1 2/* 3 * Copyright 2011 Google Inc. 4 * 5 * Use of this source code is governed by a BSD-style license that can be 6 * found in the LICENSE file. 7 */ 8#include "Test.h" 9#include "SkFloatBits.h" 10#include "SkFloatingPoint.h" 11#include "SkMathPriv.h" 12#include "SkPoint.h" 13#include "SkRandom.h" 14#include "SkColorPriv.h" 15 16static float sk_fsel(float pred, float result_ge, float result_lt) { 17 return pred >= 0 ? result_ge : result_lt; 18} 19 20static float fast_floor(float x) { 21// float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23); 22 float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23)); 23 return (float)(x + big) - big; 24} 25 26static float std_floor(float x) { 27 return sk_float_floor(x); 28} 29 30static void test_floor_value(skiatest::Reporter* reporter, float value) { 31 float fast = fast_floor(value); 32 float std = std_floor(value); 33 REPORTER_ASSERT(reporter, std == fast); 34// SkDebugf("value[%1.9f] std[%g] fast[%g] equal[%d]\n", 35// value, std, fast, std == fast); 36} 37 38static void test_floor(skiatest::Reporter* reporter) { 39 static const float gVals[] = { 40 0, 1, 1.1f, 1.01f, 1.001f, 1.0001f, 1.00001f, 1.000001f, 1.0000001f 41 }; 42 43 for (size_t i = 0; i < SK_ARRAY_COUNT(gVals); ++i) { 44 test_floor_value(reporter, gVals[i]); 45// test_floor_value(reporter, -gVals[i]); 46 } 47} 48 49/////////////////////////////////////////////////////////////////////////////// 50 51static float float_blend(int src, int dst, float unit) { 52 return dst + (src - dst) * unit; 53} 54 55static int blend31(int src, int dst, int a31) { 56 return dst + ((src - dst) * a31 * 2114 >> 16); 57 // return dst + ((src - dst) * a31 * 33 >> 10); 58} 59 60static int blend31_slow(int src, int dst, int a31) { 61 int prod = src * a31 + (31 - a31) * dst + 16; 62 prod = (prod + (prod >> 5)) >> 5; 63 return prod; 64} 65 66static int blend31_round(int src, int dst, int a31) { 67 int prod = (src - dst) * a31 + 16; 68 prod = (prod + (prod >> 5)) >> 5; 69 return dst + prod; 70} 71 72static int blend31_old(int src, int dst, int a31) { 73 a31 += a31 >> 4; 74 return dst + ((src - dst) * a31 >> 5); 75} 76 77// suppress unused code warning 78static int (*blend_functions[])(int, int, int) = { 79 blend31, 80 blend31_slow, 81 blend31_round, 82 blend31_old 83}; 84 85static void test_blend31() { 86 int failed = 0; 87 int death = 0; 88 if (false) { // avoid bit rot, suppress warning 89 failed = (*blend_functions[0])(0,0,0); 90 } 91 for (int src = 0; src <= 255; src++) { 92 for (int dst = 0; dst <= 255; dst++) { 93 for (int a = 0; a <= 31; a++) { 94// int r0 = blend31(src, dst, a); 95// int r0 = blend31_round(src, dst, a); 96// int r0 = blend31_old(src, dst, a); 97 int r0 = blend31_slow(src, dst, a); 98 99 float f = float_blend(src, dst, a / 31.f); 100 int r1 = (int)f; 101 int r2 = SkScalarRoundToInt(SkFloatToScalar(f)); 102 103 if (r0 != r1 && r0 != r2) { 104 printf("src:%d dst:%d a:%d result:%d float:%g\n", 105 src, dst, a, r0, f); 106 failed += 1; 107 } 108 if (r0 > 255) { 109 death += 1; 110 printf("death src:%d dst:%d a:%d result:%d float:%g\n", 111 src, dst, a, r0, f); 112 } 113 } 114 } 115 } 116 SkDebugf("---- failed %d death %d\n", failed, death); 117} 118 119static void test_blend(skiatest::Reporter* reporter) { 120 for (int src = 0; src <= 255; src++) { 121 for (int dst = 0; dst <= 255; dst++) { 122 for (int a = 0; a <= 255; a++) { 123 int r0 = SkAlphaBlend255(src, dst, a); 124 float f1 = float_blend(src, dst, a / 255.f); 125 int r1 = SkScalarRoundToInt(SkFloatToScalar(f1)); 126 127 if (r0 != r1) { 128 float diff = sk_float_abs(f1 - r1); 129 diff = sk_float_abs(diff - 0.5f); 130 if (diff > (1 / 255.f)) { 131#ifdef SK_DEBUG 132 SkDebugf("src:%d dst:%d a:%d result:%d float:%g\n", 133 src, dst, a, r0, f1); 134#endif 135 REPORTER_ASSERT(reporter, false); 136 } 137 } 138 } 139 } 140 } 141} 142 143#if defined(SkLONGLONG) 144static int symmetric_fixmul(int a, int b) { 145 int sa = SkExtractSign(a); 146 int sb = SkExtractSign(b); 147 148 a = SkApplySign(a, sa); 149 b = SkApplySign(b, sb); 150 151#if 1 152 int c = (int)(((SkLONGLONG)a * b) >> 16); 153 154 return SkApplySign(c, sa ^ sb); 155#else 156 SkLONGLONG ab = (SkLONGLONG)a * b; 157 if (sa ^ sb) { 158 ab = -ab; 159 } 160 return ab >> 16; 161#endif 162} 163#endif 164 165static void check_length(skiatest::Reporter* reporter, 166 const SkPoint& p, SkScalar targetLen) { 167 float x = SkScalarToFloat(p.fX); 168 float y = SkScalarToFloat(p.fY); 169 float len = sk_float_sqrt(x*x + y*y); 170 171 len /= SkScalarToFloat(targetLen); 172 173 REPORTER_ASSERT(reporter, len > 0.999f && len < 1.001f); 174} 175 176static float nextFloat(SkRandom& rand) { 177 SkFloatIntUnion data; 178 data.fSignBitInt = rand.nextU(); 179 return data.fFloat; 180} 181 182/* returns true if a == b as resulting from (int)x. Since it is undefined 183 what to do if the float exceeds 2^32-1, we check for that explicitly. 184 */ 185static bool equal_float_native_skia(float x, uint32_t ni, uint32_t si) { 186 if (!(x == x)) { // NAN 187 return ((int32_t)si) == SK_MaxS32 || ((int32_t)si) == SK_MinS32; 188 } 189 // for out of range, C is undefined, but skia always should return NaN32 190 if (x > SK_MaxS32) { 191 return ((int32_t)si) == SK_MaxS32; 192 } 193 if (x < -SK_MaxS32) { 194 return ((int32_t)si) == SK_MinS32; 195 } 196 return si == ni; 197} 198 199static void assert_float_equal(skiatest::Reporter* reporter, const char op[], 200 float x, uint32_t ni, uint32_t si) { 201 if (!equal_float_native_skia(x, ni, si)) { 202 SkString desc; 203 uint32_t xi = SkFloat2Bits(x); 204 desc.printf("%s float %g bits %x native %x skia %x\n", op, x, xi, ni, si); 205 reporter->reportFailed(desc); 206 } 207} 208 209static void test_float_cast(skiatest::Reporter* reporter, float x) { 210 int ix = (int)x; 211 int iix = SkFloatToIntCast(x); 212 assert_float_equal(reporter, "cast", x, ix, iix); 213} 214 215static void test_float_floor(skiatest::Reporter* reporter, float x) { 216 int ix = (int)floor(x); 217 int iix = SkFloatToIntFloor(x); 218 assert_float_equal(reporter, "floor", x, ix, iix); 219} 220 221static void test_float_round(skiatest::Reporter* reporter, float x) { 222 double xx = x + 0.5; // need intermediate double to avoid temp loss 223 int ix = (int)floor(xx); 224 int iix = SkFloatToIntRound(x); 225 assert_float_equal(reporter, "round", x, ix, iix); 226} 227 228static void test_float_ceil(skiatest::Reporter* reporter, float x) { 229 int ix = (int)ceil(x); 230 int iix = SkFloatToIntCeil(x); 231 assert_float_equal(reporter, "ceil", x, ix, iix); 232} 233 234static void test_float_conversions(skiatest::Reporter* reporter, float x) { 235 test_float_cast(reporter, x); 236 test_float_floor(reporter, x); 237 test_float_round(reporter, x); 238 test_float_ceil(reporter, x); 239} 240 241static void test_int2float(skiatest::Reporter* reporter, int ival) { 242 float x0 = (float)ival; 243 float x1 = SkIntToFloatCast(ival); 244 float x2 = SkIntToFloatCast_NoOverflowCheck(ival); 245 REPORTER_ASSERT(reporter, x0 == x1); 246 REPORTER_ASSERT(reporter, x0 == x2); 247} 248 249static void unittest_fastfloat(skiatest::Reporter* reporter) { 250 SkRandom rand; 251 size_t i; 252 253 static const float gFloats[] = { 254 0.f, 1.f, 0.5f, 0.499999f, 0.5000001f, 1.f/3, 255 0.000000001f, 1000000000.f, // doesn't overflow 256 0.0000000001f, 10000000000.f // does overflow 257 }; 258 for (i = 0; i < SK_ARRAY_COUNT(gFloats); i++) { 259 test_float_conversions(reporter, gFloats[i]); 260 test_float_conversions(reporter, -gFloats[i]); 261 } 262 263 for (int outer = 0; outer < 100; outer++) { 264 rand.setSeed(outer); 265 for (i = 0; i < 100000; i++) { 266 float x = nextFloat(rand); 267 test_float_conversions(reporter, x); 268 } 269 270 test_int2float(reporter, 0); 271 test_int2float(reporter, 1); 272 test_int2float(reporter, -1); 273 for (i = 0; i < 100000; i++) { 274 // for now only test ints that are 24bits or less, since we don't 275 // round (down) large ints the same as IEEE... 276 int ival = rand.nextU() & 0xFFFFFF; 277 test_int2float(reporter, ival); 278 test_int2float(reporter, -ival); 279 } 280 } 281} 282 283#ifdef SK_SCALAR_IS_FLOAT 284static float make_zero() { 285 return sk_float_sin(0); 286} 287#endif 288 289static void unittest_isfinite(skiatest::Reporter* reporter) { 290#ifdef SK_SCALAR_IS_FLOAT 291 float nan = sk_float_asin(2); 292 float inf = 1.0f / make_zero(); 293 float big = 3.40282e+038f; 294 295 REPORTER_ASSERT(reporter, !SkScalarIsNaN(inf)); 296 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-inf)); 297 REPORTER_ASSERT(reporter, !SkScalarIsFinite(inf)); 298 REPORTER_ASSERT(reporter, !SkScalarIsFinite(-inf)); 299#else 300 SkFixed nan = SK_FixedNaN; 301 SkFixed big = SK_FixedMax; 302#endif 303 304 REPORTER_ASSERT(reporter, SkScalarIsNaN(nan)); 305 REPORTER_ASSERT(reporter, !SkScalarIsNaN(big)); 306 REPORTER_ASSERT(reporter, !SkScalarIsNaN(-big)); 307 REPORTER_ASSERT(reporter, !SkScalarIsNaN(0)); 308 309 REPORTER_ASSERT(reporter, !SkScalarIsFinite(nan)); 310 REPORTER_ASSERT(reporter, SkScalarIsFinite(big)); 311 REPORTER_ASSERT(reporter, SkScalarIsFinite(-big)); 312 REPORTER_ASSERT(reporter, SkScalarIsFinite(0)); 313} 314 315static void test_muldiv255(skiatest::Reporter* reporter) { 316 for (int a = 0; a <= 255; a++) { 317 for (int b = 0; b <= 255; b++) { 318 int ab = a * b; 319 float s = ab / 255.0f; 320 int round = (int)floorf(s + 0.5f); 321 int trunc = (int)floorf(s); 322 323 int iround = SkMulDiv255Round(a, b); 324 int itrunc = SkMulDiv255Trunc(a, b); 325 326 REPORTER_ASSERT(reporter, iround == round); 327 REPORTER_ASSERT(reporter, itrunc == trunc); 328 329 REPORTER_ASSERT(reporter, itrunc <= iround); 330 REPORTER_ASSERT(reporter, iround <= a); 331 REPORTER_ASSERT(reporter, iround <= b); 332 } 333 } 334} 335 336static void test_muldiv255ceiling(skiatest::Reporter* reporter) { 337 for (int c = 0; c <= 255; c++) { 338 for (int a = 0; a <= 255; a++) { 339 int product = (c * a + 255); 340 int expected_ceiling = (product + (product >> 8)) >> 8; 341 int webkit_ceiling = (c * a + 254) / 255; 342 REPORTER_ASSERT(reporter, expected_ceiling == webkit_ceiling); 343 int skia_ceiling = SkMulDiv255Ceiling(c, a); 344 REPORTER_ASSERT(reporter, skia_ceiling == webkit_ceiling); 345 } 346 } 347} 348 349static void test_copysign(skiatest::Reporter* reporter) { 350 static const int32_t gTriples[] = { 351 // x, y, expected result 352 0, 0, 0, 353 0, 1, 0, 354 0, -1, 0, 355 1, 0, 1, 356 1, 1, 1, 357 1, -1, -1, 358 -1, 0, 1, 359 -1, 1, 1, 360 -1, -1, -1, 361 }; 362 for (size_t i = 0; i < SK_ARRAY_COUNT(gTriples); i += 3) { 363 REPORTER_ASSERT(reporter, 364 SkCopySign32(gTriples[i], gTriples[i+1]) == gTriples[i+2]); 365 float x = (float)gTriples[i]; 366 float y = (float)gTriples[i+1]; 367 float expected = (float)gTriples[i+2]; 368 REPORTER_ASSERT(reporter, sk_float_copysign(x, y) == expected); 369 } 370 371 SkRandom rand; 372 for (int j = 0; j < 1000; j++) { 373 int ix = rand.nextS(); 374 REPORTER_ASSERT(reporter, SkCopySign32(ix, ix) == ix); 375 REPORTER_ASSERT(reporter, SkCopySign32(ix, -ix) == -ix); 376 REPORTER_ASSERT(reporter, SkCopySign32(-ix, ix) == ix); 377 REPORTER_ASSERT(reporter, SkCopySign32(-ix, -ix) == -ix); 378 379 SkScalar sx = rand.nextSScalar1(); 380 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, sx) == sx); 381 REPORTER_ASSERT(reporter, SkScalarCopySign(sx, -sx) == -sx); 382 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, sx) == sx); 383 REPORTER_ASSERT(reporter, SkScalarCopySign(-sx, -sx) == -sx); 384 } 385} 386 387static void TestMath(skiatest::Reporter* reporter) { 388 int i; 389 int32_t x; 390 SkRandom rand; 391 392 // these should assert 393#if 0 394 SkToS8(128); 395 SkToS8(-129); 396 SkToU8(256); 397 SkToU8(-5); 398 399 SkToS16(32768); 400 SkToS16(-32769); 401 SkToU16(65536); 402 SkToU16(-5); 403 404 if (sizeof(size_t) > 4) { 405 SkToS32(4*1024*1024); 406 SkToS32(-4*1024*1024); 407 SkToU32(5*1024*1024); 408 SkToU32(-5); 409 } 410#endif 411 412 test_muldiv255(reporter); 413 test_muldiv255ceiling(reporter); 414 test_copysign(reporter); 415 416 { 417 SkScalar x = SK_ScalarNaN; 418 REPORTER_ASSERT(reporter, SkScalarIsNaN(x)); 419 } 420 421 for (i = 1; i <= 10; i++) { 422 x = SkCubeRootBits(i*i*i, 11); 423 REPORTER_ASSERT(reporter, x == i); 424 } 425 426 x = SkFixedSqrt(SK_Fixed1); 427 REPORTER_ASSERT(reporter, x == SK_Fixed1); 428 x = SkFixedSqrt(SK_Fixed1/4); 429 REPORTER_ASSERT(reporter, x == SK_Fixed1/2); 430 x = SkFixedSqrt(SK_Fixed1*4); 431 REPORTER_ASSERT(reporter, x == SK_Fixed1*2); 432 433 x = SkFractSqrt(SK_Fract1); 434 REPORTER_ASSERT(reporter, x == SK_Fract1); 435 x = SkFractSqrt(SK_Fract1/4); 436 REPORTER_ASSERT(reporter, x == SK_Fract1/2); 437 x = SkFractSqrt(SK_Fract1/16); 438 REPORTER_ASSERT(reporter, x == SK_Fract1/4); 439 440 for (i = 1; i < 100; i++) { 441 x = SkFixedSqrt(SK_Fixed1 * i * i); 442 REPORTER_ASSERT(reporter, x == SK_Fixed1 * i); 443 } 444 445 for (i = 0; i < 1000; i++) { 446 int value = rand.nextS16(); 447 int max = rand.nextU16(); 448 449 int clamp = SkClampMax(value, max); 450 int clamp2 = value < 0 ? 0 : (value > max ? max : value); 451 REPORTER_ASSERT(reporter, clamp == clamp2); 452 } 453 454 for (i = 0; i < 10000; i++) { 455 SkPoint p; 456 457 // These random values are being treated as 32-bit-patterns, not as 458 // ints; calling SkIntToScalar() here produces crashes. 459 p.setLength((SkScalar) rand.nextS(), 460 (SkScalar) rand.nextS(), 461 SK_Scalar1); 462 check_length(reporter, p, SK_Scalar1); 463 p.setLength((SkScalar) (rand.nextS() >> 13), 464 (SkScalar) (rand.nextS() >> 13), 465 SK_Scalar1); 466 check_length(reporter, p, SK_Scalar1); 467 } 468 469 { 470 SkFixed result = SkFixedDiv(100, 100); 471 REPORTER_ASSERT(reporter, result == SK_Fixed1); 472 result = SkFixedDiv(1, SK_Fixed1); 473 REPORTER_ASSERT(reporter, result == 1); 474 } 475 476 unittest_fastfloat(reporter); 477 unittest_isfinite(reporter); 478 479#ifdef SkLONGLONG 480 for (i = 0; i < 10000; i++) { 481 SkFixed numer = rand.nextS(); 482 SkFixed denom = rand.nextS(); 483 SkFixed result = SkFixedDiv(numer, denom); 484 SkLONGLONG check = ((SkLONGLONG)numer << 16) / denom; 485 486 (void)SkCLZ(numer); 487 (void)SkCLZ(denom); 488 489 REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); 490 if (check > SK_MaxS32) { 491 check = SK_MaxS32; 492 } else if (check < -SK_MaxS32) { 493 check = SK_MinS32; 494 } 495 REPORTER_ASSERT(reporter, result == (int32_t)check); 496 497 result = SkFractDiv(numer, denom); 498 check = ((SkLONGLONG)numer << 30) / denom; 499 500 REPORTER_ASSERT(reporter, result != (SkFixed)SK_NaN32); 501 if (check > SK_MaxS32) { 502 check = SK_MaxS32; 503 } else if (check < -SK_MaxS32) { 504 check = SK_MinS32; 505 } 506 REPORTER_ASSERT(reporter, result == (int32_t)check); 507 508 // make them <= 2^24, so we don't overflow in fixmul 509 numer = numer << 8 >> 8; 510 denom = denom << 8 >> 8; 511 512 result = SkFixedMul(numer, denom); 513 SkFixed r2 = symmetric_fixmul(numer, denom); 514 // SkASSERT(result == r2); 515 516 result = SkFixedMul(numer, numer); 517 r2 = SkFixedSquare(numer); 518 REPORTER_ASSERT(reporter, result == r2); 519 520 if (numer >= 0 && denom >= 0) { 521 SkFixed mean = SkFixedMean(numer, denom); 522 float prod = SkFixedToFloat(numer) * SkFixedToFloat(denom); 523 float fm = sk_float_sqrt(sk_float_abs(prod)); 524 SkFixed mean2 = SkFloatToFixed(fm); 525 int diff = SkAbs32(mean - mean2); 526 REPORTER_ASSERT(reporter, diff <= 1); 527 } 528 529 { 530 SkFixed mod = SkFixedMod(numer, denom); 531 float n = SkFixedToFloat(numer); 532 float d = SkFixedToFloat(denom); 533 float m = sk_float_mod(n, d); 534 // ensure the same sign 535 REPORTER_ASSERT(reporter, mod == 0 || (mod < 0) == (m < 0)); 536 int diff = SkAbs32(mod - SkFloatToFixed(m)); 537 REPORTER_ASSERT(reporter, (diff >> 7) == 0); 538 } 539 } 540#endif 541 542 for (i = 0; i < 10000; i++) { 543 SkFract x = rand.nextU() >> 1; 544 double xx = (double)x / SK_Fract1; 545 SkFract xr = SkFractSqrt(x); 546 SkFract check = SkFloatToFract(sqrt(xx)); 547 REPORTER_ASSERT(reporter, xr == check || 548 xr == check-1 || 549 xr == check+1); 550 551 xr = SkFixedSqrt(x); 552 xx = (double)x / SK_Fixed1; 553 check = SkFloatToFixed(sqrt(xx)); 554 REPORTER_ASSERT(reporter, xr == check || xr == check-1); 555 556 xr = SkSqrt32(x); 557 xx = (double)x; 558 check = (int32_t)sqrt(xx); 559 REPORTER_ASSERT(reporter, xr == check || xr == check-1); 560 } 561 562#if !defined(SK_SCALAR_IS_FLOAT) 563 { 564 SkFixed s, c; 565 s = SkFixedSinCos(0, &c); 566 REPORTER_ASSERT(reporter, s == 0); 567 REPORTER_ASSERT(reporter, c == SK_Fixed1); 568 } 569 570 int maxDiff = 0; 571 for (i = 0; i < 1000; i++) { 572 SkFixed rads = rand.nextS() >> 10; 573 double frads = SkFixedToFloat(rads); 574 575 SkFixed s, c; 576 s = SkScalarSinCos(rads, &c); 577 578 double fs = sin(frads); 579 double fc = cos(frads); 580 581 SkFixed is = SkFloatToFixed(fs); 582 SkFixed ic = SkFloatToFixed(fc); 583 584 maxDiff = SkMax32(maxDiff, SkAbs32(is - s)); 585 maxDiff = SkMax32(maxDiff, SkAbs32(ic - c)); 586 } 587 SkDebugf("SinCos: maximum error = %d\n", maxDiff); 588#endif 589 590#ifdef SK_SCALAR_IS_FLOAT 591 test_blend(reporter); 592#endif 593 594 if (false) test_floor(reporter); 595 596 // disable for now 597 if (false) test_blend31(); // avoid bit rot, suppress warning 598} 599 600#include "TestClassDef.h" 601DEFINE_TESTCLASS("Math", MathTestClass, TestMath) 602