1//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the PPC branch instructions
11// that decrement and test the count register (CTR) (bdnz and friends).
12// This pass is based on the HexagonHardwareLoops pass.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for CTR loops:
21//  - Countable loops (w/ ind. var for a trip count)
22//  - Assumes loops are normalized by IndVarSimplify
23//  - Try inner-most loops first
24//  - No nested CTR loops.
25//  - No function calls in loops.
26//
27//  Note: As with unconverted loops, PPCBranchSelector must be run after this
28//  pass in order to convert long-displacement jumps into jump pairs.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "ctrloops"
33#include "PPC.h"
34#include "MCTargetDesc/PPCPredicates.h"
35#include "PPCTargetMachine.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/CodeGen/MachineDominators.h"
39#include "llvm/CodeGen/MachineFunction.h"
40#include "llvm/CodeGen/MachineFunctionPass.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineLoopInfo.h"
43#include "llvm/CodeGen/MachineRegisterInfo.h"
44#include "llvm/CodeGen/Passes.h"
45#include "llvm/CodeGen/RegisterScavenging.h"
46#include "llvm/IR/Constants.h"
47#include "llvm/PassSupport.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetInstrInfo.h"
51#include <algorithm>
52
53using namespace llvm;
54
55STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
56
57namespace llvm {
58  void initializePPCCTRLoopsPass(PassRegistry&);
59}
60
61namespace {
62  class CountValue;
63  struct PPCCTRLoops : public MachineFunctionPass {
64    MachineLoopInfo       *MLI;
65    MachineRegisterInfo   *MRI;
66    const TargetInstrInfo *TII;
67
68  public:
69    static char ID;   // Pass identification, replacement for typeid
70
71    PPCCTRLoops() : MachineFunctionPass(ID) {
72      initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry());
73    }
74
75    virtual bool runOnMachineFunction(MachineFunction &MF);
76
77    const char *getPassName() const { return "PPC CTR Loops"; }
78
79    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80      AU.setPreservesCFG();
81      AU.addRequired<MachineDominatorTree>();
82      AU.addPreserved<MachineDominatorTree>();
83      AU.addRequired<MachineLoopInfo>();
84      AU.addPreserved<MachineLoopInfo>();
85      MachineFunctionPass::getAnalysisUsage(AU);
86    }
87
88  private:
89    /// getCanonicalInductionVariable - Check to see if the loop has a canonical
90    /// induction variable.
91    /// Should be defined in MachineLoop. Based upon version in class Loop.
92    void getCanonicalInductionVariable(MachineLoop *L,
93                              SmallVector<MachineInstr *, 4> &IVars,
94                              SmallVector<MachineInstr *, 4> &IOps) const;
95
96    /// getTripCount - Return a loop-invariant LLVM register indicating the
97    /// number of times the loop will be executed.  If the trip-count cannot
98    /// be determined, this return null.
99    CountValue *getTripCount(MachineLoop *L,
100                             SmallVector<MachineInstr *, 2> &OldInsts) const;
101
102    /// isInductionOperation - Return true if the instruction matches the
103    /// pattern for an opertion that defines an induction variable.
104    bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
105
106    /// isInvalidOperation - Return true if the instruction is not valid within
107    /// a CTR loop.
108    bool isInvalidLoopOperation(const MachineInstr *MI) const;
109
110    /// containsInavlidInstruction - Return true if the loop contains an
111    /// instruction that inhibits using the CTR loop.
112    bool containsInvalidInstruction(MachineLoop *L) const;
113
114    /// converToCTRLoop - Given a loop, check if we can convert it to a
115    /// CTR loop.  If so, then perform the conversion and return true.
116    bool convertToCTRLoop(MachineLoop *L);
117
118    /// isDead - Return true if the instruction is now dead.
119    bool isDead(const MachineInstr *MI,
120                SmallVector<MachineInstr *, 1> &DeadPhis) const;
121
122    /// removeIfDead - Remove the instruction if it is now dead.
123    void removeIfDead(MachineInstr *MI);
124  };
125
126  char PPCCTRLoops::ID = 0;
127
128
129  // CountValue class - Abstraction for a trip count of a loop. A
130  // smaller vesrsion of the MachineOperand class without the concerns
131  // of changing the operand representation.
132  class CountValue {
133  public:
134    enum CountValueType {
135      CV_Register,
136      CV_Immediate
137    };
138  private:
139    CountValueType Kind;
140    union Values {
141      unsigned RegNum;
142      int64_t ImmVal;
143      Values(unsigned r) : RegNum(r) {}
144      Values(int64_t i) : ImmVal(i) {}
145    } Contents;
146    bool isNegative;
147
148  public:
149    CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
150                                       isNegative(neg) {}
151    explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
152                                     isNegative(i < 0) {}
153    CountValueType getType() const { return Kind; }
154    bool isReg() const { return Kind == CV_Register; }
155    bool isImm() const { return Kind == CV_Immediate; }
156    bool isNeg() const { return isNegative; }
157
158    unsigned getReg() const {
159      assert(isReg() && "Wrong CountValue accessor");
160      return Contents.RegNum;
161    }
162    void setReg(unsigned Val) {
163      Contents.RegNum = Val;
164    }
165    int64_t getImm() const {
166      assert(isImm() && "Wrong CountValue accessor");
167      if (isNegative) {
168        return -Contents.ImmVal;
169      }
170      return Contents.ImmVal;
171    }
172    void setImm(int64_t Val) {
173      Contents.ImmVal = Val;
174    }
175
176    void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
177      if (isReg()) { OS << PrintReg(getReg()); }
178      if (isImm()) { OS << getImm(); }
179    }
180  };
181} // end anonymous namespace
182
183INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
184                      false, false)
185INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
186INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
187INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops",
188                    false, false)
189
190/// isCompareEquals - Returns true if the instruction is a compare equals
191/// instruction with an immediate operand.
192static bool isCompareEqualsImm(const MachineInstr *MI, bool &SignedCmp,
193                               bool &Int64Cmp) {
194  if (MI->getOpcode() == PPC::CMPWI) {
195    SignedCmp = true;
196    Int64Cmp = false;
197    return true;
198  } else if (MI->getOpcode() == PPC::CMPDI) {
199    SignedCmp = true;
200    Int64Cmp = true;
201    return true;
202  } else if (MI->getOpcode() == PPC::CMPLWI) {
203    SignedCmp = false;
204    Int64Cmp = false;
205    return true;
206  } else if (MI->getOpcode() == PPC::CMPLDI) {
207    SignedCmp = false;
208    Int64Cmp = true;
209    return true;
210  }
211
212  return false;
213}
214
215
216/// createPPCCTRLoops - Factory for creating
217/// the CTR loop phase.
218FunctionPass *llvm::createPPCCTRLoops() {
219  return new PPCCTRLoops();
220}
221
222
223bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
224  DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
225
226  bool Changed = false;
227
228  // get the loop information
229  MLI = &getAnalysis<MachineLoopInfo>();
230  // get the register information
231  MRI = &MF.getRegInfo();
232  // the target specific instructio info.
233  TII = MF.getTarget().getInstrInfo();
234
235  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
236       I != E; ++I) {
237    MachineLoop *L = *I;
238    if (!L->getParentLoop()) {
239      Changed |= convertToCTRLoop(L);
240    }
241  }
242
243  return Changed;
244}
245
246/// getCanonicalInductionVariable - Check to see if the loop has a canonical
247/// induction variable. We check for a simple recurrence pattern - an
248/// integer recurrence that decrements by one each time through the loop and
249/// ends at zero.  If so, return the phi node that corresponds to it.
250///
251/// Based upon the similar code in LoopInfo except this code is specific to
252/// the machine.
253/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
254///
255void
256PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
257                                  SmallVector<MachineInstr *, 4> &IVars,
258                                  SmallVector<MachineInstr *, 4> &IOps) const {
259  MachineBasicBlock *TopMBB = L->getTopBlock();
260  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
261  assert(PI != TopMBB->pred_end() &&
262         "Loop must have more than one incoming edge!");
263  MachineBasicBlock *Backedge = *PI++;
264  if (PI == TopMBB->pred_end()) return;  // dead loop
265  MachineBasicBlock *Incoming = *PI++;
266  if (PI != TopMBB->pred_end()) return;  // multiple backedges?
267
268  // make sure there is one incoming and one backedge and determine which
269  // is which.
270  if (L->contains(Incoming)) {
271    if (L->contains(Backedge))
272      return;
273    std::swap(Incoming, Backedge);
274  } else if (!L->contains(Backedge))
275    return;
276
277  // Loop over all of the PHI nodes, looking for a canonical induction variable:
278  //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
279  //   - The recurrence comes from the backedge.
280  //   - the definition is an induction operatio.n
281  for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
282       I != E && I->isPHI(); ++I) {
283    MachineInstr *MPhi = &*I;
284    unsigned DefReg = MPhi->getOperand(0).getReg();
285    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
286      // Check each operand for the value from the backedge.
287      MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
288      if (L->contains(MBB)) { // operands comes from the backedge
289        // Check if the definition is an induction operation.
290        MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
291        if (isInductionOperation(DI, DefReg)) {
292          IOps.push_back(DI);
293          IVars.push_back(MPhi);
294        }
295      }
296    }
297  }
298  return;
299}
300
301/// getTripCount - Return a loop-invariant LLVM value indicating the
302/// number of times the loop will be executed.  The trip count can
303/// be either a register or a constant value.  If the trip-count
304/// cannot be determined, this returns null.
305///
306/// We find the trip count from the phi instruction that defines the
307/// induction variable.  We follow the links to the CMP instruction
308/// to get the trip count.
309///
310/// Based upon getTripCount in LoopInfo.
311///
312CountValue *PPCCTRLoops::getTripCount(MachineLoop *L,
313                           SmallVector<MachineInstr *, 2> &OldInsts) const {
314  MachineBasicBlock *LastMBB = L->getExitingBlock();
315  // Don't generate a CTR loop if the loop has more than one exit.
316  if (LastMBB == 0)
317    return 0;
318
319  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
320  if (LastI->getOpcode() != PPC::BCC)
321    return 0;
322
323  // We need to make sure that this compare is defining the condition
324  // register actually used by the terminating branch.
325
326  unsigned PredReg = LastI->getOperand(1).getReg();
327  DEBUG(dbgs() << "Examining loop with first terminator: " << *LastI);
328
329  unsigned PredCond = LastI->getOperand(0).getImm();
330  if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
331    return 0;
332
333  // Check that the loop has a induction variable.
334  SmallVector<MachineInstr *, 4> IVars, IOps;
335  getCanonicalInductionVariable(L, IVars, IOps);
336  for (unsigned i = 0; i < IVars.size(); ++i) {
337    MachineInstr *IOp = IOps[i];
338    MachineInstr *IV_Inst = IVars[i];
339
340    // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
341    //  if Imm is 0, get the count from the PHI opnd
342    //  if Imm is -M, than M is the count
343    //  Otherwise, Imm is the count
344    MachineOperand *IV_Opnd;
345    const MachineOperand *InitialValue;
346    if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
347      InitialValue = &IV_Inst->getOperand(1);
348      IV_Opnd = &IV_Inst->getOperand(3);
349    } else {
350      InitialValue = &IV_Inst->getOperand(3);
351      IV_Opnd = &IV_Inst->getOperand(1);
352    }
353
354    DEBUG(dbgs() << "Considering:\n");
355    DEBUG(dbgs() << "  induction operation: " << *IOp);
356    DEBUG(dbgs() << "  induction variable: " << *IV_Inst);
357    DEBUG(dbgs() << "  initial value: " << *InitialValue << "\n");
358
359    // Look for the cmp instruction to determine if we
360    // can get a useful trip count.  The trip count can
361    // be either a register or an immediate.  The location
362    // of the value depends upon the type (reg or imm).
363    for (MachineRegisterInfo::reg_iterator
364         RI = MRI->reg_begin(IV_Opnd->getReg()), RE = MRI->reg_end();
365         RI != RE; ++RI) {
366      IV_Opnd = &RI.getOperand();
367      bool SignedCmp, Int64Cmp;
368      MachineInstr *MI = IV_Opnd->getParent();
369      if (L->contains(MI) && isCompareEqualsImm(MI, SignedCmp, Int64Cmp) &&
370          MI->getOperand(0).getReg() == PredReg) {
371
372        OldInsts.push_back(MI);
373        OldInsts.push_back(IOp);
374
375        DEBUG(dbgs() << "  compare: " << *MI);
376
377        const MachineOperand &MO = MI->getOperand(2);
378        assert(MO.isImm() && "IV Cmp Operand should be an immediate");
379
380        int64_t ImmVal;
381        if (SignedCmp)
382          ImmVal = (short) MO.getImm();
383        else
384          ImmVal = MO.getImm();
385
386        const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
387        assert(L->contains(IV_DefInstr->getParent()) &&
388               "IV definition should occurs in loop");
389        int64_t iv_value = (short) IV_DefInstr->getOperand(2).getImm();
390
391        assert(InitialValue->isReg() && "Expecting register for init value");
392        unsigned InitialValueReg = InitialValue->getReg();
393
394        MachineInstr *DefInstr = MRI->getVRegDef(InitialValueReg);
395
396        // Here we need to look for an immediate load (an li or lis/ori pair).
397        if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
398                         DefInstr->getOpcode() == PPC::ORI)) {
399          int64_t start = (short) DefInstr->getOperand(2).getImm();
400          MachineInstr *DefInstr2 =
401            MRI->getVRegDef(DefInstr->getOperand(1).getReg());
402          if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
403                            DefInstr2->getOpcode() == PPC::LIS)) {
404            DEBUG(dbgs() << "  initial constant: " << *DefInstr);
405            DEBUG(dbgs() << "  initial constant: " << *DefInstr2);
406
407            start |= int64_t(short(DefInstr2->getOperand(1).getImm())) << 16;
408
409            int64_t count = ImmVal - start;
410            if ((count % iv_value) != 0) {
411              return 0;
412            }
413
414            OldInsts.push_back(DefInstr);
415            OldInsts.push_back(DefInstr2);
416
417            // count/iv_value, the trip count, should be positive here. If it
418            // is negative, that indicates that the counter will wrap.
419            if (Int64Cmp)
420              return new CountValue(count/iv_value);
421            else
422              return new CountValue(uint32_t(count/iv_value));
423          }
424        } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
425                                DefInstr->getOpcode() == PPC::LI)) {
426          DEBUG(dbgs() << "  initial constant: " << *DefInstr);
427
428          int64_t count = ImmVal -
429            int64_t(short(DefInstr->getOperand(1).getImm()));
430          if ((count % iv_value) != 0) {
431            return 0;
432          }
433
434          OldInsts.push_back(DefInstr);
435
436          if (Int64Cmp)
437            return new CountValue(count/iv_value);
438          else
439            return new CountValue(uint32_t(count/iv_value));
440        } else if (iv_value == 1 || iv_value == -1) {
441          // We can't determine a constant starting value.
442          if (ImmVal == 0) {
443            return new CountValue(InitialValueReg, iv_value > 0);
444          }
445          // FIXME: handle non-zero end value.
446        }
447        // FIXME: handle non-unit increments (we might not want to introduce
448        // division but we can handle some 2^n cases with shifts).
449
450      }
451    }
452  }
453  return 0;
454}
455
456/// isInductionOperation - return true if the operation is matches the
457/// pattern that defines an induction variable:
458///    addi iv, c
459///
460bool
461PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
462                                           unsigned IVReg) const {
463  return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
464          MI->getOperand(1).isReg() && // could be a frame index instead
465          MI->getOperand(1).getReg() == IVReg);
466}
467
468/// isInvalidOperation - Return true if the operation is invalid within
469/// CTR loop.
470bool
471PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
472
473  // call is not allowed because the callee may use a CTR loop
474  if (MI->getDesc().isCall()) {
475    return true;
476  }
477  // check if the instruction defines a CTR loop register
478  // (this will also catch nested CTR loops)
479  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
480    const MachineOperand &MO = MI->getOperand(i);
481    if (MO.isReg() && MO.isDef() &&
482        (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
483      return true;
484    }
485  }
486  return false;
487}
488
489/// containsInvalidInstruction - Return true if the loop contains
490/// an instruction that inhibits the use of the CTR loop function.
491///
492bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
493  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
494  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
495    MachineBasicBlock *MBB = Blocks[i];
496    for (MachineBasicBlock::iterator
497           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
498      const MachineInstr *MI = &*MII;
499      if (isInvalidLoopOperation(MI)) {
500        return true;
501      }
502    }
503  }
504  return false;
505}
506
507/// isDead returns true if the instruction is dead
508/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
509/// with special cases for inline asm, physical registers and instructions with
510/// side effects removed)
511bool PPCCTRLoops::isDead(const MachineInstr *MI,
512                         SmallVector<MachineInstr *, 1> &DeadPhis) const {
513  // Examine each operand.
514  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
515    const MachineOperand &MO = MI->getOperand(i);
516    if (MO.isReg() && MO.isDef()) {
517      unsigned Reg = MO.getReg();
518      if (!MRI->use_nodbg_empty(Reg)) {
519        // This instruction has users, but if the only user is the phi node for
520        // the parent block, and the only use of that phi node is this
521        // instruction, then this instruction is dead: both it (and the phi
522        // node) can be removed.
523        MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
524        if (llvm::next(I) == MRI->use_end() &&
525            I.getOperand().getParent()->isPHI()) {
526          MachineInstr *OnePhi = I.getOperand().getParent();
527
528          for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
529            const MachineOperand &OPO = OnePhi->getOperand(j);
530            if (OPO.isReg() && OPO.isDef()) {
531              unsigned OPReg = OPO.getReg();
532
533              MachineRegisterInfo::use_iterator nextJ;
534              for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
535                   E = MRI->use_end(); J!=E; J=nextJ) {
536                nextJ = llvm::next(J);
537                MachineOperand& Use = J.getOperand();
538                MachineInstr *UseMI = Use.getParent();
539
540                if (MI != UseMI) {
541                  // The phi node has a user that is not MI, bail...
542                  return false;
543                }
544              }
545            }
546          }
547
548          DeadPhis.push_back(OnePhi);
549        } else {
550          // This def has a non-debug use. Don't delete the instruction!
551          return false;
552        }
553      }
554    }
555  }
556
557  // If there are no defs with uses, the instruction is dead.
558  return true;
559}
560
561void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
562  // This procedure was essentially copied from DeadMachineInstructionElim
563
564  SmallVector<MachineInstr *, 1> DeadPhis;
565  if (isDead(MI, DeadPhis)) {
566    DEBUG(dbgs() << "CTR looping will remove: " << *MI);
567
568    // It is possible that some DBG_VALUE instructions refer to this
569    // instruction.  Examine each def operand for such references;
570    // if found, mark the DBG_VALUE as undef (but don't delete it).
571    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
572      const MachineOperand &MO = MI->getOperand(i);
573      if (!MO.isReg() || !MO.isDef())
574        continue;
575      unsigned Reg = MO.getReg();
576      MachineRegisterInfo::use_iterator nextI;
577      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
578           E = MRI->use_end(); I!=E; I=nextI) {
579        nextI = llvm::next(I);  // I is invalidated by the setReg
580        MachineOperand& Use = I.getOperand();
581        MachineInstr *UseMI = Use.getParent();
582        if (UseMI==MI)
583          continue;
584        if (Use.isDebug()) // this might also be a instr -> phi -> instr case
585                           // which can also be removed.
586          UseMI->getOperand(0).setReg(0U);
587      }
588    }
589
590    MI->eraseFromParent();
591    for (unsigned i = 0; i < DeadPhis.size(); ++i) {
592      DeadPhis[i]->eraseFromParent();
593    }
594  }
595}
596
597/// converToCTRLoop - check if the loop is a candidate for
598/// converting to a CTR loop.  If so, then perform the
599/// transformation.
600///
601/// This function works on innermost loops first.  A loop can
602/// be converted if it is a counting loop; either a register
603/// value or an immediate.
604///
605/// The code makes several assumptions about the representation
606/// of the loop in llvm.
607bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
608  bool Changed = false;
609  // Process nested loops first.
610  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
611    Changed |= convertToCTRLoop(*I);
612  }
613  // If a nested loop has been converted, then we can't convert this loop.
614  if (Changed) {
615    return Changed;
616  }
617
618  SmallVector<MachineInstr *, 2> OldInsts;
619  // Are we able to determine the trip count for the loop?
620  CountValue *TripCount = getTripCount(L, OldInsts);
621  if (TripCount == 0) {
622    DEBUG(dbgs() << "failed to get trip count!\n");
623    return false;
624  }
625
626  if (TripCount->isImm()) {
627    DEBUG(dbgs() << "constant trip count: " << TripCount->getImm() << "\n");
628
629    // FIXME: We currently can't form 64-bit constants
630    // (including 32-bit unsigned constants)
631    if (!isInt<32>(TripCount->getImm()))
632      return false;
633  }
634
635  // Does the loop contain any invalid instructions?
636  if (containsInvalidInstruction(L)) {
637    return false;
638  }
639  MachineBasicBlock *Preheader = L->getLoopPreheader();
640  // No preheader means there's not place for the loop instr.
641  if (Preheader == 0) {
642    return false;
643  }
644  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
645
646  DebugLoc dl;
647  if (InsertPos != Preheader->end())
648    dl = InsertPos->getDebugLoc();
649
650  MachineBasicBlock *LastMBB = L->getExitingBlock();
651  // Don't generate CTR loop if the loop has more than one exit.
652  if (LastMBB == 0) {
653    return false;
654  }
655  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
656
657  // Determine the loop start.
658  MachineBasicBlock *LoopStart = L->getTopBlock();
659  if (L->getLoopLatch() != LastMBB) {
660    // When the exit and latch are not the same, use the latch block as the
661    // start.
662    // The loop start address is used only after the 1st iteration, and the loop
663    // latch may contains instrs. that need to be executed after the 1st iter.
664    LoopStart = L->getLoopLatch();
665    // Make sure the latch is a successor of the exit, otherwise it won't work.
666    if (!LastMBB->isSuccessor(LoopStart)) {
667      return false;
668    }
669  }
670
671  // Convert the loop to a CTR loop
672  DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
673
674  MachineFunction *MF = LastMBB->getParent();
675  const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
676  bool isPPC64 = Subtarget.isPPC64();
677
678  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
679  const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
680  const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
681
682  unsigned CountReg;
683  if (TripCount->isReg()) {
684    // Create a copy of the loop count register.
685    const TargetRegisterClass *SrcRC =
686      MF->getRegInfo().getRegClass(TripCount->getReg());
687    CountReg = MF->getRegInfo().createVirtualRegister(RC);
688    unsigned CopyOp = (isPPC64 && SrcRC == GPRC) ?
689                        (unsigned) PPC::EXTSW_32_64 :
690                        (unsigned) TargetOpcode::COPY;
691    BuildMI(*Preheader, InsertPos, dl,
692            TII->get(CopyOp), CountReg).addReg(TripCount->getReg());
693    if (TripCount->isNeg()) {
694      unsigned CountReg1 = CountReg;
695      CountReg = MF->getRegInfo().createVirtualRegister(RC);
696      BuildMI(*Preheader, InsertPos, dl,
697              TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
698                       CountReg).addReg(CountReg1);
699    }
700  } else {
701    assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
702    // Put the trip count in a register for transfer into the count register.
703
704    int64_t CountImm = TripCount->getImm();
705    if (TripCount->isNeg())
706      CountImm = -CountImm;
707
708    CountReg = MF->getRegInfo().createVirtualRegister(RC);
709    if (abs64(CountImm) > 0x7FFF) {
710      BuildMI(*Preheader, InsertPos, dl,
711              TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
712              CountReg).addImm((CountImm >> 16) & 0xFFFF);
713      unsigned CountReg1 = CountReg;
714      CountReg = MF->getRegInfo().createVirtualRegister(RC);
715      BuildMI(*Preheader, InsertPos, dl,
716              TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
717              CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
718    } else {
719      BuildMI(*Preheader, InsertPos, dl,
720              TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
721              CountReg).addImm(CountImm);
722    }
723  }
724
725  // Add the mtctr instruction to the beginning of the loop.
726  BuildMI(*Preheader, InsertPos, dl,
727          TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
728            TripCount->isImm() ? RegState::Kill : 0);
729
730  // Make sure the loop start always has a reference in the CFG.  We need to
731  // create a BlockAddress operand to get this mechanism to work both the
732  // MachineBasicBlock and BasicBlock objects need the flag set.
733  LoopStart->setHasAddressTaken();
734  // This line is needed to set the hasAddressTaken flag on the BasicBlock
735  // object
736  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
737
738  // Replace the loop branch with a bdnz instruction.
739  dl = LastI->getDebugLoc();
740  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
741  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
742    MachineBasicBlock *MBB = Blocks[i];
743    if (MBB != Preheader)
744      MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
745  }
746
747  // The loop ends with either:
748  //  - a conditional branch followed by an unconditional branch, or
749  //  - a conditional branch to the loop start.
750  assert(LastI->getOpcode() == PPC::BCC &&
751         "loop end must start with a BCC instruction");
752  // Either the BCC branches to the beginning of the loop, or it
753  // branches out of the loop and there is an unconditional branch
754  // to the start of the loop.
755  MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
756  BuildMI(*LastMBB, LastI, dl,
757        TII->get((BranchTarget == LoopStart) ?
758                 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
759                 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
760
761  // Conditional branch; just delete it.
762  DEBUG(dbgs() << "Removing old branch: " << *LastI);
763  LastMBB->erase(LastI);
764
765  delete TripCount;
766
767  // The induction operation (add) and the comparison (cmpwi) may now be
768  // unneeded. If these are unneeded, then remove them.
769  for (unsigned i = 0; i < OldInsts.size(); ++i)
770    removeIfDead(OldInsts[i]);
771
772  ++NumCTRLoops;
773  return true;
774}
775
776