1//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/Loads.h"
17#include "llvm/IR/DataLayout.h"
18#include "llvm/IR/IntrinsicInst.h"
19#include "llvm/Transforms/Utils/BasicBlockUtils.h"
20#include "llvm/Transforms/Utils/Local.h"
21using namespace llvm;
22
23STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
24STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
25
26/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
27/// some part of a constant global variable.  This intentionally only accepts
28/// constant expressions because we can't rewrite arbitrary instructions.
29static bool pointsToConstantGlobal(Value *V) {
30  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
31    return GV->isConstant();
32  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
33    if (CE->getOpcode() == Instruction::BitCast ||
34        CE->getOpcode() == Instruction::GetElementPtr)
35      return pointsToConstantGlobal(CE->getOperand(0));
36  return false;
37}
38
39/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
40/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
41/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
42/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
43/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
44/// the alloca, and if the source pointer is a pointer to a constant global, we
45/// can optimize this.
46static bool
47isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
48                               SmallVectorImpl<Instruction *> &ToDelete,
49                               bool IsOffset = false) {
50  // We track lifetime intrinsics as we encounter them.  If we decide to go
51  // ahead and replace the value with the global, this lets the caller quickly
52  // eliminate the markers.
53
54  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
55    User *U = cast<Instruction>(*UI);
56
57    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
58      // Ignore non-volatile loads, they are always ok.
59      if (!LI->isSimple()) return false;
60      continue;
61    }
62
63    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
64      // If uses of the bitcast are ok, we are ok.
65      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
66        return false;
67      continue;
68    }
69    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
70      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
71      // doesn't, it does.
72      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy, ToDelete,
73                                          IsOffset || !GEP->hasAllZeroIndices()))
74        return false;
75      continue;
76    }
77
78    if (CallSite CS = U) {
79      // If this is the function being called then we treat it like a load and
80      // ignore it.
81      if (CS.isCallee(UI))
82        continue;
83
84      // If this is a readonly/readnone call site, then we know it is just a
85      // load (but one that potentially returns the value itself), so we can
86      // ignore it if we know that the value isn't captured.
87      unsigned ArgNo = CS.getArgumentNo(UI);
88      if (CS.onlyReadsMemory() &&
89          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
90        continue;
91
92      // If this is being passed as a byval argument, the caller is making a
93      // copy, so it is only a read of the alloca.
94      if (CS.isByValArgument(ArgNo))
95        continue;
96    }
97
98    // Lifetime intrinsics can be handled by the caller.
99    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
100      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
101          II->getIntrinsicID() == Intrinsic::lifetime_end) {
102        assert(II->use_empty() && "Lifetime markers have no result to use!");
103        ToDelete.push_back(II);
104        continue;
105      }
106    }
107
108    // If this is isn't our memcpy/memmove, reject it as something we can't
109    // handle.
110    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
111    if (MI == 0)
112      return false;
113
114    // If the transfer is using the alloca as a source of the transfer, then
115    // ignore it since it is a load (unless the transfer is volatile).
116    if (UI.getOperandNo() == 1) {
117      if (MI->isVolatile()) return false;
118      continue;
119    }
120
121    // If we already have seen a copy, reject the second one.
122    if (TheCopy) return false;
123
124    // If the pointer has been offset from the start of the alloca, we can't
125    // safely handle this.
126    if (IsOffset) return false;
127
128    // If the memintrinsic isn't using the alloca as the dest, reject it.
129    if (UI.getOperandNo() != 0) return false;
130
131    // If the source of the memcpy/move is not a constant global, reject it.
132    if (!pointsToConstantGlobal(MI->getSource()))
133      return false;
134
135    // Otherwise, the transform is safe.  Remember the copy instruction.
136    TheCopy = MI;
137  }
138  return true;
139}
140
141/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
142/// modified by a copy from a constant global.  If we can prove this, we can
143/// replace any uses of the alloca with uses of the global directly.
144static MemTransferInst *
145isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
146                               SmallVectorImpl<Instruction *> &ToDelete) {
147  MemTransferInst *TheCopy = 0;
148  if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
149    return TheCopy;
150  return 0;
151}
152
153Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
154  // Ensure that the alloca array size argument has type intptr_t, so that
155  // any casting is exposed early.
156  if (TD) {
157    Type *IntPtrTy = TD->getIntPtrType(AI.getContext());
158    if (AI.getArraySize()->getType() != IntPtrTy) {
159      Value *V = Builder->CreateIntCast(AI.getArraySize(),
160                                        IntPtrTy, false);
161      AI.setOperand(0, V);
162      return &AI;
163    }
164  }
165
166  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
167  if (AI.isArrayAllocation()) {  // Check C != 1
168    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
169      Type *NewTy =
170        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
171      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
172      New->setAlignment(AI.getAlignment());
173
174      // Scan to the end of the allocation instructions, to skip over a block of
175      // allocas if possible...also skip interleaved debug info
176      //
177      BasicBlock::iterator It = New;
178      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
179
180      // Now that I is pointing to the first non-allocation-inst in the block,
181      // insert our getelementptr instruction...
182      //
183      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
184      Value *Idx[2];
185      Idx[0] = NullIdx;
186      Idx[1] = NullIdx;
187      Instruction *GEP =
188           GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub");
189      InsertNewInstBefore(GEP, *It);
190
191      // Now make everything use the getelementptr instead of the original
192      // allocation.
193      return ReplaceInstUsesWith(AI, GEP);
194    } else if (isa<UndefValue>(AI.getArraySize())) {
195      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
196    }
197  }
198
199  if (TD && AI.getAllocatedType()->isSized()) {
200    // If the alignment is 0 (unspecified), assign it the preferred alignment.
201    if (AI.getAlignment() == 0)
202      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
203
204    // Move all alloca's of zero byte objects to the entry block and merge them
205    // together.  Note that we only do this for alloca's, because malloc should
206    // allocate and return a unique pointer, even for a zero byte allocation.
207    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
208      // For a zero sized alloca there is no point in doing an array allocation.
209      // This is helpful if the array size is a complicated expression not used
210      // elsewhere.
211      if (AI.isArrayAllocation()) {
212        AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
213        return &AI;
214      }
215
216      // Get the first instruction in the entry block.
217      BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
218      Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
219      if (FirstInst != &AI) {
220        // If the entry block doesn't start with a zero-size alloca then move
221        // this one to the start of the entry block.  There is no problem with
222        // dominance as the array size was forced to a constant earlier already.
223        AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
224        if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
225            TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
226          AI.moveBefore(FirstInst);
227          return &AI;
228        }
229
230        // If the alignment of the entry block alloca is 0 (unspecified),
231        // assign it the preferred alignment.
232        if (EntryAI->getAlignment() == 0)
233          EntryAI->setAlignment(
234            TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
235        // Replace this zero-sized alloca with the one at the start of the entry
236        // block after ensuring that the address will be aligned enough for both
237        // types.
238        unsigned MaxAlign = std::max(EntryAI->getAlignment(),
239                                     AI.getAlignment());
240        EntryAI->setAlignment(MaxAlign);
241        if (AI.getType() != EntryAI->getType())
242          return new BitCastInst(EntryAI, AI.getType());
243        return ReplaceInstUsesWith(AI, EntryAI);
244      }
245    }
246  }
247
248  if (AI.getAlignment()) {
249    // Check to see if this allocation is only modified by a memcpy/memmove from
250    // a constant global whose alignment is equal to or exceeds that of the
251    // allocation.  If this is the case, we can change all users to use
252    // the constant global instead.  This is commonly produced by the CFE by
253    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
254    // is only subsequently read.
255    SmallVector<Instruction *, 4> ToDelete;
256    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
257      unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
258                                                        AI.getAlignment(), TD);
259      if (AI.getAlignment() <= SourceAlign) {
260        DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
261        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
262        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
263          EraseInstFromFunction(*ToDelete[i]);
264        Constant *TheSrc = cast<Constant>(Copy->getSource());
265        Instruction *NewI
266          = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
267                                                             AI.getType()));
268        EraseInstFromFunction(*Copy);
269        ++NumGlobalCopies;
270        return NewI;
271      }
272    }
273  }
274
275  // At last, use the generic allocation site handler to aggressively remove
276  // unused allocas.
277  return visitAllocSite(AI);
278}
279
280
281/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
282static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
283                                        const DataLayout *TD) {
284  User *CI = cast<User>(LI.getOperand(0));
285  Value *CastOp = CI->getOperand(0);
286
287  PointerType *DestTy = cast<PointerType>(CI->getType());
288  Type *DestPTy = DestTy->getElementType();
289  if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
290
291    // If the address spaces don't match, don't eliminate the cast.
292    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
293      return 0;
294
295    Type *SrcPTy = SrcTy->getElementType();
296
297    if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
298         DestPTy->isVectorTy()) {
299      // If the source is an array, the code below will not succeed.  Check to
300      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
301      // constants.
302      if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
303        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
304          if (ASrcTy->getNumElements() != 0) {
305            Value *Idxs[2];
306            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
307            Idxs[1] = Idxs[0];
308            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
309            SrcTy = cast<PointerType>(CastOp->getType());
310            SrcPTy = SrcTy->getElementType();
311          }
312
313      if (IC.getDataLayout() &&
314          (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
315            SrcPTy->isVectorTy()) &&
316          // Do not allow turning this into a load of an integer, which is then
317          // casted to a pointer, this pessimizes pointer analysis a lot.
318          (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
319          IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
320               IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
321
322        // Okay, we are casting from one integer or pointer type to another of
323        // the same size.  Instead of casting the pointer before the load, cast
324        // the result of the loaded value.
325        LoadInst *NewLoad =
326          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
327        NewLoad->setAlignment(LI.getAlignment());
328        NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
329        // Now cast the result of the load.
330        return new BitCastInst(NewLoad, LI.getType());
331      }
332    }
333  }
334  return 0;
335}
336
337Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
338  Value *Op = LI.getOperand(0);
339
340  // Attempt to improve the alignment.
341  if (TD) {
342    unsigned KnownAlign =
343      getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
344    unsigned LoadAlign = LI.getAlignment();
345    unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
346      TD->getABITypeAlignment(LI.getType());
347
348    if (KnownAlign > EffectiveLoadAlign)
349      LI.setAlignment(KnownAlign);
350    else if (LoadAlign == 0)
351      LI.setAlignment(EffectiveLoadAlign);
352  }
353
354  // load (cast X) --> cast (load X) iff safe.
355  if (isa<CastInst>(Op))
356    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
357      return Res;
358
359  // None of the following transforms are legal for volatile/atomic loads.
360  // FIXME: Some of it is okay for atomic loads; needs refactoring.
361  if (!LI.isSimple()) return 0;
362
363  // Do really simple store-to-load forwarding and load CSE, to catch cases
364  // where there are several consecutive memory accesses to the same location,
365  // separated by a few arithmetic operations.
366  BasicBlock::iterator BBI = &LI;
367  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
368    return ReplaceInstUsesWith(LI, AvailableVal);
369
370  // load(gep null, ...) -> unreachable
371  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
372    const Value *GEPI0 = GEPI->getOperand(0);
373    // TODO: Consider a target hook for valid address spaces for this xform.
374    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
375      // Insert a new store to null instruction before the load to indicate
376      // that this code is not reachable.  We do this instead of inserting
377      // an unreachable instruction directly because we cannot modify the
378      // CFG.
379      new StoreInst(UndefValue::get(LI.getType()),
380                    Constant::getNullValue(Op->getType()), &LI);
381      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
382    }
383  }
384
385  // load null/undef -> unreachable
386  // TODO: Consider a target hook for valid address spaces for this xform.
387  if (isa<UndefValue>(Op) ||
388      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
389    // Insert a new store to null instruction before the load to indicate that
390    // this code is not reachable.  We do this instead of inserting an
391    // unreachable instruction directly because we cannot modify the CFG.
392    new StoreInst(UndefValue::get(LI.getType()),
393                  Constant::getNullValue(Op->getType()), &LI);
394    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
395  }
396
397  // Instcombine load (constantexpr_cast global) -> cast (load global)
398  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
399    if (CE->isCast())
400      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
401        return Res;
402
403  if (Op->hasOneUse()) {
404    // Change select and PHI nodes to select values instead of addresses: this
405    // helps alias analysis out a lot, allows many others simplifications, and
406    // exposes redundancy in the code.
407    //
408    // Note that we cannot do the transformation unless we know that the
409    // introduced loads cannot trap!  Something like this is valid as long as
410    // the condition is always false: load (select bool %C, int* null, int* %G),
411    // but it would not be valid if we transformed it to load from null
412    // unconditionally.
413    //
414    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
415      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
416      unsigned Align = LI.getAlignment();
417      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
418          isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
419        LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
420                                           SI->getOperand(1)->getName()+".val");
421        LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
422                                           SI->getOperand(2)->getName()+".val");
423        V1->setAlignment(Align);
424        V2->setAlignment(Align);
425        return SelectInst::Create(SI->getCondition(), V1, V2);
426      }
427
428      // load (select (cond, null, P)) -> load P
429      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
430        if (C->isNullValue()) {
431          LI.setOperand(0, SI->getOperand(2));
432          return &LI;
433        }
434
435      // load (select (cond, P, null)) -> load P
436      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
437        if (C->isNullValue()) {
438          LI.setOperand(0, SI->getOperand(1));
439          return &LI;
440        }
441    }
442  }
443  return 0;
444}
445
446/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
447/// when possible.  This makes it generally easy to do alias analysis and/or
448/// SROA/mem2reg of the memory object.
449static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
450  User *CI = cast<User>(SI.getOperand(1));
451  Value *CastOp = CI->getOperand(0);
452
453  Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
454  PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
455  if (SrcTy == 0) return 0;
456
457  Type *SrcPTy = SrcTy->getElementType();
458
459  if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
460    return 0;
461
462  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
463  /// to its first element.  This allows us to handle things like:
464  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
465  /// on 32-bit hosts.
466  SmallVector<Value*, 4> NewGEPIndices;
467
468  // If the source is an array, the code below will not succeed.  Check to
469  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
470  // constants.
471  if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
472    // Index through pointer.
473    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
474    NewGEPIndices.push_back(Zero);
475
476    while (1) {
477      if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
478        if (!STy->getNumElements()) /* Struct can be empty {} */
479          break;
480        NewGEPIndices.push_back(Zero);
481        SrcPTy = STy->getElementType(0);
482      } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
483        NewGEPIndices.push_back(Zero);
484        SrcPTy = ATy->getElementType();
485      } else {
486        break;
487      }
488    }
489
490    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
491  }
492
493  if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
494    return 0;
495
496  // If the pointers point into different address spaces or if they point to
497  // values with different sizes, we can't do the transformation.
498  if (!IC.getDataLayout() ||
499      SrcTy->getAddressSpace() !=
500        cast<PointerType>(CI->getType())->getAddressSpace() ||
501      IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
502      IC.getDataLayout()->getTypeSizeInBits(DestPTy))
503    return 0;
504
505  // Okay, we are casting from one integer or pointer type to another of
506  // the same size.  Instead of casting the pointer before
507  // the store, cast the value to be stored.
508  Value *NewCast;
509  Value *SIOp0 = SI.getOperand(0);
510  Instruction::CastOps opcode = Instruction::BitCast;
511  Type* CastSrcTy = SIOp0->getType();
512  Type* CastDstTy = SrcPTy;
513  if (CastDstTy->isPointerTy()) {
514    if (CastSrcTy->isIntegerTy())
515      opcode = Instruction::IntToPtr;
516  } else if (CastDstTy->isIntegerTy()) {
517    if (SIOp0->getType()->isPointerTy())
518      opcode = Instruction::PtrToInt;
519  }
520
521  // SIOp0 is a pointer to aggregate and this is a store to the first field,
522  // emit a GEP to index into its first field.
523  if (!NewGEPIndices.empty())
524    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
525
526  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
527                                   SIOp0->getName()+".c");
528  SI.setOperand(0, NewCast);
529  SI.setOperand(1, CastOp);
530  return &SI;
531}
532
533/// equivalentAddressValues - Test if A and B will obviously have the same
534/// value. This includes recognizing that %t0 and %t1 will have the same
535/// value in code like this:
536///   %t0 = getelementptr \@a, 0, 3
537///   store i32 0, i32* %t0
538///   %t1 = getelementptr \@a, 0, 3
539///   %t2 = load i32* %t1
540///
541static bool equivalentAddressValues(Value *A, Value *B) {
542  // Test if the values are trivially equivalent.
543  if (A == B) return true;
544
545  // Test if the values come form identical arithmetic instructions.
546  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
547  // its only used to compare two uses within the same basic block, which
548  // means that they'll always either have the same value or one of them
549  // will have an undefined value.
550  if (isa<BinaryOperator>(A) ||
551      isa<CastInst>(A) ||
552      isa<PHINode>(A) ||
553      isa<GetElementPtrInst>(A))
554    if (Instruction *BI = dyn_cast<Instruction>(B))
555      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
556        return true;
557
558  // Otherwise they may not be equivalent.
559  return false;
560}
561
562Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
563  Value *Val = SI.getOperand(0);
564  Value *Ptr = SI.getOperand(1);
565
566  // Attempt to improve the alignment.
567  if (TD) {
568    unsigned KnownAlign =
569      getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
570                                 TD);
571    unsigned StoreAlign = SI.getAlignment();
572    unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
573      TD->getABITypeAlignment(Val->getType());
574
575    if (KnownAlign > EffectiveStoreAlign)
576      SI.setAlignment(KnownAlign);
577    else if (StoreAlign == 0)
578      SI.setAlignment(EffectiveStoreAlign);
579  }
580
581  // Don't hack volatile/atomic stores.
582  // FIXME: Some bits are legal for atomic stores; needs refactoring.
583  if (!SI.isSimple()) return 0;
584
585  // If the RHS is an alloca with a single use, zapify the store, making the
586  // alloca dead.
587  if (Ptr->hasOneUse()) {
588    if (isa<AllocaInst>(Ptr))
589      return EraseInstFromFunction(SI);
590    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
591      if (isa<AllocaInst>(GEP->getOperand(0))) {
592        if (GEP->getOperand(0)->hasOneUse())
593          return EraseInstFromFunction(SI);
594      }
595    }
596  }
597
598  // Do really simple DSE, to catch cases where there are several consecutive
599  // stores to the same location, separated by a few arithmetic operations. This
600  // situation often occurs with bitfield accesses.
601  BasicBlock::iterator BBI = &SI;
602  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
603       --ScanInsts) {
604    --BBI;
605    // Don't count debug info directives, lest they affect codegen,
606    // and we skip pointer-to-pointer bitcasts, which are NOPs.
607    if (isa<DbgInfoIntrinsic>(BBI) ||
608        (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
609      ScanInsts++;
610      continue;
611    }
612
613    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
614      // Prev store isn't volatile, and stores to the same location?
615      if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
616                                                        SI.getOperand(1))) {
617        ++NumDeadStore;
618        ++BBI;
619        EraseInstFromFunction(*PrevSI);
620        continue;
621      }
622      break;
623    }
624
625    // If this is a load, we have to stop.  However, if the loaded value is from
626    // the pointer we're loading and is producing the pointer we're storing,
627    // then *this* store is dead (X = load P; store X -> P).
628    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
629      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
630          LI->isSimple())
631        return EraseInstFromFunction(SI);
632
633      // Otherwise, this is a load from some other location.  Stores before it
634      // may not be dead.
635      break;
636    }
637
638    // Don't skip over loads or things that can modify memory.
639    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
640      break;
641  }
642
643  // store X, null    -> turns into 'unreachable' in SimplifyCFG
644  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
645    if (!isa<UndefValue>(Val)) {
646      SI.setOperand(0, UndefValue::get(Val->getType()));
647      if (Instruction *U = dyn_cast<Instruction>(Val))
648        Worklist.Add(U);  // Dropped a use.
649    }
650    return 0;  // Do not modify these!
651  }
652
653  // store undef, Ptr -> noop
654  if (isa<UndefValue>(Val))
655    return EraseInstFromFunction(SI);
656
657  // If the pointer destination is a cast, see if we can fold the cast into the
658  // source instead.
659  if (isa<CastInst>(Ptr))
660    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
661      return Res;
662  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
663    if (CE->isCast())
664      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
665        return Res;
666
667
668  // If this store is the last instruction in the basic block (possibly
669  // excepting debug info instructions), and if the block ends with an
670  // unconditional branch, try to move it to the successor block.
671  BBI = &SI;
672  do {
673    ++BBI;
674  } while (isa<DbgInfoIntrinsic>(BBI) ||
675           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
676  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
677    if (BI->isUnconditional())
678      if (SimplifyStoreAtEndOfBlock(SI))
679        return 0;  // xform done!
680
681  return 0;
682}
683
684/// SimplifyStoreAtEndOfBlock - Turn things like:
685///   if () { *P = v1; } else { *P = v2 }
686/// into a phi node with a store in the successor.
687///
688/// Simplify things like:
689///   *P = v1; if () { *P = v2; }
690/// into a phi node with a store in the successor.
691///
692bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
693  BasicBlock *StoreBB = SI.getParent();
694
695  // Check to see if the successor block has exactly two incoming edges.  If
696  // so, see if the other predecessor contains a store to the same location.
697  // if so, insert a PHI node (if needed) and move the stores down.
698  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
699
700  // Determine whether Dest has exactly two predecessors and, if so, compute
701  // the other predecessor.
702  pred_iterator PI = pred_begin(DestBB);
703  BasicBlock *P = *PI;
704  BasicBlock *OtherBB = 0;
705
706  if (P != StoreBB)
707    OtherBB = P;
708
709  if (++PI == pred_end(DestBB))
710    return false;
711
712  P = *PI;
713  if (P != StoreBB) {
714    if (OtherBB)
715      return false;
716    OtherBB = P;
717  }
718  if (++PI != pred_end(DestBB))
719    return false;
720
721  // Bail out if all the relevant blocks aren't distinct (this can happen,
722  // for example, if SI is in an infinite loop)
723  if (StoreBB == DestBB || OtherBB == DestBB)
724    return false;
725
726  // Verify that the other block ends in a branch and is not otherwise empty.
727  BasicBlock::iterator BBI = OtherBB->getTerminator();
728  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
729  if (!OtherBr || BBI == OtherBB->begin())
730    return false;
731
732  // If the other block ends in an unconditional branch, check for the 'if then
733  // else' case.  there is an instruction before the branch.
734  StoreInst *OtherStore = 0;
735  if (OtherBr->isUnconditional()) {
736    --BBI;
737    // Skip over debugging info.
738    while (isa<DbgInfoIntrinsic>(BBI) ||
739           (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
740      if (BBI==OtherBB->begin())
741        return false;
742      --BBI;
743    }
744    // If this isn't a store, isn't a store to the same location, or is not the
745    // right kind of store, bail out.
746    OtherStore = dyn_cast<StoreInst>(BBI);
747    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
748        !SI.isSameOperationAs(OtherStore))
749      return false;
750  } else {
751    // Otherwise, the other block ended with a conditional branch. If one of the
752    // destinations is StoreBB, then we have the if/then case.
753    if (OtherBr->getSuccessor(0) != StoreBB &&
754        OtherBr->getSuccessor(1) != StoreBB)
755      return false;
756
757    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
758    // if/then triangle.  See if there is a store to the same ptr as SI that
759    // lives in OtherBB.
760    for (;; --BBI) {
761      // Check to see if we find the matching store.
762      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
763        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
764            !SI.isSameOperationAs(OtherStore))
765          return false;
766        break;
767      }
768      // If we find something that may be using or overwriting the stored
769      // value, or if we run out of instructions, we can't do the xform.
770      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
771          BBI == OtherBB->begin())
772        return false;
773    }
774
775    // In order to eliminate the store in OtherBr, we have to
776    // make sure nothing reads or overwrites the stored value in
777    // StoreBB.
778    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
779      // FIXME: This should really be AA driven.
780      if (I->mayReadFromMemory() || I->mayWriteToMemory())
781        return false;
782    }
783  }
784
785  // Insert a PHI node now if we need it.
786  Value *MergedVal = OtherStore->getOperand(0);
787  if (MergedVal != SI.getOperand(0)) {
788    PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
789    PN->addIncoming(SI.getOperand(0), SI.getParent());
790    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
791    MergedVal = InsertNewInstBefore(PN, DestBB->front());
792  }
793
794  // Advance to a place where it is safe to insert the new store and
795  // insert it.
796  BBI = DestBB->getFirstInsertionPt();
797  StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
798                                   SI.isVolatile(),
799                                   SI.getAlignment(),
800                                   SI.getOrdering(),
801                                   SI.getSynchScope());
802  InsertNewInstBefore(NewSI, *BBI);
803  NewSI->setDebugLoc(OtherStore->getDebugLoc());
804
805  // If the two stores had the same TBAA tag, preserve it.
806  if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
807    if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
808                               OtherStore->getMetadata(LLVMContext::MD_tbaa))))
809      NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
810
811
812  // Nuke the old stores.
813  EraseInstFromFunction(SI);
814  EraseInstFromFunction(*OtherStore);
815  return true;
816}
817