X86MCCodeEmitter.cpp revision 1386e9b7b16a8138ae7060c2dbb8b029f7c4fce2
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "mccodeemitter"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "MCTargetDesc/X86BaseInfo.h"
17#include "MCTargetDesc/X86FixupKinds.h"
18#include "llvm/MC/MCCodeEmitter.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCInst.h"
21#include "llvm/MC/MCInstrInfo.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29namespace {
30class X86MCCodeEmitter : public MCCodeEmitter {
31  X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
32  void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
33  const MCInstrInfo &MCII;
34  const MCSubtargetInfo &STI;
35  MCContext &Ctx;
36public:
37  X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
38                   MCContext &ctx)
39    : MCII(mcii), STI(sti), Ctx(ctx) {
40  }
41
42  ~X86MCCodeEmitter() {}
43
44  bool is64BitMode() const {
45    // FIXME: Can tablegen auto-generate this?
46    return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
47  }
48
49  bool is32BitMode() const {
50    // FIXME: Can tablegen auto-generate this?
51    return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
52  }
53
54  static unsigned GetX86RegNum(const MCOperand &MO) {
55    return X86_MC::getX86RegNum(MO.getReg());
56  }
57
58  // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
59  // 0-7 and the difference between the 2 groups is given by the REX prefix.
60  // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
61  // in 1's complement form, example:
62  //
63  //  ModRM field => XMM9 => 1
64  //  VEX.VVVV    => XMM9 => ~9
65  //
66  // See table 4-35 of Intel AVX Programming Reference for details.
67  static unsigned char getVEXRegisterEncoding(const MCInst &MI,
68                                              unsigned OpNum) {
69    unsigned SrcReg = MI.getOperand(OpNum).getReg();
70    unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
71    if (X86II::isX86_64ExtendedReg(SrcReg))
72      SrcRegNum |= 8;
73
74    // The registers represented through VEX_VVVV should
75    // be encoded in 1's complement form.
76    return (~SrcRegNum) & 0xf;
77  }
78
79  void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
80    OS << (char)C;
81    ++CurByte;
82  }
83
84  void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
85                    raw_ostream &OS) const {
86    // Output the constant in little endian byte order.
87    for (unsigned i = 0; i != Size; ++i) {
88      EmitByte(Val & 255, CurByte, OS);
89      Val >>= 8;
90    }
91  }
92
93  void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
94                     unsigned ImmSize, MCFixupKind FixupKind,
95                     unsigned &CurByte, raw_ostream &OS,
96                     SmallVectorImpl<MCFixup> &Fixups,
97                     int ImmOffset = 0) const;
98
99  inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
100                                        unsigned RM) {
101    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
102    return RM | (RegOpcode << 3) | (Mod << 6);
103  }
104
105  void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
106                        unsigned &CurByte, raw_ostream &OS) const {
107    EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
108  }
109
110  void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
111                   unsigned &CurByte, raw_ostream &OS) const {
112    // SIB byte is in the same format as the ModRMByte.
113    EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
114  }
115
116
117  void EmitMemModRMByte(const MCInst &MI, unsigned Op,
118                        unsigned RegOpcodeField,
119                        uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
120                        SmallVectorImpl<MCFixup> &Fixups) const;
121
122  void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
123                         SmallVectorImpl<MCFixup> &Fixups) const;
124
125  void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
126                           const MCInst &MI, const MCInstrDesc &Desc,
127                           raw_ostream &OS) const;
128
129  void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
130                                 int MemOperand, const MCInst &MI,
131                                 raw_ostream &OS) const;
132
133  void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
134                        const MCInst &MI, const MCInstrDesc &Desc,
135                        raw_ostream &OS) const;
136};
137
138} // end anonymous namespace
139
140
141MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
142                                            const MCRegisterInfo &MRI,
143                                            const MCSubtargetInfo &STI,
144                                            MCContext &Ctx) {
145  return new X86MCCodeEmitter(MCII, STI, Ctx);
146}
147
148/// isDisp8 - Return true if this signed displacement fits in a 8-bit
149/// sign-extended field.
150static bool isDisp8(int Value) {
151  return Value == (signed char)Value;
152}
153
154/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
155/// in an instruction with the specified TSFlags.
156static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
157  unsigned Size = X86II::getSizeOfImm(TSFlags);
158  bool isPCRel = X86II::isImmPCRel(TSFlags);
159
160  return MCFixup::getKindForSize(Size, isPCRel);
161}
162
163/// Is32BitMemOperand - Return true if the specified instruction has
164/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
165static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
166  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
167  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
168
169  if ((BaseReg.getReg() != 0 &&
170       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
171      (IndexReg.getReg() != 0 &&
172       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
173    return true;
174  return false;
175}
176
177/// Is64BitMemOperand - Return true if the specified instruction has
178/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
179#ifndef NDEBUG
180static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
181  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
182  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
183
184  if ((BaseReg.getReg() != 0 &&
185       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
186      (IndexReg.getReg() != 0 &&
187       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
188    return true;
189  return false;
190}
191#endif
192
193/// Is16BitMemOperand - Return true if the specified instruction has
194/// a 16-bit memory operand. Op specifies the operand # of the memoperand.
195static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
196  const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
197  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
198
199  if ((BaseReg.getReg() != 0 &&
200       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
201      (IndexReg.getReg() != 0 &&
202       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
203    return true;
204  return false;
205}
206
207/// StartsWithGlobalOffsetTable - Check if this expression starts with
208///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
209///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
210/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
211/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
212/// of a binary expression.
213enum GlobalOffsetTableExprKind {
214  GOT_None,
215  GOT_Normal,
216  GOT_SymDiff
217};
218static GlobalOffsetTableExprKind
219StartsWithGlobalOffsetTable(const MCExpr *Expr) {
220  const MCExpr *RHS = 0;
221  if (Expr->getKind() == MCExpr::Binary) {
222    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
223    Expr = BE->getLHS();
224    RHS = BE->getRHS();
225  }
226
227  if (Expr->getKind() != MCExpr::SymbolRef)
228    return GOT_None;
229
230  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
231  const MCSymbol &S = Ref->getSymbol();
232  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
233    return GOT_None;
234  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
235    return GOT_SymDiff;
236  return GOT_Normal;
237}
238
239void X86MCCodeEmitter::
240EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
241              MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
242              SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
243  const MCExpr *Expr = NULL;
244  if (DispOp.isImm()) {
245    // If this is a simple integer displacement that doesn't require a
246    // relocation, emit it now.
247    if (FixupKind != FK_PCRel_1 &&
248        FixupKind != FK_PCRel_2 &&
249        FixupKind != FK_PCRel_4) {
250      EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
251      return;
252    }
253    Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
254  } else {
255    Expr = DispOp.getExpr();
256  }
257
258  // If we have an immoffset, add it to the expression.
259  if ((FixupKind == FK_Data_4 ||
260       FixupKind == FK_Data_8 ||
261       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
262    GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
263    if (Kind != GOT_None) {
264      assert(ImmOffset == 0);
265
266      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
267      if (Kind == GOT_Normal)
268        ImmOffset = CurByte;
269    } else if (Expr->getKind() == MCExpr::SymbolRef) {
270      const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
271      if (Ref->getKind() == MCSymbolRefExpr::VK_SECREL) {
272        FixupKind = MCFixupKind(FK_SecRel_4);
273      }
274    }
275  }
276
277  // If the fixup is pc-relative, we need to bias the value to be relative to
278  // the start of the field, not the end of the field.
279  if (FixupKind == FK_PCRel_4 ||
280      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
281      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
282    ImmOffset -= 4;
283  if (FixupKind == FK_PCRel_2)
284    ImmOffset -= 2;
285  if (FixupKind == FK_PCRel_1)
286    ImmOffset -= 1;
287
288  if (ImmOffset)
289    Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
290                                   Ctx);
291
292  // Emit a symbolic constant as a fixup and 4 zeros.
293  Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
294  EmitConstant(0, Size, CurByte, OS);
295}
296
297void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
298                                        unsigned RegOpcodeField,
299                                        uint64_t TSFlags, unsigned &CurByte,
300                                        raw_ostream &OS,
301                                        SmallVectorImpl<MCFixup> &Fixups) const{
302  const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
303  const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
304  const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
305  const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
306  unsigned BaseReg = Base.getReg();
307
308  // Handle %rip relative addressing.
309  if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
310    assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
311    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
312    EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
313
314    unsigned FixupKind = X86::reloc_riprel_4byte;
315
316    // movq loads are handled with a special relocation form which allows the
317    // linker to eliminate some loads for GOT references which end up in the
318    // same linkage unit.
319    if (MI.getOpcode() == X86::MOV64rm)
320      FixupKind = X86::reloc_riprel_4byte_movq_load;
321
322    // rip-relative addressing is actually relative to the *next* instruction.
323    // Since an immediate can follow the mod/rm byte for an instruction, this
324    // means that we need to bias the immediate field of the instruction with
325    // the size of the immediate field.  If we have this case, add it into the
326    // expression to emit.
327    int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
328
329    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
330                  CurByte, OS, Fixups, -ImmSize);
331    return;
332  }
333
334  unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
335
336  // Determine whether a SIB byte is needed.
337  // If no BaseReg, issue a RIP relative instruction only if the MCE can
338  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
339  // 2-7) and absolute references.
340
341  if (// The SIB byte must be used if there is an index register.
342      IndexReg.getReg() == 0 &&
343      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
344      // encode to an R/M value of 4, which indicates that a SIB byte is
345      // present.
346      BaseRegNo != N86::ESP &&
347      // If there is no base register and we're in 64-bit mode, we need a SIB
348      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
349      (!is64BitMode() || BaseReg != 0)) {
350
351    if (BaseReg == 0) {          // [disp32]     in X86-32 mode
352      EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
353      EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
354      return;
355    }
356
357    // If the base is not EBP/ESP and there is no displacement, use simple
358    // indirect register encoding, this handles addresses like [EAX].  The
359    // encoding for [EBP] with no displacement means [disp32] so we handle it
360    // by emitting a displacement of 0 below.
361    if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
362      EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
363      return;
364    }
365
366    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
367    if (Disp.isImm() && isDisp8(Disp.getImm())) {
368      EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
369      EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
370      return;
371    }
372
373    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
374    EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
375    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
376                  Fixups);
377    return;
378  }
379
380  // We need a SIB byte, so start by outputting the ModR/M byte first
381  assert(IndexReg.getReg() != X86::ESP &&
382         IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
383
384  bool ForceDisp32 = false;
385  bool ForceDisp8  = false;
386  if (BaseReg == 0) {
387    // If there is no base register, we emit the special case SIB byte with
388    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
389    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
390    ForceDisp32 = true;
391  } else if (!Disp.isImm()) {
392    // Emit the normal disp32 encoding.
393    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
394    ForceDisp32 = true;
395  } else if (Disp.getImm() == 0 &&
396             // Base reg can't be anything that ends up with '5' as the base
397             // reg, it is the magic [*] nomenclature that indicates no base.
398             BaseRegNo != N86::EBP) {
399    // Emit no displacement ModR/M byte
400    EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
401  } else if (isDisp8(Disp.getImm())) {
402    // Emit the disp8 encoding.
403    EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
404    ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
405  } else {
406    // Emit the normal disp32 encoding.
407    EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
408  }
409
410  // Calculate what the SS field value should be...
411  static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
412  unsigned SS = SSTable[Scale.getImm()];
413
414  if (BaseReg == 0) {
415    // Handle the SIB byte for the case where there is no base, see Intel
416    // Manual 2A, table 2-7. The displacement has already been output.
417    unsigned IndexRegNo;
418    if (IndexReg.getReg())
419      IndexRegNo = GetX86RegNum(IndexReg);
420    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
421      IndexRegNo = 4;
422    EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
423  } else {
424    unsigned IndexRegNo;
425    if (IndexReg.getReg())
426      IndexRegNo = GetX86RegNum(IndexReg);
427    else
428      IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
429    EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
430  }
431
432  // Do we need to output a displacement?
433  if (ForceDisp8)
434    EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
435  else if (ForceDisp32 || Disp.getImm() != 0)
436    EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
437                  CurByte, OS, Fixups);
438}
439
440/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
441/// called VEX.
442void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
443                                           int MemOperand, const MCInst &MI,
444                                           const MCInstrDesc &Desc,
445                                           raw_ostream &OS) const {
446  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
447  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
448
449  // VEX_R: opcode externsion equivalent to REX.R in
450  // 1's complement (inverted) form
451  //
452  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
453  //  0: Same as REX_R=1 (64 bit mode only)
454  //
455  unsigned char VEX_R = 0x1;
456
457  // VEX_X: equivalent to REX.X, only used when a
458  // register is used for index in SIB Byte.
459  //
460  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
461  //  0: Same as REX.X=1 (64-bit mode only)
462  unsigned char VEX_X = 0x1;
463
464  // VEX_B:
465  //
466  //  1: Same as REX_B=0 (ignored in 32-bit mode)
467  //  0: Same as REX_B=1 (64 bit mode only)
468  //
469  unsigned char VEX_B = 0x1;
470
471  // VEX_W: opcode specific (use like REX.W, or used for
472  // opcode extension, or ignored, depending on the opcode byte)
473  unsigned char VEX_W = 0;
474
475  // XOP: Use XOP prefix byte 0x8f instead of VEX.
476  unsigned char XOP = 0;
477
478  // VEX_5M (VEX m-mmmmm field):
479  //
480  //  0b00000: Reserved for future use
481  //  0b00001: implied 0F leading opcode
482  //  0b00010: implied 0F 38 leading opcode bytes
483  //  0b00011: implied 0F 3A leading opcode bytes
484  //  0b00100-0b11111: Reserved for future use
485  //  0b01000: XOP map select - 08h instructions with imm byte
486  //  0b10001: XOP map select - 09h instructions with no imm byte
487  unsigned char VEX_5M = 0x1;
488
489  // VEX_4V (VEX vvvv field): a register specifier
490  // (in 1's complement form) or 1111 if unused.
491  unsigned char VEX_4V = 0xf;
492
493  // VEX_L (Vector Length):
494  //
495  //  0: scalar or 128-bit vector
496  //  1: 256-bit vector
497  //
498  unsigned char VEX_L = 0;
499
500  // VEX_PP: opcode extension providing equivalent
501  // functionality of a SIMD prefix
502  //
503  //  0b00: None
504  //  0b01: 66
505  //  0b10: F3
506  //  0b11: F2
507  //
508  unsigned char VEX_PP = 0;
509
510  // Encode the operand size opcode prefix as needed.
511  if (TSFlags & X86II::OpSize)
512    VEX_PP = 0x01;
513
514  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
515    VEX_W = 1;
516
517  if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
518    XOP = 1;
519
520  if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
521    VEX_L = 1;
522
523  switch (TSFlags & X86II::Op0Mask) {
524  default: llvm_unreachable("Invalid prefix!");
525  case X86II::T8:  // 0F 38
526    VEX_5M = 0x2;
527    break;
528  case X86II::TA:  // 0F 3A
529    VEX_5M = 0x3;
530    break;
531  case X86II::T8XS: // F3 0F 38
532    VEX_PP = 0x2;
533    VEX_5M = 0x2;
534    break;
535  case X86II::T8XD: // F2 0F 38
536    VEX_PP = 0x3;
537    VEX_5M = 0x2;
538    break;
539  case X86II::TAXD: // F2 0F 3A
540    VEX_PP = 0x3;
541    VEX_5M = 0x3;
542    break;
543  case X86II::XS:  // F3 0F
544    VEX_PP = 0x2;
545    break;
546  case X86II::XD:  // F2 0F
547    VEX_PP = 0x3;
548    break;
549  case X86II::XOP8:
550    VEX_5M = 0x8;
551    break;
552  case X86II::XOP9:
553    VEX_5M = 0x9;
554    break;
555  case X86II::A6:  // Bypass: Not used by VEX
556  case X86II::A7:  // Bypass: Not used by VEX
557  case X86II::TB:  // Bypass: Not used by VEX
558  case 0:
559    break;  // No prefix!
560  }
561
562
563  // Set the vector length to 256-bit if YMM0-YMM15 is used
564  for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
565    if (!MI.getOperand(i).isReg())
566      continue;
567    unsigned SrcReg = MI.getOperand(i).getReg();
568    if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
569      VEX_L = 1;
570  }
571
572  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
573  unsigned CurOp = 0;
574  switch (TSFlags & X86II::FormMask) {
575  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
576  case X86II::MRMDestMem: {
577    // MRMDestMem instructions forms:
578    //  MemAddr, src1(ModR/M)
579    //  MemAddr, src1(VEX_4V), src2(ModR/M)
580    //  MemAddr, src1(ModR/M), imm8
581    //
582    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
583      VEX_B = 0x0;
584    if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
585      VEX_X = 0x0;
586
587    CurOp = X86::AddrNumOperands;
588    if (HasVEX_4V)
589      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
590
591    const MCOperand &MO = MI.getOperand(CurOp);
592    if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
593      VEX_R = 0x0;
594    break;
595  }
596  case X86II::MRMSrcMem:
597    // MRMSrcMem instructions forms:
598    //  src1(ModR/M), MemAddr
599    //  src1(ModR/M), src2(VEX_4V), MemAddr
600    //  src1(ModR/M), MemAddr, imm8
601    //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
602    //
603    //  FMA4:
604    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
605    //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
606    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
607      VEX_R = 0x0;
608
609    if (HasVEX_4V)
610      VEX_4V = getVEXRegisterEncoding(MI, 1);
611
612    if (X86II::isX86_64ExtendedReg(
613               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
614      VEX_B = 0x0;
615    if (X86II::isX86_64ExtendedReg(
616               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
617      VEX_X = 0x0;
618
619    if (HasVEX_4VOp3)
620      VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
621    break;
622  case X86II::MRM0m: case X86II::MRM1m:
623  case X86II::MRM2m: case X86II::MRM3m:
624  case X86II::MRM4m: case X86II::MRM5m:
625  case X86II::MRM6m: case X86II::MRM7m: {
626    // MRM[0-9]m instructions forms:
627    //  MemAddr
628    //  src1(VEX_4V), MemAddr
629    if (HasVEX_4V)
630      VEX_4V = getVEXRegisterEncoding(MI, 0);
631
632    if (X86II::isX86_64ExtendedReg(
633               MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
634      VEX_B = 0x0;
635    if (X86II::isX86_64ExtendedReg(
636               MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
637      VEX_X = 0x0;
638    break;
639  }
640  case X86II::MRMSrcReg:
641    // MRMSrcReg instructions forms:
642    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
643    //  dst(ModR/M), src1(ModR/M)
644    //  dst(ModR/M), src1(ModR/M), imm8
645    //
646    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
647      VEX_R = 0x0;
648    CurOp++;
649
650    if (HasVEX_4V)
651      VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
652    if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
653      VEX_B = 0x0;
654    CurOp++;
655    if (HasVEX_4VOp3)
656      VEX_4V = getVEXRegisterEncoding(MI, CurOp);
657    break;
658  case X86II::MRMDestReg:
659    // MRMDestReg instructions forms:
660    //  dst(ModR/M), src(ModR/M)
661    //  dst(ModR/M), src(ModR/M), imm8
662    if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
663      VEX_B = 0x0;
664    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
665      VEX_R = 0x0;
666    break;
667  case X86II::MRM0r: case X86II::MRM1r:
668  case X86II::MRM2r: case X86II::MRM3r:
669  case X86II::MRM4r: case X86II::MRM5r:
670  case X86II::MRM6r: case X86II::MRM7r:
671    // MRM0r-MRM7r instructions forms:
672    //  dst(VEX_4V), src(ModR/M), imm8
673    VEX_4V = getVEXRegisterEncoding(MI, 0);
674    if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
675      VEX_B = 0x0;
676    break;
677  default: // RawFrm
678    break;
679  }
680
681  // Emit segment override opcode prefix as needed.
682  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
683
684  // VEX opcode prefix can have 2 or 3 bytes
685  //
686  //  3 bytes:
687  //    +-----+ +--------------+ +-------------------+
688  //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
689  //    +-----+ +--------------+ +-------------------+
690  //  2 bytes:
691  //    +-----+ +-------------------+
692  //    | C5h | | R | vvvv | L | pp |
693  //    +-----+ +-------------------+
694  //
695  unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
696
697  if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
698    EmitByte(0xC5, CurByte, OS);
699    EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
700    return;
701  }
702
703  // 3 byte VEX prefix
704  EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
705  EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
706  EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
707}
708
709/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
710/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
711/// size, and 3) use of X86-64 extended registers.
712static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
713                                   const MCInstrDesc &Desc) {
714  unsigned REX = 0;
715  if (TSFlags & X86II::REX_W)
716    REX |= 1 << 3; // set REX.W
717
718  if (MI.getNumOperands() == 0) return REX;
719
720  unsigned NumOps = MI.getNumOperands();
721  // FIXME: MCInst should explicitize the two-addrness.
722  bool isTwoAddr = NumOps > 1 &&
723                      Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
724
725  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
726  unsigned i = isTwoAddr ? 1 : 0;
727  for (; i != NumOps; ++i) {
728    const MCOperand &MO = MI.getOperand(i);
729    if (!MO.isReg()) continue;
730    unsigned Reg = MO.getReg();
731    if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
732    // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
733    // that returns non-zero.
734    REX |= 0x40; // REX fixed encoding prefix
735    break;
736  }
737
738  switch (TSFlags & X86II::FormMask) {
739  case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
740  case X86II::MRMSrcReg:
741    if (MI.getOperand(0).isReg() &&
742        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
743      REX |= 1 << 2; // set REX.R
744    i = isTwoAddr ? 2 : 1;
745    for (; i != NumOps; ++i) {
746      const MCOperand &MO = MI.getOperand(i);
747      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
748        REX |= 1 << 0; // set REX.B
749    }
750    break;
751  case X86II::MRMSrcMem: {
752    if (MI.getOperand(0).isReg() &&
753        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
754      REX |= 1 << 2; // set REX.R
755    unsigned Bit = 0;
756    i = isTwoAddr ? 2 : 1;
757    for (; i != NumOps; ++i) {
758      const MCOperand &MO = MI.getOperand(i);
759      if (MO.isReg()) {
760        if (X86II::isX86_64ExtendedReg(MO.getReg()))
761          REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
762        Bit++;
763      }
764    }
765    break;
766  }
767  case X86II::MRM0m: case X86II::MRM1m:
768  case X86II::MRM2m: case X86II::MRM3m:
769  case X86II::MRM4m: case X86II::MRM5m:
770  case X86II::MRM6m: case X86II::MRM7m:
771  case X86II::MRMDestMem: {
772    unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
773    i = isTwoAddr ? 1 : 0;
774    if (NumOps > e && MI.getOperand(e).isReg() &&
775        X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
776      REX |= 1 << 2; // set REX.R
777    unsigned Bit = 0;
778    for (; i != e; ++i) {
779      const MCOperand &MO = MI.getOperand(i);
780      if (MO.isReg()) {
781        if (X86II::isX86_64ExtendedReg(MO.getReg()))
782          REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
783        Bit++;
784      }
785    }
786    break;
787  }
788  default:
789    if (MI.getOperand(0).isReg() &&
790        X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
791      REX |= 1 << 0; // set REX.B
792    i = isTwoAddr ? 2 : 1;
793    for (unsigned e = NumOps; i != e; ++i) {
794      const MCOperand &MO = MI.getOperand(i);
795      if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
796        REX |= 1 << 2; // set REX.R
797    }
798    break;
799  }
800  return REX;
801}
802
803/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
804void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
805                                        unsigned &CurByte, int MemOperand,
806                                        const MCInst &MI,
807                                        raw_ostream &OS) const {
808  switch (TSFlags & X86II::SegOvrMask) {
809  default: llvm_unreachable("Invalid segment!");
810  case 0:
811    // No segment override, check for explicit one on memory operand.
812    if (MemOperand != -1) {   // If the instruction has a memory operand.
813      switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
814      default: llvm_unreachable("Unknown segment register!");
815      case 0: break;
816      case X86::CS: EmitByte(0x2E, CurByte, OS); break;
817      case X86::SS: EmitByte(0x36, CurByte, OS); break;
818      case X86::DS: EmitByte(0x3E, CurByte, OS); break;
819      case X86::ES: EmitByte(0x26, CurByte, OS); break;
820      case X86::FS: EmitByte(0x64, CurByte, OS); break;
821      case X86::GS: EmitByte(0x65, CurByte, OS); break;
822      }
823    }
824    break;
825  case X86II::FS:
826    EmitByte(0x64, CurByte, OS);
827    break;
828  case X86II::GS:
829    EmitByte(0x65, CurByte, OS);
830    break;
831  }
832}
833
834/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
835///
836/// MemOperand is the operand # of the start of a memory operand if present.  If
837/// Not present, it is -1.
838void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
839                                        int MemOperand, const MCInst &MI,
840                                        const MCInstrDesc &Desc,
841                                        raw_ostream &OS) const {
842
843  // Emit the lock opcode prefix as needed.
844  if (TSFlags & X86II::LOCK)
845    EmitByte(0xF0, CurByte, OS);
846
847  // Emit segment override opcode prefix as needed.
848  EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
849
850  // Emit the repeat opcode prefix as needed.
851  if ((TSFlags & X86II::Op0Mask) == X86II::REP)
852    EmitByte(0xF3, CurByte, OS);
853
854  // Emit the address size opcode prefix as needed.
855  bool need_address_override;
856  if (TSFlags & X86II::AdSize) {
857    need_address_override = true;
858  } else if (MemOperand == -1) {
859    need_address_override = false;
860  } else if (is64BitMode()) {
861    assert(!Is16BitMemOperand(MI, MemOperand));
862    need_address_override = Is32BitMemOperand(MI, MemOperand);
863  } else if (is32BitMode()) {
864    assert(!Is64BitMemOperand(MI, MemOperand));
865    need_address_override = Is16BitMemOperand(MI, MemOperand);
866  } else {
867    need_address_override = false;
868  }
869
870  if (need_address_override)
871    EmitByte(0x67, CurByte, OS);
872
873  // Emit the operand size opcode prefix as needed.
874  if (TSFlags & X86II::OpSize)
875    EmitByte(0x66, CurByte, OS);
876
877  bool Need0FPrefix = false;
878  switch (TSFlags & X86II::Op0Mask) {
879  default: llvm_unreachable("Invalid prefix!");
880  case 0: break;  // No prefix!
881  case X86II::REP: break; // already handled.
882  case X86II::TB:  // Two-byte opcode prefix
883  case X86II::T8:  // 0F 38
884  case X86II::TA:  // 0F 3A
885  case X86II::A6:  // 0F A6
886  case X86II::A7:  // 0F A7
887    Need0FPrefix = true;
888    break;
889  case X86II::T8XS: // F3 0F 38
890    EmitByte(0xF3, CurByte, OS);
891    Need0FPrefix = true;
892    break;
893  case X86II::T8XD: // F2 0F 38
894    EmitByte(0xF2, CurByte, OS);
895    Need0FPrefix = true;
896    break;
897  case X86II::TAXD: // F2 0F 3A
898    EmitByte(0xF2, CurByte, OS);
899    Need0FPrefix = true;
900    break;
901  case X86II::XS:   // F3 0F
902    EmitByte(0xF3, CurByte, OS);
903    Need0FPrefix = true;
904    break;
905  case X86II::XD:   // F2 0F
906    EmitByte(0xF2, CurByte, OS);
907    Need0FPrefix = true;
908    break;
909  case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
910  case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
911  case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
912  case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
913  case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
914  case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
915  case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
916  case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
917  }
918
919  // Handle REX prefix.
920  // FIXME: Can this come before F2 etc to simplify emission?
921  if (is64BitMode()) {
922    if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
923      EmitByte(0x40 | REX, CurByte, OS);
924  }
925
926  // 0x0F escape code must be emitted just before the opcode.
927  if (Need0FPrefix)
928    EmitByte(0x0F, CurByte, OS);
929
930  // FIXME: Pull this up into previous switch if REX can be moved earlier.
931  switch (TSFlags & X86II::Op0Mask) {
932  case X86II::T8XS:  // F3 0F 38
933  case X86II::T8XD:  // F2 0F 38
934  case X86II::T8:    // 0F 38
935    EmitByte(0x38, CurByte, OS);
936    break;
937  case X86II::TAXD:  // F2 0F 3A
938  case X86II::TA:    // 0F 3A
939    EmitByte(0x3A, CurByte, OS);
940    break;
941  case X86II::A6:    // 0F A6
942    EmitByte(0xA6, CurByte, OS);
943    break;
944  case X86II::A7:    // 0F A7
945    EmitByte(0xA7, CurByte, OS);
946    break;
947  }
948}
949
950void X86MCCodeEmitter::
951EncodeInstruction(const MCInst &MI, raw_ostream &OS,
952                  SmallVectorImpl<MCFixup> &Fixups) const {
953  unsigned Opcode = MI.getOpcode();
954  const MCInstrDesc &Desc = MCII.get(Opcode);
955  uint64_t TSFlags = Desc.TSFlags;
956
957  // Pseudo instructions don't get encoded.
958  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
959    return;
960
961  // If this is a two-address instruction, skip one of the register operands.
962  // FIXME: This should be handled during MCInst lowering.
963  unsigned NumOps = Desc.getNumOperands();
964  unsigned CurOp = 0;
965  if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1)
966    ++CurOp;
967  else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0)
968    // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
969    --NumOps;
970
971  // Keep track of the current byte being emitted.
972  unsigned CurByte = 0;
973
974  // Is this instruction encoded using the AVX VEX prefix?
975  bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
976
977  // It uses the VEX.VVVV field?
978  bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
979  bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
980  bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
981  const unsigned MemOp4_I8IMMOperand = 2;
982
983  // Determine where the memory operand starts, if present.
984  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
985  if (MemoryOperand != -1) MemoryOperand += CurOp;
986
987  if (!HasVEXPrefix)
988    EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
989  else
990    EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
991
992  unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
993
994  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
995    BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
996
997  unsigned SrcRegNum = 0;
998  switch (TSFlags & X86II::FormMask) {
999  case X86II::MRMInitReg:
1000    llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
1001  default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1002    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1003  case X86II::Pseudo:
1004    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1005  case X86II::RawFrm:
1006    EmitByte(BaseOpcode, CurByte, OS);
1007    break;
1008  case X86II::RawFrmImm8:
1009    EmitByte(BaseOpcode, CurByte, OS);
1010    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1011                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1012                  CurByte, OS, Fixups);
1013    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1014                  OS, Fixups);
1015    break;
1016  case X86II::RawFrmImm16:
1017    EmitByte(BaseOpcode, CurByte, OS);
1018    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1019                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1020                  CurByte, OS, Fixups);
1021    EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1022                  OS, Fixups);
1023    break;
1024
1025  case X86II::AddRegFrm:
1026    EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1027    break;
1028
1029  case X86II::MRMDestReg:
1030    EmitByte(BaseOpcode, CurByte, OS);
1031    EmitRegModRMByte(MI.getOperand(CurOp),
1032                     GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
1033    CurOp += 2;
1034    break;
1035
1036  case X86II::MRMDestMem:
1037    EmitByte(BaseOpcode, CurByte, OS);
1038    SrcRegNum = CurOp + X86::AddrNumOperands;
1039
1040    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1041      ++SrcRegNum;
1042
1043    EmitMemModRMByte(MI, CurOp,
1044                     GetX86RegNum(MI.getOperand(SrcRegNum)),
1045                     TSFlags, CurByte, OS, Fixups);
1046    CurOp = SrcRegNum + 1;
1047    break;
1048
1049  case X86II::MRMSrcReg:
1050    EmitByte(BaseOpcode, CurByte, OS);
1051    SrcRegNum = CurOp + 1;
1052
1053    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1054      ++SrcRegNum;
1055
1056    if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1057      ++SrcRegNum;
1058
1059    EmitRegModRMByte(MI.getOperand(SrcRegNum),
1060                     GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1061
1062    // 2 operands skipped with HasMemOp4, compensate accordingly
1063    CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1064    if (HasVEX_4VOp3)
1065      ++CurOp;
1066    break;
1067
1068  case X86II::MRMSrcMem: {
1069    int AddrOperands = X86::AddrNumOperands;
1070    unsigned FirstMemOp = CurOp+1;
1071    if (HasVEX_4V) {
1072      ++AddrOperands;
1073      ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
1074    }
1075    if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1076      ++FirstMemOp;
1077
1078    EmitByte(BaseOpcode, CurByte, OS);
1079
1080    EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1081                     TSFlags, CurByte, OS, Fixups);
1082    CurOp += AddrOperands + 1;
1083    if (HasVEX_4VOp3)
1084      ++CurOp;
1085    break;
1086  }
1087
1088  case X86II::MRM0r: case X86II::MRM1r:
1089  case X86II::MRM2r: case X86II::MRM3r:
1090  case X86II::MRM4r: case X86II::MRM5r:
1091  case X86II::MRM6r: case X86II::MRM7r:
1092    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1093      ++CurOp;
1094    EmitByte(BaseOpcode, CurByte, OS);
1095    EmitRegModRMByte(MI.getOperand(CurOp++),
1096                     (TSFlags & X86II::FormMask)-X86II::MRM0r,
1097                     CurByte, OS);
1098    break;
1099  case X86II::MRM0m: case X86II::MRM1m:
1100  case X86II::MRM2m: case X86II::MRM3m:
1101  case X86II::MRM4m: case X86II::MRM5m:
1102  case X86II::MRM6m: case X86II::MRM7m:
1103    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1104      ++CurOp;
1105    EmitByte(BaseOpcode, CurByte, OS);
1106    EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
1107                     TSFlags, CurByte, OS, Fixups);
1108    CurOp += X86::AddrNumOperands;
1109    break;
1110  case X86II::MRM_C1: case X86II::MRM_C2:
1111  case X86II::MRM_C3: case X86II::MRM_C4:
1112  case X86II::MRM_C8: case X86II::MRM_C9:
1113  case X86II::MRM_D0: case X86II::MRM_D1:
1114  case X86II::MRM_D4: case X86II::MRM_D8:
1115  case X86II::MRM_D9: case X86II::MRM_DA:
1116  case X86II::MRM_DB: case X86II::MRM_DC:
1117  case X86II::MRM_DD: case X86II::MRM_DE:
1118  case X86II::MRM_DF: case X86II::MRM_E8:
1119  case X86II::MRM_F0: case X86II::MRM_F8:
1120  case X86II::MRM_F9:
1121    EmitByte(BaseOpcode, CurByte, OS);
1122
1123    unsigned char MRM;
1124    switch (TSFlags & X86II::FormMask) {
1125    default: llvm_unreachable("Invalid Form");
1126    case X86II::MRM_C1: MRM = 0xC1; break;
1127    case X86II::MRM_C2: MRM = 0xC2; break;
1128    case X86II::MRM_C3: MRM = 0xC3; break;
1129    case X86II::MRM_C4: MRM = 0xC4; break;
1130    case X86II::MRM_C8: MRM = 0xC8; break;
1131    case X86II::MRM_C9: MRM = 0xC9; break;
1132    case X86II::MRM_D0: MRM = 0xD0; break;
1133    case X86II::MRM_D1: MRM = 0xD1; break;
1134    case X86II::MRM_D4: MRM = 0xD4; break;
1135    case X86II::MRM_D8: MRM = 0xD8; break;
1136    case X86II::MRM_D9: MRM = 0xD9; break;
1137    case X86II::MRM_DA: MRM = 0xDA; break;
1138    case X86II::MRM_DB: MRM = 0xDB; break;
1139    case X86II::MRM_DC: MRM = 0xDC; break;
1140    case X86II::MRM_DD: MRM = 0xDD; break;
1141    case X86II::MRM_DE: MRM = 0xDE; break;
1142    case X86II::MRM_DF: MRM = 0xDF; break;
1143    case X86II::MRM_E8: MRM = 0xE8; break;
1144    case X86II::MRM_F0: MRM = 0xF0; break;
1145    case X86II::MRM_F8: MRM = 0xF8; break;
1146    case X86II::MRM_F9: MRM = 0xF9; break;
1147    }
1148    EmitByte(MRM, CurByte, OS);
1149    break;
1150  }
1151
1152  // If there is a remaining operand, it must be a trailing immediate.  Emit it
1153  // according to the right size for the instruction. Some instructions
1154  // (SSE4a extrq and insertq) have two trailing immediates.
1155  while (CurOp != NumOps && NumOps - CurOp <= 2) {
1156    // The last source register of a 4 operand instruction in AVX is encoded
1157    // in bits[7:4] of a immediate byte.
1158    if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1159      const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1160                                                    : CurOp);
1161      ++CurOp;
1162      unsigned RegNum = GetX86RegNum(MO) << 4;
1163      if (X86II::isX86_64ExtendedReg(MO.getReg()))
1164        RegNum |= 1 << 7;
1165      // If there is an additional 5th operand it must be an immediate, which
1166      // is encoded in bits[3:0]
1167      if (CurOp != NumOps) {
1168        const MCOperand &MIMM = MI.getOperand(CurOp++);
1169        if (MIMM.isImm()) {
1170          unsigned Val = MIMM.getImm();
1171          assert(Val < 16 && "Immediate operand value out of range");
1172          RegNum |= Val;
1173        }
1174      }
1175      EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1176                    CurByte, OS, Fixups);
1177    } else {
1178      unsigned FixupKind;
1179      // FIXME: Is there a better way to know that we need a signed relocation?
1180      if (MI.getOpcode() == X86::ADD64ri32 ||
1181          MI.getOpcode() == X86::MOV64ri32 ||
1182          MI.getOpcode() == X86::MOV64mi32 ||
1183          MI.getOpcode() == X86::PUSH64i32)
1184        FixupKind = X86::reloc_signed_4byte;
1185      else
1186        FixupKind = getImmFixupKind(TSFlags);
1187      EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1188                    X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
1189                    CurByte, OS, Fixups);
1190    }
1191  }
1192
1193  if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1194    EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1195
1196#ifndef NDEBUG
1197  // FIXME: Verify.
1198  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1199    errs() << "Cannot encode all operands of: ";
1200    MI.dump();
1201    errs() << '\n';
1202    abort();
1203  }
1204#endif
1205}
1206