1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                       CCValAssign::LocInfo &LocInfo,
41                                       ISD::ArgFlagsTy &ArgFlags,
42                                       CCState &State);
43static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                              MVT &LocVT,
45                                              CCValAssign::LocInfo &LocInfo,
46                                              ISD::ArgFlagsTy &ArgFlags,
47                                              CCState &State);
48static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                                MVT &LocVT,
50                                                CCValAssign::LocInfo &LocInfo,
51                                                ISD::ArgFlagsTy &ArgFlags,
52                                                CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
61cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
62
63static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
64  if (TM.getSubtargetImpl()->isDarwin())
65    return new TargetLoweringObjectFileMachO();
66
67  return new TargetLoweringObjectFileELF();
68}
69
70PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
71  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
72  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
73
74  setPow2DivIsCheap();
75
76  // Use _setjmp/_longjmp instead of setjmp/longjmp.
77  setUseUnderscoreSetJmp(true);
78  setUseUnderscoreLongJmp(true);
79
80  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
81  // arguments are at least 4/8 bytes aligned.
82  bool isPPC64 = Subtarget->isPPC64();
83  setMinStackArgumentAlignment(isPPC64 ? 8:4);
84
85  // Set up the register classes.
86  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
87  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
88  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
89
90  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
91  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
93
94  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
95
96  // PowerPC has pre-inc load and store's.
97  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
102  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
104  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
105  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
106  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
107
108  // This is used in the ppcf128->int sequence.  Note it has different semantics
109  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
110  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
111
112  // We do not currently implement these libm ops for PowerPC.
113  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
114  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
115  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
116  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
117  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
118
119  // PowerPC has no SREM/UREM instructions
120  setOperationAction(ISD::SREM, MVT::i32, Expand);
121  setOperationAction(ISD::UREM, MVT::i32, Expand);
122  setOperationAction(ISD::SREM, MVT::i64, Expand);
123  setOperationAction(ISD::UREM, MVT::i64, Expand);
124
125  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
126  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
127  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
128  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
129  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
130  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
131  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
132  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
133  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
134
135  // We don't support sin/cos/sqrt/fmod/pow
136  setOperationAction(ISD::FSIN , MVT::f64, Expand);
137  setOperationAction(ISD::FCOS , MVT::f64, Expand);
138  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
139  setOperationAction(ISD::FREM , MVT::f64, Expand);
140  setOperationAction(ISD::FPOW , MVT::f64, Expand);
141  setOperationAction(ISD::FMA  , MVT::f64, Legal);
142  setOperationAction(ISD::FSIN , MVT::f32, Expand);
143  setOperationAction(ISD::FCOS , MVT::f32, Expand);
144  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
145  setOperationAction(ISD::FREM , MVT::f32, Expand);
146  setOperationAction(ISD::FPOW , MVT::f32, Expand);
147  setOperationAction(ISD::FMA  , MVT::f32, Legal);
148
149  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
150
151  // If we're enabling GP optimizations, use hardware square root
152  if (!Subtarget->hasFSQRT()) {
153    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
154    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
155  }
156
157  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
158  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
159
160  // PowerPC does not have BSWAP, CTPOP or CTTZ
161  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
162  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
163  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
164  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
165  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
166  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
167  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
168  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
169  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
170  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
171
172  // PowerPC does not have ROTR
173  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
174  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
175
176  // PowerPC does not have Select
177  setOperationAction(ISD::SELECT, MVT::i32, Expand);
178  setOperationAction(ISD::SELECT, MVT::i64, Expand);
179  setOperationAction(ISD::SELECT, MVT::f32, Expand);
180  setOperationAction(ISD::SELECT, MVT::f64, Expand);
181
182  // PowerPC wants to turn select_cc of FP into fsel when possible.
183  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
184  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
185
186  // PowerPC wants to optimize integer setcc a bit
187  setOperationAction(ISD::SETCC, MVT::i32, Custom);
188
189  // PowerPC does not have BRCOND which requires SetCC
190  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
191
192  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
193
194  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
195  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
196
197  // PowerPC does not have [U|S]INT_TO_FP
198  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
199  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
200
201  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
202  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
203  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
204  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
205
206  // We cannot sextinreg(i1).  Expand to shifts.
207  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
208
209  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
210  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
211  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
212  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
213
214
215  // We want to legalize GlobalAddress and ConstantPool nodes into the
216  // appropriate instructions to materialize the address.
217  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
218  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
219  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
220  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
221  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
222  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
223  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
224  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
225  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
226  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
227
228  // TRAP is legal.
229  setOperationAction(ISD::TRAP, MVT::Other, Legal);
230
231  // TRAMPOLINE is custom lowered.
232  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
233  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
234
235  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
236  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
237
238  if (Subtarget->isSVR4ABI()) {
239    if (isPPC64) {
240      // VAARG always uses double-word chunks, so promote anything smaller.
241      setOperationAction(ISD::VAARG, MVT::i1, Promote);
242      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
243      setOperationAction(ISD::VAARG, MVT::i8, Promote);
244      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
245      setOperationAction(ISD::VAARG, MVT::i16, Promote);
246      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
247      setOperationAction(ISD::VAARG, MVT::i32, Promote);
248      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
249      setOperationAction(ISD::VAARG, MVT::Other, Expand);
250    } else {
251      // VAARG is custom lowered with the 32-bit SVR4 ABI.
252      setOperationAction(ISD::VAARG, MVT::Other, Custom);
253      setOperationAction(ISD::VAARG, MVT::i64, Custom);
254    }
255  } else
256    setOperationAction(ISD::VAARG, MVT::Other, Expand);
257
258  // Use the default implementation.
259  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
260  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
261  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
262  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
263  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
264  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
265
266  // We want to custom lower some of our intrinsics.
267  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
268
269  // Comparisons that require checking two conditions.
270  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
271  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
272  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
273  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
274  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
275  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
276  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
277  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
278  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
279  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
280  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
281  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
282
283  if (Subtarget->has64BitSupport()) {
284    // They also have instructions for converting between i64 and fp.
285    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
286    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
287    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
288    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
289    // This is just the low 32 bits of a (signed) fp->i64 conversion.
290    // We cannot do this with Promote because i64 is not a legal type.
291    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
292
293    // FIXME: disable this lowered code.  This generates 64-bit register values,
294    // and we don't model the fact that the top part is clobbered by calls.  We
295    // need to flag these together so that the value isn't live across a call.
296    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
297  } else {
298    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
299    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
300  }
301
302  if (Subtarget->use64BitRegs()) {
303    // 64-bit PowerPC implementations can support i64 types directly
304    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
305    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
306    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
307    // 64-bit PowerPC wants to expand i128 shifts itself.
308    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
309    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
310    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
311  } else {
312    // 32-bit PowerPC wants to expand i64 shifts itself.
313    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
314    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
315    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
316  }
317
318  if (Subtarget->hasAltivec()) {
319    // First set operation action for all vector types to expand. Then we
320    // will selectively turn on ones that can be effectively codegen'd.
321    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
322         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
323      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
324
325      // add/sub are legal for all supported vector VT's.
326      setOperationAction(ISD::ADD , VT, Legal);
327      setOperationAction(ISD::SUB , VT, Legal);
328
329      // We promote all shuffles to v16i8.
330      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
331      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
332
333      // We promote all non-typed operations to v4i32.
334      setOperationAction(ISD::AND   , VT, Promote);
335      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
336      setOperationAction(ISD::OR    , VT, Promote);
337      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
338      setOperationAction(ISD::XOR   , VT, Promote);
339      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
340      setOperationAction(ISD::LOAD  , VT, Promote);
341      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
342      setOperationAction(ISD::SELECT, VT, Promote);
343      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
344      setOperationAction(ISD::STORE, VT, Promote);
345      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
346
347      // No other operations are legal.
348      setOperationAction(ISD::MUL , VT, Expand);
349      setOperationAction(ISD::SDIV, VT, Expand);
350      setOperationAction(ISD::SREM, VT, Expand);
351      setOperationAction(ISD::UDIV, VT, Expand);
352      setOperationAction(ISD::UREM, VT, Expand);
353      setOperationAction(ISD::FDIV, VT, Expand);
354      setOperationAction(ISD::FNEG, VT, Expand);
355      setOperationAction(ISD::FSQRT, VT, Expand);
356      setOperationAction(ISD::FLOG, VT, Expand);
357      setOperationAction(ISD::FLOG10, VT, Expand);
358      setOperationAction(ISD::FLOG2, VT, Expand);
359      setOperationAction(ISD::FEXP, VT, Expand);
360      setOperationAction(ISD::FEXP2, VT, Expand);
361      setOperationAction(ISD::FSIN, VT, Expand);
362      setOperationAction(ISD::FCOS, VT, Expand);
363      setOperationAction(ISD::FABS, VT, Expand);
364      setOperationAction(ISD::FPOWI, VT, Expand);
365      setOperationAction(ISD::FFLOOR, VT, Expand);
366      setOperationAction(ISD::FCEIL,  VT, Expand);
367      setOperationAction(ISD::FTRUNC, VT, Expand);
368      setOperationAction(ISD::FRINT,  VT, Expand);
369      setOperationAction(ISD::FNEARBYINT, VT, Expand);
370      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
371      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
372      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
373      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
374      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
375      setOperationAction(ISD::UDIVREM, VT, Expand);
376      setOperationAction(ISD::SDIVREM, VT, Expand);
377      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
378      setOperationAction(ISD::FPOW, VT, Expand);
379      setOperationAction(ISD::CTPOP, VT, Expand);
380      setOperationAction(ISD::CTLZ, VT, Expand);
381      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
382      setOperationAction(ISD::CTTZ, VT, Expand);
383      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
384      setOperationAction(ISD::VSELECT, VT, Expand);
385      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
386
387      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
388           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
389        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
390        setTruncStoreAction(VT, InnerVT, Expand);
391      }
392      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
393      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
394      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
395    }
396
397    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
398    // with merges, splats, etc.
399    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
400
401    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
402    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
403    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
404    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
405    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
406    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
407    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
408    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
409    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
410    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
411    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
412    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
413    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
414    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
415
416    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
417    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
418    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
419    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
420
421    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
422    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
423    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
424    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
425    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
426
427    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
428    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
429
430    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
431    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
432    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
433    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
434
435    // Altivec does not contain unordered floating-point compare instructions
436    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
437    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
438    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
439    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
440    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
441    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
442  }
443
444  if (Subtarget->has64BitSupport()) {
445    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
446    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
447  }
448
449  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
450  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
451  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
452  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
453
454  setBooleanContents(ZeroOrOneBooleanContent);
455  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
456
457  if (isPPC64) {
458    setStackPointerRegisterToSaveRestore(PPC::X1);
459    setExceptionPointerRegister(PPC::X3);
460    setExceptionSelectorRegister(PPC::X4);
461  } else {
462    setStackPointerRegisterToSaveRestore(PPC::R1);
463    setExceptionPointerRegister(PPC::R3);
464    setExceptionSelectorRegister(PPC::R4);
465  }
466
467  // We have target-specific dag combine patterns for the following nodes:
468  setTargetDAGCombine(ISD::SINT_TO_FP);
469  setTargetDAGCombine(ISD::STORE);
470  setTargetDAGCombine(ISD::BR_CC);
471  setTargetDAGCombine(ISD::BSWAP);
472
473  // Darwin long double math library functions have $LDBL128 appended.
474  if (Subtarget->isDarwin()) {
475    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
476    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
477    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
478    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
479    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
480    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
481    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
482    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
483    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
484    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
485  }
486
487  setMinFunctionAlignment(2);
488  if (PPCSubTarget.isDarwin())
489    setPrefFunctionAlignment(4);
490
491  if (isPPC64 && Subtarget->isJITCodeModel())
492    // Temporary workaround for the inability of PPC64 JIT to handle jump
493    // tables.
494    setSupportJumpTables(false);
495
496  setInsertFencesForAtomic(true);
497
498  setSchedulingPreference(Sched::Hybrid);
499
500  computeRegisterProperties();
501
502  // The Freescale cores does better with aggressive inlining of memcpy and
503  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
504  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
505      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
506    MaxStoresPerMemset = 32;
507    MaxStoresPerMemsetOptSize = 16;
508    MaxStoresPerMemcpy = 32;
509    MaxStoresPerMemcpyOptSize = 8;
510    MaxStoresPerMemmove = 32;
511    MaxStoresPerMemmoveOptSize = 8;
512
513    setPrefFunctionAlignment(4);
514    BenefitFromCodePlacementOpt = true;
515  }
516}
517
518/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
519/// function arguments in the caller parameter area.
520unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
521  const TargetMachine &TM = getTargetMachine();
522  // Darwin passes everything on 4 byte boundary.
523  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
524    return 4;
525
526  // 16byte and wider vectors are passed on 16byte boundary.
527  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
528    if (VTy->getBitWidth() >= 128)
529      return 16;
530
531  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
532   if (PPCSubTarget.isPPC64())
533     return 8;
534
535  return 4;
536}
537
538const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
539  switch (Opcode) {
540  default: return 0;
541  case PPCISD::FSEL:            return "PPCISD::FSEL";
542  case PPCISD::FCFID:           return "PPCISD::FCFID";
543  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
544  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
545  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
546  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
547  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
548  case PPCISD::VPERM:           return "PPCISD::VPERM";
549  case PPCISD::Hi:              return "PPCISD::Hi";
550  case PPCISD::Lo:              return "PPCISD::Lo";
551  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
552  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
553  case PPCISD::LOAD:            return "PPCISD::LOAD";
554  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
555  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
556  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
557  case PPCISD::SRL:             return "PPCISD::SRL";
558  case PPCISD::SRA:             return "PPCISD::SRA";
559  case PPCISD::SHL:             return "PPCISD::SHL";
560  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
561  case PPCISD::STD_32:          return "PPCISD::STD_32";
562  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
563  case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
564  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
565  case PPCISD::NOP:             return "PPCISD::NOP";
566  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
567  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
568  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
569  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
570  case PPCISD::MFCR:            return "PPCISD::MFCR";
571  case PPCISD::VCMP:            return "PPCISD::VCMP";
572  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
573  case PPCISD::LBRX:            return "PPCISD::LBRX";
574  case PPCISD::STBRX:           return "PPCISD::STBRX";
575  case PPCISD::LARX:            return "PPCISD::LARX";
576  case PPCISD::STCX:            return "PPCISD::STCX";
577  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
578  case PPCISD::MFFS:            return "PPCISD::MFFS";
579  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
580  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
581  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
582  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
583  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
584  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
585  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
586  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
587  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
588  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
589  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
590  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
591  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
592  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
593  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
594  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
595  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
596  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
597  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
598  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
599  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
600  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
601  }
602}
603
604EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
605  if (!VT.isVector())
606    return MVT::i32;
607  return VT.changeVectorElementTypeToInteger();
608}
609
610//===----------------------------------------------------------------------===//
611// Node matching predicates, for use by the tblgen matching code.
612//===----------------------------------------------------------------------===//
613
614/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
615static bool isFloatingPointZero(SDValue Op) {
616  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
617    return CFP->getValueAPF().isZero();
618  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
619    // Maybe this has already been legalized into the constant pool?
620    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
621      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
622        return CFP->getValueAPF().isZero();
623  }
624  return false;
625}
626
627/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
628/// true if Op is undef or if it matches the specified value.
629static bool isConstantOrUndef(int Op, int Val) {
630  return Op < 0 || Op == Val;
631}
632
633/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
634/// VPKUHUM instruction.
635bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
636  if (!isUnary) {
637    for (unsigned i = 0; i != 16; ++i)
638      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
639        return false;
640  } else {
641    for (unsigned i = 0; i != 8; ++i)
642      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
643          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
644        return false;
645  }
646  return true;
647}
648
649/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
650/// VPKUWUM instruction.
651bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
652  if (!isUnary) {
653    for (unsigned i = 0; i != 16; i += 2)
654      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
655          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
656        return false;
657  } else {
658    for (unsigned i = 0; i != 8; i += 2)
659      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
660          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
661          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
662          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
663        return false;
664  }
665  return true;
666}
667
668/// isVMerge - Common function, used to match vmrg* shuffles.
669///
670static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
671                     unsigned LHSStart, unsigned RHSStart) {
672  assert(N->getValueType(0) == MVT::v16i8 &&
673         "PPC only supports shuffles by bytes!");
674  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
675         "Unsupported merge size!");
676
677  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
678    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
679      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
680                             LHSStart+j+i*UnitSize) ||
681          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
682                             RHSStart+j+i*UnitSize))
683        return false;
684    }
685  return true;
686}
687
688/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
689/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
690bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
691                             bool isUnary) {
692  if (!isUnary)
693    return isVMerge(N, UnitSize, 8, 24);
694  return isVMerge(N, UnitSize, 8, 8);
695}
696
697/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
698/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
699bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
700                             bool isUnary) {
701  if (!isUnary)
702    return isVMerge(N, UnitSize, 0, 16);
703  return isVMerge(N, UnitSize, 0, 0);
704}
705
706
707/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
708/// amount, otherwise return -1.
709int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
710  assert(N->getValueType(0) == MVT::v16i8 &&
711         "PPC only supports shuffles by bytes!");
712
713  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
714
715  // Find the first non-undef value in the shuffle mask.
716  unsigned i;
717  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
718    /*search*/;
719
720  if (i == 16) return -1;  // all undef.
721
722  // Otherwise, check to see if the rest of the elements are consecutively
723  // numbered from this value.
724  unsigned ShiftAmt = SVOp->getMaskElt(i);
725  if (ShiftAmt < i) return -1;
726  ShiftAmt -= i;
727
728  if (!isUnary) {
729    // Check the rest of the elements to see if they are consecutive.
730    for (++i; i != 16; ++i)
731      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
732        return -1;
733  } else {
734    // Check the rest of the elements to see if they are consecutive.
735    for (++i; i != 16; ++i)
736      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
737        return -1;
738  }
739  return ShiftAmt;
740}
741
742/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
743/// specifies a splat of a single element that is suitable for input to
744/// VSPLTB/VSPLTH/VSPLTW.
745bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
746  assert(N->getValueType(0) == MVT::v16i8 &&
747         (EltSize == 1 || EltSize == 2 || EltSize == 4));
748
749  // This is a splat operation if each element of the permute is the same, and
750  // if the value doesn't reference the second vector.
751  unsigned ElementBase = N->getMaskElt(0);
752
753  // FIXME: Handle UNDEF elements too!
754  if (ElementBase >= 16)
755    return false;
756
757  // Check that the indices are consecutive, in the case of a multi-byte element
758  // splatted with a v16i8 mask.
759  for (unsigned i = 1; i != EltSize; ++i)
760    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
761      return false;
762
763  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
764    if (N->getMaskElt(i) < 0) continue;
765    for (unsigned j = 0; j != EltSize; ++j)
766      if (N->getMaskElt(i+j) != N->getMaskElt(j))
767        return false;
768  }
769  return true;
770}
771
772/// isAllNegativeZeroVector - Returns true if all elements of build_vector
773/// are -0.0.
774bool PPC::isAllNegativeZeroVector(SDNode *N) {
775  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
776
777  APInt APVal, APUndef;
778  unsigned BitSize;
779  bool HasAnyUndefs;
780
781  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
782    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
783      return CFP->getValueAPF().isNegZero();
784
785  return false;
786}
787
788/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
789/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
790unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
791  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
792  assert(isSplatShuffleMask(SVOp, EltSize));
793  return SVOp->getMaskElt(0) / EltSize;
794}
795
796/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
797/// by using a vspltis[bhw] instruction of the specified element size, return
798/// the constant being splatted.  The ByteSize field indicates the number of
799/// bytes of each element [124] -> [bhw].
800SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
801  SDValue OpVal(0, 0);
802
803  // If ByteSize of the splat is bigger than the element size of the
804  // build_vector, then we have a case where we are checking for a splat where
805  // multiple elements of the buildvector are folded together into a single
806  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
807  unsigned EltSize = 16/N->getNumOperands();
808  if (EltSize < ByteSize) {
809    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
810    SDValue UniquedVals[4];
811    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
812
813    // See if all of the elements in the buildvector agree across.
814    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
815      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
816      // If the element isn't a constant, bail fully out.
817      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
818
819
820      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
821        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
822      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
823        return SDValue();  // no match.
824    }
825
826    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
827    // either constant or undef values that are identical for each chunk.  See
828    // if these chunks can form into a larger vspltis*.
829
830    // Check to see if all of the leading entries are either 0 or -1.  If
831    // neither, then this won't fit into the immediate field.
832    bool LeadingZero = true;
833    bool LeadingOnes = true;
834    for (unsigned i = 0; i != Multiple-1; ++i) {
835      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
836
837      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
838      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
839    }
840    // Finally, check the least significant entry.
841    if (LeadingZero) {
842      if (UniquedVals[Multiple-1].getNode() == 0)
843        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
844      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
845      if (Val < 16)
846        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
847    }
848    if (LeadingOnes) {
849      if (UniquedVals[Multiple-1].getNode() == 0)
850        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
851      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
852      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
853        return DAG.getTargetConstant(Val, MVT::i32);
854    }
855
856    return SDValue();
857  }
858
859  // Check to see if this buildvec has a single non-undef value in its elements.
860  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
861    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
862    if (OpVal.getNode() == 0)
863      OpVal = N->getOperand(i);
864    else if (OpVal != N->getOperand(i))
865      return SDValue();
866  }
867
868  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
869
870  unsigned ValSizeInBytes = EltSize;
871  uint64_t Value = 0;
872  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
873    Value = CN->getZExtValue();
874  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
875    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
876    Value = FloatToBits(CN->getValueAPF().convertToFloat());
877  }
878
879  // If the splat value is larger than the element value, then we can never do
880  // this splat.  The only case that we could fit the replicated bits into our
881  // immediate field for would be zero, and we prefer to use vxor for it.
882  if (ValSizeInBytes < ByteSize) return SDValue();
883
884  // If the element value is larger than the splat value, cut it in half and
885  // check to see if the two halves are equal.  Continue doing this until we
886  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
887  while (ValSizeInBytes > ByteSize) {
888    ValSizeInBytes >>= 1;
889
890    // If the top half equals the bottom half, we're still ok.
891    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
892         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
893      return SDValue();
894  }
895
896  // Properly sign extend the value.
897  int MaskVal = SignExtend32(Value, ByteSize * 8);
898
899  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
900  if (MaskVal == 0) return SDValue();
901
902  // Finally, if this value fits in a 5 bit sext field, return it
903  if (SignExtend32<5>(MaskVal) == MaskVal)
904    return DAG.getTargetConstant(MaskVal, MVT::i32);
905  return SDValue();
906}
907
908//===----------------------------------------------------------------------===//
909//  Addressing Mode Selection
910//===----------------------------------------------------------------------===//
911
912/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
913/// or 64-bit immediate, and if the value can be accurately represented as a
914/// sign extension from a 16-bit value.  If so, this returns true and the
915/// immediate.
916static bool isIntS16Immediate(SDNode *N, short &Imm) {
917  if (N->getOpcode() != ISD::Constant)
918    return false;
919
920  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
921  if (N->getValueType(0) == MVT::i32)
922    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
923  else
924    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
925}
926static bool isIntS16Immediate(SDValue Op, short &Imm) {
927  return isIntS16Immediate(Op.getNode(), Imm);
928}
929
930
931/// SelectAddressRegReg - Given the specified addressed, check to see if it
932/// can be represented as an indexed [r+r] operation.  Returns false if it
933/// can be more efficiently represented with [r+imm].
934bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
935                                            SDValue &Index,
936                                            SelectionDAG &DAG) const {
937  short imm = 0;
938  if (N.getOpcode() == ISD::ADD) {
939    if (isIntS16Immediate(N.getOperand(1), imm))
940      return false;    // r+i
941    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
942      return false;    // r+i
943
944    Base = N.getOperand(0);
945    Index = N.getOperand(1);
946    return true;
947  } else if (N.getOpcode() == ISD::OR) {
948    if (isIntS16Immediate(N.getOperand(1), imm))
949      return false;    // r+i can fold it if we can.
950
951    // If this is an or of disjoint bitfields, we can codegen this as an add
952    // (for better address arithmetic) if the LHS and RHS of the OR are provably
953    // disjoint.
954    APInt LHSKnownZero, LHSKnownOne;
955    APInt RHSKnownZero, RHSKnownOne;
956    DAG.ComputeMaskedBits(N.getOperand(0),
957                          LHSKnownZero, LHSKnownOne);
958
959    if (LHSKnownZero.getBoolValue()) {
960      DAG.ComputeMaskedBits(N.getOperand(1),
961                            RHSKnownZero, RHSKnownOne);
962      // If all of the bits are known zero on the LHS or RHS, the add won't
963      // carry.
964      if (~(LHSKnownZero | RHSKnownZero) == 0) {
965        Base = N.getOperand(0);
966        Index = N.getOperand(1);
967        return true;
968      }
969    }
970  }
971
972  return false;
973}
974
975/// Returns true if the address N can be represented by a base register plus
976/// a signed 16-bit displacement [r+imm], and if it is not better
977/// represented as reg+reg.
978bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
979                                            SDValue &Base,
980                                            SelectionDAG &DAG) const {
981  // FIXME dl should come from parent load or store, not from address
982  DebugLoc dl = N.getDebugLoc();
983  // If this can be more profitably realized as r+r, fail.
984  if (SelectAddressRegReg(N, Disp, Base, DAG))
985    return false;
986
987  if (N.getOpcode() == ISD::ADD) {
988    short imm = 0;
989    if (isIntS16Immediate(N.getOperand(1), imm)) {
990      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
991      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
992        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
993      } else {
994        Base = N.getOperand(0);
995      }
996      return true; // [r+i]
997    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
998      // Match LOAD (ADD (X, Lo(G))).
999      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1000             && "Cannot handle constant offsets yet!");
1001      Disp = N.getOperand(1).getOperand(0);  // The global address.
1002      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1003             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1004             Disp.getOpcode() == ISD::TargetConstantPool ||
1005             Disp.getOpcode() == ISD::TargetJumpTable);
1006      Base = N.getOperand(0);
1007      return true;  // [&g+r]
1008    }
1009  } else if (N.getOpcode() == ISD::OR) {
1010    short imm = 0;
1011    if (isIntS16Immediate(N.getOperand(1), imm)) {
1012      // If this is an or of disjoint bitfields, we can codegen this as an add
1013      // (for better address arithmetic) if the LHS and RHS of the OR are
1014      // provably disjoint.
1015      APInt LHSKnownZero, LHSKnownOne;
1016      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1017
1018      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1019        // If all of the bits are known zero on the LHS or RHS, the add won't
1020        // carry.
1021        Base = N.getOperand(0);
1022        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1023        return true;
1024      }
1025    }
1026  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1027    // Loading from a constant address.
1028
1029    // If this address fits entirely in a 16-bit sext immediate field, codegen
1030    // this as "d, 0"
1031    short Imm;
1032    if (isIntS16Immediate(CN, Imm)) {
1033      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1034      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1035                             CN->getValueType(0));
1036      return true;
1037    }
1038
1039    // Handle 32-bit sext immediates with LIS + addr mode.
1040    if (CN->getValueType(0) == MVT::i32 ||
1041        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1042      int Addr = (int)CN->getZExtValue();
1043
1044      // Otherwise, break this down into an LIS + disp.
1045      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1046
1047      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1048      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1049      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1050      return true;
1051    }
1052  }
1053
1054  Disp = DAG.getTargetConstant(0, getPointerTy());
1055  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1056    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1057  else
1058    Base = N;
1059  return true;      // [r+0]
1060}
1061
1062/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1063/// represented as an indexed [r+r] operation.
1064bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1065                                                SDValue &Index,
1066                                                SelectionDAG &DAG) const {
1067  // Check to see if we can easily represent this as an [r+r] address.  This
1068  // will fail if it thinks that the address is more profitably represented as
1069  // reg+imm, e.g. where imm = 0.
1070  if (SelectAddressRegReg(N, Base, Index, DAG))
1071    return true;
1072
1073  // If the operand is an addition, always emit this as [r+r], since this is
1074  // better (for code size, and execution, as the memop does the add for free)
1075  // than emitting an explicit add.
1076  if (N.getOpcode() == ISD::ADD) {
1077    Base = N.getOperand(0);
1078    Index = N.getOperand(1);
1079    return true;
1080  }
1081
1082  // Otherwise, do it the hard way, using R0 as the base register.
1083  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1084                         N.getValueType());
1085  Index = N;
1086  return true;
1087}
1088
1089/// SelectAddressRegImmShift - Returns true if the address N can be
1090/// represented by a base register plus a signed 14-bit displacement
1091/// [r+imm*4].  Suitable for use by STD and friends.
1092bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1093                                                 SDValue &Base,
1094                                                 SelectionDAG &DAG) const {
1095  // FIXME dl should come from the parent load or store, not the address
1096  DebugLoc dl = N.getDebugLoc();
1097  // If this can be more profitably realized as r+r, fail.
1098  if (SelectAddressRegReg(N, Disp, Base, DAG))
1099    return false;
1100
1101  if (N.getOpcode() == ISD::ADD) {
1102    short imm = 0;
1103    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1104      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1105      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1106        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1107      } else {
1108        Base = N.getOperand(0);
1109      }
1110      return true; // [r+i]
1111    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1112      // Match LOAD (ADD (X, Lo(G))).
1113      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1114             && "Cannot handle constant offsets yet!");
1115      Disp = N.getOperand(1).getOperand(0);  // The global address.
1116      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1117             Disp.getOpcode() == ISD::TargetConstantPool ||
1118             Disp.getOpcode() == ISD::TargetJumpTable);
1119      Base = N.getOperand(0);
1120      return true;  // [&g+r]
1121    }
1122  } else if (N.getOpcode() == ISD::OR) {
1123    short imm = 0;
1124    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1125      // If this is an or of disjoint bitfields, we can codegen this as an add
1126      // (for better address arithmetic) if the LHS and RHS of the OR are
1127      // provably disjoint.
1128      APInt LHSKnownZero, LHSKnownOne;
1129      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1130      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1131        // If all of the bits are known zero on the LHS or RHS, the add won't
1132        // carry.
1133        Base = N.getOperand(0);
1134        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1135        return true;
1136      }
1137    }
1138  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1139    // Loading from a constant address.  Verify low two bits are clear.
1140    if ((CN->getZExtValue() & 3) == 0) {
1141      // If this address fits entirely in a 14-bit sext immediate field, codegen
1142      // this as "d, 0"
1143      short Imm;
1144      if (isIntS16Immediate(CN, Imm)) {
1145        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1146        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1147                               CN->getValueType(0));
1148        return true;
1149      }
1150
1151      // Fold the low-part of 32-bit absolute addresses into addr mode.
1152      if (CN->getValueType(0) == MVT::i32 ||
1153          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1154        int Addr = (int)CN->getZExtValue();
1155
1156        // Otherwise, break this down into an LIS + disp.
1157        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1158        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1159        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1160        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1161        return true;
1162      }
1163    }
1164  }
1165
1166  Disp = DAG.getTargetConstant(0, getPointerTy());
1167  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1168    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1169  else
1170    Base = N;
1171  return true;      // [r+0]
1172}
1173
1174
1175/// getPreIndexedAddressParts - returns true by value, base pointer and
1176/// offset pointer and addressing mode by reference if the node's address
1177/// can be legally represented as pre-indexed load / store address.
1178bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1179                                                  SDValue &Offset,
1180                                                  ISD::MemIndexedMode &AM,
1181                                                  SelectionDAG &DAG) const {
1182  if (DisablePPCPreinc) return false;
1183
1184  SDValue Ptr;
1185  EVT VT;
1186  unsigned Alignment;
1187  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1188    Ptr = LD->getBasePtr();
1189    VT = LD->getMemoryVT();
1190    Alignment = LD->getAlignment();
1191  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1192    Ptr = ST->getBasePtr();
1193    VT  = ST->getMemoryVT();
1194    Alignment = ST->getAlignment();
1195  } else
1196    return false;
1197
1198  // PowerPC doesn't have preinc load/store instructions for vectors.
1199  if (VT.isVector())
1200    return false;
1201
1202  if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) {
1203    AM = ISD::PRE_INC;
1204    return true;
1205  }
1206
1207  // LDU/STU use reg+imm*4, others use reg+imm.
1208  if (VT != MVT::i64) {
1209    // reg + imm
1210    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1211      return false;
1212  } else {
1213    // LDU/STU need an address with at least 4-byte alignment.
1214    if (Alignment < 4)
1215      return false;
1216
1217    // reg + imm * 4.
1218    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1219      return false;
1220  }
1221
1222  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1223    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1224    // sext i32 to i64 when addr mode is r+i.
1225    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1226        LD->getExtensionType() == ISD::SEXTLOAD &&
1227        isa<ConstantSDNode>(Offset))
1228      return false;
1229  }
1230
1231  AM = ISD::PRE_INC;
1232  return true;
1233}
1234
1235//===----------------------------------------------------------------------===//
1236//  LowerOperation implementation
1237//===----------------------------------------------------------------------===//
1238
1239/// GetLabelAccessInfo - Return true if we should reference labels using a
1240/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1241static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1242                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1243  HiOpFlags = PPCII::MO_HA16;
1244  LoOpFlags = PPCII::MO_LO16;
1245
1246  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1247  // non-darwin platform.  We don't support PIC on other platforms yet.
1248  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1249               TM.getSubtarget<PPCSubtarget>().isDarwin();
1250  if (isPIC) {
1251    HiOpFlags |= PPCII::MO_PIC_FLAG;
1252    LoOpFlags |= PPCII::MO_PIC_FLAG;
1253  }
1254
1255  // If this is a reference to a global value that requires a non-lazy-ptr, make
1256  // sure that instruction lowering adds it.
1257  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1258    HiOpFlags |= PPCII::MO_NLP_FLAG;
1259    LoOpFlags |= PPCII::MO_NLP_FLAG;
1260
1261    if (GV->hasHiddenVisibility()) {
1262      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1263      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1264    }
1265  }
1266
1267  return isPIC;
1268}
1269
1270static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1271                             SelectionDAG &DAG) {
1272  EVT PtrVT = HiPart.getValueType();
1273  SDValue Zero = DAG.getConstant(0, PtrVT);
1274  DebugLoc DL = HiPart.getDebugLoc();
1275
1276  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1277  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1278
1279  // With PIC, the first instruction is actually "GR+hi(&G)".
1280  if (isPIC)
1281    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1282                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1283
1284  // Generate non-pic code that has direct accesses to the constant pool.
1285  // The address of the global is just (hi(&g)+lo(&g)).
1286  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1287}
1288
1289SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1290                                             SelectionDAG &DAG) const {
1291  EVT PtrVT = Op.getValueType();
1292  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1293  const Constant *C = CP->getConstVal();
1294
1295  // 64-bit SVR4 ABI code is always position-independent.
1296  // The actual address of the GlobalValue is stored in the TOC.
1297  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1298    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1299    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1300                       DAG.getRegister(PPC::X2, MVT::i64));
1301  }
1302
1303  unsigned MOHiFlag, MOLoFlag;
1304  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1305  SDValue CPIHi =
1306    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1307  SDValue CPILo =
1308    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1309  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1310}
1311
1312SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1313  EVT PtrVT = Op.getValueType();
1314  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1315
1316  // 64-bit SVR4 ABI code is always position-independent.
1317  // The actual address of the GlobalValue is stored in the TOC.
1318  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1319    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1320    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1321                       DAG.getRegister(PPC::X2, MVT::i64));
1322  }
1323
1324  unsigned MOHiFlag, MOLoFlag;
1325  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1326  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1327  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1328  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1329}
1330
1331SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1332                                             SelectionDAG &DAG) const {
1333  EVT PtrVT = Op.getValueType();
1334
1335  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1336
1337  unsigned MOHiFlag, MOLoFlag;
1338  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1339  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1340  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1341  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1342}
1343
1344SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1345                                              SelectionDAG &DAG) const {
1346
1347  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1348  DebugLoc dl = GA->getDebugLoc();
1349  const GlobalValue *GV = GA->getGlobal();
1350  EVT PtrVT = getPointerTy();
1351  bool is64bit = PPCSubTarget.isPPC64();
1352
1353  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1354
1355  if (Model == TLSModel::LocalExec) {
1356    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1357                                               PPCII::MO_TPREL16_HA);
1358    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1359                                               PPCII::MO_TPREL16_LO);
1360    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1361                                     is64bit ? MVT::i64 : MVT::i32);
1362    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1363    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1364  }
1365
1366  if (!is64bit)
1367    llvm_unreachable("only local-exec is currently supported for ppc32");
1368
1369  if (Model == TLSModel::InitialExec) {
1370    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1371    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1372    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1373                                     PtrVT, GOTReg, TGA);
1374    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1375                                   PtrVT, TGA, TPOffsetHi);
1376    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1377  }
1378
1379  if (Model == TLSModel::GeneralDynamic) {
1380    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1381    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1382    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1383                                     GOTReg, TGA);
1384    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1385                                   GOTEntryHi, TGA);
1386
1387    // We need a chain node, and don't have one handy.  The underlying
1388    // call has no side effects, so using the function entry node
1389    // suffices.
1390    SDValue Chain = DAG.getEntryNode();
1391    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1392    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1393    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1394                                  PtrVT, ParmReg, TGA);
1395    // The return value from GET_TLS_ADDR really is in X3 already, but
1396    // some hacks are needed here to tie everything together.  The extra
1397    // copies dissolve during subsequent transforms.
1398    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1399    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1400  }
1401
1402  if (Model == TLSModel::LocalDynamic) {
1403    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1404    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1405    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1406                                     GOTReg, TGA);
1407    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1408                                   GOTEntryHi, TGA);
1409
1410    // We need a chain node, and don't have one handy.  The underlying
1411    // call has no side effects, so using the function entry node
1412    // suffices.
1413    SDValue Chain = DAG.getEntryNode();
1414    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1415    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1416    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1417                                  PtrVT, ParmReg, TGA);
1418    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1419    // some hacks are needed here to tie everything together.  The extra
1420    // copies dissolve during subsequent transforms.
1421    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1422    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1423                                      Chain, ParmReg, TGA);
1424    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1425  }
1426
1427  llvm_unreachable("Unknown TLS model!");
1428}
1429
1430SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1431                                              SelectionDAG &DAG) const {
1432  EVT PtrVT = Op.getValueType();
1433  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1434  DebugLoc DL = GSDN->getDebugLoc();
1435  const GlobalValue *GV = GSDN->getGlobal();
1436
1437  // 64-bit SVR4 ABI code is always position-independent.
1438  // The actual address of the GlobalValue is stored in the TOC.
1439  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1440    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1441    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1442                       DAG.getRegister(PPC::X2, MVT::i64));
1443  }
1444
1445  unsigned MOHiFlag, MOLoFlag;
1446  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1447
1448  SDValue GAHi =
1449    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1450  SDValue GALo =
1451    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1452
1453  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1454
1455  // If the global reference is actually to a non-lazy-pointer, we have to do an
1456  // extra load to get the address of the global.
1457  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1458    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1459                      false, false, false, 0);
1460  return Ptr;
1461}
1462
1463SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1464  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1465  DebugLoc dl = Op.getDebugLoc();
1466
1467  // If we're comparing for equality to zero, expose the fact that this is
1468  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1469  // fold the new nodes.
1470  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1471    if (C->isNullValue() && CC == ISD::SETEQ) {
1472      EVT VT = Op.getOperand(0).getValueType();
1473      SDValue Zext = Op.getOperand(0);
1474      if (VT.bitsLT(MVT::i32)) {
1475        VT = MVT::i32;
1476        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1477      }
1478      unsigned Log2b = Log2_32(VT.getSizeInBits());
1479      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1480      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1481                                DAG.getConstant(Log2b, MVT::i32));
1482      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1483    }
1484    // Leave comparisons against 0 and -1 alone for now, since they're usually
1485    // optimized.  FIXME: revisit this when we can custom lower all setcc
1486    // optimizations.
1487    if (C->isAllOnesValue() || C->isNullValue())
1488      return SDValue();
1489  }
1490
1491  // If we have an integer seteq/setne, turn it into a compare against zero
1492  // by xor'ing the rhs with the lhs, which is faster than setting a
1493  // condition register, reading it back out, and masking the correct bit.  The
1494  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1495  // the result to other bit-twiddling opportunities.
1496  EVT LHSVT = Op.getOperand(0).getValueType();
1497  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1498    EVT VT = Op.getValueType();
1499    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1500                                Op.getOperand(1));
1501    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1502  }
1503  return SDValue();
1504}
1505
1506SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1507                                      const PPCSubtarget &Subtarget) const {
1508  SDNode *Node = Op.getNode();
1509  EVT VT = Node->getValueType(0);
1510  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1511  SDValue InChain = Node->getOperand(0);
1512  SDValue VAListPtr = Node->getOperand(1);
1513  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1514  DebugLoc dl = Node->getDebugLoc();
1515
1516  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1517
1518  // gpr_index
1519  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1520                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1521                                    false, false, 0);
1522  InChain = GprIndex.getValue(1);
1523
1524  if (VT == MVT::i64) {
1525    // Check if GprIndex is even
1526    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1527                                 DAG.getConstant(1, MVT::i32));
1528    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1529                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1530    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1531                                          DAG.getConstant(1, MVT::i32));
1532    // Align GprIndex to be even if it isn't
1533    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1534                           GprIndex);
1535  }
1536
1537  // fpr index is 1 byte after gpr
1538  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1539                               DAG.getConstant(1, MVT::i32));
1540
1541  // fpr
1542  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1543                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1544                                    false, false, 0);
1545  InChain = FprIndex.getValue(1);
1546
1547  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1548                                       DAG.getConstant(8, MVT::i32));
1549
1550  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1551                                        DAG.getConstant(4, MVT::i32));
1552
1553  // areas
1554  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1555                                     MachinePointerInfo(), false, false,
1556                                     false, 0);
1557  InChain = OverflowArea.getValue(1);
1558
1559  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1560                                    MachinePointerInfo(), false, false,
1561                                    false, 0);
1562  InChain = RegSaveArea.getValue(1);
1563
1564  // select overflow_area if index > 8
1565  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1566                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1567
1568  // adjustment constant gpr_index * 4/8
1569  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1570                                    VT.isInteger() ? GprIndex : FprIndex,
1571                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1572                                                    MVT::i32));
1573
1574  // OurReg = RegSaveArea + RegConstant
1575  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1576                               RegConstant);
1577
1578  // Floating types are 32 bytes into RegSaveArea
1579  if (VT.isFloatingPoint())
1580    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1581                         DAG.getConstant(32, MVT::i32));
1582
1583  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1584  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1585                                   VT.isInteger() ? GprIndex : FprIndex,
1586                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1587                                                   MVT::i32));
1588
1589  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1590                              VT.isInteger() ? VAListPtr : FprPtr,
1591                              MachinePointerInfo(SV),
1592                              MVT::i8, false, false, 0);
1593
1594  // determine if we should load from reg_save_area or overflow_area
1595  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1596
1597  // increase overflow_area by 4/8 if gpr/fpr > 8
1598  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1599                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1600                                          MVT::i32));
1601
1602  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1603                             OverflowAreaPlusN);
1604
1605  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1606                              OverflowAreaPtr,
1607                              MachinePointerInfo(),
1608                              MVT::i32, false, false, 0);
1609
1610  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1611                     false, false, false, 0);
1612}
1613
1614SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1615                                                  SelectionDAG &DAG) const {
1616  return Op.getOperand(0);
1617}
1618
1619SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1620                                                SelectionDAG &DAG) const {
1621  SDValue Chain = Op.getOperand(0);
1622  SDValue Trmp = Op.getOperand(1); // trampoline
1623  SDValue FPtr = Op.getOperand(2); // nested function
1624  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1625  DebugLoc dl = Op.getDebugLoc();
1626
1627  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1628  bool isPPC64 = (PtrVT == MVT::i64);
1629  Type *IntPtrTy =
1630    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1631                                                             *DAG.getContext());
1632
1633  TargetLowering::ArgListTy Args;
1634  TargetLowering::ArgListEntry Entry;
1635
1636  Entry.Ty = IntPtrTy;
1637  Entry.Node = Trmp; Args.push_back(Entry);
1638
1639  // TrampSize == (isPPC64 ? 48 : 40);
1640  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1641                               isPPC64 ? MVT::i64 : MVT::i32);
1642  Args.push_back(Entry);
1643
1644  Entry.Node = FPtr; Args.push_back(Entry);
1645  Entry.Node = Nest; Args.push_back(Entry);
1646
1647  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1648  TargetLowering::CallLoweringInfo CLI(Chain,
1649                                       Type::getVoidTy(*DAG.getContext()),
1650                                       false, false, false, false, 0,
1651                                       CallingConv::C,
1652                /*isTailCall=*/false,
1653                                       /*doesNotRet=*/false,
1654                                       /*isReturnValueUsed=*/true,
1655                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1656                Args, DAG, dl);
1657  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1658
1659  return CallResult.second;
1660}
1661
1662SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1663                                        const PPCSubtarget &Subtarget) const {
1664  MachineFunction &MF = DAG.getMachineFunction();
1665  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1666
1667  DebugLoc dl = Op.getDebugLoc();
1668
1669  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1670    // vastart just stores the address of the VarArgsFrameIndex slot into the
1671    // memory location argument.
1672    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1673    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1674    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1675    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1676                        MachinePointerInfo(SV),
1677                        false, false, 0);
1678  }
1679
1680  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1681  // We suppose the given va_list is already allocated.
1682  //
1683  // typedef struct {
1684  //  char gpr;     /* index into the array of 8 GPRs
1685  //                 * stored in the register save area
1686  //                 * gpr=0 corresponds to r3,
1687  //                 * gpr=1 to r4, etc.
1688  //                 */
1689  //  char fpr;     /* index into the array of 8 FPRs
1690  //                 * stored in the register save area
1691  //                 * fpr=0 corresponds to f1,
1692  //                 * fpr=1 to f2, etc.
1693  //                 */
1694  //  char *overflow_arg_area;
1695  //                /* location on stack that holds
1696  //                 * the next overflow argument
1697  //                 */
1698  //  char *reg_save_area;
1699  //               /* where r3:r10 and f1:f8 (if saved)
1700  //                * are stored
1701  //                */
1702  // } va_list[1];
1703
1704
1705  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1706  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1707
1708
1709  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1710
1711  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1712                                            PtrVT);
1713  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1714                                 PtrVT);
1715
1716  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1717  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1718
1719  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1720  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1721
1722  uint64_t FPROffset = 1;
1723  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1724
1725  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1726
1727  // Store first byte : number of int regs
1728  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1729                                         Op.getOperand(1),
1730                                         MachinePointerInfo(SV),
1731                                         MVT::i8, false, false, 0);
1732  uint64_t nextOffset = FPROffset;
1733  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1734                                  ConstFPROffset);
1735
1736  // Store second byte : number of float regs
1737  SDValue secondStore =
1738    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1739                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1740                      false, false, 0);
1741  nextOffset += StackOffset;
1742  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1743
1744  // Store second word : arguments given on stack
1745  SDValue thirdStore =
1746    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1747                 MachinePointerInfo(SV, nextOffset),
1748                 false, false, 0);
1749  nextOffset += FrameOffset;
1750  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1751
1752  // Store third word : arguments given in registers
1753  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1754                      MachinePointerInfo(SV, nextOffset),
1755                      false, false, 0);
1756
1757}
1758
1759#include "PPCGenCallingConv.inc"
1760
1761static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1762                                       CCValAssign::LocInfo &LocInfo,
1763                                       ISD::ArgFlagsTy &ArgFlags,
1764                                       CCState &State) {
1765  return true;
1766}
1767
1768static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1769                                              MVT &LocVT,
1770                                              CCValAssign::LocInfo &LocInfo,
1771                                              ISD::ArgFlagsTy &ArgFlags,
1772                                              CCState &State) {
1773  static const uint16_t ArgRegs[] = {
1774    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1775    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1776  };
1777  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1778
1779  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1780
1781  // Skip one register if the first unallocated register has an even register
1782  // number and there are still argument registers available which have not been
1783  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1784  // need to skip a register if RegNum is odd.
1785  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1786    State.AllocateReg(ArgRegs[RegNum]);
1787  }
1788
1789  // Always return false here, as this function only makes sure that the first
1790  // unallocated register has an odd register number and does not actually
1791  // allocate a register for the current argument.
1792  return false;
1793}
1794
1795static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1796                                                MVT &LocVT,
1797                                                CCValAssign::LocInfo &LocInfo,
1798                                                ISD::ArgFlagsTy &ArgFlags,
1799                                                CCState &State) {
1800  static const uint16_t ArgRegs[] = {
1801    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1802    PPC::F8
1803  };
1804
1805  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1806
1807  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1808
1809  // If there is only one Floating-point register left we need to put both f64
1810  // values of a split ppc_fp128 value on the stack.
1811  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1812    State.AllocateReg(ArgRegs[RegNum]);
1813  }
1814
1815  // Always return false here, as this function only makes sure that the two f64
1816  // values a ppc_fp128 value is split into are both passed in registers or both
1817  // passed on the stack and does not actually allocate a register for the
1818  // current argument.
1819  return false;
1820}
1821
1822/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1823/// on Darwin.
1824static const uint16_t *GetFPR() {
1825  static const uint16_t FPR[] = {
1826    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1827    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1828  };
1829
1830  return FPR;
1831}
1832
1833/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1834/// the stack.
1835static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1836                                       unsigned PtrByteSize) {
1837  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1838  if (Flags.isByVal())
1839    ArgSize = Flags.getByValSize();
1840  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1841
1842  return ArgSize;
1843}
1844
1845SDValue
1846PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1847                                        CallingConv::ID CallConv, bool isVarArg,
1848                                        const SmallVectorImpl<ISD::InputArg>
1849                                          &Ins,
1850                                        DebugLoc dl, SelectionDAG &DAG,
1851                                        SmallVectorImpl<SDValue> &InVals)
1852                                          const {
1853  if (PPCSubTarget.isSVR4ABI()) {
1854    if (PPCSubTarget.isPPC64())
1855      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1856                                         dl, DAG, InVals);
1857    else
1858      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1859                                         dl, DAG, InVals);
1860  } else {
1861    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1862                                       dl, DAG, InVals);
1863  }
1864}
1865
1866SDValue
1867PPCTargetLowering::LowerFormalArguments_32SVR4(
1868                                      SDValue Chain,
1869                                      CallingConv::ID CallConv, bool isVarArg,
1870                                      const SmallVectorImpl<ISD::InputArg>
1871                                        &Ins,
1872                                      DebugLoc dl, SelectionDAG &DAG,
1873                                      SmallVectorImpl<SDValue> &InVals) const {
1874
1875  // 32-bit SVR4 ABI Stack Frame Layout:
1876  //              +-----------------------------------+
1877  //        +-->  |            Back chain             |
1878  //        |     +-----------------------------------+
1879  //        |     | Floating-point register save area |
1880  //        |     +-----------------------------------+
1881  //        |     |    General register save area     |
1882  //        |     +-----------------------------------+
1883  //        |     |          CR save word             |
1884  //        |     +-----------------------------------+
1885  //        |     |         VRSAVE save word          |
1886  //        |     +-----------------------------------+
1887  //        |     |         Alignment padding         |
1888  //        |     +-----------------------------------+
1889  //        |     |     Vector register save area     |
1890  //        |     +-----------------------------------+
1891  //        |     |       Local variable space        |
1892  //        |     +-----------------------------------+
1893  //        |     |        Parameter list area        |
1894  //        |     +-----------------------------------+
1895  //        |     |           LR save word            |
1896  //        |     +-----------------------------------+
1897  // SP-->  +---  |            Back chain             |
1898  //              +-----------------------------------+
1899  //
1900  // Specifications:
1901  //   System V Application Binary Interface PowerPC Processor Supplement
1902  //   AltiVec Technology Programming Interface Manual
1903
1904  MachineFunction &MF = DAG.getMachineFunction();
1905  MachineFrameInfo *MFI = MF.getFrameInfo();
1906  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1907
1908  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1909  // Potential tail calls could cause overwriting of argument stack slots.
1910  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1911                       (CallConv == CallingConv::Fast));
1912  unsigned PtrByteSize = 4;
1913
1914  // Assign locations to all of the incoming arguments.
1915  SmallVector<CCValAssign, 16> ArgLocs;
1916  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1917                 getTargetMachine(), ArgLocs, *DAG.getContext());
1918
1919  // Reserve space for the linkage area on the stack.
1920  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1921
1922  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1923
1924  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1925    CCValAssign &VA = ArgLocs[i];
1926
1927    // Arguments stored in registers.
1928    if (VA.isRegLoc()) {
1929      const TargetRegisterClass *RC;
1930      EVT ValVT = VA.getValVT();
1931
1932      switch (ValVT.getSimpleVT().SimpleTy) {
1933        default:
1934          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1935        case MVT::i32:
1936          RC = &PPC::GPRCRegClass;
1937          break;
1938        case MVT::f32:
1939          RC = &PPC::F4RCRegClass;
1940          break;
1941        case MVT::f64:
1942          RC = &PPC::F8RCRegClass;
1943          break;
1944        case MVT::v16i8:
1945        case MVT::v8i16:
1946        case MVT::v4i32:
1947        case MVT::v4f32:
1948          RC = &PPC::VRRCRegClass;
1949          break;
1950      }
1951
1952      // Transform the arguments stored in physical registers into virtual ones.
1953      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1954      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1955
1956      InVals.push_back(ArgValue);
1957    } else {
1958      // Argument stored in memory.
1959      assert(VA.isMemLoc());
1960
1961      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1962      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1963                                      isImmutable);
1964
1965      // Create load nodes to retrieve arguments from the stack.
1966      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1967      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1968                                   MachinePointerInfo(),
1969                                   false, false, false, 0));
1970    }
1971  }
1972
1973  // Assign locations to all of the incoming aggregate by value arguments.
1974  // Aggregates passed by value are stored in the local variable space of the
1975  // caller's stack frame, right above the parameter list area.
1976  SmallVector<CCValAssign, 16> ByValArgLocs;
1977  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1978                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1979
1980  // Reserve stack space for the allocations in CCInfo.
1981  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1982
1983  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
1984
1985  // Area that is at least reserved in the caller of this function.
1986  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1987
1988  // Set the size that is at least reserved in caller of this function.  Tail
1989  // call optimized function's reserved stack space needs to be aligned so that
1990  // taking the difference between two stack areas will result in an aligned
1991  // stack.
1992  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1993
1994  MinReservedArea =
1995    std::max(MinReservedArea,
1996             PPCFrameLowering::getMinCallFrameSize(false, false));
1997
1998  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1999    getStackAlignment();
2000  unsigned AlignMask = TargetAlign-1;
2001  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2002
2003  FI->setMinReservedArea(MinReservedArea);
2004
2005  SmallVector<SDValue, 8> MemOps;
2006
2007  // If the function takes variable number of arguments, make a frame index for
2008  // the start of the first vararg value... for expansion of llvm.va_start.
2009  if (isVarArg) {
2010    static const uint16_t GPArgRegs[] = {
2011      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2012      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2013    };
2014    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2015
2016    static const uint16_t FPArgRegs[] = {
2017      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2018      PPC::F8
2019    };
2020    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2021
2022    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2023                                                          NumGPArgRegs));
2024    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2025                                                          NumFPArgRegs));
2026
2027    // Make room for NumGPArgRegs and NumFPArgRegs.
2028    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2029                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2030
2031    FuncInfo->setVarArgsStackOffset(
2032      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2033                             CCInfo.getNextStackOffset(), true));
2034
2035    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2036    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2037
2038    // The fixed integer arguments of a variadic function are stored to the
2039    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2040    // the result of va_next.
2041    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2042      // Get an existing live-in vreg, or add a new one.
2043      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2044      if (!VReg)
2045        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2046
2047      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2048      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2049                                   MachinePointerInfo(), false, false, 0);
2050      MemOps.push_back(Store);
2051      // Increment the address by four for the next argument to store
2052      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2053      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2054    }
2055
2056    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2057    // is set.
2058    // The double arguments are stored to the VarArgsFrameIndex
2059    // on the stack.
2060    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2061      // Get an existing live-in vreg, or add a new one.
2062      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2063      if (!VReg)
2064        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2065
2066      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2067      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2068                                   MachinePointerInfo(), false, false, 0);
2069      MemOps.push_back(Store);
2070      // Increment the address by eight for the next argument to store
2071      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2072                                         PtrVT);
2073      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2074    }
2075  }
2076
2077  if (!MemOps.empty())
2078    Chain = DAG.getNode(ISD::TokenFactor, dl,
2079                        MVT::Other, &MemOps[0], MemOps.size());
2080
2081  return Chain;
2082}
2083
2084// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2085// value to MVT::i64 and then truncate to the correct register size.
2086SDValue
2087PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2088                                     SelectionDAG &DAG, SDValue ArgVal,
2089                                     DebugLoc dl) const {
2090  if (Flags.isSExt())
2091    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2092                         DAG.getValueType(ObjectVT));
2093  else if (Flags.isZExt())
2094    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2095                         DAG.getValueType(ObjectVT));
2096
2097  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2098}
2099
2100// Set the size that is at least reserved in caller of this function.  Tail
2101// call optimized functions' reserved stack space needs to be aligned so that
2102// taking the difference between two stack areas will result in an aligned
2103// stack.
2104void
2105PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2106                                      unsigned nAltivecParamsAtEnd,
2107                                      unsigned MinReservedArea,
2108                                      bool isPPC64) const {
2109  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2110  // Add the Altivec parameters at the end, if needed.
2111  if (nAltivecParamsAtEnd) {
2112    MinReservedArea = ((MinReservedArea+15)/16)*16;
2113    MinReservedArea += 16*nAltivecParamsAtEnd;
2114  }
2115  MinReservedArea =
2116    std::max(MinReservedArea,
2117             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2118  unsigned TargetAlign
2119    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2120        getStackAlignment();
2121  unsigned AlignMask = TargetAlign-1;
2122  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2123  FI->setMinReservedArea(MinReservedArea);
2124}
2125
2126SDValue
2127PPCTargetLowering::LowerFormalArguments_64SVR4(
2128                                      SDValue Chain,
2129                                      CallingConv::ID CallConv, bool isVarArg,
2130                                      const SmallVectorImpl<ISD::InputArg>
2131                                        &Ins,
2132                                      DebugLoc dl, SelectionDAG &DAG,
2133                                      SmallVectorImpl<SDValue> &InVals) const {
2134  // TODO: add description of PPC stack frame format, or at least some docs.
2135  //
2136  MachineFunction &MF = DAG.getMachineFunction();
2137  MachineFrameInfo *MFI = MF.getFrameInfo();
2138  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2139
2140  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2141  // Potential tail calls could cause overwriting of argument stack slots.
2142  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2143                       (CallConv == CallingConv::Fast));
2144  unsigned PtrByteSize = 8;
2145
2146  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2147  // Area that is at least reserved in caller of this function.
2148  unsigned MinReservedArea = ArgOffset;
2149
2150  static const uint16_t GPR[] = {
2151    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2152    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2153  };
2154
2155  static const uint16_t *FPR = GetFPR();
2156
2157  static const uint16_t VR[] = {
2158    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2159    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2160  };
2161
2162  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2163  const unsigned Num_FPR_Regs = 13;
2164  const unsigned Num_VR_Regs  = array_lengthof(VR);
2165
2166  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2167
2168  // Add DAG nodes to load the arguments or copy them out of registers.  On
2169  // entry to a function on PPC, the arguments start after the linkage area,
2170  // although the first ones are often in registers.
2171
2172  SmallVector<SDValue, 8> MemOps;
2173  unsigned nAltivecParamsAtEnd = 0;
2174  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2175  unsigned CurArgIdx = 0;
2176  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2177    SDValue ArgVal;
2178    bool needsLoad = false;
2179    EVT ObjectVT = Ins[ArgNo].VT;
2180    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2181    unsigned ArgSize = ObjSize;
2182    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2183    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2184    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2185
2186    unsigned CurArgOffset = ArgOffset;
2187
2188    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2189    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2190        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2191      if (isVarArg) {
2192        MinReservedArea = ((MinReservedArea+15)/16)*16;
2193        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2194                                                  Flags,
2195                                                  PtrByteSize);
2196      } else
2197        nAltivecParamsAtEnd++;
2198    } else
2199      // Calculate min reserved area.
2200      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2201                                                Flags,
2202                                                PtrByteSize);
2203
2204    // FIXME the codegen can be much improved in some cases.
2205    // We do not have to keep everything in memory.
2206    if (Flags.isByVal()) {
2207      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2208      ObjSize = Flags.getByValSize();
2209      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2210      // Empty aggregate parameters do not take up registers.  Examples:
2211      //   struct { } a;
2212      //   union  { } b;
2213      //   int c[0];
2214      // etc.  However, we have to provide a place-holder in InVals, so
2215      // pretend we have an 8-byte item at the current address for that
2216      // purpose.
2217      if (!ObjSize) {
2218        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2219        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2220        InVals.push_back(FIN);
2221        continue;
2222      }
2223      // All aggregates smaller than 8 bytes must be passed right-justified.
2224      if (ObjSize < PtrByteSize)
2225        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2226      // The value of the object is its address.
2227      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2228      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2229      InVals.push_back(FIN);
2230
2231      if (ObjSize < 8) {
2232        if (GPR_idx != Num_GPR_Regs) {
2233          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2234          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2235          SDValue Store;
2236
2237          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2238            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2239                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2240            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2241                                      MachinePointerInfo(FuncArg, CurArgOffset),
2242                                      ObjType, false, false, 0);
2243          } else {
2244            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2245            // store the whole register as-is to the parameter save area
2246            // slot.  The address of the parameter was already calculated
2247            // above (InVals.push_back(FIN)) to be the right-justified
2248            // offset within the slot.  For this store, we need a new
2249            // frame index that points at the beginning of the slot.
2250            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2251            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2252            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2253                                 MachinePointerInfo(FuncArg, ArgOffset),
2254                                 false, false, 0);
2255          }
2256
2257          MemOps.push_back(Store);
2258          ++GPR_idx;
2259        }
2260        // Whether we copied from a register or not, advance the offset
2261        // into the parameter save area by a full doubleword.
2262        ArgOffset += PtrByteSize;
2263        continue;
2264      }
2265
2266      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2267        // Store whatever pieces of the object are in registers
2268        // to memory.  ArgOffset will be the address of the beginning
2269        // of the object.
2270        if (GPR_idx != Num_GPR_Regs) {
2271          unsigned VReg;
2272          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2273          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2274          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2275          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2276          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2277                                       MachinePointerInfo(FuncArg, ArgOffset),
2278                                       false, false, 0);
2279          MemOps.push_back(Store);
2280          ++GPR_idx;
2281          ArgOffset += PtrByteSize;
2282        } else {
2283          ArgOffset += ArgSize - j;
2284          break;
2285        }
2286      }
2287      continue;
2288    }
2289
2290    switch (ObjectVT.getSimpleVT().SimpleTy) {
2291    default: llvm_unreachable("Unhandled argument type!");
2292    case MVT::i32:
2293    case MVT::i64:
2294      if (GPR_idx != Num_GPR_Regs) {
2295        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2296        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2297
2298        if (ObjectVT == MVT::i32)
2299          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2300          // value to MVT::i64 and then truncate to the correct register size.
2301          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2302
2303        ++GPR_idx;
2304      } else {
2305        needsLoad = true;
2306        ArgSize = PtrByteSize;
2307      }
2308      ArgOffset += 8;
2309      break;
2310
2311    case MVT::f32:
2312    case MVT::f64:
2313      // Every 8 bytes of argument space consumes one of the GPRs available for
2314      // argument passing.
2315      if (GPR_idx != Num_GPR_Regs) {
2316        ++GPR_idx;
2317      }
2318      if (FPR_idx != Num_FPR_Regs) {
2319        unsigned VReg;
2320
2321        if (ObjectVT == MVT::f32)
2322          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2323        else
2324          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2325
2326        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2327        ++FPR_idx;
2328      } else {
2329        needsLoad = true;
2330        ArgSize = PtrByteSize;
2331      }
2332
2333      ArgOffset += 8;
2334      break;
2335    case MVT::v4f32:
2336    case MVT::v4i32:
2337    case MVT::v8i16:
2338    case MVT::v16i8:
2339      // Note that vector arguments in registers don't reserve stack space,
2340      // except in varargs functions.
2341      if (VR_idx != Num_VR_Regs) {
2342        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2343        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2344        if (isVarArg) {
2345          while ((ArgOffset % 16) != 0) {
2346            ArgOffset += PtrByteSize;
2347            if (GPR_idx != Num_GPR_Regs)
2348              GPR_idx++;
2349          }
2350          ArgOffset += 16;
2351          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2352        }
2353        ++VR_idx;
2354      } else {
2355        // Vectors are aligned.
2356        ArgOffset = ((ArgOffset+15)/16)*16;
2357        CurArgOffset = ArgOffset;
2358        ArgOffset += 16;
2359        needsLoad = true;
2360      }
2361      break;
2362    }
2363
2364    // We need to load the argument to a virtual register if we determined
2365    // above that we ran out of physical registers of the appropriate type.
2366    if (needsLoad) {
2367      int FI = MFI->CreateFixedObject(ObjSize,
2368                                      CurArgOffset + (ArgSize - ObjSize),
2369                                      isImmutable);
2370      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2371      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2372                           false, false, false, 0);
2373    }
2374
2375    InVals.push_back(ArgVal);
2376  }
2377
2378  // Set the size that is at least reserved in caller of this function.  Tail
2379  // call optimized functions' reserved stack space needs to be aligned so that
2380  // taking the difference between two stack areas will result in an aligned
2381  // stack.
2382  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2383
2384  // If the function takes variable number of arguments, make a frame index for
2385  // the start of the first vararg value... for expansion of llvm.va_start.
2386  if (isVarArg) {
2387    int Depth = ArgOffset;
2388
2389    FuncInfo->setVarArgsFrameIndex(
2390      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2391    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2392
2393    // If this function is vararg, store any remaining integer argument regs
2394    // to their spots on the stack so that they may be loaded by deferencing the
2395    // result of va_next.
2396    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2397      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2398      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2399      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2400                                   MachinePointerInfo(), false, false, 0);
2401      MemOps.push_back(Store);
2402      // Increment the address by four for the next argument to store
2403      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2404      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2405    }
2406  }
2407
2408  if (!MemOps.empty())
2409    Chain = DAG.getNode(ISD::TokenFactor, dl,
2410                        MVT::Other, &MemOps[0], MemOps.size());
2411
2412  return Chain;
2413}
2414
2415SDValue
2416PPCTargetLowering::LowerFormalArguments_Darwin(
2417                                      SDValue Chain,
2418                                      CallingConv::ID CallConv, bool isVarArg,
2419                                      const SmallVectorImpl<ISD::InputArg>
2420                                        &Ins,
2421                                      DebugLoc dl, SelectionDAG &DAG,
2422                                      SmallVectorImpl<SDValue> &InVals) const {
2423  // TODO: add description of PPC stack frame format, or at least some docs.
2424  //
2425  MachineFunction &MF = DAG.getMachineFunction();
2426  MachineFrameInfo *MFI = MF.getFrameInfo();
2427  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2428
2429  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2430  bool isPPC64 = PtrVT == MVT::i64;
2431  // Potential tail calls could cause overwriting of argument stack slots.
2432  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2433                       (CallConv == CallingConv::Fast));
2434  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2435
2436  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2437  // Area that is at least reserved in caller of this function.
2438  unsigned MinReservedArea = ArgOffset;
2439
2440  static const uint16_t GPR_32[] = {           // 32-bit registers.
2441    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2442    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2443  };
2444  static const uint16_t GPR_64[] = {           // 64-bit registers.
2445    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2446    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2447  };
2448
2449  static const uint16_t *FPR = GetFPR();
2450
2451  static const uint16_t VR[] = {
2452    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2453    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2454  };
2455
2456  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2457  const unsigned Num_FPR_Regs = 13;
2458  const unsigned Num_VR_Regs  = array_lengthof( VR);
2459
2460  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2461
2462  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2463
2464  // In 32-bit non-varargs functions, the stack space for vectors is after the
2465  // stack space for non-vectors.  We do not use this space unless we have
2466  // too many vectors to fit in registers, something that only occurs in
2467  // constructed examples:), but we have to walk the arglist to figure
2468  // that out...for the pathological case, compute VecArgOffset as the
2469  // start of the vector parameter area.  Computing VecArgOffset is the
2470  // entire point of the following loop.
2471  unsigned VecArgOffset = ArgOffset;
2472  if (!isVarArg && !isPPC64) {
2473    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2474         ++ArgNo) {
2475      EVT ObjectVT = Ins[ArgNo].VT;
2476      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2477
2478      if (Flags.isByVal()) {
2479        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2480        unsigned ObjSize = Flags.getByValSize();
2481        unsigned ArgSize =
2482                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2483        VecArgOffset += ArgSize;
2484        continue;
2485      }
2486
2487      switch(ObjectVT.getSimpleVT().SimpleTy) {
2488      default: llvm_unreachable("Unhandled argument type!");
2489      case MVT::i32:
2490      case MVT::f32:
2491        VecArgOffset += 4;
2492        break;
2493      case MVT::i64:  // PPC64
2494      case MVT::f64:
2495        // FIXME: We are guaranteed to be !isPPC64 at this point.
2496        // Does MVT::i64 apply?
2497        VecArgOffset += 8;
2498        break;
2499      case MVT::v4f32:
2500      case MVT::v4i32:
2501      case MVT::v8i16:
2502      case MVT::v16i8:
2503        // Nothing to do, we're only looking at Nonvector args here.
2504        break;
2505      }
2506    }
2507  }
2508  // We've found where the vector parameter area in memory is.  Skip the
2509  // first 12 parameters; these don't use that memory.
2510  VecArgOffset = ((VecArgOffset+15)/16)*16;
2511  VecArgOffset += 12*16;
2512
2513  // Add DAG nodes to load the arguments or copy them out of registers.  On
2514  // entry to a function on PPC, the arguments start after the linkage area,
2515  // although the first ones are often in registers.
2516
2517  SmallVector<SDValue, 8> MemOps;
2518  unsigned nAltivecParamsAtEnd = 0;
2519  // FIXME: FuncArg and Ins[ArgNo] must reference the same argument.
2520  // When passing anonymous aggregates, this is currently not true.
2521  // See LowerFormalArguments_64SVR4 for a fix.
2522  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2523  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2524    SDValue ArgVal;
2525    bool needsLoad = false;
2526    EVT ObjectVT = Ins[ArgNo].VT;
2527    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2528    unsigned ArgSize = ObjSize;
2529    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2530
2531    unsigned CurArgOffset = ArgOffset;
2532
2533    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2534    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2535        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2536      if (isVarArg || isPPC64) {
2537        MinReservedArea = ((MinReservedArea+15)/16)*16;
2538        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2539                                                  Flags,
2540                                                  PtrByteSize);
2541      } else  nAltivecParamsAtEnd++;
2542    } else
2543      // Calculate min reserved area.
2544      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2545                                                Flags,
2546                                                PtrByteSize);
2547
2548    // FIXME the codegen can be much improved in some cases.
2549    // We do not have to keep everything in memory.
2550    if (Flags.isByVal()) {
2551      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2552      ObjSize = Flags.getByValSize();
2553      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2554      // Objects of size 1 and 2 are right justified, everything else is
2555      // left justified.  This means the memory address is adjusted forwards.
2556      if (ObjSize==1 || ObjSize==2) {
2557        CurArgOffset = CurArgOffset + (4 - ObjSize);
2558      }
2559      // The value of the object is its address.
2560      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2561      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2562      InVals.push_back(FIN);
2563      if (ObjSize==1 || ObjSize==2) {
2564        if (GPR_idx != Num_GPR_Regs) {
2565          unsigned VReg;
2566          if (isPPC64)
2567            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2568          else
2569            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2570          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2571          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2572          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2573                                            MachinePointerInfo(FuncArg,
2574                                              CurArgOffset),
2575                                            ObjType, false, false, 0);
2576          MemOps.push_back(Store);
2577          ++GPR_idx;
2578        }
2579
2580        ArgOffset += PtrByteSize;
2581
2582        continue;
2583      }
2584      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2585        // Store whatever pieces of the object are in registers
2586        // to memory.  ArgOffset will be the address of the beginning
2587        // of the object.
2588        if (GPR_idx != Num_GPR_Regs) {
2589          unsigned VReg;
2590          if (isPPC64)
2591            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2592          else
2593            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2594          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2595          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2596          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2597          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2598                                       MachinePointerInfo(FuncArg, ArgOffset),
2599                                       false, false, 0);
2600          MemOps.push_back(Store);
2601          ++GPR_idx;
2602          ArgOffset += PtrByteSize;
2603        } else {
2604          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2605          break;
2606        }
2607      }
2608      continue;
2609    }
2610
2611    switch (ObjectVT.getSimpleVT().SimpleTy) {
2612    default: llvm_unreachable("Unhandled argument type!");
2613    case MVT::i32:
2614      if (!isPPC64) {
2615        if (GPR_idx != Num_GPR_Regs) {
2616          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2617          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2618          ++GPR_idx;
2619        } else {
2620          needsLoad = true;
2621          ArgSize = PtrByteSize;
2622        }
2623        // All int arguments reserve stack space in the Darwin ABI.
2624        ArgOffset += PtrByteSize;
2625        break;
2626      }
2627      // FALLTHROUGH
2628    case MVT::i64:  // PPC64
2629      if (GPR_idx != Num_GPR_Regs) {
2630        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2631        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2632
2633        if (ObjectVT == MVT::i32)
2634          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2635          // value to MVT::i64 and then truncate to the correct register size.
2636          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2637
2638        ++GPR_idx;
2639      } else {
2640        needsLoad = true;
2641        ArgSize = PtrByteSize;
2642      }
2643      // All int arguments reserve stack space in the Darwin ABI.
2644      ArgOffset += 8;
2645      break;
2646
2647    case MVT::f32:
2648    case MVT::f64:
2649      // Every 4 bytes of argument space consumes one of the GPRs available for
2650      // argument passing.
2651      if (GPR_idx != Num_GPR_Regs) {
2652        ++GPR_idx;
2653        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2654          ++GPR_idx;
2655      }
2656      if (FPR_idx != Num_FPR_Regs) {
2657        unsigned VReg;
2658
2659        if (ObjectVT == MVT::f32)
2660          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2661        else
2662          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2663
2664        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2665        ++FPR_idx;
2666      } else {
2667        needsLoad = true;
2668      }
2669
2670      // All FP arguments reserve stack space in the Darwin ABI.
2671      ArgOffset += isPPC64 ? 8 : ObjSize;
2672      break;
2673    case MVT::v4f32:
2674    case MVT::v4i32:
2675    case MVT::v8i16:
2676    case MVT::v16i8:
2677      // Note that vector arguments in registers don't reserve stack space,
2678      // except in varargs functions.
2679      if (VR_idx != Num_VR_Regs) {
2680        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2681        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2682        if (isVarArg) {
2683          while ((ArgOffset % 16) != 0) {
2684            ArgOffset += PtrByteSize;
2685            if (GPR_idx != Num_GPR_Regs)
2686              GPR_idx++;
2687          }
2688          ArgOffset += 16;
2689          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2690        }
2691        ++VR_idx;
2692      } else {
2693        if (!isVarArg && !isPPC64) {
2694          // Vectors go after all the nonvectors.
2695          CurArgOffset = VecArgOffset;
2696          VecArgOffset += 16;
2697        } else {
2698          // Vectors are aligned.
2699          ArgOffset = ((ArgOffset+15)/16)*16;
2700          CurArgOffset = ArgOffset;
2701          ArgOffset += 16;
2702        }
2703        needsLoad = true;
2704      }
2705      break;
2706    }
2707
2708    // We need to load the argument to a virtual register if we determined above
2709    // that we ran out of physical registers of the appropriate type.
2710    if (needsLoad) {
2711      int FI = MFI->CreateFixedObject(ObjSize,
2712                                      CurArgOffset + (ArgSize - ObjSize),
2713                                      isImmutable);
2714      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2715      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2716                           false, false, false, 0);
2717    }
2718
2719    InVals.push_back(ArgVal);
2720  }
2721
2722  // Set the size that is at least reserved in caller of this function.  Tail
2723  // call optimized functions' reserved stack space needs to be aligned so that
2724  // taking the difference between two stack areas will result in an aligned
2725  // stack.
2726  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2727
2728  // If the function takes variable number of arguments, make a frame index for
2729  // the start of the first vararg value... for expansion of llvm.va_start.
2730  if (isVarArg) {
2731    int Depth = ArgOffset;
2732
2733    FuncInfo->setVarArgsFrameIndex(
2734      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2735                             Depth, true));
2736    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2737
2738    // If this function is vararg, store any remaining integer argument regs
2739    // to their spots on the stack so that they may be loaded by deferencing the
2740    // result of va_next.
2741    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2742      unsigned VReg;
2743
2744      if (isPPC64)
2745        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2746      else
2747        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2748
2749      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2750      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2751                                   MachinePointerInfo(), false, false, 0);
2752      MemOps.push_back(Store);
2753      // Increment the address by four for the next argument to store
2754      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2755      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2756    }
2757  }
2758
2759  if (!MemOps.empty())
2760    Chain = DAG.getNode(ISD::TokenFactor, dl,
2761                        MVT::Other, &MemOps[0], MemOps.size());
2762
2763  return Chain;
2764}
2765
2766/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2767/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2768static unsigned
2769CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2770                                     bool isPPC64,
2771                                     bool isVarArg,
2772                                     unsigned CC,
2773                                     const SmallVectorImpl<ISD::OutputArg>
2774                                       &Outs,
2775                                     const SmallVectorImpl<SDValue> &OutVals,
2776                                     unsigned &nAltivecParamsAtEnd) {
2777  // Count how many bytes are to be pushed on the stack, including the linkage
2778  // area, and parameter passing area.  We start with 24/48 bytes, which is
2779  // prereserved space for [SP][CR][LR][3 x unused].
2780  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2781  unsigned NumOps = Outs.size();
2782  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2783
2784  // Add up all the space actually used.
2785  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2786  // they all go in registers, but we must reserve stack space for them for
2787  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2788  // assigned stack space in order, with padding so Altivec parameters are
2789  // 16-byte aligned.
2790  nAltivecParamsAtEnd = 0;
2791  for (unsigned i = 0; i != NumOps; ++i) {
2792    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2793    EVT ArgVT = Outs[i].VT;
2794    // Varargs Altivec parameters are padded to a 16 byte boundary.
2795    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2796        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2797      if (!isVarArg && !isPPC64) {
2798        // Non-varargs Altivec parameters go after all the non-Altivec
2799        // parameters; handle those later so we know how much padding we need.
2800        nAltivecParamsAtEnd++;
2801        continue;
2802      }
2803      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2804      NumBytes = ((NumBytes+15)/16)*16;
2805    }
2806    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2807  }
2808
2809   // Allow for Altivec parameters at the end, if needed.
2810  if (nAltivecParamsAtEnd) {
2811    NumBytes = ((NumBytes+15)/16)*16;
2812    NumBytes += 16*nAltivecParamsAtEnd;
2813  }
2814
2815  // The prolog code of the callee may store up to 8 GPR argument registers to
2816  // the stack, allowing va_start to index over them in memory if its varargs.
2817  // Because we cannot tell if this is needed on the caller side, we have to
2818  // conservatively assume that it is needed.  As such, make sure we have at
2819  // least enough stack space for the caller to store the 8 GPRs.
2820  NumBytes = std::max(NumBytes,
2821                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2822
2823  // Tail call needs the stack to be aligned.
2824  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2825    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2826      getFrameLowering()->getStackAlignment();
2827    unsigned AlignMask = TargetAlign-1;
2828    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2829  }
2830
2831  return NumBytes;
2832}
2833
2834/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2835/// adjusted to accommodate the arguments for the tailcall.
2836static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2837                                   unsigned ParamSize) {
2838
2839  if (!isTailCall) return 0;
2840
2841  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2842  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2843  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2844  // Remember only if the new adjustement is bigger.
2845  if (SPDiff < FI->getTailCallSPDelta())
2846    FI->setTailCallSPDelta(SPDiff);
2847
2848  return SPDiff;
2849}
2850
2851/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2852/// for tail call optimization. Targets which want to do tail call
2853/// optimization should implement this function.
2854bool
2855PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2856                                                     CallingConv::ID CalleeCC,
2857                                                     bool isVarArg,
2858                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2859                                                     SelectionDAG& DAG) const {
2860  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2861    return false;
2862
2863  // Variable argument functions are not supported.
2864  if (isVarArg)
2865    return false;
2866
2867  MachineFunction &MF = DAG.getMachineFunction();
2868  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2869  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2870    // Functions containing by val parameters are not supported.
2871    for (unsigned i = 0; i != Ins.size(); i++) {
2872       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2873       if (Flags.isByVal()) return false;
2874    }
2875
2876    // Non PIC/GOT  tail calls are supported.
2877    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2878      return true;
2879
2880    // At the moment we can only do local tail calls (in same module, hidden
2881    // or protected) if we are generating PIC.
2882    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2883      return G->getGlobal()->hasHiddenVisibility()
2884          || G->getGlobal()->hasProtectedVisibility();
2885  }
2886
2887  return false;
2888}
2889
2890/// isCallCompatibleAddress - Return the immediate to use if the specified
2891/// 32-bit value is representable in the immediate field of a BxA instruction.
2892static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2893  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2894  if (!C) return 0;
2895
2896  int Addr = C->getZExtValue();
2897  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2898      SignExtend32<26>(Addr) != Addr)
2899    return 0;  // Top 6 bits have to be sext of immediate.
2900
2901  return DAG.getConstant((int)C->getZExtValue() >> 2,
2902                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2903}
2904
2905namespace {
2906
2907struct TailCallArgumentInfo {
2908  SDValue Arg;
2909  SDValue FrameIdxOp;
2910  int       FrameIdx;
2911
2912  TailCallArgumentInfo() : FrameIdx(0) {}
2913};
2914
2915}
2916
2917/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2918static void
2919StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2920                                           SDValue Chain,
2921                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2922                   SmallVector<SDValue, 8> &MemOpChains,
2923                   DebugLoc dl) {
2924  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2925    SDValue Arg = TailCallArgs[i].Arg;
2926    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2927    int FI = TailCallArgs[i].FrameIdx;
2928    // Store relative to framepointer.
2929    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2930                                       MachinePointerInfo::getFixedStack(FI),
2931                                       false, false, 0));
2932  }
2933}
2934
2935/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2936/// the appropriate stack slot for the tail call optimized function call.
2937static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2938                                               MachineFunction &MF,
2939                                               SDValue Chain,
2940                                               SDValue OldRetAddr,
2941                                               SDValue OldFP,
2942                                               int SPDiff,
2943                                               bool isPPC64,
2944                                               bool isDarwinABI,
2945                                               DebugLoc dl) {
2946  if (SPDiff) {
2947    // Calculate the new stack slot for the return address.
2948    int SlotSize = isPPC64 ? 8 : 4;
2949    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2950                                                                   isDarwinABI);
2951    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2952                                                          NewRetAddrLoc, true);
2953    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2954    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2955    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2956                         MachinePointerInfo::getFixedStack(NewRetAddr),
2957                         false, false, 0);
2958
2959    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2960    // slot as the FP is never overwritten.
2961    if (isDarwinABI) {
2962      int NewFPLoc =
2963        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2964      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2965                                                          true);
2966      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2967      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2968                           MachinePointerInfo::getFixedStack(NewFPIdx),
2969                           false, false, 0);
2970    }
2971  }
2972  return Chain;
2973}
2974
2975/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2976/// the position of the argument.
2977static void
2978CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2979                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2980                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2981  int Offset = ArgOffset + SPDiff;
2982  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2983  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2984  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2985  SDValue FIN = DAG.getFrameIndex(FI, VT);
2986  TailCallArgumentInfo Info;
2987  Info.Arg = Arg;
2988  Info.FrameIdxOp = FIN;
2989  Info.FrameIdx = FI;
2990  TailCallArguments.push_back(Info);
2991}
2992
2993/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2994/// stack slot. Returns the chain as result and the loaded frame pointers in
2995/// LROpOut/FPOpout. Used when tail calling.
2996SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2997                                                        int SPDiff,
2998                                                        SDValue Chain,
2999                                                        SDValue &LROpOut,
3000                                                        SDValue &FPOpOut,
3001                                                        bool isDarwinABI,
3002                                                        DebugLoc dl) const {
3003  if (SPDiff) {
3004    // Load the LR and FP stack slot for later adjusting.
3005    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3006    LROpOut = getReturnAddrFrameIndex(DAG);
3007    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3008                          false, false, false, 0);
3009    Chain = SDValue(LROpOut.getNode(), 1);
3010
3011    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3012    // slot as the FP is never overwritten.
3013    if (isDarwinABI) {
3014      FPOpOut = getFramePointerFrameIndex(DAG);
3015      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3016                            false, false, false, 0);
3017      Chain = SDValue(FPOpOut.getNode(), 1);
3018    }
3019  }
3020  return Chain;
3021}
3022
3023/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3024/// by "Src" to address "Dst" of size "Size".  Alignment information is
3025/// specified by the specific parameter attribute. The copy will be passed as
3026/// a byval function parameter.
3027/// Sometimes what we are copying is the end of a larger object, the part that
3028/// does not fit in registers.
3029static SDValue
3030CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3031                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3032                          DebugLoc dl) {
3033  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3034  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3035                       false, false, MachinePointerInfo(0),
3036                       MachinePointerInfo(0));
3037}
3038
3039/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3040/// tail calls.
3041static void
3042LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3043                 SDValue Arg, SDValue PtrOff, int SPDiff,
3044                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3045                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3046                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3047                 DebugLoc dl) {
3048  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3049  if (!isTailCall) {
3050    if (isVector) {
3051      SDValue StackPtr;
3052      if (isPPC64)
3053        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3054      else
3055        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3056      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3057                           DAG.getConstant(ArgOffset, PtrVT));
3058    }
3059    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3060                                       MachinePointerInfo(), false, false, 0));
3061  // Calculate and remember argument location.
3062  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3063                                  TailCallArguments);
3064}
3065
3066static
3067void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3068                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3069                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3070                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3071  MachineFunction &MF = DAG.getMachineFunction();
3072
3073  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3074  // might overwrite each other in case of tail call optimization.
3075  SmallVector<SDValue, 8> MemOpChains2;
3076  // Do not flag preceding copytoreg stuff together with the following stuff.
3077  InFlag = SDValue();
3078  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3079                                    MemOpChains2, dl);
3080  if (!MemOpChains2.empty())
3081    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3082                        &MemOpChains2[0], MemOpChains2.size());
3083
3084  // Store the return address to the appropriate stack slot.
3085  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3086                                        isPPC64, isDarwinABI, dl);
3087
3088  // Emit callseq_end just before tailcall node.
3089  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3090                             DAG.getIntPtrConstant(0, true), InFlag);
3091  InFlag = Chain.getValue(1);
3092}
3093
3094static
3095unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3096                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3097                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3098                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3099                     const PPCSubtarget &PPCSubTarget) {
3100
3101  bool isPPC64 = PPCSubTarget.isPPC64();
3102  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3103
3104  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3105  NodeTys.push_back(MVT::Other);   // Returns a chain
3106  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3107
3108  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
3109
3110  bool needIndirectCall = true;
3111  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3112    // If this is an absolute destination address, use the munged value.
3113    Callee = SDValue(Dest, 0);
3114    needIndirectCall = false;
3115  }
3116
3117  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3118    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3119    // Use indirect calls for ALL functions calls in JIT mode, since the
3120    // far-call stubs may be outside relocation limits for a BL instruction.
3121    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3122      unsigned OpFlags = 0;
3123      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3124          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3125           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3126          (G->getGlobal()->isDeclaration() ||
3127           G->getGlobal()->isWeakForLinker())) {
3128        // PC-relative references to external symbols should go through $stub,
3129        // unless we're building with the leopard linker or later, which
3130        // automatically synthesizes these stubs.
3131        OpFlags = PPCII::MO_DARWIN_STUB;
3132      }
3133
3134      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3135      // every direct call is) turn it into a TargetGlobalAddress /
3136      // TargetExternalSymbol node so that legalize doesn't hack it.
3137      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3138                                          Callee.getValueType(),
3139                                          0, OpFlags);
3140      needIndirectCall = false;
3141    }
3142  }
3143
3144  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3145    unsigned char OpFlags = 0;
3146
3147    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3148        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3149         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3150      // PC-relative references to external symbols should go through $stub,
3151      // unless we're building with the leopard linker or later, which
3152      // automatically synthesizes these stubs.
3153      OpFlags = PPCII::MO_DARWIN_STUB;
3154    }
3155
3156    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3157                                         OpFlags);
3158    needIndirectCall = false;
3159  }
3160
3161  if (needIndirectCall) {
3162    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3163    // to do the call, we can't use PPCISD::CALL.
3164    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3165
3166    if (isSVR4ABI && isPPC64) {
3167      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3168      // entry point, but to the function descriptor (the function entry point
3169      // address is part of the function descriptor though).
3170      // The function descriptor is a three doubleword structure with the
3171      // following fields: function entry point, TOC base address and
3172      // environment pointer.
3173      // Thus for a call through a function pointer, the following actions need
3174      // to be performed:
3175      //   1. Save the TOC of the caller in the TOC save area of its stack
3176      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3177      //   2. Load the address of the function entry point from the function
3178      //      descriptor.
3179      //   3. Load the TOC of the callee from the function descriptor into r2.
3180      //   4. Load the environment pointer from the function descriptor into
3181      //      r11.
3182      //   5. Branch to the function entry point address.
3183      //   6. On return of the callee, the TOC of the caller needs to be
3184      //      restored (this is done in FinishCall()).
3185      //
3186      // All those operations are flagged together to ensure that no other
3187      // operations can be scheduled in between. E.g. without flagging the
3188      // operations together, a TOC access in the caller could be scheduled
3189      // between the load of the callee TOC and the branch to the callee, which
3190      // results in the TOC access going through the TOC of the callee instead
3191      // of going through the TOC of the caller, which leads to incorrect code.
3192
3193      // Load the address of the function entry point from the function
3194      // descriptor.
3195      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3196      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3197                                        InFlag.getNode() ? 3 : 2);
3198      Chain = LoadFuncPtr.getValue(1);
3199      InFlag = LoadFuncPtr.getValue(2);
3200
3201      // Load environment pointer into r11.
3202      // Offset of the environment pointer within the function descriptor.
3203      SDValue PtrOff = DAG.getIntPtrConstant(16);
3204
3205      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3206      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3207                                       InFlag);
3208      Chain = LoadEnvPtr.getValue(1);
3209      InFlag = LoadEnvPtr.getValue(2);
3210
3211      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3212                                        InFlag);
3213      Chain = EnvVal.getValue(0);
3214      InFlag = EnvVal.getValue(1);
3215
3216      // Load TOC of the callee into r2. We are using a target-specific load
3217      // with r2 hard coded, because the result of a target-independent load
3218      // would never go directly into r2, since r2 is a reserved register (which
3219      // prevents the register allocator from allocating it), resulting in an
3220      // additional register being allocated and an unnecessary move instruction
3221      // being generated.
3222      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3223      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3224                                       Callee, InFlag);
3225      Chain = LoadTOCPtr.getValue(0);
3226      InFlag = LoadTOCPtr.getValue(1);
3227
3228      MTCTROps[0] = Chain;
3229      MTCTROps[1] = LoadFuncPtr;
3230      MTCTROps[2] = InFlag;
3231    }
3232
3233    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3234                        2 + (InFlag.getNode() != 0));
3235    InFlag = Chain.getValue(1);
3236
3237    NodeTys.clear();
3238    NodeTys.push_back(MVT::Other);
3239    NodeTys.push_back(MVT::Glue);
3240    Ops.push_back(Chain);
3241    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
3242    Callee.setNode(0);
3243    // Add CTR register as callee so a bctr can be emitted later.
3244    if (isTailCall)
3245      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3246  }
3247
3248  // If this is a direct call, pass the chain and the callee.
3249  if (Callee.getNode()) {
3250    Ops.push_back(Chain);
3251    Ops.push_back(Callee);
3252  }
3253  // If this is a tail call add stack pointer delta.
3254  if (isTailCall)
3255    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3256
3257  // Add argument registers to the end of the list so that they are known live
3258  // into the call.
3259  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3260    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3261                                  RegsToPass[i].second.getValueType()));
3262
3263  return CallOpc;
3264}
3265
3266static
3267bool isLocalCall(const SDValue &Callee)
3268{
3269  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3270    return !G->getGlobal()->isDeclaration() &&
3271           !G->getGlobal()->isWeakForLinker();
3272  return false;
3273}
3274
3275SDValue
3276PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3277                                   CallingConv::ID CallConv, bool isVarArg,
3278                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3279                                   DebugLoc dl, SelectionDAG &DAG,
3280                                   SmallVectorImpl<SDValue> &InVals) const {
3281
3282  SmallVector<CCValAssign, 16> RVLocs;
3283  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3284                    getTargetMachine(), RVLocs, *DAG.getContext());
3285  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3286
3287  // Copy all of the result registers out of their specified physreg.
3288  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3289    CCValAssign &VA = RVLocs[i];
3290    assert(VA.isRegLoc() && "Can only return in registers!");
3291
3292    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3293                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3294    Chain = Val.getValue(1);
3295    InFlag = Val.getValue(2);
3296
3297    switch (VA.getLocInfo()) {
3298    default: llvm_unreachable("Unknown loc info!");
3299    case CCValAssign::Full: break;
3300    case CCValAssign::AExt:
3301      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3302      break;
3303    case CCValAssign::ZExt:
3304      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3305                        DAG.getValueType(VA.getValVT()));
3306      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3307      break;
3308    case CCValAssign::SExt:
3309      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3310                        DAG.getValueType(VA.getValVT()));
3311      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3312      break;
3313    }
3314
3315    InVals.push_back(Val);
3316  }
3317
3318  return Chain;
3319}
3320
3321SDValue
3322PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3323                              bool isTailCall, bool isVarArg,
3324                              SelectionDAG &DAG,
3325                              SmallVector<std::pair<unsigned, SDValue>, 8>
3326                                &RegsToPass,
3327                              SDValue InFlag, SDValue Chain,
3328                              SDValue &Callee,
3329                              int SPDiff, unsigned NumBytes,
3330                              const SmallVectorImpl<ISD::InputArg> &Ins,
3331                              SmallVectorImpl<SDValue> &InVals) const {
3332  std::vector<EVT> NodeTys;
3333  SmallVector<SDValue, 8> Ops;
3334  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3335                                 isTailCall, RegsToPass, Ops, NodeTys,
3336                                 PPCSubTarget);
3337
3338  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3339  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3340    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3341
3342  // When performing tail call optimization the callee pops its arguments off
3343  // the stack. Account for this here so these bytes can be pushed back on in
3344  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3345  int BytesCalleePops =
3346    (CallConv == CallingConv::Fast &&
3347     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3348
3349  // Add a register mask operand representing the call-preserved registers.
3350  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3351  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3352  assert(Mask && "Missing call preserved mask for calling convention");
3353  Ops.push_back(DAG.getRegisterMask(Mask));
3354
3355  if (InFlag.getNode())
3356    Ops.push_back(InFlag);
3357
3358  // Emit tail call.
3359  if (isTailCall) {
3360    assert(((Callee.getOpcode() == ISD::Register &&
3361             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3362            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3363            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3364            isa<ConstantSDNode>(Callee)) &&
3365    "Expecting an global address, external symbol, absolute value or register");
3366
3367    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3368  }
3369
3370  // Add a NOP immediately after the branch instruction when using the 64-bit
3371  // SVR4 ABI. At link time, if caller and callee are in a different module and
3372  // thus have a different TOC, the call will be replaced with a call to a stub
3373  // function which saves the current TOC, loads the TOC of the callee and
3374  // branches to the callee. The NOP will be replaced with a load instruction
3375  // which restores the TOC of the caller from the TOC save slot of the current
3376  // stack frame. If caller and callee belong to the same module (and have the
3377  // same TOC), the NOP will remain unchanged.
3378
3379  bool needsTOCRestore = false;
3380  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3381    if (CallOpc == PPCISD::BCTRL_SVR4) {
3382      // This is a call through a function pointer.
3383      // Restore the caller TOC from the save area into R2.
3384      // See PrepareCall() for more information about calls through function
3385      // pointers in the 64-bit SVR4 ABI.
3386      // We are using a target-specific load with r2 hard coded, because the
3387      // result of a target-independent load would never go directly into r2,
3388      // since r2 is a reserved register (which prevents the register allocator
3389      // from allocating it), resulting in an additional register being
3390      // allocated and an unnecessary move instruction being generated.
3391      needsTOCRestore = true;
3392    } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) {
3393      // Otherwise insert NOP for non-local calls.
3394      CallOpc = PPCISD::CALL_NOP_SVR4;
3395    }
3396  }
3397
3398  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3399  InFlag = Chain.getValue(1);
3400
3401  if (needsTOCRestore) {
3402    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3403    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3404    InFlag = Chain.getValue(1);
3405  }
3406
3407  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3408                             DAG.getIntPtrConstant(BytesCalleePops, true),
3409                             InFlag);
3410  if (!Ins.empty())
3411    InFlag = Chain.getValue(1);
3412
3413  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3414                         Ins, dl, DAG, InVals);
3415}
3416
3417SDValue
3418PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3419                             SmallVectorImpl<SDValue> &InVals) const {
3420  SelectionDAG &DAG                     = CLI.DAG;
3421  DebugLoc &dl                          = CLI.DL;
3422  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3423  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3424  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3425  SDValue Chain                         = CLI.Chain;
3426  SDValue Callee                        = CLI.Callee;
3427  bool &isTailCall                      = CLI.IsTailCall;
3428  CallingConv::ID CallConv              = CLI.CallConv;
3429  bool isVarArg                         = CLI.IsVarArg;
3430
3431  if (isTailCall)
3432    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3433                                                   Ins, DAG);
3434
3435  if (PPCSubTarget.isSVR4ABI()) {
3436    if (PPCSubTarget.isPPC64())
3437      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3438                              isTailCall, Outs, OutVals, Ins,
3439                              dl, DAG, InVals);
3440    else
3441      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3442                              isTailCall, Outs, OutVals, Ins,
3443                              dl, DAG, InVals);
3444  }
3445
3446  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3447                          isTailCall, Outs, OutVals, Ins,
3448                          dl, DAG, InVals);
3449}
3450
3451SDValue
3452PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3453                                    CallingConv::ID CallConv, bool isVarArg,
3454                                    bool isTailCall,
3455                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3456                                    const SmallVectorImpl<SDValue> &OutVals,
3457                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3458                                    DebugLoc dl, SelectionDAG &DAG,
3459                                    SmallVectorImpl<SDValue> &InVals) const {
3460  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3461  // of the 32-bit SVR4 ABI stack frame layout.
3462
3463  assert((CallConv == CallingConv::C ||
3464          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3465
3466  unsigned PtrByteSize = 4;
3467
3468  MachineFunction &MF = DAG.getMachineFunction();
3469
3470  // Mark this function as potentially containing a function that contains a
3471  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3472  // and restoring the callers stack pointer in this functions epilog. This is
3473  // done because by tail calling the called function might overwrite the value
3474  // in this function's (MF) stack pointer stack slot 0(SP).
3475  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3476      CallConv == CallingConv::Fast)
3477    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3478
3479  // Count how many bytes are to be pushed on the stack, including the linkage
3480  // area, parameter list area and the part of the local variable space which
3481  // contains copies of aggregates which are passed by value.
3482
3483  // Assign locations to all of the outgoing arguments.
3484  SmallVector<CCValAssign, 16> ArgLocs;
3485  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3486                 getTargetMachine(), ArgLocs, *DAG.getContext());
3487
3488  // Reserve space for the linkage area on the stack.
3489  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3490
3491  if (isVarArg) {
3492    // Handle fixed and variable vector arguments differently.
3493    // Fixed vector arguments go into registers as long as registers are
3494    // available. Variable vector arguments always go into memory.
3495    unsigned NumArgs = Outs.size();
3496
3497    for (unsigned i = 0; i != NumArgs; ++i) {
3498      MVT ArgVT = Outs[i].VT;
3499      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3500      bool Result;
3501
3502      if (Outs[i].IsFixed) {
3503        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3504                               CCInfo);
3505      } else {
3506        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3507                                      ArgFlags, CCInfo);
3508      }
3509
3510      if (Result) {
3511#ifndef NDEBUG
3512        errs() << "Call operand #" << i << " has unhandled type "
3513             << EVT(ArgVT).getEVTString() << "\n";
3514#endif
3515        llvm_unreachable(0);
3516      }
3517    }
3518  } else {
3519    // All arguments are treated the same.
3520    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3521  }
3522
3523  // Assign locations to all of the outgoing aggregate by value arguments.
3524  SmallVector<CCValAssign, 16> ByValArgLocs;
3525  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3526                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3527
3528  // Reserve stack space for the allocations in CCInfo.
3529  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3530
3531  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3532
3533  // Size of the linkage area, parameter list area and the part of the local
3534  // space variable where copies of aggregates which are passed by value are
3535  // stored.
3536  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3537
3538  // Calculate by how many bytes the stack has to be adjusted in case of tail
3539  // call optimization.
3540  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3541
3542  // Adjust the stack pointer for the new arguments...
3543  // These operations are automatically eliminated by the prolog/epilog pass
3544  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3545  SDValue CallSeqStart = Chain;
3546
3547  // Load the return address and frame pointer so it can be moved somewhere else
3548  // later.
3549  SDValue LROp, FPOp;
3550  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3551                                       dl);
3552
3553  // Set up a copy of the stack pointer for use loading and storing any
3554  // arguments that may not fit in the registers available for argument
3555  // passing.
3556  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3557
3558  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3559  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3560  SmallVector<SDValue, 8> MemOpChains;
3561
3562  bool seenFloatArg = false;
3563  // Walk the register/memloc assignments, inserting copies/loads.
3564  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3565       i != e;
3566       ++i) {
3567    CCValAssign &VA = ArgLocs[i];
3568    SDValue Arg = OutVals[i];
3569    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3570
3571    if (Flags.isByVal()) {
3572      // Argument is an aggregate which is passed by value, thus we need to
3573      // create a copy of it in the local variable space of the current stack
3574      // frame (which is the stack frame of the caller) and pass the address of
3575      // this copy to the callee.
3576      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3577      CCValAssign &ByValVA = ByValArgLocs[j++];
3578      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3579
3580      // Memory reserved in the local variable space of the callers stack frame.
3581      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3582
3583      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3584      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3585
3586      // Create a copy of the argument in the local area of the current
3587      // stack frame.
3588      SDValue MemcpyCall =
3589        CreateCopyOfByValArgument(Arg, PtrOff,
3590                                  CallSeqStart.getNode()->getOperand(0),
3591                                  Flags, DAG, dl);
3592
3593      // This must go outside the CALLSEQ_START..END.
3594      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3595                           CallSeqStart.getNode()->getOperand(1));
3596      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3597                             NewCallSeqStart.getNode());
3598      Chain = CallSeqStart = NewCallSeqStart;
3599
3600      // Pass the address of the aggregate copy on the stack either in a
3601      // physical register or in the parameter list area of the current stack
3602      // frame to the callee.
3603      Arg = PtrOff;
3604    }
3605
3606    if (VA.isRegLoc()) {
3607      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3608      // Put argument in a physical register.
3609      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3610    } else {
3611      // Put argument in the parameter list area of the current stack frame.
3612      assert(VA.isMemLoc());
3613      unsigned LocMemOffset = VA.getLocMemOffset();
3614
3615      if (!isTailCall) {
3616        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3617        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3618
3619        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3620                                           MachinePointerInfo(),
3621                                           false, false, 0));
3622      } else {
3623        // Calculate and remember argument location.
3624        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3625                                 TailCallArguments);
3626      }
3627    }
3628  }
3629
3630  if (!MemOpChains.empty())
3631    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3632                        &MemOpChains[0], MemOpChains.size());
3633
3634  // Build a sequence of copy-to-reg nodes chained together with token chain
3635  // and flag operands which copy the outgoing args into the appropriate regs.
3636  SDValue InFlag;
3637  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3638    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3639                             RegsToPass[i].second, InFlag);
3640    InFlag = Chain.getValue(1);
3641  }
3642
3643  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3644  // registers.
3645  if (isVarArg) {
3646    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3647    SDValue Ops[] = { Chain, InFlag };
3648
3649    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3650                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3651
3652    InFlag = Chain.getValue(1);
3653  }
3654
3655  if (isTailCall)
3656    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3657                    false, TailCallArguments);
3658
3659  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3660                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3661                    Ins, InVals);
3662}
3663
3664// Copy an argument into memory, being careful to do this outside the
3665// call sequence for the call to which the argument belongs.
3666SDValue
3667PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3668                                              SDValue CallSeqStart,
3669                                              ISD::ArgFlagsTy Flags,
3670                                              SelectionDAG &DAG,
3671                                              DebugLoc dl) const {
3672  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3673                        CallSeqStart.getNode()->getOperand(0),
3674                        Flags, DAG, dl);
3675  // The MEMCPY must go outside the CALLSEQ_START..END.
3676  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3677                             CallSeqStart.getNode()->getOperand(1));
3678  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3679                         NewCallSeqStart.getNode());
3680  return NewCallSeqStart;
3681}
3682
3683SDValue
3684PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3685                                    CallingConv::ID CallConv, bool isVarArg,
3686                                    bool isTailCall,
3687                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3688                                    const SmallVectorImpl<SDValue> &OutVals,
3689                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3690                                    DebugLoc dl, SelectionDAG &DAG,
3691                                    SmallVectorImpl<SDValue> &InVals) const {
3692
3693  unsigned NumOps = Outs.size();
3694
3695  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3696  unsigned PtrByteSize = 8;
3697
3698  MachineFunction &MF = DAG.getMachineFunction();
3699
3700  // Mark this function as potentially containing a function that contains a
3701  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3702  // and restoring the callers stack pointer in this functions epilog. This is
3703  // done because by tail calling the called function might overwrite the value
3704  // in this function's (MF) stack pointer stack slot 0(SP).
3705  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3706      CallConv == CallingConv::Fast)
3707    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3708
3709  unsigned nAltivecParamsAtEnd = 0;
3710
3711  // Count how many bytes are to be pushed on the stack, including the linkage
3712  // area, and parameter passing area.  We start with at least 48 bytes, which
3713  // is reserved space for [SP][CR][LR][3 x unused].
3714  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3715  // of this call.
3716  unsigned NumBytes =
3717    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3718                                         Outs, OutVals, nAltivecParamsAtEnd);
3719
3720  // Calculate by how many bytes the stack has to be adjusted in case of tail
3721  // call optimization.
3722  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3723
3724  // To protect arguments on the stack from being clobbered in a tail call,
3725  // force all the loads to happen before doing any other lowering.
3726  if (isTailCall)
3727    Chain = DAG.getStackArgumentTokenFactor(Chain);
3728
3729  // Adjust the stack pointer for the new arguments...
3730  // These operations are automatically eliminated by the prolog/epilog pass
3731  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3732  SDValue CallSeqStart = Chain;
3733
3734  // Load the return address and frame pointer so it can be move somewhere else
3735  // later.
3736  SDValue LROp, FPOp;
3737  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3738                                       dl);
3739
3740  // Set up a copy of the stack pointer for use loading and storing any
3741  // arguments that may not fit in the registers available for argument
3742  // passing.
3743  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3744
3745  // Figure out which arguments are going to go in registers, and which in
3746  // memory.  Also, if this is a vararg function, floating point operations
3747  // must be stored to our stack, and loaded into integer regs as well, if
3748  // any integer regs are available for argument passing.
3749  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3750  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3751
3752  static const uint16_t GPR[] = {
3753    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3754    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3755  };
3756  static const uint16_t *FPR = GetFPR();
3757
3758  static const uint16_t VR[] = {
3759    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3760    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3761  };
3762  const unsigned NumGPRs = array_lengthof(GPR);
3763  const unsigned NumFPRs = 13;
3764  const unsigned NumVRs  = array_lengthof(VR);
3765
3766  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3767  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3768
3769  SmallVector<SDValue, 8> MemOpChains;
3770  for (unsigned i = 0; i != NumOps; ++i) {
3771    SDValue Arg = OutVals[i];
3772    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3773
3774    // PtrOff will be used to store the current argument to the stack if a
3775    // register cannot be found for it.
3776    SDValue PtrOff;
3777
3778    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3779
3780    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3781
3782    // Promote integers to 64-bit values.
3783    if (Arg.getValueType() == MVT::i32) {
3784      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3785      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3786      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3787    }
3788
3789    // FIXME memcpy is used way more than necessary.  Correctness first.
3790    // Note: "by value" is code for passing a structure by value, not
3791    // basic types.
3792    if (Flags.isByVal()) {
3793      // Note: Size includes alignment padding, so
3794      //   struct x { short a; char b; }
3795      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3796      // These are the proper values we need for right-justifying the
3797      // aggregate in a parameter register.
3798      unsigned Size = Flags.getByValSize();
3799
3800      // An empty aggregate parameter takes up no storage and no
3801      // registers.
3802      if (Size == 0)
3803        continue;
3804
3805      // All aggregates smaller than 8 bytes must be passed right-justified.
3806      if (Size==1 || Size==2 || Size==4) {
3807        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3808        if (GPR_idx != NumGPRs) {
3809          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3810                                        MachinePointerInfo(), VT,
3811                                        false, false, 0);
3812          MemOpChains.push_back(Load.getValue(1));
3813          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3814
3815          ArgOffset += PtrByteSize;
3816          continue;
3817        }
3818      }
3819
3820      if (GPR_idx == NumGPRs && Size < 8) {
3821        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3822                                        PtrOff.getValueType());
3823        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3824        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3825                                                          CallSeqStart,
3826                                                          Flags, DAG, dl);
3827        ArgOffset += PtrByteSize;
3828        continue;
3829      }
3830      // Copy entire object into memory.  There are cases where gcc-generated
3831      // code assumes it is there, even if it could be put entirely into
3832      // registers.  (This is not what the doc says.)
3833
3834      // FIXME: The above statement is likely due to a misunderstanding of the
3835      // documents.  All arguments must be copied into the parameter area BY
3836      // THE CALLEE in the event that the callee takes the address of any
3837      // formal argument.  That has not yet been implemented.  However, it is
3838      // reasonable to use the stack area as a staging area for the register
3839      // load.
3840
3841      // Skip this for small aggregates, as we will use the same slot for a
3842      // right-justified copy, below.
3843      if (Size >= 8)
3844        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3845                                                          CallSeqStart,
3846                                                          Flags, DAG, dl);
3847
3848      // When a register is available, pass a small aggregate right-justified.
3849      if (Size < 8 && GPR_idx != NumGPRs) {
3850        // The easiest way to get this right-justified in a register
3851        // is to copy the structure into the rightmost portion of a
3852        // local variable slot, then load the whole slot into the
3853        // register.
3854        // FIXME: The memcpy seems to produce pretty awful code for
3855        // small aggregates, particularly for packed ones.
3856        // FIXME: It would be preferable to use the slot in the
3857        // parameter save area instead of a new local variable.
3858        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3859        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3860        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3861                                                          CallSeqStart,
3862                                                          Flags, DAG, dl);
3863
3864        // Load the slot into the register.
3865        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3866                                   MachinePointerInfo(),
3867                                   false, false, false, 0);
3868        MemOpChains.push_back(Load.getValue(1));
3869        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3870
3871        // Done with this argument.
3872        ArgOffset += PtrByteSize;
3873        continue;
3874      }
3875
3876      // For aggregates larger than PtrByteSize, copy the pieces of the
3877      // object that fit into registers from the parameter save area.
3878      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3879        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3880        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3881        if (GPR_idx != NumGPRs) {
3882          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3883                                     MachinePointerInfo(),
3884                                     false, false, false, 0);
3885          MemOpChains.push_back(Load.getValue(1));
3886          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3887          ArgOffset += PtrByteSize;
3888        } else {
3889          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3890          break;
3891        }
3892      }
3893      continue;
3894    }
3895
3896    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3897    default: llvm_unreachable("Unexpected ValueType for argument!");
3898    case MVT::i32:
3899    case MVT::i64:
3900      if (GPR_idx != NumGPRs) {
3901        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3902      } else {
3903        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3904                         true, isTailCall, false, MemOpChains,
3905                         TailCallArguments, dl);
3906      }
3907      ArgOffset += PtrByteSize;
3908      break;
3909    case MVT::f32:
3910    case MVT::f64:
3911      if (FPR_idx != NumFPRs) {
3912        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3913
3914        if (isVarArg) {
3915          // A single float or an aggregate containing only a single float
3916          // must be passed right-justified in the stack doubleword, and
3917          // in the GPR, if one is available.
3918          SDValue StoreOff;
3919          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3920            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3921            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3922          } else
3923            StoreOff = PtrOff;
3924
3925          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3926                                       MachinePointerInfo(), false, false, 0);
3927          MemOpChains.push_back(Store);
3928
3929          // Float varargs are always shadowed in available integer registers
3930          if (GPR_idx != NumGPRs) {
3931            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3932                                       MachinePointerInfo(), false, false,
3933                                       false, 0);
3934            MemOpChains.push_back(Load.getValue(1));
3935            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3936          }
3937        } else if (GPR_idx != NumGPRs)
3938          // If we have any FPRs remaining, we may also have GPRs remaining.
3939          ++GPR_idx;
3940      } else {
3941        // Single-precision floating-point values are mapped to the
3942        // second (rightmost) word of the stack doubleword.
3943        if (Arg.getValueType() == MVT::f32) {
3944          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3945          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3946        }
3947
3948        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3949                         true, isTailCall, false, MemOpChains,
3950                         TailCallArguments, dl);
3951      }
3952      ArgOffset += 8;
3953      break;
3954    case MVT::v4f32:
3955    case MVT::v4i32:
3956    case MVT::v8i16:
3957    case MVT::v16i8:
3958      if (isVarArg) {
3959        // These go aligned on the stack, or in the corresponding R registers
3960        // when within range.  The Darwin PPC ABI doc claims they also go in
3961        // V registers; in fact gcc does this only for arguments that are
3962        // prototyped, not for those that match the ...  We do it for all
3963        // arguments, seems to work.
3964        while (ArgOffset % 16 !=0) {
3965          ArgOffset += PtrByteSize;
3966          if (GPR_idx != NumGPRs)
3967            GPR_idx++;
3968        }
3969        // We could elide this store in the case where the object fits
3970        // entirely in R registers.  Maybe later.
3971        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3972                            DAG.getConstant(ArgOffset, PtrVT));
3973        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3974                                     MachinePointerInfo(), false, false, 0);
3975        MemOpChains.push_back(Store);
3976        if (VR_idx != NumVRs) {
3977          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3978                                     MachinePointerInfo(),
3979                                     false, false, false, 0);
3980          MemOpChains.push_back(Load.getValue(1));
3981          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3982        }
3983        ArgOffset += 16;
3984        for (unsigned i=0; i<16; i+=PtrByteSize) {
3985          if (GPR_idx == NumGPRs)
3986            break;
3987          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3988                                  DAG.getConstant(i, PtrVT));
3989          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3990                                     false, false, false, 0);
3991          MemOpChains.push_back(Load.getValue(1));
3992          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3993        }
3994        break;
3995      }
3996
3997      // Non-varargs Altivec params generally go in registers, but have
3998      // stack space allocated at the end.
3999      if (VR_idx != NumVRs) {
4000        // Doesn't have GPR space allocated.
4001        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4002      } else {
4003        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4004                         true, isTailCall, true, MemOpChains,
4005                         TailCallArguments, dl);
4006        ArgOffset += 16;
4007      }
4008      break;
4009    }
4010  }
4011
4012  if (!MemOpChains.empty())
4013    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4014                        &MemOpChains[0], MemOpChains.size());
4015
4016  // Check if this is an indirect call (MTCTR/BCTRL).
4017  // See PrepareCall() for more information about calls through function
4018  // pointers in the 64-bit SVR4 ABI.
4019  if (!isTailCall &&
4020      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4021      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4022      !isBLACompatibleAddress(Callee, DAG)) {
4023    // Load r2 into a virtual register and store it to the TOC save area.
4024    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4025    // TOC save area offset.
4026    SDValue PtrOff = DAG.getIntPtrConstant(40);
4027    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4028    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4029                         false, false, 0);
4030    // R12 must contain the address of an indirect callee.  This does not
4031    // mean the MTCTR instruction must use R12; it's easier to model this
4032    // as an extra parameter, so do that.
4033    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4034  }
4035
4036  // Build a sequence of copy-to-reg nodes chained together with token chain
4037  // and flag operands which copy the outgoing args into the appropriate regs.
4038  SDValue InFlag;
4039  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4040    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4041                             RegsToPass[i].second, InFlag);
4042    InFlag = Chain.getValue(1);
4043  }
4044
4045  if (isTailCall)
4046    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4047                    FPOp, true, TailCallArguments);
4048
4049  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4050                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4051                    Ins, InVals);
4052}
4053
4054SDValue
4055PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4056                                    CallingConv::ID CallConv, bool isVarArg,
4057                                    bool isTailCall,
4058                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4059                                    const SmallVectorImpl<SDValue> &OutVals,
4060                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4061                                    DebugLoc dl, SelectionDAG &DAG,
4062                                    SmallVectorImpl<SDValue> &InVals) const {
4063
4064  unsigned NumOps = Outs.size();
4065
4066  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4067  bool isPPC64 = PtrVT == MVT::i64;
4068  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4069
4070  MachineFunction &MF = DAG.getMachineFunction();
4071
4072  // Mark this function as potentially containing a function that contains a
4073  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4074  // and restoring the callers stack pointer in this functions epilog. This is
4075  // done because by tail calling the called function might overwrite the value
4076  // in this function's (MF) stack pointer stack slot 0(SP).
4077  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4078      CallConv == CallingConv::Fast)
4079    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4080
4081  unsigned nAltivecParamsAtEnd = 0;
4082
4083  // Count how many bytes are to be pushed on the stack, including the linkage
4084  // area, and parameter passing area.  We start with 24/48 bytes, which is
4085  // prereserved space for [SP][CR][LR][3 x unused].
4086  unsigned NumBytes =
4087    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4088                                         Outs, OutVals,
4089                                         nAltivecParamsAtEnd);
4090
4091  // Calculate by how many bytes the stack has to be adjusted in case of tail
4092  // call optimization.
4093  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4094
4095  // To protect arguments on the stack from being clobbered in a tail call,
4096  // force all the loads to happen before doing any other lowering.
4097  if (isTailCall)
4098    Chain = DAG.getStackArgumentTokenFactor(Chain);
4099
4100  // Adjust the stack pointer for the new arguments...
4101  // These operations are automatically eliminated by the prolog/epilog pass
4102  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4103  SDValue CallSeqStart = Chain;
4104
4105  // Load the return address and frame pointer so it can be move somewhere else
4106  // later.
4107  SDValue LROp, FPOp;
4108  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4109                                       dl);
4110
4111  // Set up a copy of the stack pointer for use loading and storing any
4112  // arguments that may not fit in the registers available for argument
4113  // passing.
4114  SDValue StackPtr;
4115  if (isPPC64)
4116    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4117  else
4118    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4119
4120  // Figure out which arguments are going to go in registers, and which in
4121  // memory.  Also, if this is a vararg function, floating point operations
4122  // must be stored to our stack, and loaded into integer regs as well, if
4123  // any integer regs are available for argument passing.
4124  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4125  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4126
4127  static const uint16_t GPR_32[] = {           // 32-bit registers.
4128    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4129    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4130  };
4131  static const uint16_t GPR_64[] = {           // 64-bit registers.
4132    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4133    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4134  };
4135  static const uint16_t *FPR = GetFPR();
4136
4137  static const uint16_t VR[] = {
4138    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4139    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4140  };
4141  const unsigned NumGPRs = array_lengthof(GPR_32);
4142  const unsigned NumFPRs = 13;
4143  const unsigned NumVRs  = array_lengthof(VR);
4144
4145  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4146
4147  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4148  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4149
4150  SmallVector<SDValue, 8> MemOpChains;
4151  for (unsigned i = 0; i != NumOps; ++i) {
4152    SDValue Arg = OutVals[i];
4153    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4154
4155    // PtrOff will be used to store the current argument to the stack if a
4156    // register cannot be found for it.
4157    SDValue PtrOff;
4158
4159    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4160
4161    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4162
4163    // On PPC64, promote integers to 64-bit values.
4164    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4165      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4166      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4167      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4168    }
4169
4170    // FIXME memcpy is used way more than necessary.  Correctness first.
4171    // Note: "by value" is code for passing a structure by value, not
4172    // basic types.
4173    if (Flags.isByVal()) {
4174      unsigned Size = Flags.getByValSize();
4175      // Very small objects are passed right-justified.  Everything else is
4176      // passed left-justified.
4177      if (Size==1 || Size==2) {
4178        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4179        if (GPR_idx != NumGPRs) {
4180          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4181                                        MachinePointerInfo(), VT,
4182                                        false, false, 0);
4183          MemOpChains.push_back(Load.getValue(1));
4184          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4185
4186          ArgOffset += PtrByteSize;
4187        } else {
4188          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4189                                          PtrOff.getValueType());
4190          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4191          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4192                                                            CallSeqStart,
4193                                                            Flags, DAG, dl);
4194          ArgOffset += PtrByteSize;
4195        }
4196        continue;
4197      }
4198      // Copy entire object into memory.  There are cases where gcc-generated
4199      // code assumes it is there, even if it could be put entirely into
4200      // registers.  (This is not what the doc says.)
4201      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4202                                                        CallSeqStart,
4203                                                        Flags, DAG, dl);
4204
4205      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4206      // copy the pieces of the object that fit into registers from the
4207      // parameter save area.
4208      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4209        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4210        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4211        if (GPR_idx != NumGPRs) {
4212          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4213                                     MachinePointerInfo(),
4214                                     false, false, false, 0);
4215          MemOpChains.push_back(Load.getValue(1));
4216          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4217          ArgOffset += PtrByteSize;
4218        } else {
4219          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4220          break;
4221        }
4222      }
4223      continue;
4224    }
4225
4226    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4227    default: llvm_unreachable("Unexpected ValueType for argument!");
4228    case MVT::i32:
4229    case MVT::i64:
4230      if (GPR_idx != NumGPRs) {
4231        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4232      } else {
4233        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4234                         isPPC64, isTailCall, false, MemOpChains,
4235                         TailCallArguments, dl);
4236      }
4237      ArgOffset += PtrByteSize;
4238      break;
4239    case MVT::f32:
4240    case MVT::f64:
4241      if (FPR_idx != NumFPRs) {
4242        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4243
4244        if (isVarArg) {
4245          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4246                                       MachinePointerInfo(), false, false, 0);
4247          MemOpChains.push_back(Store);
4248
4249          // Float varargs are always shadowed in available integer registers
4250          if (GPR_idx != NumGPRs) {
4251            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4252                                       MachinePointerInfo(), false, false,
4253                                       false, 0);
4254            MemOpChains.push_back(Load.getValue(1));
4255            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4256          }
4257          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4258            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4259            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4260            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4261                                       MachinePointerInfo(),
4262                                       false, false, false, 0);
4263            MemOpChains.push_back(Load.getValue(1));
4264            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4265          }
4266        } else {
4267          // If we have any FPRs remaining, we may also have GPRs remaining.
4268          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4269          // GPRs.
4270          if (GPR_idx != NumGPRs)
4271            ++GPR_idx;
4272          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4273              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4274            ++GPR_idx;
4275        }
4276      } else
4277        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4278                         isPPC64, isTailCall, false, MemOpChains,
4279                         TailCallArguments, dl);
4280      if (isPPC64)
4281        ArgOffset += 8;
4282      else
4283        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4284      break;
4285    case MVT::v4f32:
4286    case MVT::v4i32:
4287    case MVT::v8i16:
4288    case MVT::v16i8:
4289      if (isVarArg) {
4290        // These go aligned on the stack, or in the corresponding R registers
4291        // when within range.  The Darwin PPC ABI doc claims they also go in
4292        // V registers; in fact gcc does this only for arguments that are
4293        // prototyped, not for those that match the ...  We do it for all
4294        // arguments, seems to work.
4295        while (ArgOffset % 16 !=0) {
4296          ArgOffset += PtrByteSize;
4297          if (GPR_idx != NumGPRs)
4298            GPR_idx++;
4299        }
4300        // We could elide this store in the case where the object fits
4301        // entirely in R registers.  Maybe later.
4302        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4303                            DAG.getConstant(ArgOffset, PtrVT));
4304        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4305                                     MachinePointerInfo(), false, false, 0);
4306        MemOpChains.push_back(Store);
4307        if (VR_idx != NumVRs) {
4308          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4309                                     MachinePointerInfo(),
4310                                     false, false, false, 0);
4311          MemOpChains.push_back(Load.getValue(1));
4312          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4313        }
4314        ArgOffset += 16;
4315        for (unsigned i=0; i<16; i+=PtrByteSize) {
4316          if (GPR_idx == NumGPRs)
4317            break;
4318          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4319                                  DAG.getConstant(i, PtrVT));
4320          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4321                                     false, false, false, 0);
4322          MemOpChains.push_back(Load.getValue(1));
4323          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4324        }
4325        break;
4326      }
4327
4328      // Non-varargs Altivec params generally go in registers, but have
4329      // stack space allocated at the end.
4330      if (VR_idx != NumVRs) {
4331        // Doesn't have GPR space allocated.
4332        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4333      } else if (nAltivecParamsAtEnd==0) {
4334        // We are emitting Altivec params in order.
4335        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4336                         isPPC64, isTailCall, true, MemOpChains,
4337                         TailCallArguments, dl);
4338        ArgOffset += 16;
4339      }
4340      break;
4341    }
4342  }
4343  // If all Altivec parameters fit in registers, as they usually do,
4344  // they get stack space following the non-Altivec parameters.  We
4345  // don't track this here because nobody below needs it.
4346  // If there are more Altivec parameters than fit in registers emit
4347  // the stores here.
4348  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4349    unsigned j = 0;
4350    // Offset is aligned; skip 1st 12 params which go in V registers.
4351    ArgOffset = ((ArgOffset+15)/16)*16;
4352    ArgOffset += 12*16;
4353    for (unsigned i = 0; i != NumOps; ++i) {
4354      SDValue Arg = OutVals[i];
4355      EVT ArgType = Outs[i].VT;
4356      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4357          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4358        if (++j > NumVRs) {
4359          SDValue PtrOff;
4360          // We are emitting Altivec params in order.
4361          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4362                           isPPC64, isTailCall, true, MemOpChains,
4363                           TailCallArguments, dl);
4364          ArgOffset += 16;
4365        }
4366      }
4367    }
4368  }
4369
4370  if (!MemOpChains.empty())
4371    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4372                        &MemOpChains[0], MemOpChains.size());
4373
4374  // On Darwin, R12 must contain the address of an indirect callee.  This does
4375  // not mean the MTCTR instruction must use R12; it's easier to model this as
4376  // an extra parameter, so do that.
4377  if (!isTailCall &&
4378      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4379      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4380      !isBLACompatibleAddress(Callee, DAG))
4381    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4382                                                   PPC::R12), Callee));
4383
4384  // Build a sequence of copy-to-reg nodes chained together with token chain
4385  // and flag operands which copy the outgoing args into the appropriate regs.
4386  SDValue InFlag;
4387  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4388    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4389                             RegsToPass[i].second, InFlag);
4390    InFlag = Chain.getValue(1);
4391  }
4392
4393  if (isTailCall)
4394    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4395                    FPOp, true, TailCallArguments);
4396
4397  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4398                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4399                    Ins, InVals);
4400}
4401
4402bool
4403PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4404                                  MachineFunction &MF, bool isVarArg,
4405                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4406                                  LLVMContext &Context) const {
4407  SmallVector<CCValAssign, 16> RVLocs;
4408  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4409                 RVLocs, Context);
4410  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4411}
4412
4413SDValue
4414PPCTargetLowering::LowerReturn(SDValue Chain,
4415                               CallingConv::ID CallConv, bool isVarArg,
4416                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4417                               const SmallVectorImpl<SDValue> &OutVals,
4418                               DebugLoc dl, SelectionDAG &DAG) const {
4419
4420  SmallVector<CCValAssign, 16> RVLocs;
4421  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4422                 getTargetMachine(), RVLocs, *DAG.getContext());
4423  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4424
4425  SDValue Flag;
4426  SmallVector<SDValue, 4> RetOps(1, Chain);
4427
4428  // Copy the result values into the output registers.
4429  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4430    CCValAssign &VA = RVLocs[i];
4431    assert(VA.isRegLoc() && "Can only return in registers!");
4432
4433    SDValue Arg = OutVals[i];
4434
4435    switch (VA.getLocInfo()) {
4436    default: llvm_unreachable("Unknown loc info!");
4437    case CCValAssign::Full: break;
4438    case CCValAssign::AExt:
4439      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4440      break;
4441    case CCValAssign::ZExt:
4442      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4443      break;
4444    case CCValAssign::SExt:
4445      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4446      break;
4447    }
4448
4449    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4450    Flag = Chain.getValue(1);
4451    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4452  }
4453
4454  RetOps[0] = Chain;  // Update chain.
4455
4456  // Add the flag if we have it.
4457  if (Flag.getNode())
4458    RetOps.push_back(Flag);
4459
4460  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4461                     &RetOps[0], RetOps.size());
4462}
4463
4464SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4465                                   const PPCSubtarget &Subtarget) const {
4466  // When we pop the dynamic allocation we need to restore the SP link.
4467  DebugLoc dl = Op.getDebugLoc();
4468
4469  // Get the corect type for pointers.
4470  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4471
4472  // Construct the stack pointer operand.
4473  bool isPPC64 = Subtarget.isPPC64();
4474  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4475  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4476
4477  // Get the operands for the STACKRESTORE.
4478  SDValue Chain = Op.getOperand(0);
4479  SDValue SaveSP = Op.getOperand(1);
4480
4481  // Load the old link SP.
4482  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4483                                   MachinePointerInfo(),
4484                                   false, false, false, 0);
4485
4486  // Restore the stack pointer.
4487  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4488
4489  // Store the old link SP.
4490  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4491                      false, false, 0);
4492}
4493
4494
4495
4496SDValue
4497PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4498  MachineFunction &MF = DAG.getMachineFunction();
4499  bool isPPC64 = PPCSubTarget.isPPC64();
4500  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4501  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4502
4503  // Get current frame pointer save index.  The users of this index will be
4504  // primarily DYNALLOC instructions.
4505  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4506  int RASI = FI->getReturnAddrSaveIndex();
4507
4508  // If the frame pointer save index hasn't been defined yet.
4509  if (!RASI) {
4510    // Find out what the fix offset of the frame pointer save area.
4511    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4512    // Allocate the frame index for frame pointer save area.
4513    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4514    // Save the result.
4515    FI->setReturnAddrSaveIndex(RASI);
4516  }
4517  return DAG.getFrameIndex(RASI, PtrVT);
4518}
4519
4520SDValue
4521PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4522  MachineFunction &MF = DAG.getMachineFunction();
4523  bool isPPC64 = PPCSubTarget.isPPC64();
4524  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4525  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4526
4527  // Get current frame pointer save index.  The users of this index will be
4528  // primarily DYNALLOC instructions.
4529  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4530  int FPSI = FI->getFramePointerSaveIndex();
4531
4532  // If the frame pointer save index hasn't been defined yet.
4533  if (!FPSI) {
4534    // Find out what the fix offset of the frame pointer save area.
4535    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4536                                                           isDarwinABI);
4537
4538    // Allocate the frame index for frame pointer save area.
4539    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4540    // Save the result.
4541    FI->setFramePointerSaveIndex(FPSI);
4542  }
4543  return DAG.getFrameIndex(FPSI, PtrVT);
4544}
4545
4546SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4547                                         SelectionDAG &DAG,
4548                                         const PPCSubtarget &Subtarget) const {
4549  // Get the inputs.
4550  SDValue Chain = Op.getOperand(0);
4551  SDValue Size  = Op.getOperand(1);
4552  DebugLoc dl = Op.getDebugLoc();
4553
4554  // Get the corect type for pointers.
4555  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4556  // Negate the size.
4557  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4558                                  DAG.getConstant(0, PtrVT), Size);
4559  // Construct a node for the frame pointer save index.
4560  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4561  // Build a DYNALLOC node.
4562  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4563  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4564  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4565}
4566
4567/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4568/// possible.
4569SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4570  // Not FP? Not a fsel.
4571  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4572      !Op.getOperand(2).getValueType().isFloatingPoint())
4573    return Op;
4574
4575  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4576
4577  // Cannot handle SETEQ/SETNE.
4578  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4579
4580  EVT ResVT = Op.getValueType();
4581  EVT CmpVT = Op.getOperand(0).getValueType();
4582  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4583  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4584  DebugLoc dl = Op.getDebugLoc();
4585
4586  // If the RHS of the comparison is a 0.0, we don't need to do the
4587  // subtraction at all.
4588  if (isFloatingPointZero(RHS))
4589    switch (CC) {
4590    default: break;       // SETUO etc aren't handled by fsel.
4591    case ISD::SETULT:
4592    case ISD::SETLT:
4593      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4594    case ISD::SETOGE:
4595    case ISD::SETGE:
4596      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4597        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4598      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4599    case ISD::SETUGT:
4600    case ISD::SETGT:
4601      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4602    case ISD::SETOLE:
4603    case ISD::SETLE:
4604      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4605        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4606      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4607                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4608    }
4609
4610  SDValue Cmp;
4611  switch (CC) {
4612  default: break;       // SETUO etc aren't handled by fsel.
4613  case ISD::SETULT:
4614  case ISD::SETLT:
4615    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4616    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4617      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4618      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4619  case ISD::SETOGE:
4620  case ISD::SETGE:
4621    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4622    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4623      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4624      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4625  case ISD::SETUGT:
4626  case ISD::SETGT:
4627    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4628    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4629      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4630      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4631  case ISD::SETOLE:
4632  case ISD::SETLE:
4633    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4634    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4635      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4636      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4637  }
4638  return Op;
4639}
4640
4641// FIXME: Split this code up when LegalizeDAGTypes lands.
4642SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4643                                           DebugLoc dl) const {
4644  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4645  SDValue Src = Op.getOperand(0);
4646  if (Src.getValueType() == MVT::f32)
4647    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4648
4649  SDValue Tmp;
4650  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4651  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4652  case MVT::i32:
4653    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4654                                                         PPCISD::FCTIDZ,
4655                      dl, MVT::f64, Src);
4656    break;
4657  case MVT::i64:
4658    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
4659    break;
4660  }
4661
4662  // Convert the FP value to an int value through memory.
4663  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
4664
4665  // Emit a store to the stack slot.
4666  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4667                               MachinePointerInfo(), false, false, 0);
4668
4669  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4670  // add in a bias.
4671  if (Op.getValueType() == MVT::i32)
4672    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4673                        DAG.getConstant(4, FIPtr.getValueType()));
4674  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
4675                     false, false, false, 0);
4676}
4677
4678SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
4679                                           SelectionDAG &DAG) const {
4680  DebugLoc dl = Op.getDebugLoc();
4681  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4682  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4683    return SDValue();
4684
4685  if (Op.getOperand(0).getValueType() == MVT::i64) {
4686    SDValue SINT = Op.getOperand(0);
4687    // When converting to single-precision, we actually need to convert
4688    // to double-precision first and then round to single-precision.
4689    // To avoid double-rounding effects during that operation, we have
4690    // to prepare the input operand.  Bits that might be truncated when
4691    // converting to double-precision are replaced by a bit that won't
4692    // be lost at this stage, but is below the single-precision rounding
4693    // position.
4694    //
4695    // However, if -enable-unsafe-fp-math is in effect, accept double
4696    // rounding to avoid the extra overhead.
4697    if (Op.getValueType() == MVT::f32 &&
4698        !DAG.getTarget().Options.UnsafeFPMath) {
4699
4700      // Twiddle input to make sure the low 11 bits are zero.  (If this
4701      // is the case, we are guaranteed the value will fit into the 53 bit
4702      // mantissa of an IEEE double-precision value without rounding.)
4703      // If any of those low 11 bits were not zero originally, make sure
4704      // bit 12 (value 2048) is set instead, so that the final rounding
4705      // to single-precision gets the correct result.
4706      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4707                                  SINT, DAG.getConstant(2047, MVT::i64));
4708      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4709                          Round, DAG.getConstant(2047, MVT::i64));
4710      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4711      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4712                          Round, DAG.getConstant(-2048, MVT::i64));
4713
4714      // However, we cannot use that value unconditionally: if the magnitude
4715      // of the input value is small, the bit-twiddling we did above might
4716      // end up visibly changing the output.  Fortunately, in that case, we
4717      // don't need to twiddle bits since the original input will convert
4718      // exactly to double-precision floating-point already.  Therefore,
4719      // construct a conditional to use the original value if the top 11
4720      // bits are all sign-bit copies, and use the rounded value computed
4721      // above otherwise.
4722      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4723                                 SINT, DAG.getConstant(53, MVT::i32));
4724      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4725                         Cond, DAG.getConstant(1, MVT::i64));
4726      Cond = DAG.getSetCC(dl, MVT::i32,
4727                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4728
4729      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4730    }
4731    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4732    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
4733    if (Op.getValueType() == MVT::f32)
4734      FP = DAG.getNode(ISD::FP_ROUND, dl,
4735                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4736    return FP;
4737  }
4738
4739  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4740         "Unhandled SINT_TO_FP type in custom expander!");
4741  // Since we only generate this in 64-bit mode, we can take advantage of
4742  // 64-bit registers.  In particular, sign extend the input value into the
4743  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4744  // then lfd it and fcfid it.
4745  MachineFunction &MF = DAG.getMachineFunction();
4746  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4747  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4748  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4749  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4750
4751  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
4752                                Op.getOperand(0));
4753
4754  // STD the extended value into the stack slot.
4755  MachineMemOperand *MMO =
4756    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4757                            MachineMemOperand::MOStore, 8, 8);
4758  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
4759  SDValue Store =
4760    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
4761                            Ops, 4, MVT::i64, MMO);
4762  // Load the value as a double.
4763  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
4764                           false, false, false, 0);
4765
4766  // FCFID it and return it.
4767  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
4768  if (Op.getValueType() == MVT::f32)
4769    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4770  return FP;
4771}
4772
4773SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4774                                            SelectionDAG &DAG) const {
4775  DebugLoc dl = Op.getDebugLoc();
4776  /*
4777   The rounding mode is in bits 30:31 of FPSR, and has the following
4778   settings:
4779     00 Round to nearest
4780     01 Round to 0
4781     10 Round to +inf
4782     11 Round to -inf
4783
4784  FLT_ROUNDS, on the other hand, expects the following:
4785    -1 Undefined
4786     0 Round to 0
4787     1 Round to nearest
4788     2 Round to +inf
4789     3 Round to -inf
4790
4791  To perform the conversion, we do:
4792    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4793  */
4794
4795  MachineFunction &MF = DAG.getMachineFunction();
4796  EVT VT = Op.getValueType();
4797  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4798  SDValue MFFSreg, InFlag;
4799
4800  // Save FP Control Word to register
4801  EVT NodeTys[] = {
4802    MVT::f64,    // return register
4803    MVT::Glue    // unused in this context
4804  };
4805  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4806
4807  // Save FP register to stack slot
4808  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4809  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4810  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4811                               StackSlot, MachinePointerInfo(), false, false,0);
4812
4813  // Load FP Control Word from low 32 bits of stack slot.
4814  SDValue Four = DAG.getConstant(4, PtrVT);
4815  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4816  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4817                            false, false, false, 0);
4818
4819  // Transform as necessary
4820  SDValue CWD1 =
4821    DAG.getNode(ISD::AND, dl, MVT::i32,
4822                CWD, DAG.getConstant(3, MVT::i32));
4823  SDValue CWD2 =
4824    DAG.getNode(ISD::SRL, dl, MVT::i32,
4825                DAG.getNode(ISD::AND, dl, MVT::i32,
4826                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4827                                        CWD, DAG.getConstant(3, MVT::i32)),
4828                            DAG.getConstant(3, MVT::i32)),
4829                DAG.getConstant(1, MVT::i32));
4830
4831  SDValue RetVal =
4832    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4833
4834  return DAG.getNode((VT.getSizeInBits() < 16 ?
4835                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4836}
4837
4838SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4839  EVT VT = Op.getValueType();
4840  unsigned BitWidth = VT.getSizeInBits();
4841  DebugLoc dl = Op.getDebugLoc();
4842  assert(Op.getNumOperands() == 3 &&
4843         VT == Op.getOperand(1).getValueType() &&
4844         "Unexpected SHL!");
4845
4846  // Expand into a bunch of logical ops.  Note that these ops
4847  // depend on the PPC behavior for oversized shift amounts.
4848  SDValue Lo = Op.getOperand(0);
4849  SDValue Hi = Op.getOperand(1);
4850  SDValue Amt = Op.getOperand(2);
4851  EVT AmtVT = Amt.getValueType();
4852
4853  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4854                             DAG.getConstant(BitWidth, AmtVT), Amt);
4855  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4856  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4857  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4858  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4859                             DAG.getConstant(-BitWidth, AmtVT));
4860  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4861  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4862  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4863  SDValue OutOps[] = { OutLo, OutHi };
4864  return DAG.getMergeValues(OutOps, 2, dl);
4865}
4866
4867SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4868  EVT VT = Op.getValueType();
4869  DebugLoc dl = Op.getDebugLoc();
4870  unsigned BitWidth = VT.getSizeInBits();
4871  assert(Op.getNumOperands() == 3 &&
4872         VT == Op.getOperand(1).getValueType() &&
4873         "Unexpected SRL!");
4874
4875  // Expand into a bunch of logical ops.  Note that these ops
4876  // depend on the PPC behavior for oversized shift amounts.
4877  SDValue Lo = Op.getOperand(0);
4878  SDValue Hi = Op.getOperand(1);
4879  SDValue Amt = Op.getOperand(2);
4880  EVT AmtVT = Amt.getValueType();
4881
4882  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4883                             DAG.getConstant(BitWidth, AmtVT), Amt);
4884  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4885  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4886  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4887  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4888                             DAG.getConstant(-BitWidth, AmtVT));
4889  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4890  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4891  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4892  SDValue OutOps[] = { OutLo, OutHi };
4893  return DAG.getMergeValues(OutOps, 2, dl);
4894}
4895
4896SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4897  DebugLoc dl = Op.getDebugLoc();
4898  EVT VT = Op.getValueType();
4899  unsigned BitWidth = VT.getSizeInBits();
4900  assert(Op.getNumOperands() == 3 &&
4901         VT == Op.getOperand(1).getValueType() &&
4902         "Unexpected SRA!");
4903
4904  // Expand into a bunch of logical ops, followed by a select_cc.
4905  SDValue Lo = Op.getOperand(0);
4906  SDValue Hi = Op.getOperand(1);
4907  SDValue Amt = Op.getOperand(2);
4908  EVT AmtVT = Amt.getValueType();
4909
4910  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4911                             DAG.getConstant(BitWidth, AmtVT), Amt);
4912  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4913  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4914  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4915  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4916                             DAG.getConstant(-BitWidth, AmtVT));
4917  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4918  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4919  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4920                                  Tmp4, Tmp6, ISD::SETLE);
4921  SDValue OutOps[] = { OutLo, OutHi };
4922  return DAG.getMergeValues(OutOps, 2, dl);
4923}
4924
4925//===----------------------------------------------------------------------===//
4926// Vector related lowering.
4927//
4928
4929/// BuildSplatI - Build a canonical splati of Val with an element size of
4930/// SplatSize.  Cast the result to VT.
4931static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
4932                             SelectionDAG &DAG, DebugLoc dl) {
4933  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
4934
4935  static const EVT VTys[] = { // canonical VT to use for each size.
4936    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
4937  };
4938
4939  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
4940
4941  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
4942  if (Val == -1)
4943    SplatSize = 1;
4944
4945  EVT CanonicalVT = VTys[SplatSize-1];
4946
4947  // Build a canonical splat for this value.
4948  SDValue Elt = DAG.getConstant(Val, MVT::i32);
4949  SmallVector<SDValue, 8> Ops;
4950  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
4951  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
4952                              &Ops[0], Ops.size());
4953  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
4954}
4955
4956/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
4957/// specified intrinsic ID.
4958static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
4959                                SelectionDAG &DAG, DebugLoc dl,
4960                                EVT DestVT = MVT::Other) {
4961  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
4962  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4963                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
4964}
4965
4966/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
4967/// specified intrinsic ID.
4968static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
4969                                SDValue Op2, SelectionDAG &DAG,
4970                                DebugLoc dl, EVT DestVT = MVT::Other) {
4971  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
4972  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4973                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
4974}
4975
4976
4977/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
4978/// amount.  The result has the specified value type.
4979static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
4980                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4981  // Force LHS/RHS to be the right type.
4982  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
4983  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
4984
4985  int Ops[16];
4986  for (unsigned i = 0; i != 16; ++i)
4987    Ops[i] = i + Amt;
4988  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
4989  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4990}
4991
4992// If this is a case we can't handle, return null and let the default
4993// expansion code take care of it.  If we CAN select this case, and if it
4994// selects to a single instruction, return Op.  Otherwise, if we can codegen
4995// this case more efficiently than a constant pool load, lower it to the
4996// sequence of ops that should be used.
4997SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
4998                                             SelectionDAG &DAG) const {
4999  DebugLoc dl = Op.getDebugLoc();
5000  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5001  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5002
5003  // Check if this is a splat of a constant value.
5004  APInt APSplatBits, APSplatUndef;
5005  unsigned SplatBitSize;
5006  bool HasAnyUndefs;
5007  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5008                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5009    return SDValue();
5010
5011  unsigned SplatBits = APSplatBits.getZExtValue();
5012  unsigned SplatUndef = APSplatUndef.getZExtValue();
5013  unsigned SplatSize = SplatBitSize / 8;
5014
5015  // First, handle single instruction cases.
5016
5017  // All zeros?
5018  if (SplatBits == 0) {
5019    // Canonicalize all zero vectors to be v4i32.
5020    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5021      SDValue Z = DAG.getConstant(0, MVT::i32);
5022      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5023      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5024    }
5025    return Op;
5026  }
5027
5028  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5029  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5030                    (32-SplatBitSize));
5031  if (SextVal >= -16 && SextVal <= 15)
5032    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5033
5034
5035  // Two instruction sequences.
5036
5037  // If this value is in the range [-32,30] and is even, use:
5038  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5039  // If this value is in the range [17,31] and is odd, use:
5040  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5041  // If this value is in the range [-31,-17] and is odd, use:
5042  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5043  // Note the last two are three-instruction sequences.
5044  if (SextVal >= -32 && SextVal <= 31) {
5045    // To avoid having these optimizations undone by constant folding,
5046    // we convert to a pseudo that will be expanded later into one of
5047    // the above forms.
5048    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5049    EVT VT = Op.getValueType();
5050    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5051    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5052    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5053  }
5054
5055  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5056  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5057  // for fneg/fabs.
5058  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5059    // Make -1 and vspltisw -1:
5060    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5061
5062    // Make the VSLW intrinsic, computing 0x8000_0000.
5063    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5064                                   OnesV, DAG, dl);
5065
5066    // xor by OnesV to invert it.
5067    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5068    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5069  }
5070
5071  // Check to see if this is a wide variety of vsplti*, binop self cases.
5072  static const signed char SplatCsts[] = {
5073    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5074    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5075  };
5076
5077  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5078    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5079    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5080    int i = SplatCsts[idx];
5081
5082    // Figure out what shift amount will be used by altivec if shifted by i in
5083    // this splat size.
5084    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5085
5086    // vsplti + shl self.
5087    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5088      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5089      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5090        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5091        Intrinsic::ppc_altivec_vslw
5092      };
5093      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5094      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5095    }
5096
5097    // vsplti + srl self.
5098    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5099      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5100      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5101        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5102        Intrinsic::ppc_altivec_vsrw
5103      };
5104      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5105      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5106    }
5107
5108    // vsplti + sra self.
5109    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5110      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5111      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5112        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5113        Intrinsic::ppc_altivec_vsraw
5114      };
5115      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5116      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5117    }
5118
5119    // vsplti + rol self.
5120    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5121                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5122      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5123      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5124        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5125        Intrinsic::ppc_altivec_vrlw
5126      };
5127      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5128      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5129    }
5130
5131    // t = vsplti c, result = vsldoi t, t, 1
5132    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5133      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5134      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5135    }
5136    // t = vsplti c, result = vsldoi t, t, 2
5137    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5138      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5139      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5140    }
5141    // t = vsplti c, result = vsldoi t, t, 3
5142    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5143      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5144      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5145    }
5146  }
5147
5148  return SDValue();
5149}
5150
5151/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5152/// the specified operations to build the shuffle.
5153static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5154                                      SDValue RHS, SelectionDAG &DAG,
5155                                      DebugLoc dl) {
5156  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5157  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5158  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5159
5160  enum {
5161    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5162    OP_VMRGHW,
5163    OP_VMRGLW,
5164    OP_VSPLTISW0,
5165    OP_VSPLTISW1,
5166    OP_VSPLTISW2,
5167    OP_VSPLTISW3,
5168    OP_VSLDOI4,
5169    OP_VSLDOI8,
5170    OP_VSLDOI12
5171  };
5172
5173  if (OpNum == OP_COPY) {
5174    if (LHSID == (1*9+2)*9+3) return LHS;
5175    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5176    return RHS;
5177  }
5178
5179  SDValue OpLHS, OpRHS;
5180  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5181  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5182
5183  int ShufIdxs[16];
5184  switch (OpNum) {
5185  default: llvm_unreachable("Unknown i32 permute!");
5186  case OP_VMRGHW:
5187    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5188    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5189    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5190    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5191    break;
5192  case OP_VMRGLW:
5193    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5194    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5195    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5196    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5197    break;
5198  case OP_VSPLTISW0:
5199    for (unsigned i = 0; i != 16; ++i)
5200      ShufIdxs[i] = (i&3)+0;
5201    break;
5202  case OP_VSPLTISW1:
5203    for (unsigned i = 0; i != 16; ++i)
5204      ShufIdxs[i] = (i&3)+4;
5205    break;
5206  case OP_VSPLTISW2:
5207    for (unsigned i = 0; i != 16; ++i)
5208      ShufIdxs[i] = (i&3)+8;
5209    break;
5210  case OP_VSPLTISW3:
5211    for (unsigned i = 0; i != 16; ++i)
5212      ShufIdxs[i] = (i&3)+12;
5213    break;
5214  case OP_VSLDOI4:
5215    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5216  case OP_VSLDOI8:
5217    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5218  case OP_VSLDOI12:
5219    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5220  }
5221  EVT VT = OpLHS.getValueType();
5222  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5223  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5224  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5225  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5226}
5227
5228/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5229/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5230/// return the code it can be lowered into.  Worst case, it can always be
5231/// lowered into a vperm.
5232SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5233                                               SelectionDAG &DAG) const {
5234  DebugLoc dl = Op.getDebugLoc();
5235  SDValue V1 = Op.getOperand(0);
5236  SDValue V2 = Op.getOperand(1);
5237  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5238  EVT VT = Op.getValueType();
5239
5240  // Cases that are handled by instructions that take permute immediates
5241  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5242  // selected by the instruction selector.
5243  if (V2.getOpcode() == ISD::UNDEF) {
5244    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5245        PPC::isSplatShuffleMask(SVOp, 2) ||
5246        PPC::isSplatShuffleMask(SVOp, 4) ||
5247        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5248        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5249        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5250        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5251        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5252        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5253        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5254        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5255        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5256      return Op;
5257    }
5258  }
5259
5260  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5261  // and produce a fixed permutation.  If any of these match, do not lower to
5262  // VPERM.
5263  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5264      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5265      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5266      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5267      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5268      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5269      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5270      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5271      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5272    return Op;
5273
5274  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5275  // perfect shuffle table to emit an optimal matching sequence.
5276  ArrayRef<int> PermMask = SVOp->getMask();
5277
5278  unsigned PFIndexes[4];
5279  bool isFourElementShuffle = true;
5280  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5281    unsigned EltNo = 8;   // Start out undef.
5282    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5283      if (PermMask[i*4+j] < 0)
5284        continue;   // Undef, ignore it.
5285
5286      unsigned ByteSource = PermMask[i*4+j];
5287      if ((ByteSource & 3) != j) {
5288        isFourElementShuffle = false;
5289        break;
5290      }
5291
5292      if (EltNo == 8) {
5293        EltNo = ByteSource/4;
5294      } else if (EltNo != ByteSource/4) {
5295        isFourElementShuffle = false;
5296        break;
5297      }
5298    }
5299    PFIndexes[i] = EltNo;
5300  }
5301
5302  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5303  // perfect shuffle vector to determine if it is cost effective to do this as
5304  // discrete instructions, or whether we should use a vperm.
5305  if (isFourElementShuffle) {
5306    // Compute the index in the perfect shuffle table.
5307    unsigned PFTableIndex =
5308      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5309
5310    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5311    unsigned Cost  = (PFEntry >> 30);
5312
5313    // Determining when to avoid vperm is tricky.  Many things affect the cost
5314    // of vperm, particularly how many times the perm mask needs to be computed.
5315    // For example, if the perm mask can be hoisted out of a loop or is already
5316    // used (perhaps because there are multiple permutes with the same shuffle
5317    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5318    // the loop requires an extra register.
5319    //
5320    // As a compromise, we only emit discrete instructions if the shuffle can be
5321    // generated in 3 or fewer operations.  When we have loop information
5322    // available, if this block is within a loop, we should avoid using vperm
5323    // for 3-operation perms and use a constant pool load instead.
5324    if (Cost < 3)
5325      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5326  }
5327
5328  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5329  // vector that will get spilled to the constant pool.
5330  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5331
5332  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5333  // that it is in input element units, not in bytes.  Convert now.
5334  EVT EltVT = V1.getValueType().getVectorElementType();
5335  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5336
5337  SmallVector<SDValue, 16> ResultMask;
5338  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5339    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5340
5341    for (unsigned j = 0; j != BytesPerElement; ++j)
5342      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5343                                           MVT::i32));
5344  }
5345
5346  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5347                                    &ResultMask[0], ResultMask.size());
5348  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5349}
5350
5351/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5352/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5353/// information about the intrinsic.
5354static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5355                                  bool &isDot) {
5356  unsigned IntrinsicID =
5357    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5358  CompareOpc = -1;
5359  isDot = false;
5360  switch (IntrinsicID) {
5361  default: return false;
5362    // Comparison predicates.
5363  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5364  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5365  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5366  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5367  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5368  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5369  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5370  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5371  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5372  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5373  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5374  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5375  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5376
5377    // Normal Comparisons.
5378  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5379  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5380  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5381  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5382  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5383  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5384  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5385  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5386  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5387  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5388  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5389  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5390  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5391  }
5392  return true;
5393}
5394
5395/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5396/// lower, do it, otherwise return null.
5397SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5398                                                   SelectionDAG &DAG) const {
5399  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5400  // opcode number of the comparison.
5401  DebugLoc dl = Op.getDebugLoc();
5402  int CompareOpc;
5403  bool isDot;
5404  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5405    return SDValue();    // Don't custom lower most intrinsics.
5406
5407  // If this is a non-dot comparison, make the VCMP node and we are done.
5408  if (!isDot) {
5409    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5410                              Op.getOperand(1), Op.getOperand(2),
5411                              DAG.getConstant(CompareOpc, MVT::i32));
5412    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5413  }
5414
5415  // Create the PPCISD altivec 'dot' comparison node.
5416  SDValue Ops[] = {
5417    Op.getOperand(2),  // LHS
5418    Op.getOperand(3),  // RHS
5419    DAG.getConstant(CompareOpc, MVT::i32)
5420  };
5421  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5422  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5423
5424  // Now that we have the comparison, emit a copy from the CR to a GPR.
5425  // This is flagged to the above dot comparison.
5426  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5427                                DAG.getRegister(PPC::CR6, MVT::i32),
5428                                CompNode.getValue(1));
5429
5430  // Unpack the result based on how the target uses it.
5431  unsigned BitNo;   // Bit # of CR6.
5432  bool InvertBit;   // Invert result?
5433  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5434  default:  // Can't happen, don't crash on invalid number though.
5435  case 0:   // Return the value of the EQ bit of CR6.
5436    BitNo = 0; InvertBit = false;
5437    break;
5438  case 1:   // Return the inverted value of the EQ bit of CR6.
5439    BitNo = 0; InvertBit = true;
5440    break;
5441  case 2:   // Return the value of the LT bit of CR6.
5442    BitNo = 2; InvertBit = false;
5443    break;
5444  case 3:   // Return the inverted value of the LT bit of CR6.
5445    BitNo = 2; InvertBit = true;
5446    break;
5447  }
5448
5449  // Shift the bit into the low position.
5450  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5451                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5452  // Isolate the bit.
5453  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5454                      DAG.getConstant(1, MVT::i32));
5455
5456  // If we are supposed to, toggle the bit.
5457  if (InvertBit)
5458    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5459                        DAG.getConstant(1, MVT::i32));
5460  return Flags;
5461}
5462
5463SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5464                                                   SelectionDAG &DAG) const {
5465  DebugLoc dl = Op.getDebugLoc();
5466  // Create a stack slot that is 16-byte aligned.
5467  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5468  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5469  EVT PtrVT = getPointerTy();
5470  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5471
5472  // Store the input value into Value#0 of the stack slot.
5473  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5474                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5475                               false, false, 0);
5476  // Load it out.
5477  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5478                     false, false, false, 0);
5479}
5480
5481SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5482  DebugLoc dl = Op.getDebugLoc();
5483  if (Op.getValueType() == MVT::v4i32) {
5484    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5485
5486    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5487    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5488
5489    SDValue RHSSwap =   // = vrlw RHS, 16
5490      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5491
5492    // Shrinkify inputs to v8i16.
5493    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5494    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5495    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5496
5497    // Low parts multiplied together, generating 32-bit results (we ignore the
5498    // top parts).
5499    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5500                                        LHS, RHS, DAG, dl, MVT::v4i32);
5501
5502    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5503                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5504    // Shift the high parts up 16 bits.
5505    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5506                              Neg16, DAG, dl);
5507    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5508  } else if (Op.getValueType() == MVT::v8i16) {
5509    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5510
5511    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5512
5513    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5514                            LHS, RHS, Zero, DAG, dl);
5515  } else if (Op.getValueType() == MVT::v16i8) {
5516    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5517
5518    // Multiply the even 8-bit parts, producing 16-bit sums.
5519    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5520                                           LHS, RHS, DAG, dl, MVT::v8i16);
5521    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5522
5523    // Multiply the odd 8-bit parts, producing 16-bit sums.
5524    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5525                                          LHS, RHS, DAG, dl, MVT::v8i16);
5526    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5527
5528    // Merge the results together.
5529    int Ops[16];
5530    for (unsigned i = 0; i != 8; ++i) {
5531      Ops[i*2  ] = 2*i+1;
5532      Ops[i*2+1] = 2*i+1+16;
5533    }
5534    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5535  } else {
5536    llvm_unreachable("Unknown mul to lower!");
5537  }
5538}
5539
5540/// LowerOperation - Provide custom lowering hooks for some operations.
5541///
5542SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5543  switch (Op.getOpcode()) {
5544  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5545  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5546  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5547  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5548  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5549  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5550  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5551  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5552  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5553  case ISD::VASTART:
5554    return LowerVASTART(Op, DAG, PPCSubTarget);
5555
5556  case ISD::VAARG:
5557    return LowerVAARG(Op, DAG, PPCSubTarget);
5558
5559  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5560  case ISD::DYNAMIC_STACKALLOC:
5561    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5562
5563  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5564  case ISD::FP_TO_UINT:
5565  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5566                                                       Op.getDebugLoc());
5567  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5568  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5569
5570  // Lower 64-bit shifts.
5571  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5572  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5573  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5574
5575  // Vector-related lowering.
5576  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5577  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5578  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5579  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5580  case ISD::MUL:                return LowerMUL(Op, DAG);
5581
5582  // Frame & Return address.
5583  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5584  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5585  }
5586}
5587
5588void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5589                                           SmallVectorImpl<SDValue>&Results,
5590                                           SelectionDAG &DAG) const {
5591  const TargetMachine &TM = getTargetMachine();
5592  DebugLoc dl = N->getDebugLoc();
5593  switch (N->getOpcode()) {
5594  default:
5595    llvm_unreachable("Do not know how to custom type legalize this operation!");
5596  case ISD::VAARG: {
5597    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5598        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5599      return;
5600
5601    EVT VT = N->getValueType(0);
5602
5603    if (VT == MVT::i64) {
5604      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5605
5606      Results.push_back(NewNode);
5607      Results.push_back(NewNode.getValue(1));
5608    }
5609    return;
5610  }
5611  case ISD::FP_ROUND_INREG: {
5612    assert(N->getValueType(0) == MVT::ppcf128);
5613    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5614    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5615                             MVT::f64, N->getOperand(0),
5616                             DAG.getIntPtrConstant(0));
5617    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5618                             MVT::f64, N->getOperand(0),
5619                             DAG.getIntPtrConstant(1));
5620
5621    // This sequence changes FPSCR to do round-to-zero, adds the two halves
5622    // of the long double, and puts FPSCR back the way it was.  We do not
5623    // actually model FPSCR.
5624    std::vector<EVT> NodeTys;
5625    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
5626
5627    NodeTys.push_back(MVT::f64);   // Return register
5628    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
5629    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
5630    MFFSreg = Result.getValue(0);
5631    InFlag = Result.getValue(1);
5632
5633    NodeTys.clear();
5634    NodeTys.push_back(MVT::Glue);   // Returns a flag
5635    Ops[0] = DAG.getConstant(31, MVT::i32);
5636    Ops[1] = InFlag;
5637    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
5638    InFlag = Result.getValue(0);
5639
5640    NodeTys.clear();
5641    NodeTys.push_back(MVT::Glue);   // Returns a flag
5642    Ops[0] = DAG.getConstant(30, MVT::i32);
5643    Ops[1] = InFlag;
5644    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
5645    InFlag = Result.getValue(0);
5646
5647    NodeTys.clear();
5648    NodeTys.push_back(MVT::f64);    // result of add
5649    NodeTys.push_back(MVT::Glue);   // Returns a flag
5650    Ops[0] = Lo;
5651    Ops[1] = Hi;
5652    Ops[2] = InFlag;
5653    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
5654    FPreg = Result.getValue(0);
5655    InFlag = Result.getValue(1);
5656
5657    NodeTys.clear();
5658    NodeTys.push_back(MVT::f64);
5659    Ops[0] = DAG.getConstant(1, MVT::i32);
5660    Ops[1] = MFFSreg;
5661    Ops[2] = FPreg;
5662    Ops[3] = InFlag;
5663    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
5664    FPreg = Result.getValue(0);
5665
5666    // We know the low half is about to be thrown away, so just use something
5667    // convenient.
5668    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5669                                FPreg, FPreg));
5670    return;
5671  }
5672  case ISD::FP_TO_SINT:
5673    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5674    return;
5675  }
5676}
5677
5678
5679//===----------------------------------------------------------------------===//
5680//  Other Lowering Code
5681//===----------------------------------------------------------------------===//
5682
5683MachineBasicBlock *
5684PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5685                                    bool is64bit, unsigned BinOpcode) const {
5686  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5687  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5688
5689  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5690  MachineFunction *F = BB->getParent();
5691  MachineFunction::iterator It = BB;
5692  ++It;
5693
5694  unsigned dest = MI->getOperand(0).getReg();
5695  unsigned ptrA = MI->getOperand(1).getReg();
5696  unsigned ptrB = MI->getOperand(2).getReg();
5697  unsigned incr = MI->getOperand(3).getReg();
5698  DebugLoc dl = MI->getDebugLoc();
5699
5700  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5701  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5702  F->insert(It, loopMBB);
5703  F->insert(It, exitMBB);
5704  exitMBB->splice(exitMBB->begin(), BB,
5705                  llvm::next(MachineBasicBlock::iterator(MI)),
5706                  BB->end());
5707  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5708
5709  MachineRegisterInfo &RegInfo = F->getRegInfo();
5710  unsigned TmpReg = (!BinOpcode) ? incr :
5711    RegInfo.createVirtualRegister(
5712       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5713                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5714
5715  //  thisMBB:
5716  //   ...
5717  //   fallthrough --> loopMBB
5718  BB->addSuccessor(loopMBB);
5719
5720  //  loopMBB:
5721  //   l[wd]arx dest, ptr
5722  //   add r0, dest, incr
5723  //   st[wd]cx. r0, ptr
5724  //   bne- loopMBB
5725  //   fallthrough --> exitMBB
5726  BB = loopMBB;
5727  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5728    .addReg(ptrA).addReg(ptrB);
5729  if (BinOpcode)
5730    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5731  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5732    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5733  BuildMI(BB, dl, TII->get(PPC::BCC))
5734    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5735  BB->addSuccessor(loopMBB);
5736  BB->addSuccessor(exitMBB);
5737
5738  //  exitMBB:
5739  //   ...
5740  BB = exitMBB;
5741  return BB;
5742}
5743
5744MachineBasicBlock *
5745PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5746                                            MachineBasicBlock *BB,
5747                                            bool is8bit,    // operation
5748                                            unsigned BinOpcode) const {
5749  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5750  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5751  // In 64 bit mode we have to use 64 bits for addresses, even though the
5752  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5753  // registers without caring whether they're 32 or 64, but here we're
5754  // doing actual arithmetic on the addresses.
5755  bool is64bit = PPCSubTarget.isPPC64();
5756  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5757
5758  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5759  MachineFunction *F = BB->getParent();
5760  MachineFunction::iterator It = BB;
5761  ++It;
5762
5763  unsigned dest = MI->getOperand(0).getReg();
5764  unsigned ptrA = MI->getOperand(1).getReg();
5765  unsigned ptrB = MI->getOperand(2).getReg();
5766  unsigned incr = MI->getOperand(3).getReg();
5767  DebugLoc dl = MI->getDebugLoc();
5768
5769  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5770  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5771  F->insert(It, loopMBB);
5772  F->insert(It, exitMBB);
5773  exitMBB->splice(exitMBB->begin(), BB,
5774                  llvm::next(MachineBasicBlock::iterator(MI)),
5775                  BB->end());
5776  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5777
5778  MachineRegisterInfo &RegInfo = F->getRegInfo();
5779  const TargetRegisterClass *RC =
5780    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5781              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5782  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5783  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5784  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5785  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5786  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5787  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5788  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5789  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5790  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5791  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5792  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5793  unsigned Ptr1Reg;
5794  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5795
5796  //  thisMBB:
5797  //   ...
5798  //   fallthrough --> loopMBB
5799  BB->addSuccessor(loopMBB);
5800
5801  // The 4-byte load must be aligned, while a char or short may be
5802  // anywhere in the word.  Hence all this nasty bookkeeping code.
5803  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5804  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5805  //   xori shift, shift1, 24 [16]
5806  //   rlwinm ptr, ptr1, 0, 0, 29
5807  //   slw incr2, incr, shift
5808  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5809  //   slw mask, mask2, shift
5810  //  loopMBB:
5811  //   lwarx tmpDest, ptr
5812  //   add tmp, tmpDest, incr2
5813  //   andc tmp2, tmpDest, mask
5814  //   and tmp3, tmp, mask
5815  //   or tmp4, tmp3, tmp2
5816  //   stwcx. tmp4, ptr
5817  //   bne- loopMBB
5818  //   fallthrough --> exitMBB
5819  //   srw dest, tmpDest, shift
5820  if (ptrA != ZeroReg) {
5821    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5822    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5823      .addReg(ptrA).addReg(ptrB);
5824  } else {
5825    Ptr1Reg = ptrB;
5826  }
5827  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5828      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5829  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5830      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5831  if (is64bit)
5832    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5833      .addReg(Ptr1Reg).addImm(0).addImm(61);
5834  else
5835    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5836      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5837  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5838      .addReg(incr).addReg(ShiftReg);
5839  if (is8bit)
5840    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5841  else {
5842    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5843    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5844  }
5845  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5846      .addReg(Mask2Reg).addReg(ShiftReg);
5847
5848  BB = loopMBB;
5849  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5850    .addReg(ZeroReg).addReg(PtrReg);
5851  if (BinOpcode)
5852    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5853      .addReg(Incr2Reg).addReg(TmpDestReg);
5854  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5855    .addReg(TmpDestReg).addReg(MaskReg);
5856  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5857    .addReg(TmpReg).addReg(MaskReg);
5858  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5859    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5860  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5861    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5862  BuildMI(BB, dl, TII->get(PPC::BCC))
5863    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5864  BB->addSuccessor(loopMBB);
5865  BB->addSuccessor(exitMBB);
5866
5867  //  exitMBB:
5868  //   ...
5869  BB = exitMBB;
5870  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5871    .addReg(ShiftReg);
5872  return BB;
5873}
5874
5875MachineBasicBlock *
5876PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5877                                               MachineBasicBlock *BB) const {
5878  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5879
5880  // To "insert" these instructions we actually have to insert their
5881  // control-flow patterns.
5882  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5883  MachineFunction::iterator It = BB;
5884  ++It;
5885
5886  MachineFunction *F = BB->getParent();
5887
5888  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5889                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
5890    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
5891                                         PPC::ISEL8 : PPC::ISEL;
5892    unsigned SelectPred = MI->getOperand(4).getImm();
5893    DebugLoc dl = MI->getDebugLoc();
5894
5895    // The SelectPred is ((BI << 5) | BO) for a BCC
5896    unsigned BO = SelectPred & 0xF;
5897    assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel");
5898
5899    unsigned TrueOpNo, FalseOpNo;
5900    if (BO == 12) {
5901      TrueOpNo = 2;
5902      FalseOpNo = 3;
5903    } else {
5904      TrueOpNo = 3;
5905      FalseOpNo = 2;
5906      SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred);
5907    }
5908
5909    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
5910      .addReg(MI->getOperand(TrueOpNo).getReg())
5911      .addReg(MI->getOperand(FalseOpNo).getReg())
5912      .addImm(SelectPred).addReg(MI->getOperand(1).getReg());
5913  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5914             MI->getOpcode() == PPC::SELECT_CC_I8 ||
5915             MI->getOpcode() == PPC::SELECT_CC_F4 ||
5916             MI->getOpcode() == PPC::SELECT_CC_F8 ||
5917             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
5918
5919
5920    // The incoming instruction knows the destination vreg to set, the
5921    // condition code register to branch on, the true/false values to
5922    // select between, and a branch opcode to use.
5923
5924    //  thisMBB:
5925    //  ...
5926    //   TrueVal = ...
5927    //   cmpTY ccX, r1, r2
5928    //   bCC copy1MBB
5929    //   fallthrough --> copy0MBB
5930    MachineBasicBlock *thisMBB = BB;
5931    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5932    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
5933    unsigned SelectPred = MI->getOperand(4).getImm();
5934    DebugLoc dl = MI->getDebugLoc();
5935    F->insert(It, copy0MBB);
5936    F->insert(It, sinkMBB);
5937
5938    // Transfer the remainder of BB and its successor edges to sinkMBB.
5939    sinkMBB->splice(sinkMBB->begin(), BB,
5940                    llvm::next(MachineBasicBlock::iterator(MI)),
5941                    BB->end());
5942    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5943
5944    // Next, add the true and fallthrough blocks as its successors.
5945    BB->addSuccessor(copy0MBB);
5946    BB->addSuccessor(sinkMBB);
5947
5948    BuildMI(BB, dl, TII->get(PPC::BCC))
5949      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
5950
5951    //  copy0MBB:
5952    //   %FalseValue = ...
5953    //   # fallthrough to sinkMBB
5954    BB = copy0MBB;
5955
5956    // Update machine-CFG edges
5957    BB->addSuccessor(sinkMBB);
5958
5959    //  sinkMBB:
5960    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5961    //  ...
5962    BB = sinkMBB;
5963    BuildMI(*BB, BB->begin(), dl,
5964            TII->get(PPC::PHI), MI->getOperand(0).getReg())
5965      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
5966      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5967  }
5968  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
5969    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
5970  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
5971    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
5972  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
5973    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
5974  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
5975    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
5976
5977  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
5978    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
5979  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
5980    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
5981  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
5982    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
5983  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
5984    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
5985
5986  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
5987    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
5988  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
5989    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
5990  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
5991    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
5992  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
5993    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
5994
5995  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
5996    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
5997  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
5998    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
5999  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6000    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6001  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6002    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6003
6004  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6005    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6006  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6007    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6008  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6009    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6010  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6011    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6012
6013  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6014    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6015  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6016    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6017  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6018    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6019  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6020    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6021
6022  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6023    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6024  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6025    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6026  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6027    BB = EmitAtomicBinary(MI, BB, false, 0);
6028  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6029    BB = EmitAtomicBinary(MI, BB, true, 0);
6030
6031  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6032           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6033    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6034
6035    unsigned dest   = MI->getOperand(0).getReg();
6036    unsigned ptrA   = MI->getOperand(1).getReg();
6037    unsigned ptrB   = MI->getOperand(2).getReg();
6038    unsigned oldval = MI->getOperand(3).getReg();
6039    unsigned newval = MI->getOperand(4).getReg();
6040    DebugLoc dl     = MI->getDebugLoc();
6041
6042    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6043    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6044    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6045    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6046    F->insert(It, loop1MBB);
6047    F->insert(It, loop2MBB);
6048    F->insert(It, midMBB);
6049    F->insert(It, exitMBB);
6050    exitMBB->splice(exitMBB->begin(), BB,
6051                    llvm::next(MachineBasicBlock::iterator(MI)),
6052                    BB->end());
6053    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6054
6055    //  thisMBB:
6056    //   ...
6057    //   fallthrough --> loopMBB
6058    BB->addSuccessor(loop1MBB);
6059
6060    // loop1MBB:
6061    //   l[wd]arx dest, ptr
6062    //   cmp[wd] dest, oldval
6063    //   bne- midMBB
6064    // loop2MBB:
6065    //   st[wd]cx. newval, ptr
6066    //   bne- loopMBB
6067    //   b exitBB
6068    // midMBB:
6069    //   st[wd]cx. dest, ptr
6070    // exitBB:
6071    BB = loop1MBB;
6072    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6073      .addReg(ptrA).addReg(ptrB);
6074    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6075      .addReg(oldval).addReg(dest);
6076    BuildMI(BB, dl, TII->get(PPC::BCC))
6077      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6078    BB->addSuccessor(loop2MBB);
6079    BB->addSuccessor(midMBB);
6080
6081    BB = loop2MBB;
6082    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6083      .addReg(newval).addReg(ptrA).addReg(ptrB);
6084    BuildMI(BB, dl, TII->get(PPC::BCC))
6085      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6086    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6087    BB->addSuccessor(loop1MBB);
6088    BB->addSuccessor(exitMBB);
6089
6090    BB = midMBB;
6091    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6092      .addReg(dest).addReg(ptrA).addReg(ptrB);
6093    BB->addSuccessor(exitMBB);
6094
6095    //  exitMBB:
6096    //   ...
6097    BB = exitMBB;
6098  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6099             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6100    // We must use 64-bit registers for addresses when targeting 64-bit,
6101    // since we're actually doing arithmetic on them.  Other registers
6102    // can be 32-bit.
6103    bool is64bit = PPCSubTarget.isPPC64();
6104    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6105
6106    unsigned dest   = MI->getOperand(0).getReg();
6107    unsigned ptrA   = MI->getOperand(1).getReg();
6108    unsigned ptrB   = MI->getOperand(2).getReg();
6109    unsigned oldval = MI->getOperand(3).getReg();
6110    unsigned newval = MI->getOperand(4).getReg();
6111    DebugLoc dl     = MI->getDebugLoc();
6112
6113    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6114    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6115    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6116    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6117    F->insert(It, loop1MBB);
6118    F->insert(It, loop2MBB);
6119    F->insert(It, midMBB);
6120    F->insert(It, exitMBB);
6121    exitMBB->splice(exitMBB->begin(), BB,
6122                    llvm::next(MachineBasicBlock::iterator(MI)),
6123                    BB->end());
6124    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6125
6126    MachineRegisterInfo &RegInfo = F->getRegInfo();
6127    const TargetRegisterClass *RC =
6128      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6129                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6130    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6131    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6132    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6133    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6134    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6135    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6136    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6137    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6138    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6139    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6140    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6141    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6142    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6143    unsigned Ptr1Reg;
6144    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6145    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
6146    //  thisMBB:
6147    //   ...
6148    //   fallthrough --> loopMBB
6149    BB->addSuccessor(loop1MBB);
6150
6151    // The 4-byte load must be aligned, while a char or short may be
6152    // anywhere in the word.  Hence all this nasty bookkeeping code.
6153    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6154    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6155    //   xori shift, shift1, 24 [16]
6156    //   rlwinm ptr, ptr1, 0, 0, 29
6157    //   slw newval2, newval, shift
6158    //   slw oldval2, oldval,shift
6159    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6160    //   slw mask, mask2, shift
6161    //   and newval3, newval2, mask
6162    //   and oldval3, oldval2, mask
6163    // loop1MBB:
6164    //   lwarx tmpDest, ptr
6165    //   and tmp, tmpDest, mask
6166    //   cmpw tmp, oldval3
6167    //   bne- midMBB
6168    // loop2MBB:
6169    //   andc tmp2, tmpDest, mask
6170    //   or tmp4, tmp2, newval3
6171    //   stwcx. tmp4, ptr
6172    //   bne- loop1MBB
6173    //   b exitBB
6174    // midMBB:
6175    //   stwcx. tmpDest, ptr
6176    // exitBB:
6177    //   srw dest, tmpDest, shift
6178    if (ptrA != ZeroReg) {
6179      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6180      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6181        .addReg(ptrA).addReg(ptrB);
6182    } else {
6183      Ptr1Reg = ptrB;
6184    }
6185    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6186        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6187    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6188        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6189    if (is64bit)
6190      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6191        .addReg(Ptr1Reg).addImm(0).addImm(61);
6192    else
6193      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6194        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6195    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6196        .addReg(newval).addReg(ShiftReg);
6197    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6198        .addReg(oldval).addReg(ShiftReg);
6199    if (is8bit)
6200      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6201    else {
6202      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6203      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6204        .addReg(Mask3Reg).addImm(65535);
6205    }
6206    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6207        .addReg(Mask2Reg).addReg(ShiftReg);
6208    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6209        .addReg(NewVal2Reg).addReg(MaskReg);
6210    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6211        .addReg(OldVal2Reg).addReg(MaskReg);
6212
6213    BB = loop1MBB;
6214    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6215        .addReg(ZeroReg).addReg(PtrReg);
6216    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6217        .addReg(TmpDestReg).addReg(MaskReg);
6218    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6219        .addReg(TmpReg).addReg(OldVal3Reg);
6220    BuildMI(BB, dl, TII->get(PPC::BCC))
6221        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6222    BB->addSuccessor(loop2MBB);
6223    BB->addSuccessor(midMBB);
6224
6225    BB = loop2MBB;
6226    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6227        .addReg(TmpDestReg).addReg(MaskReg);
6228    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6229        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6230    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6231        .addReg(ZeroReg).addReg(PtrReg);
6232    BuildMI(BB, dl, TII->get(PPC::BCC))
6233      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6234    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6235    BB->addSuccessor(loop1MBB);
6236    BB->addSuccessor(exitMBB);
6237
6238    BB = midMBB;
6239    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6240      .addReg(ZeroReg).addReg(PtrReg);
6241    BB->addSuccessor(exitMBB);
6242
6243    //  exitMBB:
6244    //   ...
6245    BB = exitMBB;
6246    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6247      .addReg(ShiftReg);
6248  } else {
6249    llvm_unreachable("Unexpected instr type to insert");
6250  }
6251
6252  MI->eraseFromParent();   // The pseudo instruction is gone now.
6253  return BB;
6254}
6255
6256//===----------------------------------------------------------------------===//
6257// Target Optimization Hooks
6258//===----------------------------------------------------------------------===//
6259
6260SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6261                                             DAGCombinerInfo &DCI) const {
6262  const TargetMachine &TM = getTargetMachine();
6263  SelectionDAG &DAG = DCI.DAG;
6264  DebugLoc dl = N->getDebugLoc();
6265  switch (N->getOpcode()) {
6266  default: break;
6267  case PPCISD::SHL:
6268    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6269      if (C->isNullValue())   // 0 << V -> 0.
6270        return N->getOperand(0);
6271    }
6272    break;
6273  case PPCISD::SRL:
6274    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6275      if (C->isNullValue())   // 0 >>u V -> 0.
6276        return N->getOperand(0);
6277    }
6278    break;
6279  case PPCISD::SRA:
6280    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6281      if (C->isNullValue() ||   //  0 >>s V -> 0.
6282          C->isAllOnesValue())    // -1 >>s V -> -1.
6283        return N->getOperand(0);
6284    }
6285    break;
6286
6287  case ISD::SINT_TO_FP:
6288    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6289      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6290        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6291        // We allow the src/dst to be either f32/f64, but the intermediate
6292        // type must be i64.
6293        if (N->getOperand(0).getValueType() == MVT::i64 &&
6294            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6295          SDValue Val = N->getOperand(0).getOperand(0);
6296          if (Val.getValueType() == MVT::f32) {
6297            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6298            DCI.AddToWorklist(Val.getNode());
6299          }
6300
6301          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6302          DCI.AddToWorklist(Val.getNode());
6303          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6304          DCI.AddToWorklist(Val.getNode());
6305          if (N->getValueType(0) == MVT::f32) {
6306            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6307                              DAG.getIntPtrConstant(0));
6308            DCI.AddToWorklist(Val.getNode());
6309          }
6310          return Val;
6311        } else if (N->getOperand(0).getValueType() == MVT::i32) {
6312          // If the intermediate type is i32, we can avoid the load/store here
6313          // too.
6314        }
6315      }
6316    }
6317    break;
6318  case ISD::STORE:
6319    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6320    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6321        !cast<StoreSDNode>(N)->isTruncatingStore() &&
6322        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6323        N->getOperand(1).getValueType() == MVT::i32 &&
6324        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6325      SDValue Val = N->getOperand(1).getOperand(0);
6326      if (Val.getValueType() == MVT::f32) {
6327        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6328        DCI.AddToWorklist(Val.getNode());
6329      }
6330      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6331      DCI.AddToWorklist(Val.getNode());
6332
6333      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
6334                        N->getOperand(2), N->getOperand(3));
6335      DCI.AddToWorklist(Val.getNode());
6336      return Val;
6337    }
6338
6339    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6340    if (cast<StoreSDNode>(N)->isUnindexed() &&
6341        N->getOperand(1).getOpcode() == ISD::BSWAP &&
6342        N->getOperand(1).getNode()->hasOneUse() &&
6343        (N->getOperand(1).getValueType() == MVT::i32 ||
6344         N->getOperand(1).getValueType() == MVT::i16)) {
6345      SDValue BSwapOp = N->getOperand(1).getOperand(0);
6346      // Do an any-extend to 32-bits if this is a half-word input.
6347      if (BSwapOp.getValueType() == MVT::i16)
6348        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6349
6350      SDValue Ops[] = {
6351        N->getOperand(0), BSwapOp, N->getOperand(2),
6352        DAG.getValueType(N->getOperand(1).getValueType())
6353      };
6354      return
6355        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6356                                Ops, array_lengthof(Ops),
6357                                cast<StoreSDNode>(N)->getMemoryVT(),
6358                                cast<StoreSDNode>(N)->getMemOperand());
6359    }
6360    break;
6361  case ISD::BSWAP:
6362    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
6363    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6364        N->getOperand(0).hasOneUse() &&
6365        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
6366      SDValue Load = N->getOperand(0);
6367      LoadSDNode *LD = cast<LoadSDNode>(Load);
6368      // Create the byte-swapping load.
6369      SDValue Ops[] = {
6370        LD->getChain(),    // Chain
6371        LD->getBasePtr(),  // Ptr
6372        DAG.getValueType(N->getValueType(0)) // VT
6373      };
6374      SDValue BSLoad =
6375        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
6376                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
6377                                LD->getMemoryVT(), LD->getMemOperand());
6378
6379      // If this is an i16 load, insert the truncate.
6380      SDValue ResVal = BSLoad;
6381      if (N->getValueType(0) == MVT::i16)
6382        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
6383
6384      // First, combine the bswap away.  This makes the value produced by the
6385      // load dead.
6386      DCI.CombineTo(N, ResVal);
6387
6388      // Next, combine the load away, we give it a bogus result value but a real
6389      // chain result.  The result value is dead because the bswap is dead.
6390      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6391
6392      // Return N so it doesn't get rechecked!
6393      return SDValue(N, 0);
6394    }
6395
6396    break;
6397  case PPCISD::VCMP: {
6398    // If a VCMPo node already exists with exactly the same operands as this
6399    // node, use its result instead of this node (VCMPo computes both a CR6 and
6400    // a normal output).
6401    //
6402    if (!N->getOperand(0).hasOneUse() &&
6403        !N->getOperand(1).hasOneUse() &&
6404        !N->getOperand(2).hasOneUse()) {
6405
6406      // Scan all of the users of the LHS, looking for VCMPo's that match.
6407      SDNode *VCMPoNode = 0;
6408
6409      SDNode *LHSN = N->getOperand(0).getNode();
6410      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
6411           UI != E; ++UI)
6412        if (UI->getOpcode() == PPCISD::VCMPo &&
6413            UI->getOperand(1) == N->getOperand(1) &&
6414            UI->getOperand(2) == N->getOperand(2) &&
6415            UI->getOperand(0) == N->getOperand(0)) {
6416          VCMPoNode = *UI;
6417          break;
6418        }
6419
6420      // If there is no VCMPo node, or if the flag value has a single use, don't
6421      // transform this.
6422      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
6423        break;
6424
6425      // Look at the (necessarily single) use of the flag value.  If it has a
6426      // chain, this transformation is more complex.  Note that multiple things
6427      // could use the value result, which we should ignore.
6428      SDNode *FlagUser = 0;
6429      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
6430           FlagUser == 0; ++UI) {
6431        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
6432        SDNode *User = *UI;
6433        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
6434          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
6435            FlagUser = User;
6436            break;
6437          }
6438        }
6439      }
6440
6441      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
6442      // give up for right now.
6443      if (FlagUser->getOpcode() == PPCISD::MFCR)
6444        return SDValue(VCMPoNode, 0);
6445    }
6446    break;
6447  }
6448  case ISD::BR_CC: {
6449    // If this is a branch on an altivec predicate comparison, lower this so
6450    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
6451    // lowering is done pre-legalize, because the legalizer lowers the predicate
6452    // compare down to code that is difficult to reassemble.
6453    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6454    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
6455    int CompareOpc;
6456    bool isDot;
6457
6458    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
6459        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
6460        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
6461      assert(isDot && "Can't compare against a vector result!");
6462
6463      // If this is a comparison against something other than 0/1, then we know
6464      // that the condition is never/always true.
6465      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
6466      if (Val != 0 && Val != 1) {
6467        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
6468          return N->getOperand(0);
6469        // Always !=, turn it into an unconditional branch.
6470        return DAG.getNode(ISD::BR, dl, MVT::Other,
6471                           N->getOperand(0), N->getOperand(4));
6472      }
6473
6474      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
6475
6476      // Create the PPCISD altivec 'dot' comparison node.
6477      SDValue Ops[] = {
6478        LHS.getOperand(2),  // LHS of compare
6479        LHS.getOperand(3),  // RHS of compare
6480        DAG.getConstant(CompareOpc, MVT::i32)
6481      };
6482      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
6483      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
6484
6485      // Unpack the result based on how the target uses it.
6486      PPC::Predicate CompOpc;
6487      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
6488      default:  // Can't happen, don't crash on invalid number though.
6489      case 0:   // Branch on the value of the EQ bit of CR6.
6490        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
6491        break;
6492      case 1:   // Branch on the inverted value of the EQ bit of CR6.
6493        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
6494        break;
6495      case 2:   // Branch on the value of the LT bit of CR6.
6496        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
6497        break;
6498      case 3:   // Branch on the inverted value of the LT bit of CR6.
6499        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
6500        break;
6501      }
6502
6503      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
6504                         DAG.getConstant(CompOpc, MVT::i32),
6505                         DAG.getRegister(PPC::CR6, MVT::i32),
6506                         N->getOperand(4), CompNode.getValue(1));
6507    }
6508    break;
6509  }
6510  }
6511
6512  return SDValue();
6513}
6514
6515//===----------------------------------------------------------------------===//
6516// Inline Assembly Support
6517//===----------------------------------------------------------------------===//
6518
6519void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6520                                                       APInt &KnownZero,
6521                                                       APInt &KnownOne,
6522                                                       const SelectionDAG &DAG,
6523                                                       unsigned Depth) const {
6524  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6525  switch (Op.getOpcode()) {
6526  default: break;
6527  case PPCISD::LBRX: {
6528    // lhbrx is known to have the top bits cleared out.
6529    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6530      KnownZero = 0xFFFF0000;
6531    break;
6532  }
6533  case ISD::INTRINSIC_WO_CHAIN: {
6534    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6535    default: break;
6536    case Intrinsic::ppc_altivec_vcmpbfp_p:
6537    case Intrinsic::ppc_altivec_vcmpeqfp_p:
6538    case Intrinsic::ppc_altivec_vcmpequb_p:
6539    case Intrinsic::ppc_altivec_vcmpequh_p:
6540    case Intrinsic::ppc_altivec_vcmpequw_p:
6541    case Intrinsic::ppc_altivec_vcmpgefp_p:
6542    case Intrinsic::ppc_altivec_vcmpgtfp_p:
6543    case Intrinsic::ppc_altivec_vcmpgtsb_p:
6544    case Intrinsic::ppc_altivec_vcmpgtsh_p:
6545    case Intrinsic::ppc_altivec_vcmpgtsw_p:
6546    case Intrinsic::ppc_altivec_vcmpgtub_p:
6547    case Intrinsic::ppc_altivec_vcmpgtuh_p:
6548    case Intrinsic::ppc_altivec_vcmpgtuw_p:
6549      KnownZero = ~1U;  // All bits but the low one are known to be zero.
6550      break;
6551    }
6552  }
6553  }
6554}
6555
6556
6557/// getConstraintType - Given a constraint, return the type of
6558/// constraint it is for this target.
6559PPCTargetLowering::ConstraintType
6560PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6561  if (Constraint.size() == 1) {
6562    switch (Constraint[0]) {
6563    default: break;
6564    case 'b':
6565    case 'r':
6566    case 'f':
6567    case 'v':
6568    case 'y':
6569      return C_RegisterClass;
6570    case 'Z':
6571      // FIXME: While Z does indicate a memory constraint, it specifically
6572      // indicates an r+r address (used in conjunction with the 'y' modifier
6573      // in the replacement string). Currently, we're forcing the base
6574      // register to be r0 in the asm printer (which is interpreted as zero)
6575      // and forming the complete address in the second register. This is
6576      // suboptimal.
6577      return C_Memory;
6578    }
6579  }
6580  return TargetLowering::getConstraintType(Constraint);
6581}
6582
6583/// Examine constraint type and operand type and determine a weight value.
6584/// This object must already have been set up with the operand type
6585/// and the current alternative constraint selected.
6586TargetLowering::ConstraintWeight
6587PPCTargetLowering::getSingleConstraintMatchWeight(
6588    AsmOperandInfo &info, const char *constraint) const {
6589  ConstraintWeight weight = CW_Invalid;
6590  Value *CallOperandVal = info.CallOperandVal;
6591    // If we don't have a value, we can't do a match,
6592    // but allow it at the lowest weight.
6593  if (CallOperandVal == NULL)
6594    return CW_Default;
6595  Type *type = CallOperandVal->getType();
6596  // Look at the constraint type.
6597  switch (*constraint) {
6598  default:
6599    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6600    break;
6601  case 'b':
6602    if (type->isIntegerTy())
6603      weight = CW_Register;
6604    break;
6605  case 'f':
6606    if (type->isFloatTy())
6607      weight = CW_Register;
6608    break;
6609  case 'd':
6610    if (type->isDoubleTy())
6611      weight = CW_Register;
6612    break;
6613  case 'v':
6614    if (type->isVectorTy())
6615      weight = CW_Register;
6616    break;
6617  case 'y':
6618    weight = CW_Register;
6619    break;
6620  case 'Z':
6621    weight = CW_Memory;
6622    break;
6623  }
6624  return weight;
6625}
6626
6627std::pair<unsigned, const TargetRegisterClass*>
6628PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6629                                                EVT VT) const {
6630  if (Constraint.size() == 1) {
6631    // GCC RS6000 Constraint Letters
6632    switch (Constraint[0]) {
6633    case 'b':   // R1-R31
6634    case 'r':   // R0-R31
6635      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6636        return std::make_pair(0U, &PPC::G8RCRegClass);
6637      return std::make_pair(0U, &PPC::GPRCRegClass);
6638    case 'f':
6639      if (VT == MVT::f32 || VT == MVT::i32)
6640        return std::make_pair(0U, &PPC::F4RCRegClass);
6641      if (VT == MVT::f64 || VT == MVT::i64)
6642        return std::make_pair(0U, &PPC::F8RCRegClass);
6643      break;
6644    case 'v':
6645      return std::make_pair(0U, &PPC::VRRCRegClass);
6646    case 'y':   // crrc
6647      return std::make_pair(0U, &PPC::CRRCRegClass);
6648    }
6649  }
6650
6651  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6652}
6653
6654
6655/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6656/// vector.  If it is invalid, don't add anything to Ops.
6657void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6658                                                     std::string &Constraint,
6659                                                     std::vector<SDValue>&Ops,
6660                                                     SelectionDAG &DAG) const {
6661  SDValue Result(0,0);
6662
6663  // Only support length 1 constraints.
6664  if (Constraint.length() > 1) return;
6665
6666  char Letter = Constraint[0];
6667  switch (Letter) {
6668  default: break;
6669  case 'I':
6670  case 'J':
6671  case 'K':
6672  case 'L':
6673  case 'M':
6674  case 'N':
6675  case 'O':
6676  case 'P': {
6677    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
6678    if (!CST) return; // Must be an immediate to match.
6679    unsigned Value = CST->getZExtValue();
6680    switch (Letter) {
6681    default: llvm_unreachable("Unknown constraint letter!");
6682    case 'I':  // "I" is a signed 16-bit constant.
6683      if ((short)Value == (int)Value)
6684        Result = DAG.getTargetConstant(Value, Op.getValueType());
6685      break;
6686    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
6687    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
6688      if ((short)Value == 0)
6689        Result = DAG.getTargetConstant(Value, Op.getValueType());
6690      break;
6691    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
6692      if ((Value >> 16) == 0)
6693        Result = DAG.getTargetConstant(Value, Op.getValueType());
6694      break;
6695    case 'M':  // "M" is a constant that is greater than 31.
6696      if (Value > 31)
6697        Result = DAG.getTargetConstant(Value, Op.getValueType());
6698      break;
6699    case 'N':  // "N" is a positive constant that is an exact power of two.
6700      if ((int)Value > 0 && isPowerOf2_32(Value))
6701        Result = DAG.getTargetConstant(Value, Op.getValueType());
6702      break;
6703    case 'O':  // "O" is the constant zero.
6704      if (Value == 0)
6705        Result = DAG.getTargetConstant(Value, Op.getValueType());
6706      break;
6707    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
6708      if ((short)-Value == (int)-Value)
6709        Result = DAG.getTargetConstant(Value, Op.getValueType());
6710      break;
6711    }
6712    break;
6713  }
6714  }
6715
6716  if (Result.getNode()) {
6717    Ops.push_back(Result);
6718    return;
6719  }
6720
6721  // Handle standard constraint letters.
6722  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6723}
6724
6725// isLegalAddressingMode - Return true if the addressing mode represented
6726// by AM is legal for this target, for a load/store of the specified type.
6727bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6728                                              Type *Ty) const {
6729  // FIXME: PPC does not allow r+i addressing modes for vectors!
6730
6731  // PPC allows a sign-extended 16-bit immediate field.
6732  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
6733    return false;
6734
6735  // No global is ever allowed as a base.
6736  if (AM.BaseGV)
6737    return false;
6738
6739  // PPC only support r+r,
6740  switch (AM.Scale) {
6741  case 0:  // "r+i" or just "i", depending on HasBaseReg.
6742    break;
6743  case 1:
6744    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
6745      return false;
6746    // Otherwise we have r+r or r+i.
6747    break;
6748  case 2:
6749    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
6750      return false;
6751    // Allow 2*r as r+r.
6752    break;
6753  default:
6754    // No other scales are supported.
6755    return false;
6756  }
6757
6758  return true;
6759}
6760
6761/// isLegalAddressImmediate - Return true if the integer value can be used
6762/// as the offset of the target addressing mode for load / store of the
6763/// given type.
6764bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
6765  // PPC allows a sign-extended 16-bit immediate field.
6766  return (V > -(1 << 16) && V < (1 << 16)-1);
6767}
6768
6769bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
6770  return false;
6771}
6772
6773SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
6774                                           SelectionDAG &DAG) const {
6775  MachineFunction &MF = DAG.getMachineFunction();
6776  MachineFrameInfo *MFI = MF.getFrameInfo();
6777  MFI->setReturnAddressIsTaken(true);
6778
6779  DebugLoc dl = Op.getDebugLoc();
6780  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6781
6782  // Make sure the function does not optimize away the store of the RA to
6783  // the stack.
6784  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6785  FuncInfo->setLRStoreRequired();
6786  bool isPPC64 = PPCSubTarget.isPPC64();
6787  bool isDarwinABI = PPCSubTarget.isDarwinABI();
6788
6789  if (Depth > 0) {
6790    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6791    SDValue Offset =
6792
6793      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
6794                      isPPC64? MVT::i64 : MVT::i32);
6795    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6796                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6797                                   FrameAddr, Offset),
6798                       MachinePointerInfo(), false, false, false, 0);
6799  }
6800
6801  // Just load the return address off the stack.
6802  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
6803  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6804                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
6805}
6806
6807SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
6808                                          SelectionDAG &DAG) const {
6809  DebugLoc dl = Op.getDebugLoc();
6810  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6811
6812  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6813  bool isPPC64 = PtrVT == MVT::i64;
6814
6815  MachineFunction &MF = DAG.getMachineFunction();
6816  MachineFrameInfo *MFI = MF.getFrameInfo();
6817  MFI->setFrameAddressIsTaken(true);
6818  bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
6819               MFI->hasVarSizedObjects()) &&
6820                  MFI->getStackSize() &&
6821                  !MF.getFunction()->getAttributes().
6822                    hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked);
6823  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
6824                                (is31 ? PPC::R31 : PPC::R1);
6825  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
6826                                         PtrVT);
6827  while (Depth--)
6828    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
6829                            FrameAddr, MachinePointerInfo(), false, false,
6830                            false, 0);
6831  return FrameAddr;
6832}
6833
6834bool
6835PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6836  // The PowerPC target isn't yet aware of offsets.
6837  return false;
6838}
6839
6840/// getOptimalMemOpType - Returns the target specific optimal type for load
6841/// and store operations as a result of memset, memcpy, and memmove
6842/// lowering. If DstAlign is zero that means it's safe to destination
6843/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
6844/// means there isn't a need to check it against alignment requirement,
6845/// probably because the source does not need to be loaded. If 'IsMemset' is
6846/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
6847/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
6848/// source is constant so it does not need to be loaded.
6849/// It returns EVT::Other if the type should be determined using generic
6850/// target-independent logic.
6851EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
6852                                           unsigned DstAlign, unsigned SrcAlign,
6853                                           bool IsMemset, bool ZeroMemset,
6854                                           bool MemcpyStrSrc,
6855                                           MachineFunction &MF) const {
6856  if (this->PPCSubTarget.isPPC64()) {
6857    return MVT::i64;
6858  } else {
6859    return MVT::i32;
6860  }
6861}
6862
6863bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
6864                                                      bool *Fast) const {
6865  if (DisablePPCUnaligned)
6866    return false;
6867
6868  // PowerPC supports unaligned memory access for simple non-vector types.
6869  // Although accessing unaligned addresses is not as efficient as accessing
6870  // aligned addresses, it is generally more efficient than manual expansion,
6871  // and generally only traps for software emulation when crossing page
6872  // boundaries.
6873
6874  if (!VT.isSimple())
6875    return false;
6876
6877  if (VT.getSimpleVT().isVector())
6878    return false;
6879
6880  if (VT == MVT::ppcf128)
6881    return false;
6882
6883  if (Fast)
6884    *Fast = true;
6885
6886  return true;
6887}
6888
6889/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
6890/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
6891/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
6892/// is expanded to mul + add.
6893bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
6894  if (!VT.isSimple())
6895    return false;
6896
6897  switch (VT.getSimpleVT().SimpleTy) {
6898  case MVT::f32:
6899  case MVT::f64:
6900  case MVT::v4f32:
6901    return true;
6902  default:
6903    break;
6904  }
6905
6906  return false;
6907}
6908
6909Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
6910  if (DisableILPPref)
6911    return TargetLowering::getSchedulingPreference(N);
6912
6913  return Sched::ILP;
6914}
6915
6916