SDValue ShOpc =
2245            CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB),
2246                                      MVT::i32);
2247          SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
2248                            getAL(CurDAG), Reg0, Reg0 };
2249          return CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops, 5);
2250        }
2251
2252        SDValue Ops[] = { N->getOperand(0).getOperand(0),
2253                          CurDAG->getTargetConstant(LSB, MVT::i32),
2254                          CurDAG->getTargetConstant(Width, MVT::i32),
2255          getAL(CurDAG), Reg0 };
2256        return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2257      }
2258    }
2259    return NULL;
2260  }
2261
2262  // Otherwise, we're looking for a shift of a shift
2263  unsigned Shl_imm = 0;
2264  if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
2265    assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
2266    unsigned Srl_imm = 0;
2267    if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
2268      assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
2269      // Note: The width operand is encoded as width-1.
2270      unsigned Width = 32 - Srl_imm - 1;
2271      int LSB = Srl_imm - Shl_imm;
2272      if (LSB < 0)
2273        return NULL;
2274      SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2275      SDValue Ops[] = { N->getOperand(0).getOperand(0),
2276                        CurDAG->getTargetConstant(LSB, MVT::i32),
2277                        CurDAG->getTargetConstant(Width, MVT::i32),
2278                        getAL(CurDAG), Reg0 };
2279      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2280    }
2281  }
2282  return NULL;
2283}
2284
2285SDNode *ARMDAGToDAGISel::
2286SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2287                    ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2288  SDValue CPTmp0;
2289  SDValue CPTmp1;
2290  if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) {
2291    unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
2292    unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
2293    unsigned Opc = 0;
2294    switch (SOShOp) {
2295    case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
2296    case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
2297    case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
2298    case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
2299    default:
2300      llvm_unreachable("Unknown so_reg opcode!");
2301    }
2302    SDValue SOShImm =
2303      CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
2304    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2305    SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
2306    return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
2307  }
2308  return 0;
2309}
2310
2311SDNode *ARMDAGToDAGISel::
2312SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2313                     ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2314  SDValue CPTmp0;
2315  SDValue CPTmp1;
2316  SDValue CPTmp2;
2317  if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) {
2318    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2319    SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag };
2320    return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6);
2321  }
2322
2323  if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
2324    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2325    SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
2326    return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7);
2327  }
2328  return 0;
2329}
2330
2331SDNode *ARMDAGToDAGISel::
2332SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2333                  ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2334  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
2335  if (!T)
2336    return 0;
2337
2338  unsigned Opc = 0;
2339  unsigned TrueImm = T->getZExtValue();
2340  if (is_t2_so_imm(TrueImm)) {
2341    Opc = ARM::t2MOVCCi;
2342  } else if (TrueImm <= 0xffff) {
2343    Opc = ARM::t2MOVCCi16;
2344  } else if (is_t2_so_imm_not(TrueImm)) {
2345    TrueImm = ~TrueImm;
2346    Opc = ARM::t2MVNCCi;
2347  } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) {
2348    // Large immediate.
2349    Opc = ARM::t2MOVCCi32imm;
2350  }
2351
2352  if (Opc) {
2353    SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
2354    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2355    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
2356    return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2357  }
2358
2359  return 0;
2360}
2361
2362SDNode *ARMDAGToDAGISel::
2363SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
2364                   ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
2365  ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
2366  if (!T)
2367    return 0;
2368
2369  unsigned Opc = 0;
2370  unsigned TrueImm = T->getZExtValue();
2371  bool isSoImm = is_so_imm(TrueImm);
2372  if (isSoImm) {
2373    Opc = ARM::MOVCCi;
2374  } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) {
2375    Opc = ARM::MOVCCi16;
2376  } else if (is_so_imm_not(TrueImm)) {
2377    TrueImm = ~TrueImm;
2378    Opc = ARM::MVNCCi;
2379  } else if (TrueVal.getNode()->hasOneUse() &&
2380             (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) {
2381    // Large immediate.
2382    Opc = ARM::MOVCCi32imm;
2383  }
2384
2385  if (Opc) {
2386    SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32);
2387    SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
2388    SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
2389    return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2390  }
2391
2392  return 0;
2393}
2394
2395SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
2396  EVT VT = N->getValueType(0);
2397  SDValue FalseVal = N->getOperand(0);
2398  SDValue TrueVal  = N->getOperand(1);
2399  SDValue CC = N->getOperand(2);
2400  SDValue CCR = N->getOperand(3);
2401  SDValue InFlag = N->getOperand(4);
2402  assert(CC.getOpcode() == ISD::Constant);
2403  assert(CCR.getOpcode() == ISD::Register);
2404  ARMCC::CondCodes CCVal =
2405    (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
2406
2407  if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
2408    // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2409    // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
2410    // Pattern complexity = 18  cost = 1  size = 0
2411    if (Subtarget->isThumb()) {
2412      SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
2413                                        CCVal, CCR, InFlag);
2414      if (!Res)
2415        Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
2416                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2417      if (Res)
2418        return Res;
2419    } else {
2420      SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
2421                                         CCVal, CCR, InFlag);
2422      if (!Res)
2423        Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
2424                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2425      if (Res)
2426        return Res;
2427    }
2428
2429    // Pattern: (ARMcmov:i32 GPR:i32:$false,
2430    //             (imm:i32)<<P:Pred_so_imm>>:$true,
2431    //             (imm:i32):$cc)
2432    // Emits: (MOVCCi:i32 GPR:i32:$false,
2433    //           (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
2434    // Pattern complexity = 10  cost = 1  size = 0
2435    if (Subtarget->isThumb()) {
2436      SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal,
2437                                        CCVal, CCR, InFlag);
2438      if (!Res)
2439        Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal,
2440                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2441      if (Res)
2442        return Res;
2443    } else {
2444      SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal,
2445                                         CCVal, CCR, InFlag);
2446      if (!Res)
2447        Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal,
2448                               ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
2449      if (Res)
2450        return Res;
2451    }
2452  }
2453
2454  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2455  // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2456  // Pattern complexity = 6  cost = 1  size = 0
2457  //
2458  // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2459  // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
2460  // Pattern complexity = 6  cost = 11  size = 0
2461  //
2462  // Also VMOVScc and VMOVDcc.
2463  SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
2464  SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
2465  unsigned Opc = 0;
2466  switch (VT.getSimpleVT().SimpleTy) {
2467  default: llvm_unreachable("Illegal conditional move type!");
2468  case MVT::i32:
2469    Opc = Subtarget->isThumb()
2470      ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
2471      : ARM::MOVCCr;
2472    break;
2473  case MVT::f32:
2474    Opc = ARM::VMOVScc;
2475    break;
2476  case MVT::f64:
2477    Opc = ARM::VMOVDcc;
2478    break;
2479  }
2480  return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
2481}
2482
2483/// Target-specific DAG combining for ISD::XOR.
2484/// Target-independent combining lowers SELECT_CC nodes of the form
2485/// select_cc setg[ge] X,  0,  X, -X
2486/// select_cc setgt    X, -1,  X, -X
2487/// select_cc setl[te] X,  0, -X,  X
2488/// select_cc setlt    X,  1, -X,  X
2489/// which represent Integer ABS into:
2490/// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2491/// ARM instruction selection detects the latter and matches it to
2492/// ARM::ABS or ARM::t2ABS machine node.
2493SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){
2494  SDValue XORSrc0 = N->getOperand(0);
2495  SDValue XORSrc1 = N->getOperand(1);
2496  EVT VT = N->getValueType(0);
2497
2498  if (Subtarget->isThumb1Only())
2499    return NULL;
2500
2501  if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
2502    return NULL;
2503
2504  SDValue ADDSrc0 = XORSrc0.getOperand(0);
2505  SDValue ADDSrc1 = XORSrc0.getOperand(1);
2506  SDValue SRASrc0 = XORSrc1.getOperand(0);
2507  SDValue SRASrc1 = XORSrc1.getOperand(1);
2508  ConstantSDNode *SRAConstant =  dyn_cast<ConstantSDNode>(SRASrc1);
2509  EVT XType = SRASrc0.getValueType();
2510  unsigned Size = XType.getSizeInBits() - 1;
2511
2512  if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
2513      XType.isInteger() && SRAConstant != NULL &&
2514      Size == SRAConstant->getZExtValue()) {
2515    unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
2516    return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
2517  }
2518
2519  return NULL;
2520}
2521
2522SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
2523  // The only time a CONCAT_VECTORS operation can have legal types is when
2524  // two 64-bit vectors are concatenated to a 128-bit vector.
2525  EVT VT = N->getValueType(0);
2526  if (!VT.is128BitVector() || N->getNumOperands() != 2)
2527    llvm_unreachable("unexpected CONCAT_VECTORS");
2528  return createDRegPairNode(VT, N->getOperand(0), N->getOperand(1));
2529}
2530
2531SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
2532  SmallVector<SDValue, 6> Ops;
2533  Ops.push_back(Node->getOperand(1)); // Ptr
2534  Ops.push_back(Node->getOperand(2)); // Low part of Val1
2535  Ops.push_back(Node->getOperand(3)); // High part of Val1
2536  if (Opc == ARM::ATOMCMPXCHG6432) {
2537    Ops.push_back(Node->getOperand(4)); // Low part of Val2
2538    Ops.push_back(Node->getOperand(5)); // High part of Val2
2539  }
2540  Ops.push_back(Node->getOperand(0)); // Chain
2541  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
2542  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
2543  SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
2544                                           MVT::i32, MVT::i32, MVT::Other,
2545                                           Ops.data() ,Ops.size());
2546  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
2547  return ResNode;
2548}
2549
2550SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
2551  DebugLoc dl = N->getDebugLoc();
2552
2553  if (N->isMachineOpcode())
2554    return NULL;   // Already selected.
2555
2556  switch (N->getOpcode()) {
2557  default: break;
2558  case ISD::INLINEASM: {
2559    SDNode *ResNode = SelectInlineAsm(N);
2560    if (ResNode)
2561      return ResNode;
2562    break;
2563  }
2564  case ISD::XOR: {
2565    // Select special operations if XOR node forms integer ABS pattern
2566    SDNode *ResNode = SelectABSOp(N);
2567    if (ResNode)
2568      return ResNode;
2569    // Other cases are autogenerated.
2570    break;
2571  }
2572  case ISD::Constant: {
2573    unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
2574    bool UseCP = true;
2575    if (Subtarget->hasThumb2())
2576      // Thumb2-aware targets have the MOVT instruction, so all immediates can
2577      // be done with MOV + MOVT, at worst.
2578      UseCP = 0;
2579    else {
2580      if (Subtarget->isThumb()) {
2581        UseCP = (Val > 255 &&                          // MOV
2582                 ~Val > 255 &&                         // MOV + MVN
2583                 !ARM_AM::isThumbImmShiftedVal(Val));  // MOV + LSL
2584      } else
2585        UseCP = (ARM_AM::getSOImmVal(Val) == -1 &&     // MOV
2586                 ARM_AM::getSOImmVal(~Val) == -1 &&    // MVN
2587                 !ARM_AM::isSOImmTwoPartVal(Val));     // two instrs.
2588    }
2589
2590    if (UseCP) {
2591      SDValue CPIdx =
2592        CurDAG->getTargetConstantPool(ConstantInt::get(
2593                                  Type::getInt32Ty(*CurDAG->getContext()), Val),
2594                                      TLI.getPointerTy());
2595
2596      SDNode *ResNode;
2597      if (Subtarget->isThumb1Only()) {
2598        SDValue Pred = getAL(CurDAG);
2599        SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2600        SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
2601        ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
2602                                         Ops, 4);
2603      } else {
2604        SDValue Ops[] = {
2605          CPIdx,
2606          CurDAG->getTargetConstant(0, MVT::i32),
2607          getAL(CurDAG),
2608          CurDAG->getRegister(0, MVT::i32),
2609          CurDAG->getEntryNode()
2610        };
2611        ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
2612                                       Ops, 5);
2613      }
2614      ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
2615      return NULL;
2616    }
2617
2618    // Other cases are autogenerated.
2619    break;
2620  }
2621  case ISD::FrameIndex: {
2622    // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2623    int FI = cast<FrameIndexSDNode>(N)->getIndex();
2624    SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
2625    if (Subtarget->isThumb1Only()) {
2626      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2627                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2628      return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4);
2629    } else {
2630      unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
2631                      ARM::t2ADDri : ARM::ADDri);
2632      SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
2633                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2634                        CurDAG->getRegister(0, MVT::i32) };
2635      return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
2636    }
2637  }
2638  case ISD::SRL:
2639    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2640      return I;
2641    break;
2642  case ISD::SRA:
2643    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
2644      return I;
2645    break;
2646  case ISD::MUL:
2647    if (Subtarget->isThumb1Only())
2648      break;
2649    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
2650      unsigned RHSV = C->getZExtValue();
2651      if (!RHSV) break;
2652      if (isPowerOf2_32(RHSV-1)) {  // 2^n+1?
2653        unsigned ShImm = Log2_32(RHSV-1);
2654        if (ShImm >= 32)
2655          break;
2656        SDValue V = N->getOperand(0);
2657        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2658        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2659        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2660        if (Subtarget->isThumb()) {
2661          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2662          return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
2663        } else {
2664          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2665          return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7);
2666        }
2667      }
2668      if (isPowerOf2_32(RHSV+1)) {  // 2^n-1?
2669        unsigned ShImm = Log2_32(RHSV+1);
2670        if (ShImm >= 32)
2671          break;
2672        SDValue V = N->getOperand(0);
2673        ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
2674        SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
2675        SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2676        if (Subtarget->isThumb()) {
2677          SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2678          return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6);
2679        } else {
2680          SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
2681          return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7);
2682        }
2683      }
2684    }
2685    break;
2686  case ISD::AND: {
2687    // Check for unsigned bitfield extract
2688    if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
2689      return I;
2690
2691    // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2692    // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2693    // are entirely contributed by c2 and lower 16-bits are entirely contributed
2694    // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2695    // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2696    EVT VT = N->getValueType(0);
2697    if (VT != MVT::i32)
2698      break;
2699    unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
2700      ? ARM::t2MOVTi16
2701      : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
2702    if (!Opc)
2703      break;
2704    SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2705    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2706    if (!N1C)
2707      break;
2708    if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
2709      SDValue N2 = N0.getOperand(1);
2710      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
2711      if (!N2C)
2712        break;
2713      unsigned N1CVal = N1C->getZExtValue();
2714      unsigned N2CVal = N2C->getZExtValue();
2715      if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
2716          (N1CVal & 0xffffU) == 0xffffU &&
2717          (N2CVal & 0xffffU) == 0x0U) {
2718        SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
2719                                                  MVT::i32);
2720        SDValue Ops[] = { N0.getOperand(0), Imm16,
2721                          getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2722        return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
2723      }
2724    }
2725    break;
2726  }
2727  case ARMISD::VMOVRRD:
2728    return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
2729                                  N->getOperand(0), getAL(CurDAG),
2730                                  CurDAG->getRegister(0, MVT::i32));
2731  case ISD::UMUL_LOHI: {
2732    if (Subtarget->isThumb1Only())
2733      break;
2734    if (Subtarget->isThumb()) {
2735      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2736                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2737                        CurDAG->getRegister(0, MVT::i32) };
2738      return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4);
2739    } else {
2740      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2741                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2742                        CurDAG->getRegister(0, MVT::i32) };
2743      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2744                                    ARM::UMULL : ARM::UMULLv5,
2745                                    dl, MVT::i32, MVT::i32, Ops, 5);
2746    }
2747  }
2748  case ISD::SMUL_LOHI: {
2749    if (Subtarget->isThumb1Only())
2750      break;
2751    if (Subtarget->isThumb()) {
2752      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2753                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
2754      return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4);
2755    } else {
2756      SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
2757                        getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
2758                        CurDAG->getRegister(0, MVT::i32) };
2759      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2760                                    ARM::SMULL : ARM::SMULLv5,
2761                                    dl, MVT::i32, MVT::i32, Ops, 5);
2762    }
2763  }
2764  case ARMISD::UMLAL:{
2765    if (Subtarget->isThumb()) {
2766      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2767                        N->getOperand(3), getAL(CurDAG),
2768                        CurDAG->getRegister(0, MVT::i32)};
2769      return CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops, 6);
2770    }else{
2771      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2772                        N->getOperand(3), getAL(CurDAG),
2773                        CurDAG->getRegister(0, MVT::i32),
2774                        CurDAG->getRegister(0, MVT::i32) };
2775      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2776                                      ARM::UMLAL : ARM::UMLALv5,
2777                                      dl, MVT::i32, MVT::i32, Ops, 7);
2778    }
2779  }
2780  case ARMISD::SMLAL:{
2781    if (Subtarget->isThumb()) {
2782      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2783                        N->getOperand(3), getAL(CurDAG),
2784                        CurDAG->getRegister(0, MVT::i32)};
2785      return CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops, 6);
2786    }else{
2787      SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
2788                        N->getOperand(3), getAL(CurDAG),
2789                        CurDAG->getRegister(0, MVT::i32),
2790                        CurDAG->getRegister(0, MVT::i32) };
2791      return CurDAG->getMachineNode(Subtarget->hasV6Ops() ?
2792                                      ARM::SMLAL : ARM::SMLALv5,
2793                                      dl, MVT::i32, MVT::i32, Ops, 7);
2794    }
2795  }
2796  case ISD::LOAD: {
2797    SDNode *ResNode = 0;
2798    if (Subtarget->isThumb() && Subtarget->hasThumb2())
2799      ResNode = SelectT2IndexedLoad(N);
2800    else
2801      ResNode = SelectARMIndexedLoad(N);
2802    if (ResNode)
2803      return ResNode;
2804    // Other cases are autogenerated.
2805    break;
2806  }
2807  case ARMISD::BRCOND: {
2808    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2809    // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2810    // Pattern complexity = 6  cost = 1  size = 0
2811
2812    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2813    // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
2814    // Pattern complexity = 6  cost = 1  size = 0
2815
2816    // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
2817    // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
2818    // Pattern complexity = 6  cost = 1  size = 0
2819
2820    unsigned Opc = Subtarget->isThumb() ?
2821      ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
2822    SDValue Chain = N->getOperand(0);
2823    SDValue N1 = N->getOperand(1);
2824    SDValue N2 = N->getOperand(2);
2825    SDValue N3 = N->getOperand(3);
2826    SDValue InFlag = N->getOperand(4);
2827    assert(N1.getOpcode() == ISD::BasicBlock);
2828    assert(N2.getOpcode() == ISD::Constant);
2829    assert(N3.getOpcode() == ISD::Register);
2830
2831    SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
2832                               cast<ConstantSDNode>(N2)->getZExtValue()),
2833                               MVT::i32);
2834    SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
2835    SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
2836                                             MVT::Glue, Ops, 5);
2837    Chain = SDValue(ResNode, 0);
2838    if (N->getNumValues() == 2) {
2839      InFlag = SDValue(ResNode, 1);
2840      ReplaceUses(SDValue(N, 1), InFlag);
2841    }
2842    ReplaceUses(SDValue(N, 0),
2843                SDValue(Chain.getNode(), Chain.getResNo()));
2844    return NULL;
2845  }
2846  case ARMISD::CMOV:
2847    return SelectCMOVOp(N);
2848  case ARMISD::VZIP: {
2849    unsigned Opc = 0;
2850    EVT VT = N->getValueType(0);
2851    switch (VT.getSimpleVT().SimpleTy) {
2852    default: return NULL;
2853    case MVT::v8i8:  Opc = ARM::VZIPd8; break;
2854    case MVT::v4i16: Opc = ARM::VZIPd16; break;
2855    case MVT::v2f32:
2856    // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
2857    case MVT::v2i32: Opc = ARM::VTRNd32; break;
2858    case MVT::v16i8: Opc = ARM::VZIPq8; break;
2859    case MVT::v8i16: Opc = ARM::VZIPq16; break;
2860    case MVT::v4f32:
2861    case MVT::v4i32: Opc = ARM::VZIPq32; break;
2862    }
2863    SDValue Pred = getAL(CurDAG);
2864    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2865    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2866    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2867  }
2868  case ARMISD::VUZP: {
2869    unsigned Opc = 0;
2870    EVT VT = N->getValueType(0);
2871    switch (VT.getSimpleVT().SimpleTy) {
2872    default: return NULL;
2873    case MVT::v8i8:  Opc = ARM::VUZPd8; break;
2874    case MVT::v4i16: Opc = ARM::VUZPd16; break;
2875    case MVT::v2f32:
2876    // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
2877    case MVT::v2i32: Opc = ARM::VTRNd32; break;
2878    case MVT::v16i8: Opc = ARM::VUZPq8; break;
2879    case MVT::v8i16: Opc = ARM::VUZPq16; break;
2880    case MVT::v4f32:
2881    case MVT::v4i32: Opc = ARM::VUZPq32; break;
2882    }
2883    SDValue Pred = getAL(CurDAG);
2884    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2885    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2886    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2887  }
2888  case ARMISD::VTRN: {
2889    unsigned Opc = 0;
2890    EVT VT = N->getValueType(0);
2891    switch (VT.getSimpleVT().SimpleTy) {
2892    default: return NULL;
2893    case MVT::v8i8:  Opc = ARM::VTRNd8; break;
2894    case MVT::v4i16: Opc = ARM::VTRNd16; break;
2895    case MVT::v2f32:
2896    case MVT::v2i32: Opc = ARM::VTRNd32; break;
2897    case MVT::v16i8: Opc = ARM::VTRNq8; break;
2898    case MVT::v8i16: Opc = ARM::VTRNq16; break;
2899    case MVT::v4f32:
2900    case MVT::v4i32: Opc = ARM::VTRNq32; break;
2901    }
2902    SDValue Pred = getAL(CurDAG);
2903    SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2904    SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
2905    return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
2906  }
2907  case ARMISD::BUILD_VECTOR: {
2908    EVT VecVT = N->getValueType(0);
2909    EVT EltVT = VecVT.getVectorElementType();
2910    unsigned NumElts = VecVT.getVectorNumElements();
2911    if (EltVT == MVT::f64) {
2912      assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
2913      return createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
2914    }
2915    assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
2916    if (NumElts == 2)
2917      return createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1));
2918    assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
2919    return createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
2920                     N->getOperand(2), N->getOperand(3));
2921  }
2922
2923  case ARMISD::VLD2DUP: {
2924    static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
2925                                        ARM::VLD2DUPd32 };
2926    return SelectVLDDup(N, false, 2, Opcodes);
2927  }
2928
2929  case ARMISD::VLD3DUP: {
2930    static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
2931                                        ARM::VLD3DUPd16Pseudo,
2932                                        ARM::VLD3DUPd32Pseudo };
2933    return SelectVLDDup(N, false, 3, Opcodes);
2934  }
2935
2936  case ARMISD::VLD4DUP: {
2937    static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
2938                                        ARM::VLD4DUPd16Pseudo,
2939                                        ARM::VLD4DUPd32Pseudo };
2940    return SelectVLDDup(N, false, 4, Opcodes);
2941  }
2942
2943  case ARMISD::VLD2DUP_UPD: {
2944    static const uint16_t Opcodes[] = { ARM::VLD2DUPd8wb_fixed,
2945                                        ARM::VLD2DUPd16wb_fixed,
2946                                        ARM::VLD2DUPd32wb_fixed };
2947    return SelectVLDDup(N, true, 2, Opcodes);
2948  }
2949
2950  case ARMISD::VLD3DUP_UPD: {
2951    static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
2952                                        ARM::VLD3DUPd16Pseudo_UPD,
2953                                        ARM::VLD3DUPd32Pseudo_UPD };
2954    return SelectVLDDup(N, true, 3, Opcodes);
2955  }
2956
2957  case ARMISD::VLD4DUP_UPD: {
2958    static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
2959                                        ARM::VLD4DUPd16Pseudo_UPD,
2960                                        ARM::VLD4DUPd32Pseudo_UPD };
2961    return SelectVLDDup(N, true, 4, Opcodes);
2962  }
2963
2964  case ARMISD::VLD1_UPD: {
2965    static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
2966                                         ARM::VLD1d16wb_fixed,
2967                                         ARM::VLD1d32wb_fixed,
2968                                         ARM::VLD1d64wb_fixed };
2969    static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
2970                                         ARM::VLD1q16wb_fixed,
2971                                         ARM::VLD1q32wb_fixed,
2972                                         ARM::VLD1q64wb_fixed };
2973    return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0);
2974  }
2975
2976  case ARMISD::VLD2_UPD: {
2977    static const uint16_t DOpcodes[] = { ARM::VLD2d8wb_fixed,
2978                                         ARM::VLD2d16wb_fixed,
2979                                         ARM::VLD2d32wb_fixed,
2980                                         ARM::VLD1q64wb_fixed};
2981    static const uint16_t QOpcodes[] = { ARM::VLD2q8PseudoWB_fixed,
2982                                         ARM::VLD2q16PseudoWB_fixed,
2983                                         ARM::VLD2q32PseudoWB_fixed };
2984    return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0);
2985  }
2986
2987  case ARMISD::VLD3_UPD: {
2988    static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
2989                                         ARM::VLD3d16Pseudo_UPD,
2990                                         ARM::VLD3d32Pseudo_UPD,
2991                                         ARM::VLD1q64wb_fixed};
2992    static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
2993                                          ARM::VLD3q16Pseudo_UPD,
2994                                          ARM::VLD3q32Pseudo_UPD };
2995    static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
2996                                          ARM::VLD3q16oddPseudo_UPD,
2997                                          ARM::VLD3q32oddPseudo_UPD };
2998    return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
2999  }
3000
3001  case ARMISD::VLD4_UPD: {
3002    static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo_UPD,
3003                                         ARM::VLD4d16Pseudo_UPD,
3004                                         ARM::VLD4d32Pseudo_UPD,
3005                                         ARM::VLD1q64wb_fixed};
3006    static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3007                                          ARM::VLD4q16Pseudo_UPD,
3008                                          ARM::VLD4q32Pseudo_UPD };
3009    static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD,
3010                                          ARM::VLD4q16oddPseudo_UPD,
3011                                          ARM::VLD4q32oddPseudo_UPD };
3012    return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
3013  }
3014
3015  case ARMISD::VLD2LN_UPD: {
3016    static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
3017                                         ARM::VLD2LNd16Pseudo_UPD,
3018                                         ARM::VLD2LNd32Pseudo_UPD };
3019    static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
3020                                         ARM::VLD2LNq32Pseudo_UPD };
3021    return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
3022  }
3023
3024  case ARMISD::VLD3LN_UPD: {
3025    static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
3026                                         ARM::VLD3LNd16Pseudo_UPD,
3027                                         ARM::VLD3LNd32Pseudo_UPD };
3028    static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
3029                                         ARM::VLD3LNq32Pseudo_UPD };
3030    return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
3031  }
3032
3033  case ARMISD::VLD4LN_UPD: {
3034    static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
3035                                         ARM::VLD4LNd16Pseudo_UPD,
3036                                         ARM::VLD4LNd32Pseudo_UPD };
3037    static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
3038                                         ARM::VLD4LNq32Pseudo_UPD };
3039    return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
3040  }
3041
3042  case ARMISD::VST1_UPD: {
3043    static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
3044                                         ARM::VST1d16wb_fixed,
3045                                         ARM::VST1d32wb_fixed,
3046                                         ARM::VST1d64wb_fixed };
3047    static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
3048                                         ARM::VST1q16wb_fixed,
3049                                         ARM::VST1q32wb_fixed,
3050                                         ARM::VST1q64wb_fixed };
3051    return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0);
3052  }
3053
3054  case ARMISD::VST2_UPD: {
3055    static const uint16_t DOpcodes[] = { ARM::VST2d8wb_fixed,
3056                                         ARM::VST2d16wb_fixed,
3057                                         ARM::VST2d32wb_fixed,
3058                                         ARM::VST1q64wb_fixed};
3059    static const uint16_t QOpcodes[] = { ARM::VST2q8PseudoWB_fixed,
3060                                         ARM::VST2q16PseudoWB_fixed,
3061                                         ARM::VST2q32PseudoWB_fixed };
3062    return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0);
3063  }
3064
3065  case ARMISD::VST3_UPD: {
3066    static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
3067                                         ARM::VST3d16Pseudo_UPD,
3068                                         ARM::VST3d32Pseudo_UPD,
3069                                         ARM::VST1d64TPseudoWB_fixed};
3070    static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3071                                          ARM::VST3q16Pseudo_UPD,
3072                                          ARM::VST3q32Pseudo_UPD };
3073    static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
3074                                          ARM::VST3q16oddPseudo_UPD,
3075                                          ARM::VST3q32oddPseudo_UPD };
3076    return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
3077  }
3078
3079  case ARMISD::VST4_UPD: {
3080    static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo_UPD,
3081                                         ARM::VST4d16Pseudo_UPD,
3082                                         ARM::VST4d32Pseudo_UPD,
3083                                         ARM::VST1d64QPseudoWB_fixed};
3084    static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3085                                          ARM::VST4q16Pseudo_UPD,
3086                                          ARM::VST4q32Pseudo_UPD };
3087    static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD,
3088                                          ARM::VST4q16oddPseudo_UPD,
3089                                          ARM::VST4q32oddPseudo_UPD };
3090    return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
3091  }
3092
3093  case ARMISD::VST2LN_UPD: {
3094    static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
3095                                         ARM::VST2LNd16Pseudo_UPD,
3096                                         ARM::VST2LNd32Pseudo_UPD };
3097    static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
3098                                         ARM::VST2LNq32Pseudo_UPD };
3099    return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
3100  }
3101
3102  case ARMISD::VST3LN_UPD: {
3103    static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
3104                                         ARM::VST3LNd16Pseudo_UPD,
3105                                         ARM::VST3LNd32Pseudo_UPD };
3106    static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
3107                                         ARM::VST3LNq32Pseudo_UPD };
3108    return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
3109  }
3110
3111  case ARMISD::VST4LN_UPD: {
3112    static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
3113                                         ARM::VST4LNd16Pseudo_UPD,
3114                                         ARM::VST4LNd32Pseudo_UPD };
3115    static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
3116                                         ARM::VST4LNq32Pseudo_UPD };
3117    return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
3118  }
3119
3120  case ISD::INTRINSIC_VOID:
3121  case ISD::INTRINSIC_W_CHAIN: {
3122    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
3123    switch (IntNo) {
3124    default:
3125      break;
3126
3127    case Intrinsic::arm_ldrexd: {
3128      SDValue MemAddr = N->getOperand(2);
3129      DebugLoc dl = N->getDebugLoc();
3130      SDValue Chain = N->getOperand(0);
3131
3132      bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
3133      unsigned NewOpc = isThumb ? ARM::t2LDREXD :ARM::LDREXD;
3134
3135      // arm_ldrexd returns a i64 value in {i32, i32}
3136      std::vector<EVT> ResTys;
3137      if (isThumb) {
3138        ResTys.push_back(MVT::i32);
3139        ResTys.push_back(MVT::i32);
3140      } else
3141        ResTys.push_back(MVT::Untyped);
3142      ResTys.push_back(MVT::Other);
3143
3144      // Place arguments in the right order.
3145      SmallVector<SDValue, 7> Ops;
3146      Ops.push_back(MemAddr);
3147      Ops.push_back(getAL(CurDAG));
3148      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3149      Ops.push_back(Chain);
3150      SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
3151                                          Ops.size());
3152      // Transfer memoperands.
3153      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3154      MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3155      cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
3156
3157      // Remap uses.
3158      SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
3159      if (!SDValue(N, 0).use_empty()) {
3160        SDValue Result;
3161        if (isThumb)
3162          Result = SDValue(Ld, 0);
3163        else {
3164          SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_0, MVT::i32);
3165          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3166              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3167          Result = SDValue(ResNode,0);
3168        }
3169        ReplaceUses(SDValue(N, 0), Result);
3170      }
3171      if (!SDValue(N, 1).use_empty()) {
3172        SDValue Result;
3173        if (isThumb)
3174          Result = SDValue(Ld, 1);
3175        else {
3176          SDValue SubRegIdx = CurDAG->getTargetConstant(ARM::gsub_1, MVT::i32);
3177          SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
3178              dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
3179          Result = SDValue(ResNode,0);
3180        }
3181        ReplaceUses(SDValue(N, 1), Result);
3182      }
3183      ReplaceUses(SDValue(N, 2), OutChain);
3184      return NULL;
3185    }
3186
3187    case Intrinsic::arm_strexd: {
3188      DebugLoc dl = N->getDebugLoc();
3189      SDValue Chain = N->getOperand(0);
3190      SDValue Val0 = N->getOperand(2);
3191      SDValue Val1 = N->getOperand(3);
3192      SDValue MemAddr = N->getOperand(4);
3193
3194      // Store exclusive double return a i32 value which is the return status
3195      // of the issued store.
3196      EVT ResTys[] = { MVT::i32, MVT::Other };
3197
3198      bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
3199      // Place arguments in the right order.
3200      SmallVector<SDValue, 7> Ops;
3201      if (isThumb) {
3202        Ops.push_back(Val0);
3203        Ops.push_back(Val1);
3204      } else
3205        // arm_strexd uses GPRPair.
3206        Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
3207      Ops.push_back(MemAddr);
3208      Ops.push_back(getAL(CurDAG));
3209      Ops.push_back(CurDAG->getRegister(0, MVT::i32));
3210      Ops.push_back(Chain);
3211
3212      unsigned NewOpc = isThumb ? ARM::t2STREXD : ARM::STREXD;
3213
3214      SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(),
3215                                          Ops.size());
3216      // Transfer memoperands.
3217      MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
3218      MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3219      cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
3220
3221      return St;
3222    }
3223
3224    case Intrinsic::arm_neon_vld1: {
3225      static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
3226                                           ARM::VLD1d32, ARM::VLD1d64 };
3227      static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
3228                                           ARM::VLD1q32, ARM::VLD1q64};
3229      return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0);
3230    }
3231
3232    case Intrinsic::arm_neon_vld2: {
3233      static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
3234                                           ARM::VLD2d32, ARM::VLD1q64 };
3235      static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
3236                                           ARM::VLD2q32Pseudo };
3237      return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0);
3238    }
3239
3240    case Intrinsic::arm_neon_vld3: {
3241      static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
3242                                           ARM::VLD3d16Pseudo,
3243                                           ARM::VLD3d32Pseudo,
3244                                           ARM::VLD1d64TPseudo };
3245      static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
3246                                            ARM::VLD3q16Pseudo_UPD,
3247                                            ARM::VLD3q32Pseudo_UPD };
3248      static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
3249                                            ARM::VLD3q16oddPseudo,
3250                                            ARM::VLD3q32oddPseudo };
3251      return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3252    }
3253
3254    case Intrinsic::arm_neon_vld4: {
3255      static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
3256                                           ARM::VLD4d16Pseudo,
3257                                           ARM::VLD4d32Pseudo,
3258                                           ARM::VLD1d64QPseudo };
3259      static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
3260                                            ARM::VLD4q16Pseudo_UPD,
3261                                            ARM::VLD4q32Pseudo_UPD };
3262      static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
3263                                            ARM::VLD4q16oddPseudo,
3264                                            ARM::VLD4q32oddPseudo };
3265      return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3266    }
3267
3268    case Intrinsic::arm_neon_vld2lane: {
3269      static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
3270                                           ARM::VLD2LNd16Pseudo,
3271                                           ARM::VLD2LNd32Pseudo };
3272      static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
3273                                           ARM::VLD2LNq32Pseudo };
3274      return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
3275    }
3276
3277    case Intrinsic::arm_neon_vld3lane: {
3278      static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
3279                                           ARM::VLD3LNd16Pseudo,
3280                                           ARM::VLD3LNd32Pseudo };
3281      static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
3282                                           ARM::VLD3LNq32Pseudo };
3283      return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
3284    }
3285
3286    case Intrinsic::arm_neon_vld4lane: {
3287      static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
3288                                           ARM::VLD4LNd16Pseudo,
3289                                           ARM::VLD4LNd32Pseudo };
3290      static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
3291                                           ARM::VLD4LNq32Pseudo };
3292      return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
3293    }
3294
3295    case Intrinsic::arm_neon_vst1: {
3296      static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
3297                                           ARM::VST1d32, ARM::VST1d64 };
3298      static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
3299                                           ARM::VST1q32, ARM::VST1q64 };
3300      return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0);
3301    }
3302
3303    case Intrinsic::arm_neon_vst2: {
3304      static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
3305                                           ARM::VST2d32, ARM::VST1q64 };
3306      static uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
3307                                     ARM::VST2q32Pseudo };
3308      return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0);
3309    }
3310
3311    case Intrinsic::arm_neon_vst3: {
3312      static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
3313                                           ARM::VST3d16Pseudo,
3314                                           ARM::VST3d32Pseudo,
3315                                           ARM::VST1d64TPseudo };
3316      static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
3317                                            ARM::VST3q16Pseudo_UPD,
3318                                            ARM::VST3q32Pseudo_UPD };
3319      static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
3320                                            ARM::VST3q16oddPseudo,
3321                                            ARM::VST3q32oddPseudo };
3322      return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
3323    }
3324
3325    case Intrinsic::arm_neon_vst4: {
3326      static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
3327                                           ARM::VST4d16Pseudo,
3328                                           ARM::VST4d32Pseudo,
3329                                           ARM::VST1d64QPseudo };
3330      static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
3331                                            ARM::VST4q16Pseudo_UPD,
3332                                            ARM::VST4q32Pseudo_UPD };
3333      static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
3334                                            ARM::VST4q16oddPseudo,
3335                                            ARM::VST4q32oddPseudo };
3336      return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
3337    }
3338
3339    case Intrinsic::arm_neon_vst2lane: {
3340      static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
3341                                           ARM::VST2LNd16Pseudo,
3342                                           ARM::VST2LNd32Pseudo };
3343      static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
3344                                           ARM::VST2LNq32Pseudo };
3345      return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
3346    }
3347
3348    case Intrinsic::arm_neon_vst3lane: {
3349      static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
3350                                           ARM::VST3LNd16Pseudo,
3351                                           ARM::VST3LNd32Pseudo };
3352      static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
3353                                           ARM::VST3LNq32Pseudo };
3354      return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
3355    }
3356
3357    case Intrinsic::arm_neon_vst4lane: {
3358      static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
3359                                           ARM::VST4LNd16Pseudo,
3360                                           ARM::VST4LNd32Pseudo };
3361      static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
3362                                           ARM::VST4LNq32Pseudo };
3363      return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
3364    }
3365    }
3366    break;
3367  }
3368
3369  case ISD::INTRINSIC_WO_CHAIN: {
3370    unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3371    switch (IntNo) {
3372    default:
3373      break;
3374
3375    case Intrinsic::arm_neon_vtbl2:
3376      return SelectVTBL(N, false, 2, ARM::VTBL2);
3377    case Intrinsic::arm_neon_vtbl3:
3378      return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo);
3379    case Intrinsic::arm_neon_vtbl4:
3380      return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo);
3381
3382    case Intrinsic::arm_neon_vtbx2:
3383      return SelectVTBL(N, true, 2, ARM::VTBX2);
3384    case Intrinsic::arm_neon_vtbx3:
3385      return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo);
3386    case Intrinsic::arm_neon_vtbx4:
3387      return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo);
3388    }
3389    break;
3390  }
3391
3392  case ARMISD::VTBL1: {
3393    DebugLoc dl = N->getDebugLoc();
3394    EVT VT = N->getValueType(0);
3395    SmallVector<SDValue, 6> Ops;
3396
3397    Ops.push_back(N->getOperand(0));
3398    Ops.push_back(N->getOperand(1));
3399    Ops.push_back(getAL(CurDAG));                    // Predicate
3400    Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3401    return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops.data(), Ops.size());
3402  }
3403  case ARMISD::VTBL2: {
3404    DebugLoc dl = N->getDebugLoc();
3405    EVT VT = N->getValueType(0);
3406
3407    // Form a REG_SEQUENCE to force register allocation.
3408    SDValue V0 = N->getOperand(0);
3409    SDValue V1 = N->getOperand(1);
3410    SDValue RegSeq = SDValue(createDRegPairNode(MVT::v16i8, V0, V1), 0);
3411
3412    SmallVector<SDValue, 6> Ops;
3413    Ops.push_back(RegSeq);
3414    Ops.push_back(N->getOperand(2));
3415    Ops.push_back(getAL(CurDAG));                    // Predicate
3416    Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register
3417    return CurDAG->getMachineNode(ARM::VTBL2, dl, VT,
3418                                  Ops.data(), Ops.size());
3419  }
3420
3421  case ISD::CONCAT_VECTORS:
3422    return SelectConcatVector(N);
3423
3424  case ARMISD::ATOMOR64_DAG:
3425    return SelectAtomic64(N, ARM::ATOMOR6432);
3426  case ARMISD::ATOMXOR64_DAG:
3427    return SelectAtomic64(N, ARM::ATOMXOR6432);
3428  case ARMISD::ATOMADD64_DAG:
3429    return SelectAtomic64(N, ARM::ATOMADD6432);
3430  case ARMISD::ATOMSUB64_DAG:
3431    return SelectAtomic64(N, ARM::ATOMSUB6432);
3432  case ARMISD::ATOMNAND64_DAG:
3433    return SelectAtomic64(N, ARM::ATOMNAND6432);
3434  case ARMISD::ATOMAND64_DAG:
3435    return SelectAtomic64(N, ARM::ATOMAND6432);
3436  case ARMISD::ATOMSWAP64_DAG:
3437    return SelectAtomic64(N, ARM::ATOMSWAP6432);
3438  case ARMISD::ATOMCMPXCHG64_DAG:
3439    return SelectAtomic64(N, ARM::ATOMCMPXCHG6432);
3440
3441  case ARMISD::ATOMMIN64_DAG:
3442    return SelectAtomic64(N, ARM::ATOMMIN6432);
3443  case ARMISD::ATOMUMIN64_DAG:
3444    return SelectAtomic64(N, ARM::ATOMUMIN6432);
3445  case ARMISD::ATOMMAX64_DAG:
3446    return SelectAtomic64(N, ARM::ATOMMAX6432);
3447  case ARMISD::ATOMUMAX64_DAG:
3448    return SelectAtomic64(N, ARM::ATOMUMAX6432);
3449  }
3450
3451  return SelectCode(N);
3452}
3453
3454SDNode *ARMDAGToDAGISel::SelectInlineAsm(SDNode *N){
3455  std::vector<SDValue> AsmNodeOperands;
3456  unsigned Flag, Kind;
3457  bool Changed = false;
3458  unsigned NumOps = N->getNumOperands();
3459
3460  ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(
3461      N->getOperand(InlineAsm::Op_AsmString));
3462  StringRef AsmString = StringRef(S->getSymbol());
3463
3464  // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
3465  // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
3466  // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
3467  // respectively. Since there is no constraint to explicitly specify a
3468  // reg pair, we search %H operand inside the asm string. If it is found, the
3469  // transformation below enforces a GPRPair reg class for "%r" for 64-bit data.
3470  if (AsmString.find(":H}") == StringRef::npos)
3471    return NULL;
3472
3473  DebugLoc dl = N->getDebugLoc();
3474  SDValue Glue = N->getOperand(NumOps-1);
3475
3476  // Glue node will be appended late.
3477  for(unsigned i = 0; i < NumOps -1; ++i) {
3478    SDValue op = N->getOperand(i);
3479    AsmNodeOperands.push_back(op);
3480
3481    if (i < InlineAsm::Op_FirstOperand)
3482      continue;
3483
3484    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
3485      Flag = C->getZExtValue();
3486      Kind = InlineAsm::getKind(Flag);
3487    }
3488    else
3489      continue;
3490
3491    if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
3492        && Kind != InlineAsm::Kind_RegDefEarlyClobber)
3493      continue;
3494
3495    unsigned RegNum = InlineAsm::getNumOperandRegisters(Flag);
3496    unsigned RC;
3497    bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
3498    if (!HasRC || RC != ARM::GPRRegClassID || RegNum != 2)
3499      continue;
3500
3501    assert((i+2 < NumOps-1) && "Invalid number of operands in inline asm");
3502    SDValue V0 = N->getOperand(i+1);
3503    SDValue V1 = N->getOperand(i+2);
3504    unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
3505    unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
3506    SDValue PairedReg;
3507    MachineRegisterInfo &MRI = MF->getRegInfo();
3508
3509    if (Kind == InlineAsm::Kind_RegDef ||
3510        Kind == InlineAsm::Kind_RegDefEarlyClobber) {
3511      // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
3512      // the original GPRs.
3513
3514      unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
3515      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
3516      SDValue Chain = SDValue(N,0);
3517
3518      SDNode *GU = N->getGluedUser();
3519      SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
3520                                               Chain.getValue(1));
3521
3522      // Extract values from a GPRPair reg and copy to the original GPR reg.
3523      SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
3524                                                    RegCopy);
3525      SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
3526                                                    RegCopy);
3527      SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
3528                                        RegCopy.getValue(1));
3529      SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
3530
3531      // Update the original glue user.
3532      std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
3533      Ops.push_back(T1.getValue(1));
3534      CurDAG->UpdateNodeOperands(GU, &Ops[0], Ops.size());
3535      GU = T1.getNode();
3536    }
3537    else {
3538      // For Kind  == InlineAsm::Kind_RegUse, we first copy two GPRs into a
3539      // GPRPair and then pass the GPRPair to the inline asm.
3540      SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
3541
3542      // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
3543      SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
3544                                          Chain.getValue(1));
3545      SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
3546                                          T0.getValue(1));
3547      SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
3548
3549      // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
3550      // i32 VRs of inline asm with it.
3551      unsigned GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
3552      PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
3553      Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
3554
3555      AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
3556      Glue = Chain.getValue(1);
3557    }
3558
3559    Changed = true;
3560
3561    if(PairedReg.getNode()) {
3562      Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
3563      Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
3564      // Replace the current flag.
3565      AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
3566          Flag, MVT::i32);
3567      // Add the new register node and skip the original two GPRs.
3568      AsmNodeOperands.push_back(PairedReg);
3569      // Skip the next two GPRs.
3570      i += 2;
3571    }
3572  }
3573
3574  AsmNodeOperands.push_back(Glue);
3575  if (!Changed)
3576    return NULL;
3577
3578  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
3579      CurDAG->getVTList(MVT::Other, MVT::Glue), &AsmNodeOperands[0],
3580                        AsmNodeOperands.size());
3581  New->setNodeId(-1);
3582  return New.getNode();
3583}
3584
3585
3586bool ARMDAGToDAGISel::
3587SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
3588                             std::vector<SDValue> &OutOps) {
3589  assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
3590  // Require the address to be in a register.  That is safe for all ARM
3591  // variants and it is hard to do anything much smarter without knowing
3592  // how the operand is used.
3593  OutOps.push_back(Op);
3594  return false;
3595}
3596
3597/// createARMISelDag - This pass converts a legalized DAG into a
3598/// ARM-specific DAG, ready for instruction scheduling.
3599///
3600FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
3601                                     CodeGenOpt::Level OptLevel) {
3602  return new ARMDAGToDAGISel(TM, OptLevel);
3603}
3604