1//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/Intrinsics.h"
17#include "llvm/Support/ConstantRange.h"
18#include "llvm/Support/PatternMatch.h"
19#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23
24/// AddOne - Add one to a ConstantInt.
25static Constant *AddOne(ConstantInt *C) {
26  return ConstantInt::get(C->getContext(), C->getValue() + 1);
27}
28/// SubOne - Subtract one from a ConstantInt.
29static Constant *SubOne(ConstantInt *C) {
30  return ConstantInt::get(C->getContext(), C->getValue()-1);
31}
32
33/// isFreeToInvert - Return true if the specified value is free to invert (apply
34/// ~ to).  This happens in cases where the ~ can be eliminated.
35static inline bool isFreeToInvert(Value *V) {
36  // ~(~(X)) -> X.
37  if (BinaryOperator::isNot(V))
38    return true;
39
40  // Constants can be considered to be not'ed values.
41  if (isa<ConstantInt>(V))
42    return true;
43
44  // Compares can be inverted if they have a single use.
45  if (CmpInst *CI = dyn_cast<CmpInst>(V))
46    return CI->hasOneUse();
47
48  return false;
49}
50
51static inline Value *dyn_castNotVal(Value *V) {
52  // If this is not(not(x)) don't return that this is a not: we want the two
53  // not's to be folded first.
54  if (BinaryOperator::isNot(V)) {
55    Value *Operand = BinaryOperator::getNotArgument(V);
56    if (!isFreeToInvert(Operand))
57      return Operand;
58  }
59
60  // Constants can be considered to be not'ed values...
61  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
62    return ConstantInt::get(C->getType(), ~C->getValue());
63  return 0;
64}
65
66/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
67/// predicate into a three bit mask. It also returns whether it is an ordered
68/// predicate by reference.
69static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
70  isOrdered = false;
71  switch (CC) {
72  case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
73  case FCmpInst::FCMP_UNO:                   return 0;  // 000
74  case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
75  case FCmpInst::FCMP_UGT:                   return 1;  // 001
76  case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
77  case FCmpInst::FCMP_UEQ:                   return 2;  // 010
78  case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
79  case FCmpInst::FCMP_UGE:                   return 3;  // 011
80  case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
81  case FCmpInst::FCMP_ULT:                   return 4;  // 100
82  case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
83  case FCmpInst::FCMP_UNE:                   return 5;  // 101
84  case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
85  case FCmpInst::FCMP_ULE:                   return 6;  // 110
86    // True -> 7
87  default:
88    // Not expecting FCMP_FALSE and FCMP_TRUE;
89    llvm_unreachable("Unexpected FCmp predicate!");
90  }
91}
92
93/// getNewICmpValue - This is the complement of getICmpCode, which turns an
94/// opcode and two operands into either a constant true or false, or a brand
95/// new ICmp instruction. The sign is passed in to determine which kind
96/// of predicate to use in the new icmp instruction.
97static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
98                              InstCombiner::BuilderTy *Builder) {
99  ICmpInst::Predicate NewPred;
100  if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
101    return NewConstant;
102  return Builder->CreateICmp(NewPred, LHS, RHS);
103}
104
105/// getFCmpValue - This is the complement of getFCmpCode, which turns an
106/// opcode and two operands into either a FCmp instruction. isordered is passed
107/// in to determine which kind of predicate to use in the new fcmp instruction.
108static Value *getFCmpValue(bool isordered, unsigned code,
109                           Value *LHS, Value *RHS,
110                           InstCombiner::BuilderTy *Builder) {
111  CmpInst::Predicate Pred;
112  switch (code) {
113  default: llvm_unreachable("Illegal FCmp code!");
114  case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
115  case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
116  case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
117  case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
118  case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
119  case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
120  case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
121  case 7:
122    if (!isordered) return ConstantInt::getTrue(LHS->getContext());
123    Pred = FCmpInst::FCMP_ORD; break;
124  }
125  return Builder->CreateFCmp(Pred, LHS, RHS);
126}
127
128// OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
129// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
130// guaranteed to be a binary operator.
131Instruction *InstCombiner::OptAndOp(Instruction *Op,
132                                    ConstantInt *OpRHS,
133                                    ConstantInt *AndRHS,
134                                    BinaryOperator &TheAnd) {
135  Value *X = Op->getOperand(0);
136  Constant *Together = 0;
137  if (!Op->isShift())
138    Together = ConstantExpr::getAnd(AndRHS, OpRHS);
139
140  switch (Op->getOpcode()) {
141  case Instruction::Xor:
142    if (Op->hasOneUse()) {
143      // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
144      Value *And = Builder->CreateAnd(X, AndRHS);
145      And->takeName(Op);
146      return BinaryOperator::CreateXor(And, Together);
147    }
148    break;
149  case Instruction::Or:
150    if (Op->hasOneUse()){
151      if (Together != OpRHS) {
152        // (X | C1) & C2 --> (X | (C1&C2)) & C2
153        Value *Or = Builder->CreateOr(X, Together);
154        Or->takeName(Op);
155        return BinaryOperator::CreateAnd(Or, AndRHS);
156      }
157
158      ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
159      if (TogetherCI && !TogetherCI->isZero()){
160        // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
161        // NOTE: This reduces the number of bits set in the & mask, which
162        // can expose opportunities for store narrowing.
163        Together = ConstantExpr::getXor(AndRHS, Together);
164        Value *And = Builder->CreateAnd(X, Together);
165        And->takeName(Op);
166        return BinaryOperator::CreateOr(And, OpRHS);
167      }
168    }
169
170    break;
171  case Instruction::Add:
172    if (Op->hasOneUse()) {
173      // Adding a one to a single bit bit-field should be turned into an XOR
174      // of the bit.  First thing to check is to see if this AND is with a
175      // single bit constant.
176      const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
177
178      // If there is only one bit set.
179      if (AndRHSV.isPowerOf2()) {
180        // Ok, at this point, we know that we are masking the result of the
181        // ADD down to exactly one bit.  If the constant we are adding has
182        // no bits set below this bit, then we can eliminate the ADD.
183        const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
184
185        // Check to see if any bits below the one bit set in AndRHSV are set.
186        if ((AddRHS & (AndRHSV-1)) == 0) {
187          // If not, the only thing that can effect the output of the AND is
188          // the bit specified by AndRHSV.  If that bit is set, the effect of
189          // the XOR is to toggle the bit.  If it is clear, then the ADD has
190          // no effect.
191          if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
192            TheAnd.setOperand(0, X);
193            return &TheAnd;
194          } else {
195            // Pull the XOR out of the AND.
196            Value *NewAnd = Builder->CreateAnd(X, AndRHS);
197            NewAnd->takeName(Op);
198            return BinaryOperator::CreateXor(NewAnd, AndRHS);
199          }
200        }
201      }
202    }
203    break;
204
205  case Instruction::Shl: {
206    // We know that the AND will not produce any of the bits shifted in, so if
207    // the anded constant includes them, clear them now!
208    //
209    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
210    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
211    APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
212    ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
213                                       AndRHS->getValue() & ShlMask);
214
215    if (CI->getValue() == ShlMask)
216      // Masking out bits that the shift already masks.
217      return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
218
219    if (CI != AndRHS) {                  // Reducing bits set in and.
220      TheAnd.setOperand(1, CI);
221      return &TheAnd;
222    }
223    break;
224  }
225  case Instruction::LShr: {
226    // We know that the AND will not produce any of the bits shifted in, so if
227    // the anded constant includes them, clear them now!  This only applies to
228    // unsigned shifts, because a signed shr may bring in set bits!
229    //
230    uint32_t BitWidth = AndRHS->getType()->getBitWidth();
231    uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
232    APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
233    ConstantInt *CI = ConstantInt::get(Op->getContext(),
234                                       AndRHS->getValue() & ShrMask);
235
236    if (CI->getValue() == ShrMask)
237      // Masking out bits that the shift already masks.
238      return ReplaceInstUsesWith(TheAnd, Op);
239
240    if (CI != AndRHS) {
241      TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
242      return &TheAnd;
243    }
244    break;
245  }
246  case Instruction::AShr:
247    // Signed shr.
248    // See if this is shifting in some sign extension, then masking it out
249    // with an and.
250    if (Op->hasOneUse()) {
251      uint32_t BitWidth = AndRHS->getType()->getBitWidth();
252      uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
253      APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
254      Constant *C = ConstantInt::get(Op->getContext(),
255                                     AndRHS->getValue() & ShrMask);
256      if (C == AndRHS) {          // Masking out bits shifted in.
257        // (Val ashr C1) & C2 -> (Val lshr C1) & C2
258        // Make the argument unsigned.
259        Value *ShVal = Op->getOperand(0);
260        ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
261        return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
262      }
263    }
264    break;
265  }
266  return 0;
267}
268
269
270/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
271/// true, otherwise (V < Lo || V >= Hi).  In practice, we emit the more efficient
272/// (V-Lo) \<u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
273/// whether to treat the V, Lo and HI as signed or not. IB is the location to
274/// insert new instructions.
275Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
276                                     bool isSigned, bool Inside) {
277  assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
278            ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
279         "Lo is not <= Hi in range emission code!");
280
281  if (Inside) {
282    if (Lo == Hi)  // Trivially false.
283      return ConstantInt::getFalse(V->getContext());
284
285    // V >= Min && V < Hi --> V < Hi
286    if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
287      ICmpInst::Predicate pred = (isSigned ?
288        ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
289      return Builder->CreateICmp(pred, V, Hi);
290    }
291
292    // Emit V-Lo <u Hi-Lo
293    Constant *NegLo = ConstantExpr::getNeg(Lo);
294    Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
295    Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
296    return Builder->CreateICmpULT(Add, UpperBound);
297  }
298
299  if (Lo == Hi)  // Trivially true.
300    return ConstantInt::getTrue(V->getContext());
301
302  // V < Min || V >= Hi -> V > Hi-1
303  Hi = SubOne(cast<ConstantInt>(Hi));
304  if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
305    ICmpInst::Predicate pred = (isSigned ?
306        ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
307    return Builder->CreateICmp(pred, V, Hi);
308  }
309
310  // Emit V-Lo >u Hi-1-Lo
311  // Note that Hi has already had one subtracted from it, above.
312  ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
313  Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
314  Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
315  return Builder->CreateICmpUGT(Add, LowerBound);
316}
317
318// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
319// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
320// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
321// not, since all 1s are not contiguous.
322static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
323  const APInt& V = Val->getValue();
324  uint32_t BitWidth = Val->getType()->getBitWidth();
325  if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
326
327  // look for the first zero bit after the run of ones
328  MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
329  // look for the first non-zero bit
330  ME = V.getActiveBits();
331  return true;
332}
333
334/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
335/// where isSub determines whether the operator is a sub.  If we can fold one of
336/// the following xforms:
337///
338/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
339/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
340/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
341///
342/// return (A +/- B).
343///
344Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
345                                        ConstantInt *Mask, bool isSub,
346                                        Instruction &I) {
347  Instruction *LHSI = dyn_cast<Instruction>(LHS);
348  if (!LHSI || LHSI->getNumOperands() != 2 ||
349      !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
350
351  ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
352
353  switch (LHSI->getOpcode()) {
354  default: return 0;
355  case Instruction::And:
356    if (ConstantExpr::getAnd(N, Mask) == Mask) {
357      // If the AndRHS is a power of two minus one (0+1+), this is simple.
358      if ((Mask->getValue().countLeadingZeros() +
359           Mask->getValue().countPopulation()) ==
360          Mask->getValue().getBitWidth())
361        break;
362
363      // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
364      // part, we don't need any explicit masks to take them out of A.  If that
365      // is all N is, ignore it.
366      uint32_t MB = 0, ME = 0;
367      if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
368        uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
369        APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
370        if (MaskedValueIsZero(RHS, Mask))
371          break;
372      }
373    }
374    return 0;
375  case Instruction::Or:
376  case Instruction::Xor:
377    // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
378    if ((Mask->getValue().countLeadingZeros() +
379         Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
380        && ConstantExpr::getAnd(N, Mask)->isNullValue())
381      break;
382    return 0;
383  }
384
385  if (isSub)
386    return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
387  return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
388}
389
390/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
391/// One of A and B is considered the mask, the other the value. This is
392/// described as the "AMask" or "BMask" part of the enum. If the enum
393/// contains only "Mask", then both A and B can be considered masks.
394/// If A is the mask, then it was proven, that (A & C) == C. This
395/// is trivial if C == A, or C == 0. If both A and C are constants, this
396/// proof is also easy.
397/// For the following explanations we assume that A is the mask.
398/// The part "AllOnes" declares, that the comparison is true only
399/// if (A & B) == A, or all bits of A are set in B.
400///   Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
401/// The part "AllZeroes" declares, that the comparison is true only
402/// if (A & B) == 0, or all bits of A are cleared in B.
403///   Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
404/// The part "Mixed" declares, that (A & B) == C and C might or might not
405/// contain any number of one bits and zero bits.
406///   Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
407/// The Part "Not" means, that in above descriptions "==" should be replaced
408/// by "!=".
409///   Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
410/// If the mask A contains a single bit, then the following is equivalent:
411///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
412///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
413enum MaskedICmpType {
414  FoldMskICmp_AMask_AllOnes           =     1,
415  FoldMskICmp_AMask_NotAllOnes        =     2,
416  FoldMskICmp_BMask_AllOnes           =     4,
417  FoldMskICmp_BMask_NotAllOnes        =     8,
418  FoldMskICmp_Mask_AllZeroes          =    16,
419  FoldMskICmp_Mask_NotAllZeroes       =    32,
420  FoldMskICmp_AMask_Mixed             =    64,
421  FoldMskICmp_AMask_NotMixed          =   128,
422  FoldMskICmp_BMask_Mixed             =   256,
423  FoldMskICmp_BMask_NotMixed          =   512
424};
425
426/// return the set of pattern classes (from MaskedICmpType)
427/// that (icmp SCC (A & B), C) satisfies
428static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
429                                    ICmpInst::Predicate SCC)
430{
431  ConstantInt *ACst = dyn_cast<ConstantInt>(A);
432  ConstantInt *BCst = dyn_cast<ConstantInt>(B);
433  ConstantInt *CCst = dyn_cast<ConstantInt>(C);
434  bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
435  bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
436                    ACst->getValue().isPowerOf2());
437  bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
438                    BCst->getValue().isPowerOf2());
439  unsigned result = 0;
440  if (CCst != 0 && CCst->isZero()) {
441    // if C is zero, then both A and B qualify as mask
442    result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
443                          FoldMskICmp_Mask_AllZeroes |
444                          FoldMskICmp_AMask_Mixed |
445                          FoldMskICmp_BMask_Mixed)
446                       : (FoldMskICmp_Mask_NotAllZeroes |
447                          FoldMskICmp_Mask_NotAllZeroes |
448                          FoldMskICmp_AMask_NotMixed |
449                          FoldMskICmp_BMask_NotMixed));
450    if (icmp_abit)
451      result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
452                            FoldMskICmp_AMask_NotMixed)
453                         : (FoldMskICmp_AMask_AllOnes |
454                            FoldMskICmp_AMask_Mixed));
455    if (icmp_bbit)
456      result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
457                            FoldMskICmp_BMask_NotMixed)
458                         : (FoldMskICmp_BMask_AllOnes |
459                            FoldMskICmp_BMask_Mixed));
460    return result;
461  }
462  if (A == C) {
463    result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
464                          FoldMskICmp_AMask_Mixed)
465                       : (FoldMskICmp_AMask_NotAllOnes |
466                          FoldMskICmp_AMask_NotMixed));
467    if (icmp_abit)
468      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
469                            FoldMskICmp_AMask_NotMixed)
470                         : (FoldMskICmp_Mask_AllZeroes |
471                            FoldMskICmp_AMask_Mixed));
472  } else if (ACst != 0 && CCst != 0 &&
473             ConstantExpr::getAnd(ACst, CCst) == CCst) {
474    result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
475                       : FoldMskICmp_AMask_NotMixed);
476  }
477  if (B == C) {
478    result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
479                          FoldMskICmp_BMask_Mixed)
480                       : (FoldMskICmp_BMask_NotAllOnes |
481                          FoldMskICmp_BMask_NotMixed));
482    if (icmp_bbit)
483      result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
484                            FoldMskICmp_BMask_NotMixed)
485                         : (FoldMskICmp_Mask_AllZeroes |
486                            FoldMskICmp_BMask_Mixed));
487  } else if (BCst != 0 && CCst != 0 &&
488             ConstantExpr::getAnd(BCst, CCst) == CCst) {
489    result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
490                       : FoldMskICmp_BMask_NotMixed);
491  }
492  return result;
493}
494
495/// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
496/// if possible. The returned predicate is either == or !=. Returns false if
497/// decomposition fails.
498static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
499                                 Value *&X, Value *&Y, Value *&Z) {
500  // X < 0 is equivalent to (X & SignBit) != 0.
501  if (I->getPredicate() == ICmpInst::ICMP_SLT)
502    if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
503      if (C->isZero()) {
504        X = I->getOperand(0);
505        Y = ConstantInt::get(I->getContext(),
506                             APInt::getSignBit(C->getBitWidth()));
507        Pred = ICmpInst::ICMP_NE;
508        Z = C;
509        return true;
510      }
511
512  // X > -1 is equivalent to (X & SignBit) == 0.
513  if (I->getPredicate() == ICmpInst::ICMP_SGT)
514    if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
515      if (C->isAllOnesValue()) {
516        X = I->getOperand(0);
517        Y = ConstantInt::get(I->getContext(),
518                             APInt::getSignBit(C->getBitWidth()));
519        Pred = ICmpInst::ICMP_EQ;
520        Z = ConstantInt::getNullValue(C->getType());
521        return true;
522      }
523
524  return false;
525}
526
527/// foldLogOpOfMaskedICmpsHelper:
528/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
529/// return the set of pattern classes (from MaskedICmpType)
530/// that both LHS and RHS satisfy
531static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
532                                             Value*& B, Value*& C,
533                                             Value*& D, Value*& E,
534                                             ICmpInst *LHS, ICmpInst *RHS,
535                                             ICmpInst::Predicate &LHSCC,
536                                             ICmpInst::Predicate &RHSCC) {
537  if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
538  // vectors are not (yet?) supported
539  if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
540
541  // Here comes the tricky part:
542  // LHS might be of the form L11 & L12 == X, X == L21 & L22,
543  // and L11 & L12 == L21 & L22. The same goes for RHS.
544  // Now we must find those components L** and R**, that are equal, so
545  // that we can extract the parameters A, B, C, D, and E for the canonical
546  // above.
547  Value *L1 = LHS->getOperand(0);
548  Value *L2 = LHS->getOperand(1);
549  Value *L11,*L12,*L21,*L22;
550  // Check whether the icmp can be decomposed into a bit test.
551  if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
552    L21 = L22 = L1 = 0;
553  } else {
554    // Look for ANDs in the LHS icmp.
555    if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
556      if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
557        L21 = L22 = 0;
558    } else {
559      if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
560        return 0;
561      std::swap(L1, L2);
562      L21 = L22 = 0;
563    }
564  }
565
566  // Bail if LHS was a icmp that can't be decomposed into an equality.
567  if (!ICmpInst::isEquality(LHSCC))
568    return 0;
569
570  Value *R1 = RHS->getOperand(0);
571  Value *R2 = RHS->getOperand(1);
572  Value *R11,*R12;
573  bool ok = false;
574  if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
575    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
576      A = R11; D = R12;
577    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
578      A = R12; D = R11;
579    } else {
580      return 0;
581    }
582    E = R2; R1 = 0; ok = true;
583  } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
584    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
585      A = R11; D = R12; E = R2; ok = true;
586    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
587      A = R12; D = R11; E = R2; ok = true;
588    }
589  }
590
591  // Bail if RHS was a icmp that can't be decomposed into an equality.
592  if (!ICmpInst::isEquality(RHSCC))
593    return 0;
594
595  // Look for ANDs in on the right side of the RHS icmp.
596  if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
597    if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
598      A = R11; D = R12; E = R1; ok = true;
599    } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
600      A = R12; D = R11; E = R1; ok = true;
601    } else {
602      return 0;
603    }
604  }
605  if (!ok)
606    return 0;
607
608  if (L11 == A) {
609    B = L12; C = L2;
610  } else if (L12 == A) {
611    B = L11; C = L2;
612  } else if (L21 == A) {
613    B = L22; C = L1;
614  } else if (L22 == A) {
615    B = L21; C = L1;
616  }
617
618  unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
619  unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
620  return left_type & right_type;
621}
622/// foldLogOpOfMaskedICmps:
623/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
624/// into a single (icmp(A & X) ==/!= Y)
625static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
626                                     ICmpInst::Predicate NEWCC,
627                                     llvm::InstCombiner::BuilderTy* Builder) {
628  Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
629  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
630  unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
631                                               LHSCC, RHSCC);
632  if (mask == 0) return 0;
633  assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
634         "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
635
636  if (NEWCC == ICmpInst::ICMP_NE)
637    mask >>= 1; // treat "Not"-states as normal states
638
639  if (mask & FoldMskICmp_Mask_AllZeroes) {
640    // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
641    // -> (icmp eq (A & (B|D)), 0)
642    Value* newOr = Builder->CreateOr(B, D);
643    Value* newAnd = Builder->CreateAnd(A, newOr);
644    // we can't use C as zero, because we might actually handle
645    //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
646    // with B and D, having a single bit set
647    Value* zero = Constant::getNullValue(A->getType());
648    return Builder->CreateICmp(NEWCC, newAnd, zero);
649  }
650  if (mask & FoldMskICmp_BMask_AllOnes) {
651    // (icmp eq (A & B), B) & (icmp eq (A & D), D)
652    // -> (icmp eq (A & (B|D)), (B|D))
653    Value* newOr = Builder->CreateOr(B, D);
654    Value* newAnd = Builder->CreateAnd(A, newOr);
655    return Builder->CreateICmp(NEWCC, newAnd, newOr);
656  }
657  if (mask & FoldMskICmp_AMask_AllOnes) {
658    // (icmp eq (A & B), A) & (icmp eq (A & D), A)
659    // -> (icmp eq (A & (B&D)), A)
660    Value* newAnd1 = Builder->CreateAnd(B, D);
661    Value* newAnd = Builder->CreateAnd(A, newAnd1);
662    return Builder->CreateICmp(NEWCC, newAnd, A);
663  }
664  if (mask & FoldMskICmp_BMask_Mixed) {
665    // (icmp eq (A & B), C) & (icmp eq (A & D), E)
666    // We already know that B & C == C && D & E == E.
667    // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
668    // C and E, which are shared by both the mask B and the mask D, don't
669    // contradict, then we can transform to
670    // -> (icmp eq (A & (B|D)), (C|E))
671    // Currently, we only handle the case of B, C, D, and E being constant.
672    ConstantInt *BCst = dyn_cast<ConstantInt>(B);
673    if (BCst == 0) return 0;
674    ConstantInt *DCst = dyn_cast<ConstantInt>(D);
675    if (DCst == 0) return 0;
676    // we can't simply use C and E, because we might actually handle
677    //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
678    // with B and D, having a single bit set
679
680    ConstantInt *CCst = dyn_cast<ConstantInt>(C);
681    if (CCst == 0) return 0;
682    if (LHSCC != NEWCC)
683      CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
684    ConstantInt *ECst = dyn_cast<ConstantInt>(E);
685    if (ECst == 0) return 0;
686    if (RHSCC != NEWCC)
687      ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
688    ConstantInt* MCst = dyn_cast<ConstantInt>(
689      ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
690                           ConstantExpr::getXor(CCst, ECst)) );
691    // if there is a conflict we should actually return a false for the
692    // whole construct
693    if (!MCst->isZero())
694      return 0;
695    Value *newOr1 = Builder->CreateOr(B, D);
696    Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
697    Value *newAnd = Builder->CreateAnd(A, newOr1);
698    return Builder->CreateICmp(NEWCC, newAnd, newOr2);
699  }
700  return 0;
701}
702
703/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
704Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
705  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
706
707  // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
708  if (PredicatesFoldable(LHSCC, RHSCC)) {
709    if (LHS->getOperand(0) == RHS->getOperand(1) &&
710        LHS->getOperand(1) == RHS->getOperand(0))
711      LHS->swapOperands();
712    if (LHS->getOperand(0) == RHS->getOperand(0) &&
713        LHS->getOperand(1) == RHS->getOperand(1)) {
714      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
715      unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
716      bool isSigned = LHS->isSigned() || RHS->isSigned();
717      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
718    }
719  }
720
721  // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
722  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
723    return V;
724
725  // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
726  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
727  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
728  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
729  if (LHSCst == 0 || RHSCst == 0) return 0;
730
731  if (LHSCst == RHSCst && LHSCC == RHSCC) {
732    // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
733    // where C is a power of 2
734    if (LHSCC == ICmpInst::ICMP_ULT &&
735        LHSCst->getValue().isPowerOf2()) {
736      Value *NewOr = Builder->CreateOr(Val, Val2);
737      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
738    }
739
740    // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
741    if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
742      Value *NewOr = Builder->CreateOr(Val, Val2);
743      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
744    }
745  }
746
747  // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
748  // where CMAX is the all ones value for the truncated type,
749  // iff the lower bits of C2 and CA are zero.
750  if (LHSCC == ICmpInst::ICMP_EQ && LHSCC == RHSCC &&
751      LHS->hasOneUse() && RHS->hasOneUse()) {
752    Value *V;
753    ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
754
755    // (trunc x) == C1 & (and x, CA) == C2
756    // (and x, CA) == C2 & (trunc x) == C1
757    if (match(Val2, m_Trunc(m_Value(V))) &&
758        match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
759      SmallCst = RHSCst;
760      BigCst = LHSCst;
761    } else if (match(Val, m_Trunc(m_Value(V))) &&
762               match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
763      SmallCst = LHSCst;
764      BigCst = RHSCst;
765    }
766
767    if (SmallCst && BigCst) {
768      unsigned BigBitSize = BigCst->getType()->getBitWidth();
769      unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
770
771      // Check that the low bits are zero.
772      APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
773      if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
774        Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
775        APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
776        Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
777        return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
778      }
779    }
780  }
781
782  // From here on, we only handle:
783  //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
784  if (Val != Val2) return 0;
785
786  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
787  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
788      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
789      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
790      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
791    return 0;
792
793  // Make a constant range that's the intersection of the two icmp ranges.
794  // If the intersection is empty, we know that the result is false.
795  ConstantRange LHSRange =
796    ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
797  ConstantRange RHSRange =
798    ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
799
800  if (LHSRange.intersectWith(RHSRange).isEmptySet())
801    return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
802
803  // We can't fold (ugt x, C) & (sgt x, C2).
804  if (!PredicatesFoldable(LHSCC, RHSCC))
805    return 0;
806
807  // Ensure that the larger constant is on the RHS.
808  bool ShouldSwap;
809  if (CmpInst::isSigned(LHSCC) ||
810      (ICmpInst::isEquality(LHSCC) &&
811       CmpInst::isSigned(RHSCC)))
812    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
813  else
814    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
815
816  if (ShouldSwap) {
817    std::swap(LHS, RHS);
818    std::swap(LHSCst, RHSCst);
819    std::swap(LHSCC, RHSCC);
820  }
821
822  // At this point, we know we have two icmp instructions
823  // comparing a value against two constants and and'ing the result
824  // together.  Because of the above check, we know that we only have
825  // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
826  // (from the icmp folding check above), that the two constants
827  // are not equal and that the larger constant is on the RHS
828  assert(LHSCst != RHSCst && "Compares not folded above?");
829
830  switch (LHSCC) {
831  default: llvm_unreachable("Unknown integer condition code!");
832  case ICmpInst::ICMP_EQ:
833    switch (RHSCC) {
834    default: llvm_unreachable("Unknown integer condition code!");
835    case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
836    case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
837    case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
838      return LHS;
839    }
840  case ICmpInst::ICMP_NE:
841    switch (RHSCC) {
842    default: llvm_unreachable("Unknown integer condition code!");
843    case ICmpInst::ICMP_ULT:
844      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
845        return Builder->CreateICmpULT(Val, LHSCst);
846      break;                        // (X != 13 & X u< 15) -> no change
847    case ICmpInst::ICMP_SLT:
848      if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
849        return Builder->CreateICmpSLT(Val, LHSCst);
850      break;                        // (X != 13 & X s< 15) -> no change
851    case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
852    case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
853    case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
854      return RHS;
855    case ICmpInst::ICMP_NE:
856      if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
857        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
858        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
859        return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
860      }
861      break;                        // (X != 13 & X != 15) -> no change
862    }
863    break;
864  case ICmpInst::ICMP_ULT:
865    switch (RHSCC) {
866    default: llvm_unreachable("Unknown integer condition code!");
867    case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
868    case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
869      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
870    case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
871      break;
872    case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
873    case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
874      return LHS;
875    case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
876      break;
877    }
878    break;
879  case ICmpInst::ICMP_SLT:
880    switch (RHSCC) {
881    default: llvm_unreachable("Unknown integer condition code!");
882    case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
883      break;
884    case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
885    case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
886      return LHS;
887    case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
888      break;
889    }
890    break;
891  case ICmpInst::ICMP_UGT:
892    switch (RHSCC) {
893    default: llvm_unreachable("Unknown integer condition code!");
894    case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
895    case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
896      return RHS;
897    case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
898      break;
899    case ICmpInst::ICMP_NE:
900      if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
901        return Builder->CreateICmp(LHSCC, Val, RHSCst);
902      break;                        // (X u> 13 & X != 15) -> no change
903    case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
904      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
905    case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
906      break;
907    }
908    break;
909  case ICmpInst::ICMP_SGT:
910    switch (RHSCC) {
911    default: llvm_unreachable("Unknown integer condition code!");
912    case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
913    case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
914      return RHS;
915    case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
916      break;
917    case ICmpInst::ICMP_NE:
918      if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
919        return Builder->CreateICmp(LHSCC, Val, RHSCst);
920      break;                        // (X s> 13 & X != 15) -> no change
921    case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
922      return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
923    case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
924      break;
925    }
926    break;
927  }
928
929  return 0;
930}
931
932/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp).  NOTE: Unlike the rest of
933/// instcombine, this returns a Value which should already be inserted into the
934/// function.
935Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
936  if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
937      RHS->getPredicate() == FCmpInst::FCMP_ORD) {
938    // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
939    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
940      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
941        // If either of the constants are nans, then the whole thing returns
942        // false.
943        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
944          return ConstantInt::getFalse(LHS->getContext());
945        return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
946      }
947
948    // Handle vector zeros.  This occurs because the canonical form of
949    // "fcmp ord x,x" is "fcmp ord x, 0".
950    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
951        isa<ConstantAggregateZero>(RHS->getOperand(1)))
952      return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
953    return 0;
954  }
955
956  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
957  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
958  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
959
960
961  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
962    // Swap RHS operands to match LHS.
963    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
964    std::swap(Op1LHS, Op1RHS);
965  }
966
967  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
968    // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
969    if (Op0CC == Op1CC)
970      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
971    if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
972      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
973    if (Op0CC == FCmpInst::FCMP_TRUE)
974      return RHS;
975    if (Op1CC == FCmpInst::FCMP_TRUE)
976      return LHS;
977
978    bool Op0Ordered;
979    bool Op1Ordered;
980    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
981    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
982    // uno && ord -> false
983    if (Op0Pred == 0 && Op1Pred == 0 && Op0Ordered != Op1Ordered)
984        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
985    if (Op1Pred == 0) {
986      std::swap(LHS, RHS);
987      std::swap(Op0Pred, Op1Pred);
988      std::swap(Op0Ordered, Op1Ordered);
989    }
990    if (Op0Pred == 0) {
991      // uno && ueq -> uno && (uno || eq) -> uno
992      // ord && olt -> ord && (ord && lt) -> olt
993      if (!Op0Ordered && (Op0Ordered == Op1Ordered))
994        return LHS;
995      if (Op0Ordered && (Op0Ordered == Op1Ordered))
996        return RHS;
997
998      // uno && oeq -> uno && (ord && eq) -> false
999      if (!Op0Ordered)
1000        return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
1001      // ord && ueq -> ord && (uno || eq) -> oeq
1002      return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
1003    }
1004  }
1005
1006  return 0;
1007}
1008
1009
1010Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
1011  bool Changed = SimplifyAssociativeOrCommutative(I);
1012  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1013
1014  if (Value *V = SimplifyAndInst(Op0, Op1, TD))
1015    return ReplaceInstUsesWith(I, V);
1016
1017  // (A|B)&(A|C) -> A|(B&C) etc
1018  if (Value *V = SimplifyUsingDistributiveLaws(I))
1019    return ReplaceInstUsesWith(I, V);
1020
1021  // See if we can simplify any instructions used by the instruction whose sole
1022  // purpose is to compute bits we don't care about.
1023  if (SimplifyDemandedInstructionBits(I))
1024    return &I;
1025
1026  if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1027    const APInt &AndRHSMask = AndRHS->getValue();
1028
1029    // Optimize a variety of ((val OP C1) & C2) combinations...
1030    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1031      Value *Op0LHS = Op0I->getOperand(0);
1032      Value *Op0RHS = Op0I->getOperand(1);
1033      switch (Op0I->getOpcode()) {
1034      default: break;
1035      case Instruction::Xor:
1036      case Instruction::Or: {
1037        // If the mask is only needed on one incoming arm, push it up.
1038        if (!Op0I->hasOneUse()) break;
1039
1040        APInt NotAndRHS(~AndRHSMask);
1041        if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1042          // Not masking anything out for the LHS, move to RHS.
1043          Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1044                                             Op0RHS->getName()+".masked");
1045          return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1046        }
1047        if (!isa<Constant>(Op0RHS) &&
1048            MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1049          // Not masking anything out for the RHS, move to LHS.
1050          Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1051                                             Op0LHS->getName()+".masked");
1052          return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1053        }
1054
1055        break;
1056      }
1057      case Instruction::Add:
1058        // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1059        // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1060        // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1061        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1062          return BinaryOperator::CreateAnd(V, AndRHS);
1063        if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1064          return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
1065        break;
1066
1067      case Instruction::Sub:
1068        // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1069        // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1070        // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1071        if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1072          return BinaryOperator::CreateAnd(V, AndRHS);
1073
1074        // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1075        // has 1's for all bits that the subtraction with A might affect.
1076        if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
1077          uint32_t BitWidth = AndRHSMask.getBitWidth();
1078          uint32_t Zeros = AndRHSMask.countLeadingZeros();
1079          APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1080
1081          if (MaskedValueIsZero(Op0LHS, Mask)) {
1082            Value *NewNeg = Builder->CreateNeg(Op0RHS);
1083            return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1084          }
1085        }
1086        break;
1087
1088      case Instruction::Shl:
1089      case Instruction::LShr:
1090        // (1 << x) & 1 --> zext(x == 0)
1091        // (1 >> x) & 1 --> zext(x == 0)
1092        if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1093          Value *NewICmp =
1094            Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1095          return new ZExtInst(NewICmp, I.getType());
1096        }
1097        break;
1098      }
1099
1100      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1101        if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1102          return Res;
1103    }
1104
1105    // If this is an integer truncation, and if the source is an 'and' with
1106    // immediate, transform it.  This frequently occurs for bitfield accesses.
1107    {
1108      Value *X = 0; ConstantInt *YC = 0;
1109      if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1110        // Change: and (trunc (and X, YC) to T), C2
1111        // into  : and (trunc X to T), trunc(YC) & C2
1112        // This will fold the two constants together, which may allow
1113        // other simplifications.
1114        Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1115        Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1116        C3 = ConstantExpr::getAnd(C3, AndRHS);
1117        return BinaryOperator::CreateAnd(NewCast, C3);
1118      }
1119    }
1120
1121    // Try to fold constant and into select arguments.
1122    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1123      if (Instruction *R = FoldOpIntoSelect(I, SI))
1124        return R;
1125    if (isa<PHINode>(Op0))
1126      if (Instruction *NV = FoldOpIntoPhi(I))
1127        return NV;
1128  }
1129
1130
1131  // (~A & ~B) == (~(A | B)) - De Morgan's Law
1132  if (Value *Op0NotVal = dyn_castNotVal(Op0))
1133    if (Value *Op1NotVal = dyn_castNotVal(Op1))
1134      if (Op0->hasOneUse() && Op1->hasOneUse()) {
1135        Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1136                                      I.getName()+".demorgan");
1137        return BinaryOperator::CreateNot(Or);
1138      }
1139
1140  {
1141    Value *A = 0, *B = 0, *C = 0, *D = 0;
1142    // (A|B) & ~(A&B) -> A^B
1143    if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1144        match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1145        ((A == C && B == D) || (A == D && B == C)))
1146      return BinaryOperator::CreateXor(A, B);
1147
1148    // ~(A&B) & (A|B) -> A^B
1149    if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1150        match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1151        ((A == C && B == D) || (A == D && B == C)))
1152      return BinaryOperator::CreateXor(A, B);
1153
1154    // A&(A^B) => A & ~B
1155    {
1156      Value *tmpOp0 = Op0;
1157      Value *tmpOp1 = Op1;
1158      if (Op0->hasOneUse() &&
1159          match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1160        if (A == Op1 || B == Op1 ) {
1161          tmpOp1 = Op0;
1162          tmpOp0 = Op1;
1163          // Simplify below
1164        }
1165      }
1166
1167      if (tmpOp1->hasOneUse() &&
1168          match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1169        if (B == tmpOp0) {
1170          std::swap(A, B);
1171        }
1172        // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1173        // A is originally -1 (or a vector of -1 and undefs), then we enter
1174        // an endless loop. By checking that A is non-constant we ensure that
1175        // we will never get to the loop.
1176        if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
1177          return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
1178      }
1179    }
1180
1181    // (A&((~A)|B)) -> A&B
1182    if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1183        match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1184      return BinaryOperator::CreateAnd(A, Op1);
1185    if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1186        match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1187      return BinaryOperator::CreateAnd(A, Op0);
1188  }
1189
1190  if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1191    if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
1192      if (Value *Res = FoldAndOfICmps(LHS, RHS))
1193        return ReplaceInstUsesWith(I, Res);
1194
1195  // If and'ing two fcmp, try combine them into one.
1196  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1197    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
1198      if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1199        return ReplaceInstUsesWith(I, Res);
1200
1201
1202  // fold (and (cast A), (cast B)) -> (cast (and A, B))
1203  if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
1204    if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1205      Type *SrcTy = Op0C->getOperand(0)->getType();
1206      if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1207          SrcTy == Op1C->getOperand(0)->getType() &&
1208          SrcTy->isIntOrIntVectorTy()) {
1209        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1210
1211        // Only do this if the casts both really cause code to be generated.
1212        if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1213            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1214          Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
1215          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1216        }
1217
1218        // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1219        // cast is otherwise not optimizable.  This happens for vector sexts.
1220        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1221          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1222            if (Value *Res = FoldAndOfICmps(LHS, RHS))
1223              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1224
1225        // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1226        // cast is otherwise not optimizable.  This happens for vector sexts.
1227        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1228          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
1229            if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1230              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
1231      }
1232    }
1233
1234  // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
1235  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1236    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1237      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1238          SI0->getOperand(1) == SI1->getOperand(1) &&
1239          (SI0->hasOneUse() || SI1->hasOneUse())) {
1240        Value *NewOp =
1241          Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1242                             SI0->getName());
1243        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1244                                      SI1->getOperand(1));
1245      }
1246  }
1247
1248  {
1249    Value *X = 0;
1250    bool OpsSwapped = false;
1251    // Canonicalize SExt or Not to the LHS
1252    if (match(Op1, m_SExt(m_Value())) ||
1253        match(Op1, m_Not(m_Value()))) {
1254      std::swap(Op0, Op1);
1255      OpsSwapped = true;
1256    }
1257
1258    // Fold (and (sext bool to A), B) --> (select bool, B, 0)
1259    if (match(Op0, m_SExt(m_Value(X))) &&
1260        X->getType()->getScalarType()->isIntegerTy(1)) {
1261      Value *Zero = Constant::getNullValue(Op1->getType());
1262      return SelectInst::Create(X, Op1, Zero);
1263    }
1264
1265    // Fold (and ~(sext bool to A), B) --> (select bool, 0, B)
1266    if (match(Op0, m_Not(m_SExt(m_Value(X)))) &&
1267        X->getType()->getScalarType()->isIntegerTy(1)) {
1268      Value *Zero = Constant::getNullValue(Op0->getType());
1269      return SelectInst::Create(X, Zero, Op1);
1270    }
1271
1272    if (OpsSwapped)
1273      std::swap(Op0, Op1);
1274  }
1275
1276  return Changed ? &I : 0;
1277}
1278
1279/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1280/// capable of providing pieces of a bswap.  The subexpression provides pieces
1281/// of a bswap if it is proven that each of the non-zero bytes in the output of
1282/// the expression came from the corresponding "byte swapped" byte in some other
1283/// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
1284/// we know that the expression deposits the low byte of %X into the high byte
1285/// of the bswap result and that all other bytes are zero.  This expression is
1286/// accepted, the high byte of ByteValues is set to X to indicate a correct
1287/// match.
1288///
1289/// This function returns true if the match was unsuccessful and false if so.
1290/// On entry to the function the "OverallLeftShift" is a signed integer value
1291/// indicating the number of bytes that the subexpression is later shifted.  For
1292/// example, if the expression is later right shifted by 16 bits, the
1293/// OverallLeftShift value would be -2 on entry.  This is used to specify which
1294/// byte of ByteValues is actually being set.
1295///
1296/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1297/// byte is masked to zero by a user.  For example, in (X & 255), X will be
1298/// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
1299/// this function to working on up to 32-byte (256 bit) values.  ByteMask is
1300/// always in the local (OverallLeftShift) coordinate space.
1301///
1302static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1303                              SmallVector<Value*, 8> &ByteValues) {
1304  if (Instruction *I = dyn_cast<Instruction>(V)) {
1305    // If this is an or instruction, it may be an inner node of the bswap.
1306    if (I->getOpcode() == Instruction::Or) {
1307      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1308                               ByteValues) ||
1309             CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1310                               ByteValues);
1311    }
1312
1313    // If this is a logical shift by a constant multiple of 8, recurse with
1314    // OverallLeftShift and ByteMask adjusted.
1315    if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1316      unsigned ShAmt =
1317        cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1318      // Ensure the shift amount is defined and of a byte value.
1319      if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1320        return true;
1321
1322      unsigned ByteShift = ShAmt >> 3;
1323      if (I->getOpcode() == Instruction::Shl) {
1324        // X << 2 -> collect(X, +2)
1325        OverallLeftShift += ByteShift;
1326        ByteMask >>= ByteShift;
1327      } else {
1328        // X >>u 2 -> collect(X, -2)
1329        OverallLeftShift -= ByteShift;
1330        ByteMask <<= ByteShift;
1331        ByteMask &= (~0U >> (32-ByteValues.size()));
1332      }
1333
1334      if (OverallLeftShift >= (int)ByteValues.size()) return true;
1335      if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1336
1337      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1338                               ByteValues);
1339    }
1340
1341    // If this is a logical 'and' with a mask that clears bytes, clear the
1342    // corresponding bytes in ByteMask.
1343    if (I->getOpcode() == Instruction::And &&
1344        isa<ConstantInt>(I->getOperand(1))) {
1345      // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1346      unsigned NumBytes = ByteValues.size();
1347      APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1348      const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1349
1350      for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1351        // If this byte is masked out by a later operation, we don't care what
1352        // the and mask is.
1353        if ((ByteMask & (1 << i)) == 0)
1354          continue;
1355
1356        // If the AndMask is all zeros for this byte, clear the bit.
1357        APInt MaskB = AndMask & Byte;
1358        if (MaskB == 0) {
1359          ByteMask &= ~(1U << i);
1360          continue;
1361        }
1362
1363        // If the AndMask is not all ones for this byte, it's not a bytezap.
1364        if (MaskB != Byte)
1365          return true;
1366
1367        // Otherwise, this byte is kept.
1368      }
1369
1370      return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1371                               ByteValues);
1372    }
1373  }
1374
1375  // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1376  // the input value to the bswap.  Some observations: 1) if more than one byte
1377  // is demanded from this input, then it could not be successfully assembled
1378  // into a byteswap.  At least one of the two bytes would not be aligned with
1379  // their ultimate destination.
1380  if (!isPowerOf2_32(ByteMask)) return true;
1381  unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
1382
1383  // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1384  // is demanded, it needs to go into byte 0 of the result.  This means that the
1385  // byte needs to be shifted until it lands in the right byte bucket.  The
1386  // shift amount depends on the position: if the byte is coming from the high
1387  // part of the value (e.g. byte 3) then it must be shifted right.  If from the
1388  // low part, it must be shifted left.
1389  unsigned DestByteNo = InputByteNo + OverallLeftShift;
1390  if (ByteValues.size()-1-DestByteNo != InputByteNo)
1391    return true;
1392
1393  // If the destination byte value is already defined, the values are or'd
1394  // together, which isn't a bswap (unless it's an or of the same bits).
1395  if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1396    return true;
1397  ByteValues[DestByteNo] = V;
1398  return false;
1399}
1400
1401/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1402/// If so, insert the new bswap intrinsic and return it.
1403Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1404  IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1405  if (!ITy || ITy->getBitWidth() % 16 ||
1406      // ByteMask only allows up to 32-byte values.
1407      ITy->getBitWidth() > 32*8)
1408    return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
1409
1410  /// ByteValues - For each byte of the result, we keep track of which value
1411  /// defines each byte.
1412  SmallVector<Value*, 8> ByteValues;
1413  ByteValues.resize(ITy->getBitWidth()/8);
1414
1415  // Try to find all the pieces corresponding to the bswap.
1416  uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1417  if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1418    return 0;
1419
1420  // Check to see if all of the bytes come from the same value.
1421  Value *V = ByteValues[0];
1422  if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
1423
1424  // Check to make sure that all of the bytes come from the same value.
1425  for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1426    if (ByteValues[i] != V)
1427      return 0;
1428  Module *M = I.getParent()->getParent()->getParent();
1429  Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
1430  return CallInst::Create(F, V);
1431}
1432
1433/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
1434/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1435/// we can simplify this expression to "cond ? C : D or B".
1436static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1437                                         Value *C, Value *D) {
1438  // If A is not a select of -1/0, this cannot match.
1439  Value *Cond = 0;
1440  if (!match(A, m_SExt(m_Value(Cond))) ||
1441      !Cond->getType()->isIntegerTy(1))
1442    return 0;
1443
1444  // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
1445  if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
1446    return SelectInst::Create(Cond, C, B);
1447  if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
1448    return SelectInst::Create(Cond, C, B);
1449
1450  // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
1451  if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
1452    return SelectInst::Create(Cond, C, D);
1453  if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
1454    return SelectInst::Create(Cond, C, D);
1455  return 0;
1456}
1457
1458/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1459Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
1460  ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1461
1462  // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1463  if (PredicatesFoldable(LHSCC, RHSCC)) {
1464    if (LHS->getOperand(0) == RHS->getOperand(1) &&
1465        LHS->getOperand(1) == RHS->getOperand(0))
1466      LHS->swapOperands();
1467    if (LHS->getOperand(0) == RHS->getOperand(0) &&
1468        LHS->getOperand(1) == RHS->getOperand(1)) {
1469      Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1470      unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1471      bool isSigned = LHS->isSigned() || RHS->isSigned();
1472      return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
1473    }
1474  }
1475
1476  // handle (roughly):
1477  // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1478  if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
1479    return V;
1480
1481  // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1482  Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1483  ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1484  ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1485  if (LHSCst == 0 || RHSCst == 0) return 0;
1486
1487  if (LHSCst == RHSCst && LHSCC == RHSCC) {
1488    // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1489    if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1490      Value *NewOr = Builder->CreateOr(Val, Val2);
1491      return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1492    }
1493  }
1494
1495  // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
1496  //   iff C2 + CA == C1.
1497  if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
1498    ConstantInt *AddCst;
1499    if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1500      if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
1501        return Builder->CreateICmpULE(Val, LHSCst);
1502  }
1503
1504  // From here on, we only handle:
1505  //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1506  if (Val != Val2) return 0;
1507
1508  // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1509  if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1510      RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1511      LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1512      RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1513    return 0;
1514
1515  // We can't fold (ugt x, C) | (sgt x, C2).
1516  if (!PredicatesFoldable(LHSCC, RHSCC))
1517    return 0;
1518
1519  // Ensure that the larger constant is on the RHS.
1520  bool ShouldSwap;
1521  if (CmpInst::isSigned(LHSCC) ||
1522      (ICmpInst::isEquality(LHSCC) &&
1523       CmpInst::isSigned(RHSCC)))
1524    ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1525  else
1526    ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1527
1528  if (ShouldSwap) {
1529    std::swap(LHS, RHS);
1530    std::swap(LHSCst, RHSCst);
1531    std::swap(LHSCC, RHSCC);
1532  }
1533
1534  // At this point, we know we have two icmp instructions
1535  // comparing a value against two constants and or'ing the result
1536  // together.  Because of the above check, we know that we only have
1537  // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1538  // icmp folding check above), that the two constants are not
1539  // equal.
1540  assert(LHSCst != RHSCst && "Compares not folded above?");
1541
1542  switch (LHSCC) {
1543  default: llvm_unreachable("Unknown integer condition code!");
1544  case ICmpInst::ICMP_EQ:
1545    switch (RHSCC) {
1546    default: llvm_unreachable("Unknown integer condition code!");
1547    case ICmpInst::ICMP_EQ:
1548      if (LHSCst == SubOne(RHSCst)) {
1549        // (X == 13 | X == 14) -> X-13 <u 2
1550        Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1551        Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1552        AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
1553        return Builder->CreateICmpULT(Add, AddCST);
1554      }
1555
1556      if (LHS->getOperand(0) == RHS->getOperand(0)) {
1557        // if LHSCst and RHSCst differ only by one bit:
1558        // (A == C1 || A == C2) -> (A & ~(C1 ^ C2)) == C1
1559        assert(LHSCst->getValue().ule(LHSCst->getValue()));
1560
1561        APInt Xor = LHSCst->getValue() ^ RHSCst->getValue();
1562        if (Xor.isPowerOf2()) {
1563          Value *NegCst = Builder->getInt(~Xor);
1564          Value *And = Builder->CreateAnd(LHS->getOperand(0), NegCst);
1565          return Builder->CreateICmp(ICmpInst::ICMP_EQ, And, LHSCst);
1566        }
1567      }
1568
1569      break;                         // (X == 13 | X == 15) -> no change
1570    case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
1571    case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
1572      break;
1573    case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
1574    case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
1575    case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
1576      return RHS;
1577    }
1578    break;
1579  case ICmpInst::ICMP_NE:
1580    switch (RHSCC) {
1581    default: llvm_unreachable("Unknown integer condition code!");
1582    case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
1583    case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
1584    case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
1585      return LHS;
1586    case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
1587    case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
1588    case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
1589      return ConstantInt::getTrue(LHS->getContext());
1590    }
1591  case ICmpInst::ICMP_ULT:
1592    switch (RHSCC) {
1593    default: llvm_unreachable("Unknown integer condition code!");
1594    case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
1595      break;
1596    case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
1597      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1598      // this can cause overflow.
1599      if (RHSCst->isMaxValue(false))
1600        return LHS;
1601      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
1602    case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
1603      break;
1604    case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
1605    case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
1606      return RHS;
1607    case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
1608      break;
1609    }
1610    break;
1611  case ICmpInst::ICMP_SLT:
1612    switch (RHSCC) {
1613    default: llvm_unreachable("Unknown integer condition code!");
1614    case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
1615      break;
1616    case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
1617      // If RHSCst is [us]MAXINT, it is always false.  Not handling
1618      // this can cause overflow.
1619      if (RHSCst->isMaxValue(true))
1620        return LHS;
1621      return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
1622    case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
1623      break;
1624    case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
1625    case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
1626      return RHS;
1627    case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
1628      break;
1629    }
1630    break;
1631  case ICmpInst::ICMP_UGT:
1632    switch (RHSCC) {
1633    default: llvm_unreachable("Unknown integer condition code!");
1634    case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
1635    case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
1636      return LHS;
1637    case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
1638      break;
1639    case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
1640    case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
1641      return ConstantInt::getTrue(LHS->getContext());
1642    case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
1643      break;
1644    }
1645    break;
1646  case ICmpInst::ICMP_SGT:
1647    switch (RHSCC) {
1648    default: llvm_unreachable("Unknown integer condition code!");
1649    case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
1650    case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
1651      return LHS;
1652    case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
1653      break;
1654    case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
1655    case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
1656      return ConstantInt::getTrue(LHS->getContext());
1657    case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
1658      break;
1659    }
1660    break;
1661  }
1662  return 0;
1663}
1664
1665/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp).  NOTE: Unlike the rest of
1666/// instcombine, this returns a Value which should already be inserted into the
1667/// function.
1668Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
1669  if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1670      RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1671      LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1672    if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1673      if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1674        // If either of the constants are nans, then the whole thing returns
1675        // true.
1676        if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
1677          return ConstantInt::getTrue(LHS->getContext());
1678
1679        // Otherwise, no need to compare the two constants, compare the
1680        // rest.
1681        return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1682      }
1683
1684    // Handle vector zeros.  This occurs because the canonical form of
1685    // "fcmp uno x,x" is "fcmp uno x, 0".
1686    if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1687        isa<ConstantAggregateZero>(RHS->getOperand(1)))
1688      return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
1689
1690    return 0;
1691  }
1692
1693  Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1694  Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1695  FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1696
1697  if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1698    // Swap RHS operands to match LHS.
1699    Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1700    std::swap(Op1LHS, Op1RHS);
1701  }
1702  if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1703    // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1704    if (Op0CC == Op1CC)
1705      return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
1706    if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
1707      return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
1708    if (Op0CC == FCmpInst::FCMP_FALSE)
1709      return RHS;
1710    if (Op1CC == FCmpInst::FCMP_FALSE)
1711      return LHS;
1712    bool Op0Ordered;
1713    bool Op1Ordered;
1714    unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1715    unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1716    if (Op0Ordered == Op1Ordered) {
1717      // If both are ordered or unordered, return a new fcmp with
1718      // or'ed predicates.
1719      return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
1720    }
1721  }
1722  return 0;
1723}
1724
1725/// FoldOrWithConstants - This helper function folds:
1726///
1727///     ((A | B) & C1) | (B & C2)
1728///
1729/// into:
1730///
1731///     (A & C1) | B
1732///
1733/// when the XOR of the two constants is "all ones" (-1).
1734Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1735                                               Value *A, Value *B, Value *C) {
1736  ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1737  if (!CI1) return 0;
1738
1739  Value *V1 = 0;
1740  ConstantInt *CI2 = 0;
1741  if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1742
1743  APInt Xor = CI1->getValue() ^ CI2->getValue();
1744  if (!Xor.isAllOnesValue()) return 0;
1745
1746  if (V1 == A || V1 == B) {
1747    Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1748    return BinaryOperator::CreateOr(NewOp, V1);
1749  }
1750
1751  return 0;
1752}
1753
1754Instruction *InstCombiner::visitOr(BinaryOperator &I) {
1755  bool Changed = SimplifyAssociativeOrCommutative(I);
1756  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1757
1758  if (Value *V = SimplifyOrInst(Op0, Op1, TD))
1759    return ReplaceInstUsesWith(I, V);
1760
1761  // (A&B)|(A&C) -> A&(B|C) etc
1762  if (Value *V = SimplifyUsingDistributiveLaws(I))
1763    return ReplaceInstUsesWith(I, V);
1764
1765  // See if we can simplify any instructions used by the instruction whose sole
1766  // purpose is to compute bits we don't care about.
1767  if (SimplifyDemandedInstructionBits(I))
1768    return &I;
1769
1770  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1771    ConstantInt *C1 = 0; Value *X = 0;
1772    // (X & C1) | C2 --> (X | C2) & (C1|C2)
1773    // iff (C1 & C2) == 0.
1774    if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
1775        (RHS->getValue() & C1->getValue()) != 0 &&
1776        Op0->hasOneUse()) {
1777      Value *Or = Builder->CreateOr(X, RHS);
1778      Or->takeName(Op0);
1779      return BinaryOperator::CreateAnd(Or,
1780                         ConstantInt::get(I.getContext(),
1781                                          RHS->getValue() | C1->getValue()));
1782    }
1783
1784    // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1785    if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1786        Op0->hasOneUse()) {
1787      Value *Or = Builder->CreateOr(X, RHS);
1788      Or->takeName(Op0);
1789      return BinaryOperator::CreateXor(Or,
1790                 ConstantInt::get(I.getContext(),
1791                                  C1->getValue() & ~RHS->getValue()));
1792    }
1793
1794    // Try to fold constant and into select arguments.
1795    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1796      if (Instruction *R = FoldOpIntoSelect(I, SI))
1797        return R;
1798
1799    if (isa<PHINode>(Op0))
1800      if (Instruction *NV = FoldOpIntoPhi(I))
1801        return NV;
1802  }
1803
1804  Value *A = 0, *B = 0;
1805  ConstantInt *C1 = 0, *C2 = 0;
1806
1807  // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
1808  // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
1809  if (match(Op0, m_Or(m_Value(), m_Value())) ||
1810      match(Op1, m_Or(m_Value(), m_Value())) ||
1811      (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1812       match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
1813    if (Instruction *BSwap = MatchBSwap(I))
1814      return BSwap;
1815  }
1816
1817  // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1818  if (Op0->hasOneUse() &&
1819      match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1820      MaskedValueIsZero(Op1, C1->getValue())) {
1821    Value *NOr = Builder->CreateOr(A, Op1);
1822    NOr->takeName(Op0);
1823    return BinaryOperator::CreateXor(NOr, C1);
1824  }
1825
1826  // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1827  if (Op1->hasOneUse() &&
1828      match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1829      MaskedValueIsZero(Op0, C1->getValue())) {
1830    Value *NOr = Builder->CreateOr(A, Op0);
1831    NOr->takeName(Op0);
1832    return BinaryOperator::CreateXor(NOr, C1);
1833  }
1834
1835  // (A & C)|(B & D)
1836  Value *C = 0, *D = 0;
1837  if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1838      match(Op1, m_And(m_Value(B), m_Value(D)))) {
1839    Value *V1 = 0, *V2 = 0;
1840    C1 = dyn_cast<ConstantInt>(C);
1841    C2 = dyn_cast<ConstantInt>(D);
1842    if (C1 && C2) {  // (A & C1)|(B & C2)
1843      // If we have: ((V + N) & C1) | (V & C2)
1844      // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1845      // replace with V+N.
1846      if (C1->getValue() == ~C2->getValue()) {
1847        if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
1848            match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1849          // Add commutes, try both ways.
1850          if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
1851            return ReplaceInstUsesWith(I, A);
1852          if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
1853            return ReplaceInstUsesWith(I, A);
1854        }
1855        // Or commutes, try both ways.
1856        if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
1857            match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1858          // Add commutes, try both ways.
1859          if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
1860            return ReplaceInstUsesWith(I, B);
1861          if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
1862            return ReplaceInstUsesWith(I, B);
1863        }
1864      }
1865
1866      if ((C1->getValue() & C2->getValue()) == 0) {
1867        // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
1868        // iff (C1&C2) == 0 and (N&~C1) == 0
1869        if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
1870            ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) ||  // (V|N)
1871             (V2 == B && MaskedValueIsZero(V1, ~C1->getValue()))))   // (N|V)
1872          return BinaryOperator::CreateAnd(A,
1873                               ConstantInt::get(A->getContext(),
1874                                                C1->getValue()|C2->getValue()));
1875        // Or commutes, try both ways.
1876        if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
1877            ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) ||  // (V|N)
1878             (V2 == A && MaskedValueIsZero(V1, ~C2->getValue()))))   // (N|V)
1879          return BinaryOperator::CreateAnd(B,
1880                               ConstantInt::get(B->getContext(),
1881                                                C1->getValue()|C2->getValue()));
1882
1883        // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
1884        // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
1885        ConstantInt *C3 = 0, *C4 = 0;
1886        if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
1887            (C3->getValue() & ~C1->getValue()) == 0 &&
1888            match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
1889            (C4->getValue() & ~C2->getValue()) == 0) {
1890          V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
1891          return BinaryOperator::CreateAnd(V2,
1892                               ConstantInt::get(B->getContext(),
1893                                                C1->getValue()|C2->getValue()));
1894        }
1895      }
1896    }
1897
1898    // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants.
1899    // Don't do this for vector select idioms, the code generator doesn't handle
1900    // them well yet.
1901    if (!I.getType()->isVectorTy()) {
1902      if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
1903        return Match;
1904      if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
1905        return Match;
1906      if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
1907        return Match;
1908      if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
1909        return Match;
1910    }
1911
1912    // ((A&~B)|(~A&B)) -> A^B
1913    if ((match(C, m_Not(m_Specific(D))) &&
1914         match(B, m_Not(m_Specific(A)))))
1915      return BinaryOperator::CreateXor(A, D);
1916    // ((~B&A)|(~A&B)) -> A^B
1917    if ((match(A, m_Not(m_Specific(D))) &&
1918         match(B, m_Not(m_Specific(C)))))
1919      return BinaryOperator::CreateXor(C, D);
1920    // ((A&~B)|(B&~A)) -> A^B
1921    if ((match(C, m_Not(m_Specific(B))) &&
1922         match(D, m_Not(m_Specific(A)))))
1923      return BinaryOperator::CreateXor(A, B);
1924    // ((~B&A)|(B&~A)) -> A^B
1925    if ((match(A, m_Not(m_Specific(B))) &&
1926         match(D, m_Not(m_Specific(C)))))
1927      return BinaryOperator::CreateXor(C, B);
1928
1929    // ((A|B)&1)|(B&-2) -> (A&1) | B
1930    if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
1931        match(A, m_Or(m_Specific(B), m_Value(V1)))) {
1932      Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
1933      if (Ret) return Ret;
1934    }
1935    // (B&-2)|((A|B)&1) -> (A&1) | B
1936    if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
1937        match(B, m_Or(m_Value(V1), m_Specific(A)))) {
1938      Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
1939      if (Ret) return Ret;
1940    }
1941  }
1942
1943  // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
1944  if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1945    if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1946      if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1947          SI0->getOperand(1) == SI1->getOperand(1) &&
1948          (SI0->hasOneUse() || SI1->hasOneUse())) {
1949        Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
1950                                         SI0->getName());
1951        return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1952                                      SI1->getOperand(1));
1953      }
1954  }
1955
1956  // (~A | ~B) == (~(A & B)) - De Morgan's Law
1957  if (Value *Op0NotVal = dyn_castNotVal(Op0))
1958    if (Value *Op1NotVal = dyn_castNotVal(Op1))
1959      if (Op0->hasOneUse() && Op1->hasOneUse()) {
1960        Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
1961                                        I.getName()+".demorgan");
1962        return BinaryOperator::CreateNot(And);
1963      }
1964
1965  // Canonicalize xor to the RHS.
1966  bool SwappedForXor = false;
1967  if (match(Op0, m_Xor(m_Value(), m_Value()))) {
1968    std::swap(Op0, Op1);
1969    SwappedForXor = true;
1970  }
1971
1972  // A | ( A ^ B) -> A |  B
1973  // A | (~A ^ B) -> A | ~B
1974  // (A & B) | (A ^ B)
1975  if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
1976    if (Op0 == A || Op0 == B)
1977      return BinaryOperator::CreateOr(A, B);
1978
1979    if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
1980        match(Op0, m_And(m_Specific(B), m_Specific(A))))
1981      return BinaryOperator::CreateOr(A, B);
1982
1983    if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
1984      Value *Not = Builder->CreateNot(B, B->getName()+".not");
1985      return BinaryOperator::CreateOr(Not, Op0);
1986    }
1987    if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
1988      Value *Not = Builder->CreateNot(A, A->getName()+".not");
1989      return BinaryOperator::CreateOr(Not, Op0);
1990    }
1991  }
1992
1993  // A | ~(A | B) -> A | ~B
1994  // A | ~(A ^ B) -> A | ~B
1995  if (match(Op1, m_Not(m_Value(A))))
1996    if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
1997      if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
1998          Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
1999                               B->getOpcode() == Instruction::Xor)) {
2000        Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
2001                                                 B->getOperand(0);
2002        Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
2003        return BinaryOperator::CreateOr(Not, Op0);
2004      }
2005
2006  if (SwappedForXor)
2007    std::swap(Op0, Op1);
2008
2009  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2010    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2011      if (Value *Res = FoldOrOfICmps(LHS, RHS))
2012        return ReplaceInstUsesWith(I, Res);
2013
2014  // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
2015  if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2016    if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2017      if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2018        return ReplaceInstUsesWith(I, Res);
2019
2020  // fold (or (cast A), (cast B)) -> (cast (or A, B))
2021  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2022    CastInst *Op1C = dyn_cast<CastInst>(Op1);
2023    if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
2024      Type *SrcTy = Op0C->getOperand(0)->getType();
2025      if (SrcTy == Op1C->getOperand(0)->getType() &&
2026          SrcTy->isIntOrIntVectorTy()) {
2027        Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
2028
2029        if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
2030            // Only do this if the casts both really cause code to be
2031            // generated.
2032            ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
2033            ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
2034          Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
2035          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2036        }
2037
2038        // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
2039        // cast is otherwise not optimizable.  This happens for vector sexts.
2040        if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
2041          if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
2042            if (Value *Res = FoldOrOfICmps(LHS, RHS))
2043              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2044
2045        // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2046        // cast is otherwise not optimizable.  This happens for vector sexts.
2047        if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2048          if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2049            if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2050              return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2051      }
2052    }
2053  }
2054
2055  // or(sext(A), B) -> A ? -1 : B where A is an i1
2056  // or(A, sext(B)) -> B ? -1 : A where B is an i1
2057  if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2058    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2059  if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2060    return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2061
2062  // Note: If we've gotten to the point of visiting the outer OR, then the
2063  // inner one couldn't be simplified.  If it was a constant, then it won't
2064  // be simplified by a later pass either, so we try swapping the inner/outer
2065  // ORs in the hopes that we'll be able to simplify it this way.
2066  // (X|C) | V --> (X|V) | C
2067  if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2068      match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2069    Value *Inner = Builder->CreateOr(A, Op1);
2070    Inner->takeName(Op0);
2071    return BinaryOperator::CreateOr(Inner, C1);
2072  }
2073
2074  // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
2075  // Since this OR statement hasn't been optimized further yet, we hope
2076  // that this transformation will allow the new ORs to be optimized.
2077  {
2078    Value *X = 0, *Y = 0;
2079    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2080        match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
2081        match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
2082      Value *orTrue = Builder->CreateOr(A, C);
2083      Value *orFalse = Builder->CreateOr(B, D);
2084      return SelectInst::Create(X, orTrue, orFalse);
2085    }
2086  }
2087
2088  return Changed ? &I : 0;
2089}
2090
2091Instruction *InstCombiner::visitXor(BinaryOperator &I) {
2092  bool Changed = SimplifyAssociativeOrCommutative(I);
2093  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2094
2095  if (Value *V = SimplifyXorInst(Op0, Op1, TD))
2096    return ReplaceInstUsesWith(I, V);
2097
2098  // (A&B)^(A&C) -> A&(B^C) etc
2099  if (Value *V = SimplifyUsingDistributiveLaws(I))
2100    return ReplaceInstUsesWith(I, V);
2101
2102  // See if we can simplify any instructions used by the instruction whose sole
2103  // purpose is to compute bits we don't care about.
2104  if (SimplifyDemandedInstructionBits(I))
2105    return &I;
2106
2107  // Is this a ~ operation?
2108  if (Value *NotOp = dyn_castNotVal(&I)) {
2109    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2110      if (Op0I->getOpcode() == Instruction::And ||
2111          Op0I->getOpcode() == Instruction::Or) {
2112        // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2113        // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2114        if (dyn_castNotVal(Op0I->getOperand(1)))
2115          Op0I->swapOperands();
2116        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2117          Value *NotY =
2118            Builder->CreateNot(Op0I->getOperand(1),
2119                               Op0I->getOperand(1)->getName()+".not");
2120          if (Op0I->getOpcode() == Instruction::And)
2121            return BinaryOperator::CreateOr(Op0NotVal, NotY);
2122          return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2123        }
2124
2125        // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2126        // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2127        if (isFreeToInvert(Op0I->getOperand(0)) &&
2128            isFreeToInvert(Op0I->getOperand(1))) {
2129          Value *NotX =
2130            Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2131          Value *NotY =
2132            Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2133          if (Op0I->getOpcode() == Instruction::And)
2134            return BinaryOperator::CreateOr(NotX, NotY);
2135          return BinaryOperator::CreateAnd(NotX, NotY);
2136        }
2137
2138      } else if (Op0I->getOpcode() == Instruction::AShr) {
2139        // ~(~X >>s Y) --> (X >>s Y)
2140        if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2141          return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
2142      }
2143    }
2144  }
2145
2146
2147  if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2148    if (RHS->isOne() && Op0->hasOneUse())
2149      // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
2150      if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2151        return CmpInst::Create(CI->getOpcode(),
2152                               CI->getInversePredicate(),
2153                               CI->getOperand(0), CI->getOperand(1));
2154
2155    // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2156    if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2157      if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2158        if (CI->hasOneUse() && Op0C->hasOneUse()) {
2159          Instruction::CastOps Opcode = Op0C->getOpcode();
2160          if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2161              (RHS == ConstantExpr::getCast(Opcode,
2162                                           ConstantInt::getTrue(I.getContext()),
2163                                            Op0C->getDestTy()))) {
2164            CI->setPredicate(CI->getInversePredicate());
2165            return CastInst::Create(Opcode, CI, Op0C->getType());
2166          }
2167        }
2168      }
2169    }
2170
2171    if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2172      // ~(c-X) == X-c-1 == X+(-c-1)
2173      if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2174        if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2175          Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2176          Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2177                                      ConstantInt::get(I.getType(), 1));
2178          return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2179        }
2180
2181      if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2182        if (Op0I->getOpcode() == Instruction::Add) {
2183          // ~(X-c) --> (-c-1)-X
2184          if (RHS->isAllOnesValue()) {
2185            Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2186            return BinaryOperator::CreateSub(
2187                           ConstantExpr::getSub(NegOp0CI,
2188                                      ConstantInt::get(I.getType(), 1)),
2189                                      Op0I->getOperand(0));
2190          } else if (RHS->getValue().isSignBit()) {
2191            // (X + C) ^ signbit -> (X + C + signbit)
2192            Constant *C = ConstantInt::get(I.getContext(),
2193                                           RHS->getValue() + Op0CI->getValue());
2194            return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2195
2196          }
2197        } else if (Op0I->getOpcode() == Instruction::Or) {
2198          // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2199          if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2200            Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2201            // Anything in both C1 and C2 is known to be zero, remove it from
2202            // NewRHS.
2203            Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2204            NewRHS = ConstantExpr::getAnd(NewRHS,
2205                                       ConstantExpr::getNot(CommonBits));
2206            Worklist.Add(Op0I);
2207            I.setOperand(0, Op0I->getOperand(0));
2208            I.setOperand(1, NewRHS);
2209            return &I;
2210          }
2211        } else if (Op0I->getOpcode() == Instruction::LShr) {
2212          // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
2213          // E1 = "X ^ C1"
2214          BinaryOperator *E1;
2215          ConstantInt *C1;
2216          if (Op0I->hasOneUse() &&
2217              (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
2218              E1->getOpcode() == Instruction::Xor &&
2219              (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
2220            // fold (C1 >> C2) ^ C3
2221            ConstantInt *C2 = Op0CI, *C3 = RHS;
2222            APInt FoldConst = C1->getValue().lshr(C2->getValue());
2223            FoldConst ^= C3->getValue();
2224            // Prepare the two operands.
2225            Value *Opnd0 = Builder->CreateLShr(E1->getOperand(0), C2);
2226            Opnd0->takeName(Op0I);
2227            cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
2228            Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
2229
2230            return BinaryOperator::CreateXor(Opnd0, FoldVal);
2231          }
2232        }
2233      }
2234    }
2235
2236    // Try to fold constant and into select arguments.
2237    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2238      if (Instruction *R = FoldOpIntoSelect(I, SI))
2239        return R;
2240    if (isa<PHINode>(Op0))
2241      if (Instruction *NV = FoldOpIntoPhi(I))
2242        return NV;
2243  }
2244
2245  BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2246  if (Op1I) {
2247    Value *A, *B;
2248    if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2249      if (A == Op0) {              // B^(B|A) == (A|B)^B
2250        Op1I->swapOperands();
2251        I.swapOperands();
2252        std::swap(Op0, Op1);
2253      } else if (B == Op0) {       // B^(A|B) == (A|B)^B
2254        I.swapOperands();     // Simplified below.
2255        std::swap(Op0, Op1);
2256      }
2257    } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2258               Op1I->hasOneUse()){
2259      if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
2260        Op1I->swapOperands();
2261        std::swap(A, B);
2262      }
2263      if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
2264        I.swapOperands();     // Simplified below.
2265        std::swap(Op0, Op1);
2266      }
2267    }
2268  }
2269
2270  BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2271  if (Op0I) {
2272    Value *A, *B;
2273    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2274        Op0I->hasOneUse()) {
2275      if (A == Op1)                                  // (B|A)^B == (A|B)^B
2276        std::swap(A, B);
2277      if (B == Op1)                                  // (A|B)^B == A & ~B
2278        return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
2279    } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2280               Op0I->hasOneUse()){
2281      if (A == Op1)                                        // (A&B)^A -> (B&A)^A
2282        std::swap(A, B);
2283      if (B == Op1 &&                                      // (B&A)^A == ~B & A
2284          !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
2285        return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
2286      }
2287    }
2288  }
2289
2290  // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
2291  if (Op0I && Op1I && Op0I->isShift() &&
2292      Op0I->getOpcode() == Op1I->getOpcode() &&
2293      Op0I->getOperand(1) == Op1I->getOperand(1) &&
2294      (Op0I->hasOneUse() || Op1I->hasOneUse())) {
2295    Value *NewOp =
2296      Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2297                         Op0I->getName());
2298    return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2299                                  Op1I->getOperand(1));
2300  }
2301
2302  if (Op0I && Op1I) {
2303    Value *A, *B, *C, *D;
2304    // (A & B)^(A | B) -> A ^ B
2305    if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2306        match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2307      if ((A == C && B == D) || (A == D && B == C))
2308        return BinaryOperator::CreateXor(A, B);
2309    }
2310    // (A | B)^(A & B) -> A ^ B
2311    if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2312        match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2313      if ((A == C && B == D) || (A == D && B == C))
2314        return BinaryOperator::CreateXor(A, B);
2315    }
2316  }
2317
2318  // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2319  if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2320    if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2321      if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2322        if (LHS->getOperand(0) == RHS->getOperand(1) &&
2323            LHS->getOperand(1) == RHS->getOperand(0))
2324          LHS->swapOperands();
2325        if (LHS->getOperand(0) == RHS->getOperand(0) &&
2326            LHS->getOperand(1) == RHS->getOperand(1)) {
2327          Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2328          unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2329          bool isSigned = LHS->isSigned() || RHS->isSigned();
2330          return ReplaceInstUsesWith(I,
2331                               getNewICmpValue(isSigned, Code, Op0, Op1,
2332                                               Builder));
2333        }
2334      }
2335
2336  // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2337  if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2338    if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2339      if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2340        Type *SrcTy = Op0C->getOperand(0)->getType();
2341        if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
2342            // Only do this if the casts both really cause code to be generated.
2343            ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2344                               I.getType()) &&
2345            ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2346                               I.getType())) {
2347          Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2348                                            Op1C->getOperand(0), I.getName());
2349          return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2350        }
2351      }
2352  }
2353
2354  return Changed ? &I : 0;
2355}
2356