1/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen and support common to all supported
19 * Mips variants.  It is included by:
20 *
21 *        Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27/*
28 * Mark garbage collection card. Skip if the value we're storing is null.
29 */
30static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
31{
32    int regCardBase = dvmCompilerAllocTemp(cUnit);
33    int regCardNo = dvmCompilerAllocTemp(cUnit);
34    MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBeq, valReg, r_ZERO);
35    loadWordDisp(cUnit, rSELF, offsetof(Thread, cardTable),
36                 regCardBase);
37    opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
38    storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
39                     kUnsignedByte);
40    MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
41    target->defMask = ENCODE_ALL;
42    branchOver->generic.target = (LIR *)target;
43    dvmCompilerFreeTemp(cUnit, regCardBase);
44    dvmCompilerFreeTemp(cUnit, regCardNo);
45}
46
47static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
48                                     int srcSize, int tgtSize)
49{
50    /*
51     * Don't optimize the register usage since it calls out to template
52     * functions
53     */
54    RegLocation rlSrc;
55    RegLocation rlDest;
56    int srcReg = 0;
57    int srcRegHi = 0;
58    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
59
60    if (srcSize == kWord) {
61        srcReg = r_A0;
62    } else if (srcSize == kSingle) {
63#ifdef __mips_hard_float
64        srcReg = r_F12;
65#else
66        srcReg = r_A0;
67#endif
68    } else if (srcSize == kLong) {
69        srcReg = r_ARG0;
70        srcRegHi = r_ARG1;
71    } else if (srcSize == kDouble) {
72#ifdef __mips_hard_float
73        srcReg = r_FARG0;
74        srcRegHi = r_FARG1;
75#else
76        srcReg = r_ARG0;
77        srcRegHi = r_ARG1;
78#endif
79    }
80    else {
81        assert(0);
82    }
83
84    if (srcSize == kWord || srcSize == kSingle) {
85        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
86        loadValueDirectFixed(cUnit, rlSrc, srcReg);
87    } else {
88        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
89        loadValueDirectWideFixed(cUnit, rlSrc, srcReg, srcRegHi);
90    }
91    LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
92    opReg(cUnit, kOpBlx, r_T9);
93    newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
94    dvmCompilerClobberCallRegs(cUnit);
95    if (tgtSize == kWord || tgtSize == kSingle) {
96        RegLocation rlResult;
97        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
98#ifdef __mips_hard_float
99        if (tgtSize == kSingle)
100            rlResult = dvmCompilerGetReturnAlt(cUnit);
101        else
102            rlResult = dvmCompilerGetReturn(cUnit);
103#else
104        rlResult = dvmCompilerGetReturn(cUnit);
105#endif
106        storeValue(cUnit, rlDest, rlResult);
107    } else {
108        RegLocation rlResult;
109        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
110#ifdef __mips_hard_float
111        if (tgtSize == kDouble)
112            rlResult = dvmCompilerGetReturnWideAlt(cUnit);
113        else
114            rlResult = dvmCompilerGetReturnWide(cUnit);
115#else
116        rlResult = dvmCompilerGetReturnWide(cUnit);
117#endif
118        storeValueWide(cUnit, rlDest, rlResult);
119    }
120    return false;
121}
122
123
124static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
125                                    RegLocation rlDest, RegLocation rlSrc1,
126                                    RegLocation rlSrc2)
127{
128    RegLocation rlResult;
129    void* funct;
130
131    switch (mir->dalvikInsn.opcode) {
132        case OP_ADD_FLOAT_2ADDR:
133        case OP_ADD_FLOAT:
134            funct = (void*) __addsf3;
135            break;
136        case OP_SUB_FLOAT_2ADDR:
137        case OP_SUB_FLOAT:
138            funct = (void*) __subsf3;
139            break;
140        case OP_DIV_FLOAT_2ADDR:
141        case OP_DIV_FLOAT:
142            funct = (void*) __divsf3;
143            break;
144        case OP_MUL_FLOAT_2ADDR:
145        case OP_MUL_FLOAT:
146            funct = (void*) __mulsf3;
147            break;
148        case OP_REM_FLOAT_2ADDR:
149        case OP_REM_FLOAT:
150            funct = (void*) fmodf;
151            break;
152        case OP_NEG_FLOAT: {
153            genNegFloat(cUnit, rlDest, rlSrc1);
154            return false;
155        }
156        default:
157            return true;
158    }
159
160    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
161#ifdef __mips_hard_float
162    loadValueDirectFixed(cUnit, rlSrc1, r_F12);
163    loadValueDirectFixed(cUnit, rlSrc2, r_F14);
164#else
165    loadValueDirectFixed(cUnit, rlSrc1, r_A0);
166    loadValueDirectFixed(cUnit, rlSrc2, r_A1);
167#endif
168    LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
169    opReg(cUnit, kOpBlx, r_T9);
170    newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
171    dvmCompilerClobberCallRegs(cUnit);
172#ifdef __mips_hard_float
173    rlResult = dvmCompilerGetReturnAlt(cUnit);
174#else
175    rlResult = dvmCompilerGetReturn(cUnit);
176#endif
177    storeValue(cUnit, rlDest, rlResult);
178    return false;
179}
180
181static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
182                                     RegLocation rlDest, RegLocation rlSrc1,
183                                     RegLocation rlSrc2)
184{
185    RegLocation rlResult;
186    void* funct;
187
188    switch (mir->dalvikInsn.opcode) {
189        case OP_ADD_DOUBLE_2ADDR:
190        case OP_ADD_DOUBLE:
191            funct = (void*) __adddf3;
192            break;
193        case OP_SUB_DOUBLE_2ADDR:
194        case OP_SUB_DOUBLE:
195            funct = (void*) __subdf3;
196            break;
197        case OP_DIV_DOUBLE_2ADDR:
198        case OP_DIV_DOUBLE:
199            funct = (void*) __divsf3;
200            break;
201        case OP_MUL_DOUBLE_2ADDR:
202        case OP_MUL_DOUBLE:
203            funct = (void*) __muldf3;
204            break;
205        case OP_REM_DOUBLE_2ADDR:
206        case OP_REM_DOUBLE:
207            funct = (void*) (double (*)(double, double)) fmod;
208            break;
209        case OP_NEG_DOUBLE: {
210            genNegDouble(cUnit, rlDest, rlSrc1);
211            return false;
212        }
213        default:
214            return true;
215    }
216    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
217    LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
218#ifdef __mips_hard_float
219    loadValueDirectWideFixed(cUnit, rlSrc1, r_F12, r_F13);
220    loadValueDirectWideFixed(cUnit, rlSrc2, r_F14, r_F15);
221#else
222    loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
223    loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3);
224#endif
225    opReg(cUnit, kOpBlx, r_T9);
226    newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
227    dvmCompilerClobberCallRegs(cUnit);
228#ifdef __mips_hard_float
229    rlResult = dvmCompilerGetReturnWideAlt(cUnit);
230#else
231    rlResult = dvmCompilerGetReturnWide(cUnit);
232#endif
233    storeValueWide(cUnit, rlDest, rlResult);
234#if defined(WITH_SELF_VERIFICATION)
235    cUnit->usesLinkRegister = true;
236#endif
237    return false;
238}
239
240static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
241{
242    Opcode opcode = mir->dalvikInsn.opcode;
243
244    switch (opcode) {
245        case OP_INT_TO_FLOAT:
246            return genConversionCall(cUnit, mir, (void*)__floatsisf, kWord, kSingle);
247        case OP_FLOAT_TO_INT:
248            return genConversionCall(cUnit, mir, (void*)__fixsfsi, kSingle, kWord);
249        case OP_DOUBLE_TO_FLOAT:
250            return genConversionCall(cUnit, mir, (void*)__truncdfsf2, kDouble, kSingle);
251        case OP_FLOAT_TO_DOUBLE:
252            return genConversionCall(cUnit, mir, (void*)__extendsfdf2, kSingle, kDouble);
253        case OP_INT_TO_DOUBLE:
254            return genConversionCall(cUnit, mir, (void*)__floatsidf, kWord, kDouble);
255        case OP_DOUBLE_TO_INT:
256            return genConversionCall(cUnit, mir, (void*)__fixdfsi, kDouble, kWord);
257        case OP_FLOAT_TO_LONG:
258            return genConversionCall(cUnit, mir, (void*)__fixsfdi, kSingle, kLong);
259        case OP_LONG_TO_FLOAT:
260            return genConversionCall(cUnit, mir, (void*)__floatdisf, kLong, kSingle);
261        case OP_DOUBLE_TO_LONG:
262            return genConversionCall(cUnit, mir, (void*)__fixdfdi, kDouble, kLong);
263        case OP_LONG_TO_DOUBLE:
264            return genConversionCall(cUnit, mir, (void*)__floatdidf, kLong, kDouble);
265        default:
266            return true;
267    }
268    return false;
269}
270
271#if defined(WITH_SELF_VERIFICATION)
272static void selfVerificationBranchInsert(LIR *currentLIR, Mipsopcode opcode,
273                          int dest, int src1)
274{
275assert(0); /* MIPSTODO port selfVerificationBranchInsert() */
276     MipsLIR *insn = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
277     insn->opcode = opcode;
278     insn->operands[0] = dest;
279     insn->operands[1] = src1;
280     setupResourceMasks(insn);
281     dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
282}
283
284/*
285 * Example where r14 (LR) is preserved around a heap access under
286 * self-verification mode in Thumb2:
287 *
288 * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
289 * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
290 * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
291 * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
292 * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
293 * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
294 * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
295 * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
296 * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
297 * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
298 * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
299 * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
300 * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
301 * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
302 * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
303 * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
304 * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
305 * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
306 * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
307 *
308 */
309static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
310{
311assert(0); /* MIPSTODO port selfVerificationBranchInsertPass() */
312    MipsLIR *thisLIR;
313    Templateopcode opcode = TEMPLATE_MEM_OP_DECODE;
314
315    for (thisLIR = (MipsLIR *) cUnit->firstLIRInsn;
316         thisLIR != (MipsLIR *) cUnit->lastLIRInsn;
317         thisLIR = NEXT_LIR(thisLIR)) {
318        if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
319            /*
320             * Push r5(FP) and r14(LR) onto stack. We need to make sure that
321             * SP is 8-byte aligned, and we use r5 as a temp to restore LR
322             * for Thumb-only target since LR cannot be directly accessed in
323             * Thumb mode. Another reason to choose r5 here is it is the Dalvik
324             * frame pointer and cannot be the target of the emulated heap
325             * load.
326             */
327            if (cUnit->usesLinkRegister) {
328                genSelfVerificationPreBranch(cUnit, thisLIR);
329            }
330
331            /* Branch to mem op decode template */
332            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
333                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
334                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
335            selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
336                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
337                       (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
338
339            /* Restore LR */
340            if (cUnit->usesLinkRegister) {
341                genSelfVerificationPostBranch(cUnit, thisLIR);
342            }
343        }
344    }
345}
346#endif
347
348/* Generate conditional branch instructions */
349static MipsLIR *genConditionalBranchMips(CompilationUnit *cUnit,
350                                    MipsOpCode opc, int rs, int rt,
351                                    MipsLIR *target)
352{
353    MipsLIR *branch = opCompareBranch(cUnit, opc, rs, rt);
354    branch->generic.target = (LIR *) target;
355    return branch;
356}
357
358/* Generate a unconditional branch to go to the interpreter */
359static inline MipsLIR *genTrap(CompilationUnit *cUnit, int dOffset,
360                                  MipsLIR *pcrLabel)
361{
362    MipsLIR *branch = opNone(cUnit, kOpUncondBr);
363    return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
364}
365
366/* Load a wide field from an object instance */
367static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
368{
369    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
370    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
371    RegLocation rlResult;
372    rlObj = loadValue(cUnit, rlObj, kCoreReg);
373    int regPtr = dvmCompilerAllocTemp(cUnit);
374
375    assert(rlDest.wide);
376
377    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
378                 NULL);/* null object? */
379    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
380    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
381
382    HEAP_ACCESS_SHADOW(true);
383    loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
384    HEAP_ACCESS_SHADOW(false);
385
386    dvmCompilerFreeTemp(cUnit, regPtr);
387    storeValueWide(cUnit, rlDest, rlResult);
388}
389
390/* Store a wide field to an object instance */
391static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
392{
393    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
394    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
395    rlObj = loadValue(cUnit, rlObj, kCoreReg);
396    int regPtr;
397    rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
398    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
399                 NULL);/* null object? */
400    regPtr = dvmCompilerAllocTemp(cUnit);
401    opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
402
403    HEAP_ACCESS_SHADOW(true);
404    storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
405    HEAP_ACCESS_SHADOW(false);
406
407    dvmCompilerFreeTemp(cUnit, regPtr);
408}
409
410/*
411 * Load a field from an object instance
412 *
413 */
414static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
415                    int fieldOffset, bool isVolatile)
416{
417    RegLocation rlResult;
418    RegisterClass regClass = dvmCompilerRegClassBySize(size);
419    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
420    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
421    rlObj = loadValue(cUnit, rlObj, kCoreReg);
422    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
423    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
424                 NULL);/* null object? */
425
426    HEAP_ACCESS_SHADOW(true);
427    loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
428                 size, rlObj.sRegLow);
429    HEAP_ACCESS_SHADOW(false);
430    if (isVolatile) {
431        dvmCompilerGenMemBarrier(cUnit, 0);
432    }
433
434    storeValue(cUnit, rlDest, rlResult);
435}
436
437/*
438 * Store a field to an object instance
439 *
440 */
441static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
442                    int fieldOffset, bool isObject, bool isVolatile)
443{
444    RegisterClass regClass = dvmCompilerRegClassBySize(size);
445    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
446    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
447    rlObj = loadValue(cUnit, rlObj, kCoreReg);
448    rlSrc = loadValue(cUnit, rlSrc, regClass);
449    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
450                 NULL);/* null object? */
451
452    if (isVolatile) {
453        dvmCompilerGenMemBarrier(cUnit, 0);
454    }
455    HEAP_ACCESS_SHADOW(true);
456    storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
457    HEAP_ACCESS_SHADOW(false);
458    if (isVolatile) {
459        dvmCompilerGenMemBarrier(cUnit, 0);
460    }
461    if (isObject) {
462        /* NOTE: marking card based on object head */
463        markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
464    }
465}
466
467
468/*
469 * Generate array load
470 */
471static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
472                        RegLocation rlArray, RegLocation rlIndex,
473                        RegLocation rlDest, int scale)
474{
475    RegisterClass regClass = dvmCompilerRegClassBySize(size);
476    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
477    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
478    RegLocation rlResult;
479    rlArray = loadValue(cUnit, rlArray, kCoreReg);
480    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
481    int regPtr;
482
483    /* null object? */
484    MipsLIR * pcrLabel = NULL;
485
486    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
487        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
488                                rlArray.lowReg, mir->offset, NULL);
489    }
490
491    regPtr = dvmCompilerAllocTemp(cUnit);
492
493    assert(IS_SIMM16(dataOffset));
494    if (scale) {
495        opRegRegImm(cUnit, kOpLsl, regPtr, rlIndex.lowReg, scale);
496    }
497
498    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
499        int regLen = dvmCompilerAllocTemp(cUnit);
500        /* Get len */
501        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
502        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
503                       pcrLabel);
504        dvmCompilerFreeTemp(cUnit, regLen);
505    }
506
507    if (scale) {
508        opRegReg(cUnit, kOpAdd, regPtr, rlArray.lowReg);
509    } else {
510        opRegRegReg(cUnit, kOpAdd, regPtr, rlArray.lowReg, rlIndex.lowReg);
511    }
512
513    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
514    if ((size == kLong) || (size == kDouble)) {
515        HEAP_ACCESS_SHADOW(true);
516        loadBaseDispWide(cUnit, mir, regPtr, dataOffset, rlResult.lowReg,
517                         rlResult.highReg, INVALID_SREG);
518        HEAP_ACCESS_SHADOW(false);
519        dvmCompilerFreeTemp(cUnit, regPtr);
520        storeValueWide(cUnit, rlDest, rlResult);
521    } else {
522        HEAP_ACCESS_SHADOW(true);
523        loadBaseDisp(cUnit, mir, regPtr, dataOffset, rlResult.lowReg,
524                     size, INVALID_SREG);
525        HEAP_ACCESS_SHADOW(false);
526        dvmCompilerFreeTemp(cUnit, regPtr);
527        storeValue(cUnit, rlDest, rlResult);
528    }
529}
530
531/*
532 * Generate array store
533 *
534 */
535static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
536                        RegLocation rlArray, RegLocation rlIndex,
537                        RegLocation rlSrc, int scale)
538{
539    RegisterClass regClass = dvmCompilerRegClassBySize(size);
540    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
541    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
542
543    int regPtr;
544    rlArray = loadValue(cUnit, rlArray, kCoreReg);
545    rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
546
547    if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
548        dvmCompilerClobber(cUnit, rlArray.lowReg);
549        regPtr = rlArray.lowReg;
550    } else {
551        regPtr = dvmCompilerAllocTemp(cUnit);
552        genRegCopy(cUnit, regPtr, rlArray.lowReg);
553    }
554
555    /* null object? */
556    MipsLIR * pcrLabel = NULL;
557
558    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
559        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
560                                mir->offset, NULL);
561    }
562
563    assert(IS_SIMM16(dataOffset));
564    int tReg = dvmCompilerAllocTemp(cUnit);
565    if (scale) {
566        opRegRegImm(cUnit, kOpLsl, tReg, rlIndex.lowReg, scale);
567    }
568
569    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
570        int regLen = dvmCompilerAllocTemp(cUnit);
571        //NOTE: max live temps(4) here.
572        /* Get len */
573        loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
574        genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
575                       pcrLabel);
576        dvmCompilerFreeTemp(cUnit, regLen);
577    }
578
579    if (scale) {
580        opRegReg(cUnit, kOpAdd, tReg, rlArray.lowReg);
581    } else {
582        opRegRegReg(cUnit, kOpAdd, tReg, rlArray.lowReg, rlIndex.lowReg);
583    }
584
585    /* at this point, tReg points to array, 2 live temps */
586    if ((size == kLong) || (size == kDouble)) {
587        rlSrc = loadValueWide(cUnit, rlSrc, regClass);
588        HEAP_ACCESS_SHADOW(true);
589        storeBaseDispWide(cUnit, tReg, dataOffset, rlSrc.lowReg, rlSrc.highReg)
590        HEAP_ACCESS_SHADOW(false);
591        dvmCompilerFreeTemp(cUnit, tReg);
592        dvmCompilerFreeTemp(cUnit, regPtr);
593    } else {
594        rlSrc = loadValue(cUnit, rlSrc, regClass);
595        HEAP_ACCESS_SHADOW(true);
596        storeBaseDisp(cUnit, tReg, dataOffset, rlSrc.lowReg, size);
597        dvmCompilerFreeTemp(cUnit, tReg);
598        HEAP_ACCESS_SHADOW(false);
599    }
600}
601
602/*
603 * Generate array object store
604 * Must use explicit register allocation here because of
605 * call-out to dvmCanPutArrayElement
606 */
607static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
608                              RegLocation rlArray, RegLocation rlIndex,
609                              RegLocation rlSrc, int scale)
610{
611    int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
612    int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
613
614    int regLen = r_A0;
615    int regPtr = r_S0;  /* Preserved across call */
616    int regArray = r_A1;
617    int regIndex = r_S4;  /* Preserved across call */
618
619    dvmCompilerFlushAllRegs(cUnit);
620    // moved lock for r_S0 and r_S4 here from below since genBoundsCheck
621    // allocates a temporary that can result in clobbering either of them
622    dvmCompilerLockTemp(cUnit, regPtr);   // r_S0
623    dvmCompilerLockTemp(cUnit, regIndex); // r_S4
624
625    loadValueDirectFixed(cUnit, rlArray, regArray);
626    loadValueDirectFixed(cUnit, rlIndex, regIndex);
627
628    /* null object? */
629    MipsLIR * pcrLabel = NULL;
630
631    if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
632        pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
633                                mir->offset, NULL);
634    }
635
636    if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
637        /* Get len */
638        loadWordDisp(cUnit, regArray, lenOffset, regLen);
639        /* regPtr -> array data */
640        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
641        genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
642                       pcrLabel);
643    } else {
644        /* regPtr -> array data */
645        opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
646    }
647
648    /* Get object to store */
649    loadValueDirectFixed(cUnit, rlSrc, r_A0);
650    LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmCanPutArrayElement);
651
652    /* Are we storing null?  If so, avoid check */
653    MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBeqz, r_A0, -1);
654
655    /* Make sure the types are compatible */
656    loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r_A1);
657    loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A0);
658    opReg(cUnit, kOpBlx, r_T9);
659    newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
660    dvmCompilerClobberCallRegs(cUnit);
661
662    /*
663     * Using fixed registers here, and counting on r_S0 and r_S4 being
664     * preserved across the above call.  Tell the register allocation
665     * utilities about the regs we are using directly
666     */
667    dvmCompilerLockTemp(cUnit, r_A0);
668    dvmCompilerLockTemp(cUnit, r_A1);
669
670    /* Bad? - roll back and re-execute if so */
671    genRegImmCheck(cUnit, kMipsCondEq, r_V0, 0, mir->offset, pcrLabel);
672
673    /* Resume here - must reload element & array, regPtr & index preserved */
674    loadValueDirectFixed(cUnit, rlSrc, r_A0);
675    loadValueDirectFixed(cUnit, rlArray, r_A1);
676
677    MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
678    target->defMask = ENCODE_ALL;
679    branchOver->generic.target = (LIR *) target;
680
681    HEAP_ACCESS_SHADOW(true);
682    storeBaseIndexed(cUnit, regPtr, regIndex, r_A0,
683                     scale, kWord);
684    HEAP_ACCESS_SHADOW(false);
685
686    dvmCompilerFreeTemp(cUnit, regPtr);
687    dvmCompilerFreeTemp(cUnit, regIndex);
688
689    /* NOTE: marking card here based on object head */
690    markCard(cUnit, r_A0, r_A1);
691}
692
693static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
694                           RegLocation rlDest, RegLocation rlSrc1,
695                           RegLocation rlShift)
696{
697    /*
698     * Don't mess with the regsiters here as there is a particular calling
699     * convention to the out-of-line handler.
700     */
701    RegLocation rlResult;
702
703    loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
704    loadValueDirect(cUnit, rlShift, r_A2);
705    switch( mir->dalvikInsn.opcode) {
706        case OP_SHL_LONG:
707        case OP_SHL_LONG_2ADDR:
708            genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
709            break;
710        case OP_SHR_LONG:
711        case OP_SHR_LONG_2ADDR:
712            genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
713            break;
714        case OP_USHR_LONG:
715        case OP_USHR_LONG_2ADDR:
716            genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
717            break;
718        default:
719            return true;
720    }
721    rlResult = dvmCompilerGetReturnWide(cUnit);
722    storeValueWide(cUnit, rlDest, rlResult);
723    return false;
724}
725
726static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
727                           RegLocation rlDest, RegLocation rlSrc1,
728                           RegLocation rlSrc2)
729{
730    RegLocation rlResult;
731    OpKind firstOp = kOpBkpt;
732    OpKind secondOp = kOpBkpt;
733    bool callOut = false;
734    bool checkZero = false;
735    void *callTgt;
736
737    switch (mir->dalvikInsn.opcode) {
738        case OP_NOT_LONG:
739            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
740            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
741            opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
742            opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
743            storeValueWide(cUnit, rlDest, rlResult);
744            return false;
745            break;
746        case OP_ADD_LONG:
747        case OP_ADD_LONG_2ADDR:
748            firstOp = kOpAdd;
749            secondOp = kOpAdc;
750            break;
751        case OP_SUB_LONG:
752        case OP_SUB_LONG_2ADDR:
753            firstOp = kOpSub;
754            secondOp = kOpSbc;
755            break;
756        case OP_MUL_LONG:
757        case OP_MUL_LONG_2ADDR:
758            genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
759            return false;
760        case OP_DIV_LONG:
761        case OP_DIV_LONG_2ADDR:
762            callOut = true;
763            checkZero = true;
764            callTgt = (void*)__divdi3;
765            break;
766        case OP_REM_LONG:
767        case OP_REM_LONG_2ADDR:
768            callOut = true;
769            callTgt = (void*)__moddi3;
770            checkZero = true;
771            break;
772        case OP_AND_LONG_2ADDR:
773        case OP_AND_LONG:
774            firstOp = kOpAnd;
775            secondOp = kOpAnd;
776            break;
777        case OP_OR_LONG:
778        case OP_OR_LONG_2ADDR:
779            firstOp = kOpOr;
780            secondOp = kOpOr;
781            break;
782        case OP_XOR_LONG:
783        case OP_XOR_LONG_2ADDR:
784            firstOp = kOpXor;
785            secondOp = kOpXor;
786            break;
787        case OP_NEG_LONG: {
788            int tReg = dvmCompilerAllocTemp(cUnit);
789            rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
790            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
791            newLIR3(cUnit, kMipsSubu, rlResult.lowReg, r_ZERO, rlSrc2.lowReg);
792            newLIR3(cUnit, kMipsSubu, tReg, r_ZERO, rlSrc2.highReg);
793            newLIR3(cUnit, kMipsSltu, rlResult.highReg, r_ZERO, rlResult.lowReg);
794            newLIR3(cUnit, kMipsSubu, rlResult.highReg, tReg, rlResult.highReg);
795            dvmCompilerFreeTemp(cUnit, tReg);
796            storeValueWide(cUnit, rlDest, rlResult);
797            return false;
798            break;
799        }
800        default:
801            ALOGE("Invalid long arith op");
802            dvmCompilerAbort(cUnit);
803    }
804    if (!callOut) {
805        genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
806    } else {
807        dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
808        loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3);
809        loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
810        LOAD_FUNC_ADDR(cUnit, r_T9, (int) callTgt);
811        if (checkZero) {
812            int tReg = r_T1; // Using fixed registers during call sequence
813            opRegRegReg(cUnit, kOpOr, tReg, r_ARG2, r_ARG3);
814            genRegImmCheck(cUnit, kMipsCondEq, tReg, 0, mir->offset, NULL);
815        }
816        opReg(cUnit, kOpBlx, r_T9);
817        newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
818        dvmCompilerClobberCallRegs(cUnit);
819        rlResult = dvmCompilerGetReturnWide(cUnit);
820        storeValueWide(cUnit, rlDest, rlResult);
821#if defined(WITH_SELF_VERIFICATION)
822        cUnit->usesLinkRegister = true;
823#endif
824    }
825    return false;
826}
827
828static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
829                          RegLocation rlDest, RegLocation rlSrc1,
830                          RegLocation rlSrc2)
831{
832    OpKind op = kOpBkpt;
833    bool checkZero = false;
834    bool unary = false;
835    RegLocation rlResult;
836    bool shiftOp = false;
837    int isDivRem = false;
838    MipsOpCode opc;
839    int divReg;
840
841    switch (mir->dalvikInsn.opcode) {
842        case OP_NEG_INT:
843            op = kOpNeg;
844            unary = true;
845            break;
846        case OP_NOT_INT:
847            op = kOpMvn;
848            unary = true;
849            break;
850        case OP_ADD_INT:
851        case OP_ADD_INT_2ADDR:
852            op = kOpAdd;
853            break;
854        case OP_SUB_INT:
855        case OP_SUB_INT_2ADDR:
856            op = kOpSub;
857            break;
858        case OP_MUL_INT:
859        case OP_MUL_INT_2ADDR:
860            op = kOpMul;
861            break;
862        case OP_DIV_INT:
863        case OP_DIV_INT_2ADDR:
864            isDivRem = true;
865            checkZero = true;
866            opc = kMipsMflo;
867            divReg = r_LO;
868            break;
869        case OP_REM_INT:
870        case OP_REM_INT_2ADDR:
871            isDivRem = true;
872            checkZero = true;
873            opc = kMipsMfhi;
874            divReg = r_HI;
875            break;
876        case OP_AND_INT:
877        case OP_AND_INT_2ADDR:
878            op = kOpAnd;
879            break;
880        case OP_OR_INT:
881        case OP_OR_INT_2ADDR:
882            op = kOpOr;
883            break;
884        case OP_XOR_INT:
885        case OP_XOR_INT_2ADDR:
886            op = kOpXor;
887            break;
888        case OP_SHL_INT:
889        case OP_SHL_INT_2ADDR:
890            shiftOp = true;
891            op = kOpLsl;
892            break;
893        case OP_SHR_INT:
894        case OP_SHR_INT_2ADDR:
895            shiftOp = true;
896            op = kOpAsr;
897            break;
898        case OP_USHR_INT:
899        case OP_USHR_INT_2ADDR:
900            shiftOp = true;
901            op = kOpLsr;
902            break;
903        default:
904            ALOGE("Invalid word arith op: %#x(%d)",
905                 mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
906            dvmCompilerAbort(cUnit);
907    }
908
909    rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
910    if (unary) {
911        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
912        opRegReg(cUnit, op, rlResult.lowReg,
913                 rlSrc1.lowReg);
914    } else if (isDivRem) {
915        rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
916        if (checkZero) {
917            genNullCheck(cUnit, rlSrc2.sRegLow, rlSrc2.lowReg, mir->offset, NULL);
918        }
919        newLIR4(cUnit, kMipsDiv, r_HI, r_LO, rlSrc1.lowReg, rlSrc2.lowReg);
920        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
921        newLIR2(cUnit, opc, rlResult.lowReg, divReg);
922    } else {
923        rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
924        if (shiftOp) {
925            int tReg = dvmCompilerAllocTemp(cUnit);
926            opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
927            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
928            opRegRegReg(cUnit, op, rlResult.lowReg,
929                        rlSrc1.lowReg, tReg);
930            dvmCompilerFreeTemp(cUnit, tReg);
931        } else {
932            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
933            opRegRegReg(cUnit, op, rlResult.lowReg,
934                        rlSrc1.lowReg, rlSrc2.lowReg);
935        }
936    }
937    storeValue(cUnit, rlDest, rlResult);
938
939    return false;
940}
941
942static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
943{
944    Opcode opcode = mir->dalvikInsn.opcode;
945    RegLocation rlDest;
946    RegLocation rlSrc1;
947    RegLocation rlSrc2;
948    /* Deduce sizes of operands */
949    if (mir->ssaRep->numUses == 2) {
950        rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
951        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
952    } else if (mir->ssaRep->numUses == 3) {
953        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
954        rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
955    } else {
956        rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
957        rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
958        assert(mir->ssaRep->numUses == 4);
959    }
960    if (mir->ssaRep->numDefs == 1) {
961        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
962    } else {
963        assert(mir->ssaRep->numDefs == 2);
964        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
965    }
966
967    if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
968        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
969    }
970    if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
971        return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
972    }
973    if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
974        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
975    }
976    if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
977        return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
978    }
979    if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
980        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
981    }
982    if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
983        return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
984    }
985    if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
986        return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
987    }
988    if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
989        return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
990    }
991    if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
992        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
993    }
994    if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
995        return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
996    }
997    return true;
998}
999
1000/* Generate unconditional branch instructions */
1001static MipsLIR *genUnconditionalBranch(CompilationUnit *cUnit, MipsLIR *target)
1002{
1003    MipsLIR *branch = opNone(cUnit, kOpUncondBr);
1004    branch->generic.target = (LIR *) target;
1005    return branch;
1006}
1007
1008/* Perform the actual operation for OP_RETURN_* */
1009void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
1010{
1011    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1012                         TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
1013#if defined(WITH_JIT_TUNING)
1014    gDvmJit.returnOp++;
1015#endif
1016    int dPC = (int) (cUnit->method->insns + mir->offset);
1017    /* Insert branch, but defer setting of target */
1018    MipsLIR *branch = genUnconditionalBranch(cUnit, NULL);
1019    /* Set up the place holder to reconstruct this Dalvik PC */
1020    MipsLIR *pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
1021    pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
1022    pcrLabel->operands[0] = dPC;
1023    pcrLabel->operands[1] = mir->offset;
1024    /* Insert the place holder to the growable list */
1025    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
1026    /* Branch to the PC reconstruction code */
1027    branch->generic.target = (LIR *) pcrLabel;
1028}
1029
1030static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
1031                                  DecodedInstruction *dInsn,
1032                                  MipsLIR **pcrLabel)
1033{
1034    unsigned int i;
1035    unsigned int regMask = 0;
1036    RegLocation rlArg;
1037    int numDone = 0;
1038
1039    /*
1040     * Load arguments to r_A0..r_T0.  Note that these registers may contain
1041     * live values, so we clobber them immediately after loading to prevent
1042     * them from being used as sources for subsequent loads.
1043     */
1044    dvmCompilerLockAllTemps(cUnit);
1045    for (i = 0; i < dInsn->vA; i++) {
1046        regMask |= 1 << i;
1047        rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
1048        loadValueDirectFixed(cUnit, rlArg, i+r_A0); /* r_A0 thru r_T0 */
1049    }
1050    if (regMask) {
1051        /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
1052        opRegRegImm(cUnit, kOpSub, r_S4, rFP,
1053                    sizeof(StackSaveArea) + (dInsn->vA << 2));
1054        /* generate null check */
1055        if (pcrLabel) {
1056            *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r_A0,
1057                                     mir->offset, NULL);
1058        }
1059        storeMultiple(cUnit, r_S4, regMask);
1060    }
1061}
1062
1063static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
1064                                DecodedInstruction *dInsn,
1065                                MipsLIR **pcrLabel)
1066{
1067    int srcOffset = dInsn->vC << 2;
1068    int numArgs = dInsn->vA;
1069    int regMask;
1070
1071    /*
1072     * Note: here, all promoted registers will have been flushed
1073     * back to the Dalvik base locations, so register usage restrictins
1074     * are lifted.  All parms loaded from original Dalvik register
1075     * region - even though some might conceivably have valid copies
1076     * cached in a preserved register.
1077     */
1078    dvmCompilerLockAllTemps(cUnit);
1079
1080    /*
1081     * r4PC     : &rFP[vC]
1082     * r_S4: &newFP[0]
1083     */
1084    opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
1085    /* load [r_A0 up to r_A3)] */
1086    regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
1087    /*
1088     * Protect the loadMultiple instruction from being reordered with other
1089     * Dalvik stack accesses.
1090     */
1091    if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
1092
1093    opRegRegImm(cUnit, kOpSub, r_S4, rFP,
1094                sizeof(StackSaveArea) + (numArgs << 2));
1095    /* generate null check */
1096    if (pcrLabel) {
1097        *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r_A0,
1098                                 mir->offset, NULL);
1099    }
1100
1101    /*
1102     * Handle remaining 4n arguments:
1103     * store previously loaded 4 values and load the next 4 values
1104     */
1105    if (numArgs >= 8) {
1106        MipsLIR *loopLabel = NULL;
1107        /*
1108         * r_A0 contains "this" and it will be used later, so push it to the stack
1109         * first. Pushing r_S1 (rFP) is just for stack alignment purposes.
1110         */
1111
1112        newLIR2(cUnit, kMipsMove, r_T0, r_A0);
1113        newLIR2(cUnit, kMipsMove, r_T1, r_S1);
1114
1115        /* No need to generate the loop structure if numArgs <= 11 */
1116        if (numArgs > 11) {
1117            loadConstant(cUnit, rFP, ((numArgs - 4) >> 2) << 2);
1118            loopLabel = newLIR0(cUnit, kMipsPseudoTargetLabel);
1119            loopLabel->defMask = ENCODE_ALL;
1120        }
1121        storeMultiple(cUnit, r_S4, regMask);
1122        /*
1123         * Protect the loadMultiple instruction from being reordered with other
1124         * Dalvik stack accesses.
1125         */
1126        loadMultiple(cUnit, r4PC, regMask);
1127        /* No need to generate the loop structure if numArgs <= 11 */
1128        if (numArgs > 11) {
1129            opRegImm(cUnit, kOpSub, rFP, 4);
1130            genConditionalBranchMips(cUnit, kMipsBne, rFP, r_ZERO, loopLabel);
1131        }
1132    }
1133
1134    /* Save the last batch of loaded values */
1135    if (numArgs != 0) storeMultiple(cUnit, r_S4, regMask);
1136
1137    /* Generate the loop epilogue - don't use r_A0 */
1138    if ((numArgs > 4) && (numArgs % 4)) {
1139        regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
1140        /*
1141         * Protect the loadMultiple instruction from being reordered with other
1142         * Dalvik stack accesses.
1143         */
1144        loadMultiple(cUnit, r4PC, regMask);
1145    }
1146    if (numArgs >= 8) {
1147        newLIR2(cUnit, kMipsMove, r_A0, r_T0);
1148        newLIR2(cUnit, kMipsMove, r_S1, r_T1);
1149    }
1150
1151    /* Save the modulo 4 arguments */
1152    if ((numArgs > 4) && (numArgs % 4)) {
1153        storeMultiple(cUnit, r_S4, regMask);
1154    }
1155}
1156
1157/*
1158 * Generate code to setup the call stack then jump to the chaining cell if it
1159 * is not a native method.
1160 */
1161static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
1162                                     BasicBlock *bb, MipsLIR *labelList,
1163                                     MipsLIR *pcrLabel,
1164                                     const Method *calleeMethod)
1165{
1166    /*
1167     * Note: all Dalvik register state should be flushed to
1168     * memory by the point, so register usage restrictions no
1169     * longer apply.  All temp & preserved registers may be used.
1170     */
1171    dvmCompilerLockAllTemps(cUnit);
1172    MipsLIR *retChainingCell = &labelList[bb->fallThrough->id];
1173
1174    /* r_A1 = &retChainingCell */
1175    dvmCompilerLockTemp(cUnit, r_A1);
1176    MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1177    addrRetChain->generic.target = (LIR *) retChainingCell;
1178    addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1179    addrRetChain->generic.target = (LIR *) retChainingCell;
1180
1181    /* r4PC = dalvikCallsite */
1182    loadConstant(cUnit, r4PC,
1183                 (int) (cUnit->method->insns + mir->offset));
1184    /*
1185     * r_A0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
1186     * r_A1 = &ChainingCell
1187     * r4PC = callsiteDPC
1188     */
1189    if (dvmIsNativeMethod(calleeMethod)) {
1190        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1191            TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
1192            TEMPLATE_INVOKE_METHOD_NATIVE);
1193#if defined(WITH_JIT_TUNING)
1194        gDvmJit.invokeNative++;
1195#endif
1196    } else {
1197        genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1198            TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
1199            TEMPLATE_INVOKE_METHOD_CHAIN);
1200#if defined(WITH_JIT_TUNING)
1201        gDvmJit.invokeMonomorphic++;
1202#endif
1203        /* Branch to the chaining cell */
1204        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1205    }
1206    /* Handle exceptions using the interpreter */
1207    genTrap(cUnit, mir->offset, pcrLabel);
1208}
1209
1210/*
1211 * Generate code to check the validity of a predicted chain and take actions
1212 * based on the result.
1213 *
1214 * 0x2f1304c4 :  lui      s0,0x2d22(11554)            # s0 <- dalvikPC
1215 * 0x2f1304c8 :  ori      s0,s0,0x2d22848c(757236876)
1216 * 0x2f1304cc :  lahi/lui a1,0x2f13(12051)            # a1 <- &retChainingCell
1217 * 0x2f1304d0 :  lalo/ori a1,a1,0x2f13055c(789775708)
1218 * 0x2f1304d4 :  lahi/lui a2,0x2f13(12051)            # a2 <- &predictedChainingCell
1219 * 0x2f1304d8 :  lalo/ori a2,a2,0x2f13056c(789775724)
1220 * 0x2f1304dc :  jal      0x2f12d1ec(789762540)       # call TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
1221 * 0x2f1304e0 :  nop
1222 * 0x2f1304e4 :  b        0x2f13056c (L0x11ec10)      # off to the predicted chain
1223 * 0x2f1304e8 :  nop
1224 * 0x2f1304ec :  b        0x2f13054c (L0x11fc80)      # punt to the interpreter
1225 * 0x2f1304f0 :  lui      a0,0x2d22(11554)
1226 * 0x2f1304f4 :  lw       a0,156(s4)                  # a0 <- this->class->vtable[methodIdx]
1227 * 0x2f1304f8 :  bgtz     a1,0x2f13051c (L0x11fa40)   # if >0 don't rechain
1228 * 0x2f1304fc :  nop
1229 * 0x2f130500 :  lui      t9,0x2aba(10938)
1230 * 0x2f130504 :  ori      t9,t9,0x2abae3f8(716891128)
1231 * 0x2f130508 :  move     a1,s2
1232 * 0x2f13050c :  jalr     ra,t9                       # call dvmJitToPatchPredictedChain
1233 * 0x2f130510 :  nop
1234 * 0x2f130514 :  lw       gp,84(sp)
1235 * 0x2f130518 :  move     a0,v0
1236 * 0x2f13051c :  lahi/lui a1,0x2f13(12051)            # a1 <- &retChainingCell
1237 * 0x2f130520 :  lalo/ori a1,a1,0x2f13055c(789775708)
1238 * 0x2f130524 :  jal      0x2f12d0c4(789762244)       # call TEMPLATE_INVOKE_METHOD_NO_OPT
1239 * 0x2f130528 :  nop
1240 */
1241static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
1242                                   int methodIndex,
1243                                   MipsLIR *retChainingCell,
1244                                   MipsLIR *predChainingCell,
1245                                   MipsLIR *pcrLabel)
1246{
1247    /*
1248     * Note: all Dalvik register state should be flushed to
1249     * memory by the point, so register usage restrictions no
1250     * longer apply.  Lock temps to prevent them from being
1251     * allocated by utility routines.
1252     */
1253    dvmCompilerLockAllTemps(cUnit);
1254
1255    /*
1256     * For verbose printing, store the method pointer in operands[1] first as
1257     * operands[0] will be clobbered in dvmCompilerMIR2LIR.
1258     */
1259    predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
1260
1261    /* "this" is already left in r_A0 by genProcessArgs* */
1262
1263    /* r4PC = dalvikCallsite */
1264    loadConstant(cUnit, r4PC,
1265                 (int) (cUnit->method->insns + mir->offset));
1266
1267    /* r_A1 = &retChainingCell */
1268    MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1269    addrRetChain->generic.target = (LIR *) retChainingCell;
1270    addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1271    addrRetChain->generic.target = (LIR *) retChainingCell;
1272
1273    /* r_A2 = &predictedChainingCell */
1274    MipsLIR *predictedChainingCell = newLIR2(cUnit, kMipsLahi, r_A2, 0);
1275    predictedChainingCell->generic.target = (LIR *) predChainingCell;
1276    predictedChainingCell = newLIR3(cUnit, kMipsLalo, r_A2, r_A2, 0);
1277    predictedChainingCell->generic.target = (LIR *) predChainingCell;
1278
1279    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1280        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
1281        TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
1282
1283    /* return through ra - jump to the chaining cell */
1284    genUnconditionalBranch(cUnit, predChainingCell);
1285
1286    /*
1287     * null-check on "this" may have been eliminated, but we still need a PC-
1288     * reconstruction label for stack overflow bailout.
1289     */
1290    if (pcrLabel == NULL) {
1291        int dPC = (int) (cUnit->method->insns + mir->offset);
1292        pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
1293        pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
1294        pcrLabel->operands[0] = dPC;
1295        pcrLabel->operands[1] = mir->offset;
1296        /* Insert the place holder to the growable list */
1297        dvmInsertGrowableList(&cUnit->pcReconstructionList,
1298                              (intptr_t) pcrLabel);
1299    }
1300
1301    /* return through ra+8 - punt to the interpreter */
1302    genUnconditionalBranch(cUnit, pcrLabel);
1303
1304    /*
1305     * return through ra+16 - fully resolve the callee method.
1306     * r_A1 <- count
1307     * r_A2 <- &predictedChainCell
1308     * r_A3 <- this->class
1309     * r4 <- dPC
1310     * r_S4 <- this->class->vtable
1311     */
1312
1313    /* r_A0 <- calleeMethod */
1314    loadWordDisp(cUnit, r_S4, methodIndex * 4, r_A0);
1315
1316    /* Check if rechain limit is reached */
1317    MipsLIR *bypassRechaining = opCompareBranch(cUnit, kMipsBgtz, r_A1, -1);
1318
1319    LOAD_FUNC_ADDR(cUnit, r_T9, (int) dvmJitToPatchPredictedChain);
1320
1321    genRegCopy(cUnit, r_A1, rSELF);
1322
1323    /*
1324     * r_A0 = calleeMethod
1325     * r_A2 = &predictedChainingCell
1326     * r_A3 = class
1327     *
1328     * &returnChainingCell has been loaded into r_A1 but is not needed
1329     * when patching the chaining cell and will be clobbered upon
1330     * returning so it will be reconstructed again.
1331     */
1332    opReg(cUnit, kOpBlx, r_T9);
1333    newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1334    newLIR2(cUnit, kMipsMove, r_A0, r_V0);
1335
1336    /* r_A1 = &retChainingCell */
1337    addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1338    addrRetChain->generic.target = (LIR *) retChainingCell;
1339    bypassRechaining->generic.target = (LIR *) addrRetChain;
1340    addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1341    addrRetChain->generic.target = (LIR *) retChainingCell;
1342
1343    /*
1344     * r_A0 = calleeMethod,
1345     * r_A1 = &ChainingCell,
1346     * r4PC = callsiteDPC,
1347     */
1348    genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1349        TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
1350        TEMPLATE_INVOKE_METHOD_NO_OPT);
1351#if defined(WITH_JIT_TUNING)
1352    gDvmJit.invokePolymorphic++;
1353#endif
1354    /* Handle exceptions using the interpreter */
1355    genTrap(cUnit, mir->offset, pcrLabel);
1356}
1357
1358/* "this" pointer is already in r0 */
1359static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
1360                                        MIR *mir,
1361                                        void *calleeAddr,
1362                                        MipsLIR *retChainingCell)
1363{
1364    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
1365    dvmCompilerLockAllTemps(cUnit);
1366
1367    loadClassPointer(cUnit, r_A1, (int) callsiteInfo);
1368
1369    loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A2);
1370    /*
1371     * Set the misPredBranchOver target so that it will be generated when the
1372     * code for the non-optimized invoke is generated.
1373     */
1374    /* Branch to the slow path if classes are not equal */
1375    MipsLIR *classCheck = opCompareBranch(cUnit, kMipsBne, r_A1, r_A2);
1376
1377    /* a0 = the Dalvik PC of the callsite */
1378    loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1379
1380    newLIR1(cUnit, kMipsJal, (int) calleeAddr);
1381    genUnconditionalBranch(cUnit, retChainingCell);
1382
1383    /* Target of slow path */
1384    MipsLIR *slowPathLabel = newLIR0(cUnit, kMipsPseudoTargetLabel);
1385
1386    slowPathLabel->defMask = ENCODE_ALL;
1387    classCheck->generic.target = (LIR *) slowPathLabel;
1388
1389    // FIXME
1390    cUnit->printMe = true;
1391}
1392
1393static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
1394                                          MIR *mir,
1395                                          void *calleeAddr,
1396                                          MipsLIR *retChainingCell)
1397{
1398    /* a0 = the Dalvik PC of the callsite */
1399    loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1400
1401    newLIR1(cUnit, kMipsJal, (int) calleeAddr);
1402    genUnconditionalBranch(cUnit, retChainingCell);
1403
1404    // FIXME
1405    cUnit->printMe = true;
1406}
1407
1408/* Geneate a branch to go back to the interpreter */
1409static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
1410{
1411    /* a0 = dalvik pc */
1412    dvmCompilerFlushAllRegs(cUnit);
1413    loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + offset));
1414#if 0 /* MIPSTODO tempoary workaround unaligned access on sigma hardware
1415             this can removed when we're not punting to genInterpSingleStep
1416             for opcodes that haven't been activated yet */
1417    loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A3);
1418#endif
1419    loadWordDisp(cUnit, rSELF, offsetof(Thread,
1420                 jitToInterpEntries.dvmJitToInterpPunt), r_A1);
1421
1422    opReg(cUnit, kOpBlx, r_A1);
1423}
1424
1425/*
1426 * Attempt to single step one instruction using the interpreter and return
1427 * to the compiled code for the next Dalvik instruction
1428 */
1429static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
1430{
1431    int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
1432    int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
1433
1434    // Single stepping is considered loop mode breaker
1435    if (cUnit->jitMode == kJitLoop) {
1436        cUnit->quitLoopMode = true;
1437        return;
1438    }
1439
1440    //If already optimized out, just ignore
1441    if (mir->dalvikInsn.opcode == OP_NOP)
1442        return;
1443
1444    //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
1445    dvmCompilerFlushAllRegs(cUnit);
1446
1447    if ((mir->next == NULL) || (flags & flagsToCheck)) {
1448       genPuntToInterp(cUnit, mir->offset);
1449       return;
1450    }
1451    int entryAddr = offsetof(Thread,
1452                             jitToInterpEntries.dvmJitToInterpSingleStep);
1453    loadWordDisp(cUnit, rSELF, entryAddr, r_A2);
1454    /* a0 = dalvik pc */
1455    loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1456    /* a1 = dalvik pc of following instruction */
1457    loadConstant(cUnit, r_A1, (int) (cUnit->method->insns + mir->next->offset));
1458    opReg(cUnit, kOpBlx, r_A2);
1459}
1460
1461/*
1462 * To prevent a thread in a monitor wait from blocking the Jit from
1463 * resetting the code cache, heavyweight monitor lock will not
1464 * be allowed to return to an existing translation.  Instead, we will
1465 * handle them by branching to a handler, which will in turn call the
1466 * runtime lock routine and then branch directly back to the
1467 * interpreter main loop.  Given the high cost of the heavyweight
1468 * lock operation, this additional cost should be slight (especially when
1469 * considering that we expect the vast majority of lock operations to
1470 * use the fast-path thin lock bypass).
1471 */
1472static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
1473{
1474    bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
1475    genExportPC(cUnit, mir);
1476    dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
1477    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1478    loadValueDirectFixed(cUnit, rlSrc, r_A1);
1479    genRegCopy(cUnit, r_A0, rSELF);
1480    genNullCheck(cUnit, rlSrc.sRegLow, r_A1, mir->offset, NULL);
1481    if (isEnter) {
1482        /* Get dPC of next insn */
1483        loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
1484                 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
1485        genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
1486    } else {
1487        LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmUnlockObject);
1488        /* Do the call */
1489        opReg(cUnit, kOpBlx, r_T9);
1490        newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1491        /* Did we throw? */
1492        MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
1493        loadConstant(cUnit, r_A0,
1494                     (int) (cUnit->method->insns + mir->offset +
1495                     dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
1496        genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1497        MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1498        target->defMask = ENCODE_ALL;
1499        branchOver->generic.target = (LIR *) target;
1500        dvmCompilerClobberCallRegs(cUnit);
1501    }
1502}
1503/*#endif*/
1504
1505/*
1506 * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
1507 * punt to the interpreter.
1508 */
1509static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
1510{
1511    int rTemp = dvmCompilerAllocTemp(cUnit);
1512    MipsLIR *ld;
1513    ld = loadBaseDisp(cUnit, NULL, rSELF,
1514                      offsetof(Thread, interpBreak.ctl.breakFlags),
1515                      rTemp, kUnsignedByte, INVALID_SREG);
1516    setMemRefType(ld, true /* isLoad */, kMustNotAlias);
1517    genRegImmCheck(cUnit, kMipsCondNe, rTemp, 0, mir->offset, NULL);
1518}
1519
1520/*
1521 * The following are the first-level codegen routines that analyze the format
1522 * of each bytecode then either dispatch special purpose codegen routines
1523 * or produce corresponding Thumb instructions directly.
1524 */
1525
1526static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
1527                                       BasicBlock *bb, MipsLIR *labelList)
1528{
1529    /* backward branch? */
1530    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
1531
1532    if (backwardBranch &&
1533        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
1534        genSuspendPoll(cUnit, mir);
1535    }
1536
1537    int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
1538    /*
1539     * Things could be hoisted out of the taken block into the predecessor, so
1540     * make sure it is dominated by the predecessor.
1541     */
1542    if (numPredecessors == 1 && bb->taken->visited == false &&
1543        bb->taken->blockType == kDalvikByteCode) {
1544        cUnit->nextCodegenBlock = bb->taken;
1545    } else {
1546        /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
1547        genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1548    }
1549    return false;
1550}
1551
1552static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
1553{
1554    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1555    if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
1556        ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1557        return true;
1558    }
1559    switch (dalvikOpcode) {
1560        case OP_RETURN_VOID_BARRIER:
1561            dvmCompilerGenMemBarrier(cUnit, 0);
1562            // Intentional fallthrough
1563        case OP_RETURN_VOID:
1564            genReturnCommon(cUnit,mir);
1565            break;
1566        case OP_UNUSED_73:
1567        case OP_UNUSED_79:
1568        case OP_UNUSED_7A:
1569        case OP_UNUSED_FF:
1570            ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1571            return true;
1572        case OP_NOP:
1573            break;
1574        default:
1575            return true;
1576    }
1577    return false;
1578}
1579
1580static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
1581{
1582    RegLocation rlDest;
1583    RegLocation rlResult;
1584    if (mir->ssaRep->numDefs == 2) {
1585        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1586    } else {
1587        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1588    }
1589
1590    switch (mir->dalvikInsn.opcode) {
1591        case OP_CONST:
1592        case OP_CONST_4: {
1593            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1594            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1595            storeValue(cUnit, rlDest, rlResult);
1596            break;
1597        }
1598        case OP_CONST_WIDE_32: {
1599            //TUNING: single routine to load constant pair for support doubles
1600            //TUNING: load 0/-1 separately to avoid load dependency
1601            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1602            loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1603            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
1604                        rlResult.lowReg, 31);
1605            storeValueWide(cUnit, rlDest, rlResult);
1606            break;
1607        }
1608        default:
1609            return true;
1610    }
1611    return false;
1612}
1613
1614static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
1615{
1616    RegLocation rlDest;
1617    RegLocation rlResult;
1618    if (mir->ssaRep->numDefs == 2) {
1619        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1620    } else {
1621        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1622    }
1623    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1624
1625    switch (mir->dalvikInsn.opcode) {
1626        case OP_CONST_HIGH16: {
1627            loadConstantNoClobber(cUnit, rlResult.lowReg,
1628                                  mir->dalvikInsn.vB << 16);
1629            storeValue(cUnit, rlDest, rlResult);
1630            break;
1631        }
1632        case OP_CONST_WIDE_HIGH16: {
1633            loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
1634                                  0, mir->dalvikInsn.vB << 16);
1635            storeValueWide(cUnit, rlDest, rlResult);
1636            break;
1637        }
1638        default:
1639            return true;
1640    }
1641    return false;
1642}
1643
1644static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
1645{
1646    /* For OP_THROW_VERIFICATION_ERROR */
1647    genInterpSingleStep(cUnit, mir);
1648    return false;
1649}
1650
1651static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
1652{
1653    RegLocation rlResult;
1654    RegLocation rlDest;
1655    RegLocation rlSrc;
1656
1657    switch (mir->dalvikInsn.opcode) {
1658        case OP_CONST_STRING_JUMBO:
1659        case OP_CONST_STRING: {
1660            void *strPtr = (void*)
1661              (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
1662
1663            if (strPtr == NULL) {
1664                BAIL_LOOP_COMPILATION();
1665                ALOGE("Unexpected null string");
1666                dvmAbort();
1667            }
1668
1669            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1670            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1671            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
1672            storeValue(cUnit, rlDest, rlResult);
1673            break;
1674        }
1675        case OP_CONST_CLASS: {
1676            void *classPtr = (void*)
1677              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1678
1679            if (classPtr == NULL) {
1680                BAIL_LOOP_COMPILATION();
1681                ALOGE("Unexpected null class");
1682                dvmAbort();
1683            }
1684
1685            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1686            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1687            loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
1688            storeValue(cUnit, rlDest, rlResult);
1689            break;
1690        }
1691        case OP_SGET:
1692        case OP_SGET_VOLATILE:
1693        case OP_SGET_OBJECT:
1694        case OP_SGET_OBJECT_VOLATILE:
1695        case OP_SGET_BOOLEAN:
1696        case OP_SGET_CHAR:
1697        case OP_SGET_BYTE:
1698        case OP_SGET_SHORT: {
1699            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1700            int tReg = dvmCompilerAllocTemp(cUnit);
1701            bool isVolatile;
1702            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1703                mir->meta.calleeMethod : cUnit->method;
1704            void *fieldPtr = (void*)
1705              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1706
1707            if (fieldPtr == NULL) {
1708                BAIL_LOOP_COMPILATION();
1709                ALOGE("Unexpected null static field");
1710                dvmAbort();
1711            }
1712
1713            /*
1714             * On SMP systems, Dalvik opcodes found to be referencing
1715             * volatile fields are rewritten to their _VOLATILE variant.
1716             * However, this does not happen on non-SMP systems. The JIT
1717             * still needs to know about volatility to avoid unsafe
1718             * optimizations so we determine volatility based on either
1719             * the opcode or the field access flags.
1720             */
1721#if ANDROID_SMP != 0
1722            Opcode opcode = mir->dalvikInsn.opcode;
1723            isVolatile = (opcode == OP_SGET_VOLATILE) ||
1724                         (opcode == OP_SGET_OBJECT_VOLATILE);
1725            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1726#else
1727            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1728#endif
1729
1730            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1731            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1732            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1733
1734            if (isVolatile) {
1735                dvmCompilerGenMemBarrier(cUnit, 0);
1736            }
1737            HEAP_ACCESS_SHADOW(true);
1738            loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
1739            HEAP_ACCESS_SHADOW(false);
1740
1741            storeValue(cUnit, rlDest, rlResult);
1742            break;
1743        }
1744        case OP_SGET_WIDE: {
1745            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1746            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1747                mir->meta.calleeMethod : cUnit->method;
1748            void *fieldPtr = (void*)
1749              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1750
1751            if (fieldPtr == NULL) {
1752                BAIL_LOOP_COMPILATION();
1753                ALOGE("Unexpected null static field");
1754                dvmAbort();
1755            }
1756
1757            int tReg = dvmCompilerAllocTemp(cUnit);
1758            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1759            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1760            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1761
1762            HEAP_ACCESS_SHADOW(true);
1763            loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
1764            HEAP_ACCESS_SHADOW(false);
1765
1766            storeValueWide(cUnit, rlDest, rlResult);
1767            break;
1768        }
1769        case OP_SPUT:
1770        case OP_SPUT_VOLATILE:
1771        case OP_SPUT_OBJECT:
1772        case OP_SPUT_OBJECT_VOLATILE:
1773        case OP_SPUT_BOOLEAN:
1774        case OP_SPUT_CHAR:
1775        case OP_SPUT_BYTE:
1776        case OP_SPUT_SHORT: {
1777            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1778            int tReg = dvmCompilerAllocTemp(cUnit);
1779            int objHead = 0;
1780            bool isVolatile;
1781            bool isSputObject;
1782            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1783                mir->meta.calleeMethod : cUnit->method;
1784            void *fieldPtr = (void*)
1785              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1786            Opcode opcode = mir->dalvikInsn.opcode;
1787
1788            if (fieldPtr == NULL) {
1789                BAIL_LOOP_COMPILATION();
1790                ALOGE("Unexpected null static field");
1791                dvmAbort();
1792            }
1793
1794#if ANDROID_SMP != 0
1795            isVolatile = (opcode == OP_SPUT_VOLATILE) ||
1796                         (opcode == OP_SPUT_OBJECT_VOLATILE);
1797            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1798#else
1799            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1800#endif
1801
1802            isSputObject = (opcode == OP_SPUT_OBJECT) ||
1803                           (opcode == OP_SPUT_OBJECT_VOLATILE);
1804
1805            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1806            rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
1807            loadConstant(cUnit, tReg,  (int) fieldPtr);
1808            if (isSputObject) {
1809                objHead = dvmCompilerAllocTemp(cUnit);
1810                loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
1811            }
1812            if (isVolatile) {
1813                dvmCompilerGenMemBarrier(cUnit, 0);
1814            }
1815            HEAP_ACCESS_SHADOW(true);
1816            storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
1817            dvmCompilerFreeTemp(cUnit, tReg);
1818            HEAP_ACCESS_SHADOW(false);
1819            if (isVolatile) {
1820                dvmCompilerGenMemBarrier(cUnit, 0);
1821            }
1822            if (isSputObject) {
1823                /* NOTE: marking card based sfield->clazz */
1824                markCard(cUnit, rlSrc.lowReg, objHead);
1825                dvmCompilerFreeTemp(cUnit, objHead);
1826            }
1827
1828            break;
1829        }
1830        case OP_SPUT_WIDE: {
1831            int tReg = dvmCompilerAllocTemp(cUnit);
1832            int valOffset = OFFSETOF_MEMBER(StaticField, value);
1833            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1834                mir->meta.calleeMethod : cUnit->method;
1835            void *fieldPtr = (void*)
1836              (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1837
1838            if (fieldPtr == NULL) {
1839                BAIL_LOOP_COMPILATION();
1840                ALOGE("Unexpected null static field");
1841                dvmAbort();
1842            }
1843
1844            rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1845            rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
1846            loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
1847
1848            HEAP_ACCESS_SHADOW(true);
1849            storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
1850            HEAP_ACCESS_SHADOW(false);
1851            break;
1852        }
1853        case OP_NEW_INSTANCE: {
1854            /*
1855             * Obey the calling convention and don't mess with the register
1856             * usage.
1857             */
1858            ClassObject *classPtr = (ClassObject *)
1859              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1860
1861            if (classPtr == NULL) {
1862                BAIL_LOOP_COMPILATION();
1863                ALOGE("Unexpected null class");
1864                dvmAbort();
1865            }
1866
1867            /*
1868             * If it is going to throw, it should not make to the trace to begin
1869             * with.  However, Alloc might throw, so we need to genExportPC()
1870             */
1871            assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
1872            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1873            genExportPC(cUnit, mir);
1874            LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmAllocObject);
1875            loadConstant(cUnit, r_A0, (int) classPtr);
1876            loadConstant(cUnit, r_A1, ALLOC_DONT_TRACK);
1877            opReg(cUnit, kOpBlx, r_T9);
1878            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1879            dvmCompilerClobberCallRegs(cUnit);
1880            /* generate a branch over if allocation is successful */
1881            MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
1882
1883            /*
1884             * OOM exception needs to be thrown here and cannot re-execute
1885             */
1886            loadConstant(cUnit, r_A0,
1887                         (int) (cUnit->method->insns + mir->offset));
1888            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1889            /* noreturn */
1890
1891            MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1892            target->defMask = ENCODE_ALL;
1893            branchOver->generic.target = (LIR *) target;
1894            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1895            rlResult = dvmCompilerGetReturn(cUnit);
1896            storeValue(cUnit, rlDest, rlResult);
1897            break;
1898        }
1899        case OP_CHECK_CAST: {
1900            /*
1901             * Obey the calling convention and don't mess with the register
1902             * usage.
1903             */
1904            ClassObject *classPtr =
1905              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1906            /*
1907             * Note: It is possible that classPtr is NULL at this point,
1908             * even though this instruction has been successfully interpreted.
1909             * If the previous interpretation had a null source, the
1910             * interpreter would not have bothered to resolve the clazz.
1911             * Bail out to the interpreter in this case, and log it
1912             * so that we can tell if it happens frequently.
1913             */
1914            if (classPtr == NULL) {
1915                BAIL_LOOP_COMPILATION();
1916                LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
1917                genInterpSingleStep(cUnit, mir);
1918                return false;
1919            }
1920            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
1921            loadConstant(cUnit, r_A1, (int) classPtr );
1922            rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1923            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
1924            MipsLIR *branch1 = opCompareBranch(cUnit, kMipsBeqz, rlSrc.lowReg, -1);
1925            /*
1926             *  rlSrc.lowReg now contains object->clazz.  Note that
1927             *  it could have been allocated r_A0, but we're okay so long
1928             *  as we don't do anything desctructive until r_A0 is loaded
1929             *  with clazz.
1930             */
1931            /* r_A0 now contains object->clazz */
1932            loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r_A0);
1933            LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInstanceofNonTrivial);
1934            MipsLIR *branch2 = opCompareBranch(cUnit, kMipsBeq, r_A0, r_A1);
1935            opReg(cUnit, kOpBlx, r_T9);
1936            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1937            dvmCompilerClobberCallRegs(cUnit);
1938            /*
1939             * If null, check cast failed - punt to the interpreter.  Because
1940             * interpreter will be the one throwing, we don't need to
1941             * genExportPC() here.
1942             */
1943            genRegCopy(cUnit, r_A0, r_V0);
1944            genZeroCheck(cUnit, r_V0, mir->offset, NULL);
1945            /* check cast passed - branch target here */
1946            MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1947            target->defMask = ENCODE_ALL;
1948            branch1->generic.target = (LIR *)target;
1949            branch2->generic.target = (LIR *)target;
1950            break;
1951        }
1952        case OP_SGET_WIDE_VOLATILE:
1953        case OP_SPUT_WIDE_VOLATILE:
1954            genInterpSingleStep(cUnit, mir);
1955            break;
1956        default:
1957            return true;
1958    }
1959    return false;
1960}
1961
1962static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
1963{
1964    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1965    RegLocation rlResult;
1966    switch (dalvikOpcode) {
1967        case OP_MOVE_EXCEPTION: {
1968            int exOffset = offsetof(Thread, exception);
1969            int resetReg = dvmCompilerAllocTemp(cUnit);
1970            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1971            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1972            loadWordDisp(cUnit, rSELF, exOffset, rlResult.lowReg);
1973            loadConstant(cUnit, resetReg, 0);
1974            storeWordDisp(cUnit, rSELF, exOffset, resetReg);
1975            storeValue(cUnit, rlDest, rlResult);
1976           break;
1977        }
1978        case OP_MOVE_RESULT:
1979        case OP_MOVE_RESULT_OBJECT: {
1980            /* An inlined move result is effectively no-op */
1981            if (mir->OptimizationFlags & MIR_INLINED)
1982                break;
1983            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1984            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
1985            rlSrc.fp = rlDest.fp;
1986            storeValue(cUnit, rlDest, rlSrc);
1987            break;
1988        }
1989        case OP_MOVE_RESULT_WIDE: {
1990            /* An inlined move result is effectively no-op */
1991            if (mir->OptimizationFlags & MIR_INLINED)
1992                break;
1993            RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1994            RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
1995            rlSrc.fp = rlDest.fp;
1996            storeValueWide(cUnit, rlDest, rlSrc);
1997            break;
1998        }
1999        case OP_RETURN_WIDE: {
2000            RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2001            RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
2002            rlDest.fp = rlSrc.fp;
2003            storeValueWide(cUnit, rlDest, rlSrc);
2004            genReturnCommon(cUnit,mir);
2005            break;
2006        }
2007        case OP_RETURN:
2008        case OP_RETURN_OBJECT: {
2009            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2010            RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
2011            rlDest.fp = rlSrc.fp;
2012            storeValue(cUnit, rlDest, rlSrc);
2013            genReturnCommon(cUnit, mir);
2014            break;
2015        }
2016        case OP_MONITOR_EXIT:
2017        case OP_MONITOR_ENTER:
2018            genMonitor(cUnit, mir);
2019            break;
2020        case OP_THROW:
2021            genInterpSingleStep(cUnit, mir);
2022            break;
2023        default:
2024            return true;
2025    }
2026    return false;
2027}
2028
2029static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
2030{
2031    Opcode opcode = mir->dalvikInsn.opcode;
2032    RegLocation rlDest;
2033    RegLocation rlSrc;
2034    RegLocation rlResult;
2035
2036    if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
2037        return genArithOp( cUnit, mir );
2038    }
2039
2040    if (mir->ssaRep->numUses == 2)
2041        rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2042    else
2043        rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2044    if (mir->ssaRep->numDefs == 2)
2045        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2046    else
2047        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2048
2049    switch (opcode) {
2050        case OP_DOUBLE_TO_INT:
2051        case OP_INT_TO_FLOAT:
2052        case OP_FLOAT_TO_INT:
2053        case OP_DOUBLE_TO_FLOAT:
2054        case OP_FLOAT_TO_DOUBLE:
2055        case OP_INT_TO_DOUBLE:
2056        case OP_FLOAT_TO_LONG:
2057        case OP_LONG_TO_FLOAT:
2058        case OP_DOUBLE_TO_LONG:
2059        case OP_LONG_TO_DOUBLE:
2060            return genConversion(cUnit, mir);
2061        case OP_NEG_INT:
2062        case OP_NOT_INT:
2063            return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
2064        case OP_NEG_LONG:
2065        case OP_NOT_LONG:
2066            return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
2067        case OP_NEG_FLOAT:
2068            return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
2069        case OP_NEG_DOUBLE:
2070            return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
2071        case OP_MOVE_WIDE:
2072            storeValueWide(cUnit, rlDest, rlSrc);
2073            break;
2074        case OP_INT_TO_LONG:
2075            rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
2076            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2077            //TUNING: shouldn't loadValueDirect already check for phys reg?
2078            if (rlSrc.location == kLocPhysReg) {
2079                genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2080            } else {
2081                loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
2082            }
2083            opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
2084                        rlResult.lowReg, 31);
2085            storeValueWide(cUnit, rlDest, rlResult);
2086            break;
2087        case OP_LONG_TO_INT:
2088            rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
2089            rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
2090            // Intentional fallthrough
2091        case OP_MOVE:
2092        case OP_MOVE_OBJECT:
2093            storeValue(cUnit, rlDest, rlSrc);
2094            break;
2095        case OP_INT_TO_BYTE:
2096            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2097            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2098            opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
2099            storeValue(cUnit, rlDest, rlResult);
2100            break;
2101        case OP_INT_TO_SHORT:
2102            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2103            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2104            opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
2105            storeValue(cUnit, rlDest, rlResult);
2106            break;
2107        case OP_INT_TO_CHAR:
2108            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2109            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2110            opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
2111            storeValue(cUnit, rlDest, rlResult);
2112            break;
2113        case OP_ARRAY_LENGTH: {
2114            int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
2115            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2116            genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
2117                         mir->offset, NULL);
2118            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2119            loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
2120                         rlResult.lowReg);
2121            storeValue(cUnit, rlDest, rlResult);
2122            break;
2123        }
2124        default:
2125            return true;
2126    }
2127    return false;
2128}
2129
2130static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
2131{
2132    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2133    RegLocation rlDest;
2134    RegLocation rlResult;
2135    int BBBB = mir->dalvikInsn.vB;
2136    if (dalvikOpcode == OP_CONST_WIDE_16) {
2137        rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2138        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2139        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2140        //TUNING: do high separately to avoid load dependency
2141        opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
2142        storeValueWide(cUnit, rlDest, rlResult);
2143    } else if (dalvikOpcode == OP_CONST_16) {
2144        rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2145        rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
2146        loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2147        storeValue(cUnit, rlDest, rlResult);
2148    } else
2149        return true;
2150    return false;
2151}
2152
2153/* Compare agaist zero */
2154static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2155                         MipsLIR *labelList)
2156{
2157    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2158    MipsOpCode opc = kMipsNop;
2159    int rt = -1;
2160    /* backward branch? */
2161    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2162
2163    if (backwardBranch &&
2164        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2165        genSuspendPoll(cUnit, mir);
2166    }
2167
2168    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2169    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2170
2171    switch (dalvikOpcode) {
2172        case OP_IF_EQZ:
2173            opc = kMipsBeqz;
2174            break;
2175        case OP_IF_NEZ:
2176            opc = kMipsBne;
2177            rt = r_ZERO;
2178            break;
2179        case OP_IF_LTZ:
2180            opc = kMipsBltz;
2181            break;
2182        case OP_IF_GEZ:
2183            opc = kMipsBgez;
2184            break;
2185        case OP_IF_GTZ:
2186            opc = kMipsBgtz;
2187            break;
2188        case OP_IF_LEZ:
2189            opc = kMipsBlez;
2190            break;
2191        default:
2192            ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
2193            dvmCompilerAbort(cUnit);
2194    }
2195    genConditionalBranchMips(cUnit, opc, rlSrc.lowReg, rt, &labelList[bb->taken->id]);
2196    /* This mostly likely will be optimized away in a later phase */
2197    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2198    return false;
2199}
2200
2201static bool isPowerOfTwo(int x)
2202{
2203    return (x & (x - 1)) == 0;
2204}
2205
2206// Returns true if no more than two bits are set in 'x'.
2207static bool isPopCountLE2(unsigned int x)
2208{
2209    x &= x - 1;
2210    return (x & (x - 1)) == 0;
2211}
2212
2213// Returns the index of the lowest set bit in 'x'.
2214static int lowestSetBit(unsigned int x) {
2215    int bit_posn = 0;
2216    while ((x & 0xf) == 0) {
2217        bit_posn += 4;
2218        x >>= 4;
2219    }
2220    while ((x & 1) == 0) {
2221        bit_posn++;
2222        x >>= 1;
2223    }
2224    return bit_posn;
2225}
2226
2227// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
2228// and store the result in 'rlDest'.
2229static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
2230                             RegLocation rlSrc, RegLocation rlDest, int lit)
2231{
2232    if (lit < 2 || !isPowerOfTwo(lit)) {
2233        return false;
2234    }
2235    int k = lowestSetBit(lit);
2236    if (k >= 30) {
2237        // Avoid special cases.
2238        return false;
2239    }
2240    bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
2241    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2242    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2243    if (div) {
2244        int tReg = dvmCompilerAllocTemp(cUnit);
2245        if (lit == 2) {
2246            // Division by 2 is by far the most common division by constant.
2247            opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
2248            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2249            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2250        } else {
2251            opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
2252            opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
2253            opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2254            opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2255        }
2256    } else {
2257        int cReg = dvmCompilerAllocTemp(cUnit);
2258        loadConstant(cUnit, cReg, lit - 1);
2259        int tReg1 = dvmCompilerAllocTemp(cUnit);
2260        int tReg2 = dvmCompilerAllocTemp(cUnit);
2261        if (lit == 2) {
2262            opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
2263            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2264            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2265            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2266        } else {
2267            opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
2268            opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
2269            opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2270            opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2271            opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2272        }
2273    }
2274    storeValue(cUnit, rlDest, rlResult);
2275    return true;
2276}
2277
2278// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
2279// and store the result in 'rlDest'.
2280static bool handleEasyMultiply(CompilationUnit *cUnit,
2281                               RegLocation rlSrc, RegLocation rlDest, int lit)
2282{
2283    // Can we simplify this multiplication?
2284    bool powerOfTwo = false;
2285    bool popCountLE2 = false;
2286    bool powerOfTwoMinusOne = false;
2287    if (lit < 2) {
2288        // Avoid special cases.
2289        return false;
2290    } else if (isPowerOfTwo(lit)) {
2291        powerOfTwo = true;
2292    } else if (isPopCountLE2(lit)) {
2293        popCountLE2 = true;
2294    } else if (isPowerOfTwo(lit + 1)) {
2295        powerOfTwoMinusOne = true;
2296    } else {
2297        return false;
2298    }
2299    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2300    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2301    if (powerOfTwo) {
2302        // Shift.
2303        opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
2304                    lowestSetBit(lit));
2305    } else if (popCountLE2) {
2306        // Shift and add and shift.
2307        int firstBit = lowestSetBit(lit);
2308        int secondBit = lowestSetBit(lit ^ (1 << firstBit));
2309        genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
2310                                      firstBit, secondBit);
2311    } else {
2312        // Reverse subtract: (src << (shift + 1)) - src.
2313        assert(powerOfTwoMinusOne);
2314        // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
2315        int tReg = dvmCompilerAllocTemp(cUnit);
2316        opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
2317        opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
2318    }
2319    storeValue(cUnit, rlDest, rlResult);
2320    return true;
2321}
2322
2323static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
2324{
2325    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2326    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2327    RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2328    RegLocation rlResult;
2329    int lit = mir->dalvikInsn.vC;
2330    OpKind op = (OpKind)0;      /* Make gcc happy */
2331    int shiftOp = false;
2332
2333    switch (dalvikOpcode) {
2334        case OP_RSUB_INT_LIT8:
2335        case OP_RSUB_INT: {
2336            int tReg;
2337            //TUNING: add support for use of Arm rsub op
2338            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2339            tReg = dvmCompilerAllocTemp(cUnit);
2340            loadConstant(cUnit, tReg, lit);
2341            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2342            opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
2343                        tReg, rlSrc.lowReg);
2344            storeValue(cUnit, rlDest, rlResult);
2345            return false;
2346            break;
2347        }
2348
2349        case OP_ADD_INT_LIT8:
2350        case OP_ADD_INT_LIT16:
2351            op = kOpAdd;
2352            break;
2353        case OP_MUL_INT_LIT8:
2354        case OP_MUL_INT_LIT16: {
2355            if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
2356                return false;
2357            }
2358            op = kOpMul;
2359            break;
2360        }
2361        case OP_AND_INT_LIT8:
2362        case OP_AND_INT_LIT16:
2363            op = kOpAnd;
2364            break;
2365        case OP_OR_INT_LIT8:
2366        case OP_OR_INT_LIT16:
2367            op = kOpOr;
2368            break;
2369        case OP_XOR_INT_LIT8:
2370        case OP_XOR_INT_LIT16:
2371            op = kOpXor;
2372            break;
2373        case OP_SHL_INT_LIT8:
2374            lit &= 31;
2375            shiftOp = true;
2376            op = kOpLsl;
2377            break;
2378        case OP_SHR_INT_LIT8:
2379            lit &= 31;
2380            shiftOp = true;
2381            op = kOpAsr;
2382            break;
2383        case OP_USHR_INT_LIT8:
2384            lit &= 31;
2385            shiftOp = true;
2386            op = kOpLsr;
2387            break;
2388
2389        case OP_DIV_INT_LIT8:
2390        case OP_DIV_INT_LIT16:
2391        case OP_REM_INT_LIT8:
2392        case OP_REM_INT_LIT16: {
2393            if (lit == 0) {
2394                /* Let the interpreter deal with div by 0 */
2395                genInterpSingleStep(cUnit, mir);
2396                return false;
2397            }
2398            if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
2399                return false;
2400            }
2401
2402            MipsOpCode opc;
2403            int divReg;
2404
2405            if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
2406                (dalvikOpcode == OP_DIV_INT_LIT16)) {
2407                opc = kMipsMflo;
2408                divReg = r_LO;
2409            } else {
2410                opc = kMipsMfhi;
2411                divReg = r_HI;
2412            }
2413
2414            rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2415            int tReg = dvmCompilerAllocTemp(cUnit);
2416            newLIR3(cUnit, kMipsAddiu, tReg, r_ZERO, lit);
2417            newLIR4(cUnit, kMipsDiv, r_HI, r_LO, rlSrc.lowReg, tReg);
2418            rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2419            newLIR2(cUnit, opc, rlResult.lowReg, divReg);
2420            dvmCompilerFreeTemp(cUnit, tReg);
2421            storeValue(cUnit, rlDest, rlResult);
2422            return false;
2423            break;
2424        }
2425        default:
2426            return true;
2427    }
2428    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2429    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2430    // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
2431    if (shiftOp && (lit == 0)) {
2432        genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2433    } else {
2434        opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
2435    }
2436    storeValue(cUnit, rlDest, rlResult);
2437    return false;
2438}
2439
2440static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
2441{
2442    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2443    int fieldOffset = -1;
2444    bool isVolatile = false;
2445    switch (dalvikOpcode) {
2446        /*
2447         * Wide volatiles currently handled via single step.
2448         * Add them here if generating in-line code.
2449         *     case OP_IGET_WIDE_VOLATILE:
2450         *     case OP_IPUT_WIDE_VOLATILE:
2451         */
2452        case OP_IGET_VOLATILE:
2453        case OP_IGET_OBJECT_VOLATILE:
2454        case OP_IPUT_VOLATILE:
2455        case OP_IPUT_OBJECT_VOLATILE:
2456#if ANDROID_SMP != 0
2457            isVolatile = true;
2458        // NOTE: intentional fallthrough
2459#endif
2460        case OP_IGET:
2461        case OP_IGET_WIDE:
2462        case OP_IGET_OBJECT:
2463        case OP_IGET_BOOLEAN:
2464        case OP_IGET_BYTE:
2465        case OP_IGET_CHAR:
2466        case OP_IGET_SHORT:
2467        case OP_IPUT:
2468        case OP_IPUT_WIDE:
2469        case OP_IPUT_OBJECT:
2470        case OP_IPUT_BOOLEAN:
2471        case OP_IPUT_BYTE:
2472        case OP_IPUT_CHAR:
2473        case OP_IPUT_SHORT: {
2474            const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
2475                mir->meta.calleeMethod : cUnit->method;
2476            Field *fieldPtr =
2477                method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
2478
2479            if (fieldPtr == NULL) {
2480                BAIL_LOOP_COMPILATION();
2481                ALOGE("Unexpected null instance field");
2482                dvmAbort();
2483            }
2484#if ANDROID_SMP != 0
2485            assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
2486#else
2487            isVolatile = dvmIsVolatileField((Field *) fieldPtr);
2488#endif
2489            fieldOffset = ((InstField *)fieldPtr)->byteOffset;
2490            break;
2491        }
2492        default:
2493            break;
2494    }
2495
2496    switch (dalvikOpcode) {
2497        case OP_NEW_ARRAY: {
2498#if 0 /* 080 triggers assert in Interp.c:1290 for out of memory exception.
2499             i think the assert is in error and should be disabled. With
2500             asserts disabled, 080 passes. */
2501genInterpSingleStep(cUnit, mir);
2502return false;
2503#endif
2504            // Generates a call - use explicit registers
2505            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2506            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2507            RegLocation rlResult;
2508            void *classPtr = (void*)
2509              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2510
2511            if (classPtr == NULL) {
2512                BAIL_LOOP_COMPILATION();
2513                ALOGE("Unexpected null class");
2514                dvmAbort();
2515            }
2516
2517            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2518            genExportPC(cUnit, mir);
2519            loadValueDirectFixed(cUnit, rlSrc, r_A1);   /* Len */
2520            loadConstant(cUnit, r_A0, (int) classPtr );
2521            LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmAllocArrayByClass);
2522            /*
2523             * "len < 0": bail to the interpreter to re-execute the
2524             * instruction
2525             */
2526            genRegImmCheck(cUnit, kMipsCondMi, r_A1, 0, mir->offset, NULL);
2527            loadConstant(cUnit, r_A2, ALLOC_DONT_TRACK);
2528            opReg(cUnit, kOpBlx, r_T9);
2529            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
2530            dvmCompilerClobberCallRegs(cUnit);
2531            /* generate a branch over if allocation is successful */
2532            MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
2533            /*
2534             * OOM exception needs to be thrown here and cannot re-execute
2535             */
2536            loadConstant(cUnit, r_A0,
2537                         (int) (cUnit->method->insns + mir->offset));
2538            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2539            /* noreturn */
2540
2541            MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
2542            target->defMask = ENCODE_ALL;
2543            branchOver->generic.target = (LIR *) target;
2544            rlResult = dvmCompilerGetReturn(cUnit);
2545            storeValue(cUnit, rlDest, rlResult);
2546            break;
2547        }
2548        case OP_INSTANCE_OF: {
2549            // May generate a call - use explicit registers
2550            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2551            RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2552            RegLocation rlResult;
2553            ClassObject *classPtr =
2554              (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2555            /*
2556             * Note: It is possible that classPtr is NULL at this point,
2557             * even though this instruction has been successfully interpreted.
2558             * If the previous interpretation had a null source, the
2559             * interpreter would not have bothered to resolve the clazz.
2560             * Bail out to the interpreter in this case, and log it
2561             * so that we can tell if it happens frequently.
2562             */
2563            if (classPtr == NULL) {
2564                BAIL_LOOP_COMPILATION();
2565                ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
2566                genInterpSingleStep(cUnit, mir);
2567                break;
2568            }
2569            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2570            loadValueDirectFixed(cUnit, rlSrc, r_V0);  /* Ref */
2571            loadConstant(cUnit, r_A2, (int) classPtr );
2572            /* When taken r_V0 has NULL which can be used for store directly */
2573            MipsLIR *branch1 = opCompareBranch(cUnit, kMipsBeqz, r_V0, -1);
2574            /* r_A1 now contains object->clazz */
2575            loadWordDisp(cUnit, r_V0, offsetof(Object, clazz), r_A1);
2576            /* r_A1 now contains object->clazz */
2577            LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInstanceofNonTrivial);
2578            loadConstant(cUnit, r_V0, 1);                /* Assume true */
2579            MipsLIR *branch2 = opCompareBranch(cUnit, kMipsBeq, r_A1, r_A2);
2580            genRegCopy(cUnit, r_A0, r_A1);
2581            genRegCopy(cUnit, r_A1, r_A2);
2582            opReg(cUnit, kOpBlx, r_T9);
2583            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
2584            dvmCompilerClobberCallRegs(cUnit);
2585            /* branch target here */
2586            MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
2587            target->defMask = ENCODE_ALL;
2588            rlResult = dvmCompilerGetReturn(cUnit);
2589            storeValue(cUnit, rlDest, rlResult);
2590            branch1->generic.target = (LIR *)target;
2591            branch2->generic.target = (LIR *)target;
2592            break;
2593        }
2594        case OP_IGET_WIDE:
2595            genIGetWide(cUnit, mir, fieldOffset);
2596            break;
2597        case OP_IGET_VOLATILE:
2598        case OP_IGET_OBJECT_VOLATILE:
2599        case OP_IGET:
2600        case OP_IGET_OBJECT:
2601        case OP_IGET_BOOLEAN:
2602        case OP_IGET_BYTE:
2603        case OP_IGET_CHAR:
2604        case OP_IGET_SHORT:
2605            genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
2606            break;
2607        case OP_IPUT_WIDE:
2608            genIPutWide(cUnit, mir, fieldOffset);
2609            break;
2610        case OP_IPUT_VOLATILE:
2611        case OP_IPUT:
2612        case OP_IPUT_BOOLEAN:
2613        case OP_IPUT_BYTE:
2614        case OP_IPUT_CHAR:
2615        case OP_IPUT_SHORT:
2616            genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
2617            break;
2618        case OP_IPUT_OBJECT_VOLATILE:
2619        case OP_IPUT_OBJECT:
2620            genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
2621            break;
2622        case OP_IGET_WIDE_VOLATILE:
2623        case OP_IPUT_WIDE_VOLATILE:
2624            genInterpSingleStep(cUnit, mir);
2625            break;
2626        default:
2627            return true;
2628    }
2629    return false;
2630}
2631
2632static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
2633{
2634    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2635    int fieldOffset =  mir->dalvikInsn.vC;
2636    switch (dalvikOpcode) {
2637        case OP_IGET_QUICK:
2638        case OP_IGET_OBJECT_QUICK:
2639            genIGet(cUnit, mir, kWord, fieldOffset, false);
2640            break;
2641        case OP_IPUT_QUICK:
2642            genIPut(cUnit, mir, kWord, fieldOffset, false, false);
2643            break;
2644        case OP_IPUT_OBJECT_QUICK:
2645            genIPut(cUnit, mir, kWord, fieldOffset, true, false);
2646            break;
2647        case OP_IGET_WIDE_QUICK:
2648            genIGetWide(cUnit, mir, fieldOffset);
2649            break;
2650        case OP_IPUT_WIDE_QUICK:
2651            genIPutWide(cUnit, mir, fieldOffset);
2652            break;
2653        default:
2654            return true;
2655    }
2656    return false;
2657
2658}
2659
2660/* Compare against zero */
2661static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2662                         MipsLIR *labelList)
2663{
2664    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2665    MipsConditionCode cond;
2666    MipsOpCode opc = kMipsNop;
2667    MipsLIR * test = NULL;
2668    /* backward branch? */
2669    bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2670
2671    if (backwardBranch &&
2672        (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2673        genSuspendPoll(cUnit, mir);
2674    }
2675
2676    RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2677    RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2678    rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
2679    rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
2680    int reg1 = rlSrc1.lowReg;
2681    int reg2 = rlSrc2.lowReg;
2682    int tReg;
2683
2684    switch (dalvikOpcode) {
2685        case OP_IF_EQ:
2686            opc = kMipsBeq;
2687            break;
2688        case OP_IF_NE:
2689            opc = kMipsBne;
2690            break;
2691        case OP_IF_LT:
2692            opc = kMipsBne;
2693            tReg = dvmCompilerAllocTemp(cUnit);
2694            test = newLIR3(cUnit, kMipsSlt, tReg, reg1, reg2);
2695            reg1 = tReg;
2696            reg2 = r_ZERO;
2697            break;
2698        case OP_IF_LE:
2699            opc = kMipsBeqz;
2700            tReg = dvmCompilerAllocTemp(cUnit);
2701            test = newLIR3(cUnit, kMipsSlt, tReg, reg2, reg1);
2702            reg1 = tReg;
2703            reg2 = -1;
2704            break;
2705        case OP_IF_GT:
2706            opc = kMipsBne;
2707            tReg = dvmCompilerAllocTemp(cUnit);
2708            test = newLIR3(cUnit, kMipsSlt, tReg, reg2, reg1);
2709            reg1 = tReg;
2710            reg2 = r_ZERO;
2711            break;
2712        case OP_IF_GE:
2713            opc = kMipsBeqz;
2714            tReg = dvmCompilerAllocTemp(cUnit);
2715            test = newLIR3(cUnit, kMipsSlt, tReg, reg1, reg2);
2716            reg1 = tReg;
2717            reg2 = -1;
2718            break;
2719        default:
2720            cond = (MipsConditionCode)0;
2721            ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
2722            dvmCompilerAbort(cUnit);
2723    }
2724
2725    genConditionalBranchMips(cUnit, opc, reg1, reg2, &labelList[bb->taken->id]);
2726    /* This mostly likely will be optimized away in a later phase */
2727    genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2728    return false;
2729}
2730
2731static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
2732{
2733    Opcode opcode = mir->dalvikInsn.opcode;
2734
2735    switch (opcode) {
2736        case OP_MOVE_16:
2737        case OP_MOVE_OBJECT_16:
2738        case OP_MOVE_FROM16:
2739        case OP_MOVE_OBJECT_FROM16: {
2740            storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
2741                       dvmCompilerGetSrc(cUnit, mir, 0));
2742            break;
2743        }
2744        case OP_MOVE_WIDE_16:
2745        case OP_MOVE_WIDE_FROM16: {
2746            storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
2747                           dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
2748            break;
2749        }
2750        default:
2751            return true;
2752    }
2753    return false;
2754}
2755
2756static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
2757{
2758    Opcode opcode = mir->dalvikInsn.opcode;
2759    RegLocation rlSrc1;
2760    RegLocation rlSrc2;
2761    RegLocation rlDest;
2762
2763    if ((opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
2764        return genArithOp( cUnit, mir );
2765    }
2766
2767    /* APUTs have 3 sources and no targets */
2768    if (mir->ssaRep->numDefs == 0) {
2769        if (mir->ssaRep->numUses == 3) {
2770            rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
2771            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
2772            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
2773        } else {
2774            assert(mir->ssaRep->numUses == 4);
2775            rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2776            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
2777            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
2778        }
2779    } else {
2780        /* Two sources and 1 dest.  Deduce the operand sizes */
2781        if (mir->ssaRep->numUses == 4) {
2782            rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2783            rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
2784        } else {
2785            assert(mir->ssaRep->numUses == 2);
2786            rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2787            rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2788        }
2789        if (mir->ssaRep->numDefs == 2) {
2790            rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2791        } else {
2792            assert(mir->ssaRep->numDefs == 1);
2793            rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2794        }
2795    }
2796
2797    switch (opcode) {
2798        case OP_CMPL_FLOAT:
2799        case OP_CMPG_FLOAT:
2800        case OP_CMPL_DOUBLE:
2801        case OP_CMPG_DOUBLE:
2802            return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2803        case OP_CMP_LONG:
2804            genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2805            break;
2806        case OP_AGET_WIDE:
2807            genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2808            break;
2809        case OP_AGET:
2810        case OP_AGET_OBJECT:
2811            genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2812            break;
2813        case OP_AGET_BOOLEAN:
2814            genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2815            break;
2816        case OP_AGET_BYTE:
2817            genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
2818            break;
2819        case OP_AGET_CHAR:
2820            genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2821            break;
2822        case OP_AGET_SHORT:
2823            genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2824            break;
2825        case OP_APUT_WIDE:
2826            genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2827            break;
2828        case OP_APUT:
2829            genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2830            break;
2831        case OP_APUT_OBJECT:
2832            genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
2833            break;
2834        case OP_APUT_SHORT:
2835        case OP_APUT_CHAR:
2836            genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2837            break;
2838        case OP_APUT_BYTE:
2839        case OP_APUT_BOOLEAN:
2840            genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2841            break;
2842        default:
2843            return true;
2844    }
2845    return false;
2846}
2847
2848/*
2849 * Find the matching case.
2850 *
2851 * return values:
2852 * r_RESULT0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
2853 *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
2854 * r_RESULT1 (high 32-bit): the branch offset of the matching case (only for indexes
2855 *    above MAX_CHAINED_SWITCH_CASES).
2856 *
2857 * Instructions around the call are:
2858 *
2859 * jalr &findPackedSwitchIndex
2860 * nop
2861 * lw gp, 84(sp) |
2862 * addu          | 20 bytes for these 5 instructions
2863 * move          | (NOTE: if this sequence is shortened or lengthened, then
2864 * jr            |  the 20 byte offset added below in 3 places must be changed
2865 * nop           |  accordingly.)
2866 * chaining cell for case 0 [16 bytes]
2867 * chaining cell for case 1 [16 bytes]
2868 *               :
2869 * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [16 bytes]
2870 * chaining cell for case default [16 bytes]
2871 * noChain exit
2872 */
2873static u8 findPackedSwitchIndex(const u2* switchData, int testVal)
2874{
2875    int size;
2876    int firstKey;
2877    const int *entries;
2878    int index;
2879    int jumpIndex;
2880    uintptr_t caseDPCOffset = 0;
2881
2882    /*
2883     * Packed switch data format:
2884     *  ushort ident = 0x0100   magic value
2885     *  ushort size             number of entries in the table
2886     *  int first_key           first (and lowest) switch case value
2887     *  int targets[size]       branch targets, relative to switch opcode
2888     *
2889     * Total size is (4+size*2) 16-bit code units.
2890     */
2891    size = switchData[1];
2892    assert(size > 0);
2893
2894    firstKey = switchData[2];
2895    firstKey |= switchData[3] << 16;
2896
2897
2898    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2899     * we can treat them as a native int array.
2900     */
2901    entries = (const int*) &switchData[4];
2902    assert(((u4)entries & 0x3) == 0);
2903
2904    index = testVal - firstKey;
2905
2906    /* Jump to the default cell */
2907    if (index < 0 || index >= size) {
2908        jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
2909    /* Jump to the non-chaining exit point */
2910    } else if (index >= MAX_CHAINED_SWITCH_CASES) {
2911        jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
2912#ifdef HAVE_LITTLE_ENDIAN
2913        caseDPCOffset = entries[index];
2914#else
2915        caseDPCOffset = (unsigned int)entries[index] >> 16 | entries[index] << 16;
2916#endif
2917    /* Jump to the inline chaining cell */
2918    } else {
2919        jumpIndex = index;
2920    }
2921
2922    return (((u8) caseDPCOffset) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
2923}
2924
2925/* See comments for findPackedSwitchIndex */
2926static u8 findSparseSwitchIndex(const u2* switchData, int testVal)
2927{
2928    int size;
2929    const int *keys;
2930    const int *entries;
2931    /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
2932    int i;
2933
2934    /*
2935     * Sparse switch data format:
2936     *  ushort ident = 0x0200   magic value
2937     *  ushort size             number of entries in the table; > 0
2938     *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
2939     *  int targets[size]       branch targets, relative to switch opcode
2940     *
2941     * Total size is (2+size*4) 16-bit code units.
2942     */
2943
2944    size = switchData[1];
2945    assert(size > 0);
2946
2947    /* The keys are guaranteed to be aligned on a 32-bit boundary;
2948     * we can treat them as a native int array.
2949     */
2950    keys = (const int*) &switchData[2];
2951    assert(((u4)keys & 0x3) == 0);
2952
2953    /* The entries are guaranteed to be aligned on a 32-bit boundary;
2954     * we can treat them as a native int array.
2955     */
2956    entries = keys + size;
2957    assert(((u4)entries & 0x3) == 0);
2958
2959    /*
2960     * Run through the list of keys, which are guaranteed to
2961     * be sorted low-to-high.
2962     *
2963     * Most tables have 3-4 entries.  Few have more than 10.  A binary
2964     * search here is probably not useful.
2965     */
2966    for (i = 0; i < size; i++) {
2967#ifdef HAVE_LITTLE_ENDIAN
2968        int k = keys[i];
2969        if (k == testVal) {
2970            /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2971            int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2972                           i : MAX_CHAINED_SWITCH_CASES + 1;
2973            return (((u8) entries[i]) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
2974#else
2975        int k = (unsigned int)keys[i] >> 16 | keys[i] << 16;
2976        if (k == testVal) {
2977            /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
2978            int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
2979                           i : MAX_CHAINED_SWITCH_CASES + 1;
2980            int temp = (unsigned int)entries[i] >> 16 | entries[i] << 16;
2981            return (((u8) temp) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
2982#endif
2983        } else if (k > testVal) {
2984            break;
2985        }
2986    }
2987    return MIN(size, MAX_CHAINED_SWITCH_CASES) * CHAIN_CELL_NORMAL_SIZE + 20;
2988}
2989
2990static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
2991{
2992    Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2993    switch (dalvikOpcode) {
2994        case OP_FILL_ARRAY_DATA: {
2995            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2996            // Making a call - use explicit registers
2997            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
2998            genExportPC(cUnit, mir);
2999            loadValueDirectFixed(cUnit, rlSrc, r_A0);
3000            LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInterpHandleFillArrayData);
3001            loadConstant(cUnit, r_A1,
3002               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
3003            opReg(cUnit, kOpBlx, r_T9);
3004            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3005            dvmCompilerClobberCallRegs(cUnit);
3006            /* generate a branch over if successful */
3007            MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3008            loadConstant(cUnit, r_A0,
3009                         (int) (cUnit->method->insns + mir->offset));
3010            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3011            MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3012            target->defMask = ENCODE_ALL;
3013            branchOver->generic.target = (LIR *) target;
3014            break;
3015        }
3016        /*
3017         * Compute the goto target of up to
3018         * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
3019         * See the comment before findPackedSwitchIndex for the code layout.
3020         */
3021        case OP_PACKED_SWITCH:
3022        case OP_SPARSE_SWITCH: {
3023            RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3024            dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
3025            loadValueDirectFixed(cUnit, rlSrc, r_A1);
3026            dvmCompilerLockAllTemps(cUnit);
3027
3028            if (dalvikOpcode == OP_PACKED_SWITCH) {
3029                LOAD_FUNC_ADDR(cUnit, r_T9, (int)findPackedSwitchIndex);
3030            } else {
3031                LOAD_FUNC_ADDR(cUnit, r_T9, (int)findSparseSwitchIndex);
3032            }
3033            /* r_A0 <- Addr of the switch data */
3034            loadConstant(cUnit, r_A0,
3035               (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
3036            opReg(cUnit, kOpBlx, r_T9);
3037            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3038            dvmCompilerClobberCallRegs(cUnit);
3039            /* pc <- computed goto target using value in RA */
3040            newLIR3(cUnit, kMipsAddu, r_A0, r_RA, r_RESULT0);
3041            newLIR2(cUnit, kMipsMove, r_A1, r_RESULT1);
3042            newLIR1(cUnit, kMipsJr, r_A0);
3043            newLIR0(cUnit, kMipsNop); /* for maintaining 20 byte offset */
3044            break;
3045        }
3046        default:
3047            return true;
3048    }
3049    return false;
3050}
3051
3052/*
3053 * See the example of predicted inlining listed before the
3054 * genValidationForPredictedInline function. The function here takes care the
3055 * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
3056 */
3057static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
3058                                               BasicBlock *bb,
3059                                               MipsLIR *labelList)
3060{
3061    BasicBlock *fallThrough = bb->fallThrough;
3062
3063    /* Bypass the move-result block if there is one */
3064    if (fallThrough->firstMIRInsn) {
3065        assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
3066        fallThrough = fallThrough->fallThrough;
3067    }
3068    /* Generate a branch over if the predicted inlining is correct */
3069    genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
3070
3071    /* Reset the register state */
3072    dvmCompilerResetRegPool(cUnit);
3073    dvmCompilerClobberAllRegs(cUnit);
3074    dvmCompilerResetNullCheck(cUnit);
3075
3076    /* Target for the slow invoke path */
3077    MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3078    target->defMask = ENCODE_ALL;
3079    /* Hook up the target to the verification branch */
3080    mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
3081}
3082
3083static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
3084                             BasicBlock *bb, MipsLIR *labelList)
3085{
3086    MipsLIR *retChainingCell = NULL;
3087    MipsLIR *pcrLabel = NULL;
3088
3089    /* An invoke with the MIR_INLINED is effectively a no-op */
3090    if (mir->OptimizationFlags & MIR_INLINED)
3091        return false;
3092
3093    if (bb->fallThrough != NULL)
3094        retChainingCell = &labelList[bb->fallThrough->id];
3095
3096    DecodedInstruction *dInsn = &mir->dalvikInsn;
3097    switch (mir->dalvikInsn.opcode) {
3098        /*
3099         * calleeMethod = this->clazz->vtable[
3100         *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
3101         * ]
3102         */
3103        case OP_INVOKE_VIRTUAL:
3104        case OP_INVOKE_VIRTUAL_RANGE: {
3105            MipsLIR *predChainingCell = &labelList[bb->taken->id];
3106            int methodIndex =
3107                cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
3108                methodIndex;
3109
3110            /*
3111             * If the invoke has non-null misPredBranchOver, we need to generate
3112             * the non-inlined version of the invoke here to handle the
3113             * mispredicted case.
3114             */
3115            if (mir->meta.callsiteInfo->misPredBranchOver) {
3116                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3117            }
3118
3119            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
3120                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3121            else
3122                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3123
3124            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3125                                   retChainingCell,
3126                                   predChainingCell,
3127                                   pcrLabel);
3128            break;
3129        }
3130        /*
3131         * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
3132         *                ->pResMethods[BBBB]->methodIndex]
3133         */
3134        case OP_INVOKE_SUPER:
3135        case OP_INVOKE_SUPER_RANGE: {
3136            /* Grab the method ptr directly from what the interpreter sees */
3137            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3138            assert(calleeMethod == cUnit->method->clazz->super->vtable[
3139                                     cUnit->method->clazz->pDvmDex->
3140                                       pResMethods[dInsn->vB]->methodIndex]);
3141
3142            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
3143                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3144            else
3145                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3146
3147            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3148                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3149                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3150                assert(calleeAddr);
3151                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3152                                              retChainingCell);
3153            } else {
3154                /* r_A0 = calleeMethod */
3155                loadConstant(cUnit, r_A0, (int) calleeMethod);
3156
3157                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3158                                         calleeMethod);
3159            }
3160            break;
3161        }
3162        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3163        case OP_INVOKE_DIRECT:
3164        case OP_INVOKE_DIRECT_RANGE: {
3165            /* Grab the method ptr directly from what the interpreter sees */
3166            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3167            assert(calleeMethod ==
3168                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3169
3170            if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
3171                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3172            else
3173                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3174
3175            /* r_A0 = calleeMethod */
3176            loadConstant(cUnit, r_A0, (int) calleeMethod);
3177
3178            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3179                                     calleeMethod);
3180            break;
3181        }
3182        /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3183        case OP_INVOKE_STATIC:
3184        case OP_INVOKE_STATIC_RANGE: {
3185            /* Grab the method ptr directly from what the interpreter sees */
3186            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3187            assert(calleeMethod ==
3188                   cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3189
3190            if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
3191                genProcessArgsNoRange(cUnit, mir, dInsn,
3192                                      NULL /* no null check */);
3193            else
3194                genProcessArgsRange(cUnit, mir, dInsn,
3195                                    NULL /* no null check */);
3196
3197            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3198                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3199                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3200                assert(calleeAddr);
3201                genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3202                                              retChainingCell);
3203            } else {
3204                /* r_A0 = calleeMethod */
3205                loadConstant(cUnit, r_A0, (int) calleeMethod);
3206
3207                genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3208                                         calleeMethod);
3209            }
3210            break;
3211        }
3212
3213        /*
3214         * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
3215         *                    BBBB, method, method->clazz->pDvmDex)
3216         *
3217         * The following is an example of generated code for
3218         *      "invoke-interface v0"
3219         *
3220         * -------- dalvik offset: 0x000f @ invoke-interface (PI) v2
3221         * 0x2f140c54 : lw       a0,8(s1)                    # genProcessArgsNoRange
3222         * 0x2f140c58 : addiu    s4,s1,0xffffffe8(-24)
3223         * 0x2f140c5c : beqz     a0,0x2f140d5c (L0x11f864)
3224         * 0x2f140c60 : pref     1,0(s4)
3225         * -------- BARRIER
3226         * 0x2f140c64 : sw       a0,0(s4)
3227         * 0x2f140c68 : addiu    s4,s4,0x0004(4)
3228         * -------- BARRIER
3229         * 0x2f140c6c : lui      s0,0x2d23(11555)            # dalvikPC
3230         * 0x2f140c70 : ori      s0,s0,0x2d2365a6(757294502)
3231         * 0x2f140c74 : lahi/lui a1,0x2f14(12052)            # a1 <- &retChainingCell
3232         * 0x2f140c78 : lalo/ori a1,a1,0x2f140d38(789843256)
3233         * 0x2f140c7c : lahi/lui a2,0x2f14(12052)            # a2 <- &predictedChainingCell
3234         * 0x2f140c80 : lalo/ori a2,a2,0x2f140d80(789843328)
3235         * 0x2f140c84 : jal      0x2f1311ec(789778924)       # call TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
3236         * 0x2f140c88 : nop
3237         * 0x2f140c8c : b        0x2f140d80 (L0x11efc0)      # off to the predicted chain
3238         * 0x2f140c90 : nop
3239         * 0x2f140c94 : b        0x2f140d60 (L0x12457c)      # punt to the interpreter
3240         * 0x2f140c98 : lui      a0,0x2d23(11555)
3241         * 0x2f140c9c : move     s5,a1                       # prepare for dvmFindInterfaceMethodInCache
3242         * 0x2f140ca0 : move     s6,a2
3243         * 0x2f140ca4 : move     s7,a3
3244         * 0x2f140ca8 : move     a0,a3
3245         * 0x2f140cac : ori      a1,zero,0x2b42(11074)
3246         * 0x2f140cb0 : lui      a2,0x2c92(11410)
3247         * 0x2f140cb4 : ori      a2,a2,0x2c92adf8(747810296)
3248         * 0x2f140cb8 : lui      a3,0x0009(9)
3249         * 0x2f140cbc : ori      a3,a3,0x924b8(599224)
3250         * 0x2f140cc0 : lui      t9,0x2ab2(10930)
3251         * 0x2f140cc4 : ori      t9,t9,0x2ab2a48c(716350604)
3252         * 0x2f140cc8 : jalr     ra,t9                       # call dvmFindInterfaceMethodInCache
3253         * 0x2f140ccc : nop
3254         * 0x2f140cd0 : lw       gp,84(sp)
3255         * 0x2f140cd4 : move     a0,v0
3256         * 0x2f140cd8 : bne      v0,zero,0x2f140cf0 (L0x120064)
3257         * 0x2f140cdc : nop
3258         * 0x2f140ce0 : lui      a0,0x2d23(11555)            # a0 <- dalvikPC
3259         * 0x2f140ce4 : ori      a0,a0,0x2d2365a6(757294502)
3260         * 0x2f140ce8 : jal      0x2f131720(789780256)       # call TEMPLATE_THROW_EXCEPTION_COMMON
3261         * 0x2f140cec : nop
3262         * 0x2f140cf0 : move     a1,s5                       # a1 <- &retChainingCell
3263         * 0x2f140cf4 : bgtz     s5,0x2f140d20 (L0x120324)   # >0? don't rechain
3264         * 0x2f140cf8 : nop
3265         * 0x2f140cfc : lui      t9,0x2aba(10938)            # prepare for dvmJitToPatchPredictedChain
3266         * 0x2f140d00 : ori      t9,t9,0x2abae3c4(716891076)
3267         * 0x2f140d04 : move     a1,s2
3268         * 0x2f140d08 : move     a2,s6
3269         * 0x2f140d0c : move     a3,s7
3270         * 0x2f140d10 : jalr     ra,t9                       # call dvmJitToPatchPredictedChain
3271         * 0x2f140d14 : nop
3272         * 0x2f140d18 : lw       gp,84(sp)
3273         * 0x2f140d1c : move     a0,v0
3274         * 0x2f140d20 : lahi/lui a1,0x2f14(12052)
3275         * 0x2f140d24 : lalo/ori a1,a1,0x2f140d38(789843256) # a1 <- &retChainingCell
3276         * 0x2f140d28 : jal      0x2f1310c4(789778628)       # call TEMPLATE_INVOKE_METHOD_NO_OPT
3277         * 0x2f140d2c : nop
3278         * 0x2f140d30 : b        0x2f140d60 (L0x12457c)
3279         * 0x2f140d34 : lui      a0,0x2d23(11555)
3280         * 0x2f140d38 : .align4
3281         * -------- dalvik offset: 0x0012 @ move-result (PI) v1, (#0), (#0)
3282         * 0x2f140d38 : lw       a2,16(s2)
3283         * 0x2f140d3c : sw       a2,4(s1)
3284         * 0x2f140d40 : b        0x2f140d74 (L0x1246fc)
3285         * 0x2f140d44 : lw       a0,116(s2)
3286         * 0x2f140d48 : undefined
3287         * -------- reconstruct dalvik PC : 0x2d2365a6 @ +0x000f
3288         * 0x2f140d4c : lui      a0,0x2d23(11555)
3289         * 0x2f140d50 : ori      a0,a0,0x2d2365a6(757294502)
3290         * 0x2f140d54 : b        0x2f140d68 (L0x12463c)
3291         * 0x2f140d58 : lw       a1,108(s2)
3292         * -------- reconstruct dalvik PC : 0x2d2365a6 @ +0x000f
3293         * 0x2f140d5c : lui      a0,0x2d23(11555)
3294         * 0x2f140d60 : ori      a0,a0,0x2d2365a6(757294502)
3295         * Exception_Handling:
3296         * 0x2f140d64 : lw       a1,108(s2)
3297         * 0x2f140d68 : jalr     ra,a1
3298         * 0x2f140d6c : nop
3299         * 0x2f140d70 : .align4
3300         * -------- chaining cell (hot): 0x0013
3301         * 0x2f140d70 : lw       a0,116(s2)
3302         * 0x2f140d74 : jalr     ra,a0
3303         * 0x2f140d78 : nop
3304         * 0x2f140d7c : data     0x2d2365ae(757294510)
3305         * 0x2f140d80 : .align4
3306         * -------- chaining cell (predicted): N/A
3307         * 0x2f140d80 : data     0xe7fe(59390)
3308         * 0x2f140d84 : data     0x0000(0)
3309         * 0x2f140d88 : data     0x0000(0)
3310         * 0x2f140d8c : data     0x0000(0)
3311         * 0x2f140d90 : data     0x0000(0)
3312         * -------- end of chaining cells (0x0190)
3313         */
3314        case OP_INVOKE_INTERFACE:
3315        case OP_INVOKE_INTERFACE_RANGE: {
3316            MipsLIR *predChainingCell = &labelList[bb->taken->id];
3317
3318            /*
3319             * If the invoke has non-null misPredBranchOver, we need to generate
3320             * the non-inlined version of the invoke here to handle the
3321             * mispredicted case.
3322             */
3323            if (mir->meta.callsiteInfo->misPredBranchOver) {
3324                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3325            }
3326
3327            if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
3328                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3329            else
3330                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3331
3332            /* "this" is already left in r_A0 by genProcessArgs* */
3333
3334            /* r4PC = dalvikCallsite */
3335            loadConstant(cUnit, r4PC,
3336                         (int) (cUnit->method->insns + mir->offset));
3337
3338            /* r_A1 = &retChainingCell */
3339            MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
3340            addrRetChain->generic.target = (LIR *) retChainingCell;
3341            addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
3342            addrRetChain->generic.target = (LIR *) retChainingCell;
3343
3344
3345            /* r_A2 = &predictedChainingCell */
3346            MipsLIR *predictedChainingCell = newLIR2(cUnit, kMipsLahi, r_A2, 0);
3347            predictedChainingCell->generic.target = (LIR *) predChainingCell;
3348            predictedChainingCell = newLIR3(cUnit, kMipsLalo, r_A2, r_A2, 0);
3349            predictedChainingCell->generic.target = (LIR *) predChainingCell;
3350
3351            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3352                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
3353                TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
3354
3355            /* return through ra - jump to the chaining cell */
3356            genUnconditionalBranch(cUnit, predChainingCell);
3357
3358            /*
3359             * null-check on "this" may have been eliminated, but we still need
3360             * a PC-reconstruction label for stack overflow bailout.
3361             */
3362            if (pcrLabel == NULL) {
3363                int dPC = (int) (cUnit->method->insns + mir->offset);
3364                pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
3365                pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
3366                pcrLabel->operands[0] = dPC;
3367                pcrLabel->operands[1] = mir->offset;
3368                /* Insert the place holder to the growable list */
3369                dvmInsertGrowableList(&cUnit->pcReconstructionList,
3370                                      (intptr_t) pcrLabel);
3371            }
3372
3373            /* return through ra+8 - punt to the interpreter */
3374            genUnconditionalBranch(cUnit, pcrLabel);
3375
3376            /*
3377             * return through ra+16 - fully resolve the callee method.
3378             * r_A1 <- count
3379             * r_A2 <- &predictedChainCell
3380             * r_A3 <- this->class
3381             * r4 <- dPC
3382             * r_S4 <- this->class->vtable
3383             */
3384
3385            /* Save count, &predictedChainCell, and class to high regs first */
3386            genRegCopy(cUnit, r_S5, r_A1);
3387            genRegCopy(cUnit, r_S6, r_A2);
3388            genRegCopy(cUnit, r_S7, r_A3);
3389
3390            /* r_A0 now contains this->clazz */
3391            genRegCopy(cUnit, r_A0, r_A3);
3392
3393            /* r_A1 = BBBB */
3394            loadConstant(cUnit, r_A1, dInsn->vB);
3395
3396            /* r_A2 = method (caller) */
3397            loadConstant(cUnit, r_A2, (int) cUnit->method);
3398
3399            /* r_A3 = pDvmDex */
3400            loadConstant(cUnit, r_A3, (int) cUnit->method->clazz->pDvmDex);
3401
3402            LOAD_FUNC_ADDR(cUnit, r_T9,
3403                           (intptr_t) dvmFindInterfaceMethodInCache);
3404            opReg(cUnit, kOpBlx, r_T9);
3405            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3406            /* r_V0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
3407            genRegCopy(cUnit, r_A0, r_V0);
3408
3409            dvmCompilerClobberCallRegs(cUnit);
3410            /* generate a branch over if the interface method is resolved */
3411            MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3412            /*
3413             * calleeMethod == NULL -> throw
3414             */
3415            loadConstant(cUnit, r_A0,
3416                         (int) (cUnit->method->insns + mir->offset));
3417            genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3418            /* noreturn */
3419
3420            MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3421            target->defMask = ENCODE_ALL;
3422            branchOver->generic.target = (LIR *) target;
3423
3424            genRegCopy(cUnit, r_A1, r_S5);
3425
3426            /* Check if rechain limit is reached */
3427            MipsLIR *bypassRechaining = opCompareBranch(cUnit, kMipsBgtz, r_S5, -1);
3428
3429            LOAD_FUNC_ADDR(cUnit, r_T9, (int) dvmJitToPatchPredictedChain);
3430
3431            genRegCopy(cUnit, r_A1, rSELF);
3432            genRegCopy(cUnit, r_A2, r_S6);
3433            genRegCopy(cUnit, r_A3, r_S7);
3434
3435            /*
3436             * r_A0 = calleeMethod
3437             * r_A2 = &predictedChainingCell
3438             * r_A3 = class
3439             *
3440             * &returnChainingCell has been loaded into r_A1 but is not needed
3441             * when patching the chaining cell and will be clobbered upon
3442             * returning so it will be reconstructed again.
3443             */
3444            opReg(cUnit, kOpBlx, r_T9);
3445            newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3446            genRegCopy(cUnit, r_A0, r_V0);
3447
3448            /* r_A1 = &retChainingCell */
3449            addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
3450            addrRetChain->generic.target = (LIR *) retChainingCell;
3451            bypassRechaining->generic.target = (LIR *) addrRetChain;
3452            addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
3453            addrRetChain->generic.target = (LIR *) retChainingCell;
3454
3455
3456            /*
3457             * r_A0 = this, r_A1 = calleeMethod,
3458             * r_A1 = &ChainingCell,
3459             * r4PC = callsiteDPC,
3460             */
3461            genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3462                TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
3463                TEMPLATE_INVOKE_METHOD_NO_OPT);
3464
3465#if defined(WITH_JIT_TUNING)
3466            gDvmJit.invokePolymorphic++;
3467#endif
3468            /* Handle exceptions using the interpreter */
3469            genTrap(cUnit, mir->offset, pcrLabel);
3470            break;
3471        }
3472        case OP_INVOKE_OBJECT_INIT_RANGE:
3473        case OP_FILLED_NEW_ARRAY:
3474        case OP_FILLED_NEW_ARRAY_RANGE: {
3475            /* Just let the interpreter deal with these */
3476            genInterpSingleStep(cUnit, mir);
3477            break;
3478        }
3479        default:
3480            return true;
3481    }
3482    return false;
3483}
3484
3485static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
3486                               BasicBlock *bb, MipsLIR *labelList)
3487{
3488    MipsLIR *pcrLabel = NULL;
3489
3490    /* An invoke with the MIR_INLINED is effectively a no-op */
3491    if (mir->OptimizationFlags & MIR_INLINED)
3492        return false;
3493
3494    DecodedInstruction *dInsn = &mir->dalvikInsn;
3495    switch (mir->dalvikInsn.opcode) {
3496        /* calleeMethod = this->clazz->vtable[BBBB] */
3497        case OP_INVOKE_VIRTUAL_QUICK_RANGE:
3498        case OP_INVOKE_VIRTUAL_QUICK: {
3499            int methodIndex = dInsn->vB;
3500            MipsLIR *retChainingCell = &labelList[bb->fallThrough->id];
3501            MipsLIR *predChainingCell = &labelList[bb->taken->id];
3502
3503            /*
3504             * If the invoke has non-null misPredBranchOver, we need to generate
3505             * the non-inlined version of the invoke here to handle the
3506             * mispredicted case.
3507             */
3508            if (mir->meta.callsiteInfo->misPredBranchOver) {
3509                genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3510            }
3511
3512            if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
3513                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3514            else
3515                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3516
3517            if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3518                const Method *calleeMethod = mir->meta.callsiteInfo->method;
3519                void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3520                assert(calleeAddr);
3521                genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
3522                                            retChainingCell);
3523            }
3524
3525            genInvokeVirtualCommon(cUnit, mir, methodIndex,
3526                                   retChainingCell,
3527                                   predChainingCell,
3528                                   pcrLabel);
3529            break;
3530        }
3531        /* calleeMethod = method->clazz->super->vtable[BBBB] */
3532        case OP_INVOKE_SUPER_QUICK:
3533        case OP_INVOKE_SUPER_QUICK_RANGE: {
3534            /* Grab the method ptr directly from what the interpreter sees */
3535            const Method *calleeMethod = mir->meta.callsiteInfo->method;
3536            assert(calleeMethod ==
3537                   cUnit->method->clazz->super->vtable[dInsn->vB]);
3538
3539            if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
3540                genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3541            else
3542                genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3543
3544            /* r_A0 = calleeMethod */
3545            loadConstant(cUnit, r_A0, (int) calleeMethod);
3546
3547            genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3548                                     calleeMethod);
3549            break;
3550        }
3551        default:
3552            return true;
3553    }
3554    return false;
3555}
3556
3557/*
3558 * This operation is complex enough that we'll do it partly inline
3559 * and partly with a handler.  NOTE: the handler uses hardcoded
3560 * values for string object offsets and must be revisitied if the
3561 * layout changes.
3562 */
3563static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
3564{
3565#if defined(USE_GLOBAL_STRING_DEFS)
3566    return handleExecuteInlineC(cUnit, mir);
3567#else
3568    MipsLIR *rollback;
3569    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3570    RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
3571
3572    loadValueDirectFixed(cUnit, rlThis, r_A0);
3573    loadValueDirectFixed(cUnit, rlComp, r_A1);
3574    /* Test objects for NULL */
3575    rollback = genNullCheck(cUnit, rlThis.sRegLow, r_A0, mir->offset, NULL);
3576    genNullCheck(cUnit, rlComp.sRegLow, r_A1, mir->offset, rollback);
3577    /*
3578     * TUNING: we could check for object pointer equality before invoking
3579     * handler. Unclear whether the gain would be worth the added code size
3580     * expansion.
3581     */
3582    genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
3583    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3584               dvmCompilerGetReturn(cUnit));
3585    return false;
3586#endif
3587}
3588
3589static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
3590{
3591#if defined(USE_GLOBAL_STRING_DEFS)
3592    return handleExecuteInlineC(cUnit, mir);
3593#else
3594    RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3595    RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
3596
3597    loadValueDirectFixed(cUnit, rlThis, r_A0);
3598    loadValueDirectFixed(cUnit, rlChar, r_A1);
3599
3600    RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
3601    loadValueDirectFixed(cUnit, rlStart, r_A2);
3602
3603    /* Test objects for NULL */
3604    genNullCheck(cUnit, rlThis.sRegLow, r_A0, mir->offset, NULL);
3605    genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
3606    storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3607               dvmCompilerGetReturn(cUnit));
3608    return false;
3609#endif
3610}
3611
3612// Generates an inlined String.isEmpty or String.length.
3613static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
3614                                            bool isEmpty)
3615{
3616    // dst = src.length();
3617    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3618    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3619    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3620    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3621    genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
3622    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
3623                 rlResult.lowReg);
3624    if (isEmpty) {
3625        // dst = (dst == 0);
3626        int tReg = dvmCompilerAllocTemp(cUnit);
3627        newLIR3(cUnit, kMipsSltu, tReg, r_ZERO, rlResult.lowReg);
3628        opRegRegImm(cUnit, kOpXor, rlResult.lowReg, tReg, 1);
3629    }
3630    storeValue(cUnit, rlDest, rlResult);
3631    return false;
3632}
3633
3634static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
3635{
3636    return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
3637}
3638
3639static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
3640{
3641    return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
3642}
3643
3644static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
3645{
3646    int contents = OFFSETOF_MEMBER(ArrayObject, contents);
3647    RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3648    RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
3649    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3650    RegLocation rlResult;
3651    rlObj = loadValue(cUnit, rlObj, kCoreReg);
3652    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3653    int regMax = dvmCompilerAllocTemp(cUnit);
3654    int regOff = dvmCompilerAllocTemp(cUnit);
3655    int regPtr = dvmCompilerAllocTemp(cUnit);
3656    MipsLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
3657                                    mir->offset, NULL);
3658    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
3659    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
3660    loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
3661    genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
3662    dvmCompilerFreeTemp(cUnit, regMax);
3663    opRegImm(cUnit, kOpAdd, regPtr, contents);
3664    opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
3665    rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3666    loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
3667    storeValue(cUnit, rlDest, rlResult);
3668    return false;
3669}
3670
3671static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
3672{
3673    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3674    rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
3675    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3676    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3677    int signReg = dvmCompilerAllocTemp(cUnit);
3678    /*
3679     * abs(x) = y<=x>>31, (x+y)^y.
3680     * Thumb2's IT block also yields 3 instructions, but imposes
3681     * scheduling constraints.
3682     */
3683    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
3684    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3685    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3686    storeValue(cUnit, rlDest, rlResult);
3687    return false;
3688}
3689
3690static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
3691{
3692    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3693    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3694    rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
3695    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3696    int signReg = dvmCompilerAllocTemp(cUnit);
3697    int tReg = dvmCompilerAllocTemp(cUnit);
3698    /*
3699     * abs(x) = y<=x>>31, (x+y)^y.
3700     * Thumb2 IT block allows slightly shorter sequence,
3701     * but introduces a scheduling barrier.  Stick with this
3702     * mechanism for now.
3703     */
3704    opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
3705    opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3706    newLIR3(cUnit, kMipsSltu, tReg, rlResult.lowReg, signReg);
3707    opRegRegReg(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg, signReg);
3708    opRegRegReg(cUnit, kOpAdd, rlResult.highReg, rlResult.highReg, tReg);
3709    opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3710    opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
3711    dvmCompilerFreeTemp(cUnit, signReg);
3712    dvmCompilerFreeTemp(cUnit, tReg);
3713    storeValueWide(cUnit, rlDest, rlResult);
3714    return false;
3715}
3716
3717static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
3718{
3719    // Just move from source to destination...
3720    RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3721    RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3722    storeValue(cUnit, rlDest, rlSrc);
3723    return false;
3724}
3725
3726static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
3727{
3728    // Just move from source to destination...
3729    RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3730    RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3731    storeValueWide(cUnit, rlDest, rlSrc);
3732    return false;
3733}
3734/*
3735 * JITs a call to a C function.
3736 * TODO: use this for faster native method invocation for simple native
3737 * methods (http://b/3069458).
3738 */
3739static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
3740{
3741    DecodedInstruction *dInsn = &mir->dalvikInsn;
3742    int operation = dInsn->vB;
3743    unsigned int i;
3744    const InlineOperation* inLineTable = dvmGetInlineOpsTable();
3745    uintptr_t fn = (int) inLineTable[operation].func;
3746    if (fn == 0) {
3747        dvmCompilerAbort(cUnit);
3748    }
3749    dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
3750    dvmCompilerClobberCallRegs(cUnit);
3751    dvmCompilerClobber(cUnit, r4PC);
3752    dvmCompilerClobber(cUnit, rINST);
3753    int offset = offsetof(Thread, interpSave.retval);
3754    opRegRegImm(cUnit, kOpAdd, r4PC, rSELF, offset);
3755    newLIR3(cUnit, kMipsSw, r4PC, 16, r_SP); /* sp has plenty of space */
3756    genExportPC(cUnit, mir);
3757    assert(dInsn->vA <= 4);
3758    for (i=0; i < dInsn->vA; i++) {
3759        loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i+r_A0);
3760    }
3761    LOAD_FUNC_ADDR(cUnit, r_T9, fn);
3762    opReg(cUnit, kOpBlx, r_T9);
3763    newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3764    /* NULL? */
3765    MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3766    loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
3767    genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3768    MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3769    target->defMask = ENCODE_ALL;
3770    branchOver->generic.target = (LIR *) target;
3771    return false;
3772}
3773
3774/*
3775 * NOTE: Handles both range and non-range versions (arguments
3776 * have already been normalized by this point).
3777 */
3778static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
3779{
3780    DecodedInstruction *dInsn = &mir->dalvikInsn;
3781    assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
3782           dInsn->opcode == OP_EXECUTE_INLINE);
3783    switch (dInsn->vB) {
3784        case INLINE_EMPTYINLINEMETHOD:
3785            return false;  /* Nop */
3786
3787        /* These ones we potentially JIT inline. */
3788
3789        case INLINE_STRING_CHARAT:
3790            return genInlinedStringCharAt(cUnit, mir);
3791        case INLINE_STRING_LENGTH:
3792            return genInlinedStringLength(cUnit, mir);
3793        case INLINE_STRING_IS_EMPTY:
3794            return genInlinedStringIsEmpty(cUnit, mir);
3795        case INLINE_STRING_COMPARETO:
3796            return genInlinedCompareTo(cUnit, mir);
3797        case INLINE_STRING_FASTINDEXOF_II:
3798            return genInlinedFastIndexOf(cUnit, mir);
3799
3800        case INLINE_MATH_ABS_INT:
3801        case INLINE_STRICT_MATH_ABS_INT:
3802            return genInlinedAbsInt(cUnit, mir);
3803        case INLINE_MATH_ABS_LONG:
3804        case INLINE_STRICT_MATH_ABS_LONG:
3805            return genInlinedAbsLong(cUnit, mir);
3806        case INLINE_MATH_MIN_INT:
3807        case INLINE_STRICT_MATH_MIN_INT:
3808            return genInlinedMinMaxInt(cUnit, mir, true);
3809        case INLINE_MATH_MAX_INT:
3810        case INLINE_STRICT_MATH_MAX_INT:
3811            return genInlinedMinMaxInt(cUnit, mir, false);
3812        case INLINE_MATH_SQRT:
3813        case INLINE_STRICT_MATH_SQRT:
3814            return genInlineSqrt(cUnit, mir);
3815        case INLINE_MATH_ABS_FLOAT:
3816        case INLINE_STRICT_MATH_ABS_FLOAT:
3817            return genInlinedAbsFloat(cUnit, mir);
3818        case INLINE_MATH_ABS_DOUBLE:
3819        case INLINE_STRICT_MATH_ABS_DOUBLE:
3820            return genInlinedAbsDouble(cUnit, mir);
3821
3822        case INLINE_FLOAT_TO_RAW_INT_BITS:
3823        case INLINE_INT_BITS_TO_FLOAT:
3824            return genInlinedIntFloatConversion(cUnit, mir);
3825        case INLINE_DOUBLE_TO_RAW_LONG_BITS:
3826        case INLINE_LONG_BITS_TO_DOUBLE:
3827            return genInlinedLongDoubleConversion(cUnit, mir);
3828
3829        /*
3830         * These ones we just JIT a call to a C function for.
3831         * TODO: special-case these in the other "invoke" call paths.
3832         */
3833        case INLINE_STRING_EQUALS:
3834        case INLINE_MATH_COS:
3835        case INLINE_MATH_SIN:
3836        case INLINE_FLOAT_TO_INT_BITS:
3837        case INLINE_DOUBLE_TO_LONG_BITS:
3838            return handleExecuteInlineC(cUnit, mir);
3839    }
3840    dvmCompilerAbort(cUnit);
3841    return false; // Not reachable; keeps compiler happy.
3842}
3843
3844static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
3845{
3846    //TUNING: We're using core regs here - not optimal when target is a double
3847    RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
3848    RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3849    loadConstantNoClobber(cUnit, rlResult.lowReg,
3850                          mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
3851    loadConstantNoClobber(cUnit, rlResult.highReg,
3852                          (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
3853    storeValueWide(cUnit, rlDest, rlResult);
3854    return false;
3855}
3856
3857/*
3858 * The following are special processing routines that handle transfer of
3859 * controls between compiled code and the interpreter. Certain VM states like
3860 * Dalvik PC and special-purpose registers are reconstructed here.
3861 */
3862
3863/* Chaining cell for code that may need warmup. */
3864static void handleNormalChainingCell(CompilationUnit *cUnit,
3865                                     unsigned int offset)
3866{
3867    newLIR3(cUnit, kMipsLw, r_A0,
3868        offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal),
3869        rSELF);
3870    newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3871    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3872}
3873
3874/*
3875 * Chaining cell for instructions that immediately following already translated
3876 * code.
3877 */
3878static void handleHotChainingCell(CompilationUnit *cUnit,
3879                                  unsigned int offset)
3880{
3881    newLIR3(cUnit, kMipsLw, r_A0,
3882        offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect),
3883        rSELF);
3884    newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3885    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3886}
3887
3888/* Chaining cell for branches that branch back into the same basic block */
3889static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
3890                                             unsigned int offset)
3891{
3892    /*
3893     * Use raw instruction constructors to guarantee that the generated
3894     * instructions fit the predefined cell size.
3895     */
3896#if defined(WITH_SELF_VERIFICATION)
3897    newLIR3(cUnit, kMipsLw, r_A0,
3898        offsetof(Thread, jitToInterpEntries.dvmJitToInterpBackwardBranch),
3899        rSELF);
3900#else
3901    newLIR3(cUnit, kMipsLw, r_A0,
3902        offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal),
3903        rSELF);
3904#endif
3905    newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3906    addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3907}
3908
3909/* Chaining cell for monomorphic method invocations. */
3910static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
3911                                              const Method *callee)
3912{
3913    newLIR3(cUnit, kMipsLw, r_A0,
3914        offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect),
3915        rSELF);
3916    newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3917    addWordData(cUnit, NULL, (int) (callee->insns));
3918}
3919
3920/* Chaining cell for monomorphic method invocations. */
3921static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
3922{
3923    /* Should not be executed in the initial state */
3924    addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
3925    /* branch delay slot nop */
3926    addWordData(cUnit, NULL, PREDICTED_CHAIN_DELAY_SLOT_INIT);
3927    /* To be filled: class */
3928    addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
3929    /* To be filled: method */
3930    addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
3931    /*
3932     * Rechain count. The initial value of 0 here will trigger chaining upon
3933     * the first invocation of this callsite.
3934     */
3935    addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
3936}
3937
3938/* Load the Dalvik PC into a0 and jump to the specified target */
3939static void handlePCReconstruction(CompilationUnit *cUnit,
3940                                   MipsLIR *targetLabel)
3941{
3942    MipsLIR **pcrLabel =
3943        (MipsLIR **) cUnit->pcReconstructionList.elemList;
3944    int numElems = cUnit->pcReconstructionList.numUsed;
3945    int i;
3946
3947    /*
3948     * We should never reach here through fall-through code, so insert
3949     * a bomb to signal troubles immediately.
3950     */
3951    if (numElems) {
3952        newLIR0(cUnit, kMipsUndefined);
3953    }
3954
3955    for (i = 0; i < numElems; i++) {
3956        dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
3957        /* a0 = dalvik PC */
3958        loadConstant(cUnit, r_A0, pcrLabel[i]->operands[0]);
3959        genUnconditionalBranch(cUnit, targetLabel);
3960    }
3961}
3962
3963static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
3964    "kMirOpPhi",
3965    "kMirOpNullNRangeUpCheck",
3966    "kMirOpNullNRangeDownCheck",
3967    "kMirOpLowerBound",
3968    "kMirOpPunt",
3969    "kMirOpCheckInlinePrediction",
3970};
3971
3972/*
3973 * vA = arrayReg;
3974 * vB = idxReg;
3975 * vC = endConditionReg;
3976 * arg[0] = maxC
3977 * arg[1] = minC
3978 * arg[2] = loopBranchConditionCode
3979 */
3980static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
3981{
3982    /*
3983     * NOTE: these synthesized blocks don't have ssa names assigned
3984     * for Dalvik registers.  However, because they dominate the following
3985     * blocks we can simply use the Dalvik name w/ subscript 0 as the
3986     * ssa name.
3987     */
3988    DecodedInstruction *dInsn = &mir->dalvikInsn;
3989    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
3990    const int maxC = dInsn->arg[0];
3991    int regLength;
3992    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
3993    RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
3994
3995    /* regArray <- arrayRef */
3996    rlArray = loadValue(cUnit, rlArray, kCoreReg);
3997    rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
3998    genRegImmCheck(cUnit, kMipsCondEq, rlArray.lowReg, 0, 0,
3999                   (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4000
4001    /* regLength <- len(arrayRef) */
4002    regLength = dvmCompilerAllocTemp(cUnit);
4003    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
4004
4005    int delta = maxC;
4006    /*
4007     * If the loop end condition is ">=" instead of ">", then the largest value
4008     * of the index is "endCondition - 1".
4009     */
4010    if (dInsn->arg[2] == OP_IF_GE) {
4011        delta--;
4012    }
4013
4014    if (delta) {
4015        int tReg = dvmCompilerAllocTemp(cUnit);
4016        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
4017        rlIdxEnd.lowReg = tReg;
4018        dvmCompilerFreeTemp(cUnit, tReg);
4019    }
4020    /* Punt if "regIdxEnd < len(Array)" is false */
4021    genRegRegCheck(cUnit, kMipsCondGe, rlIdxEnd.lowReg, regLength, 0,
4022                   (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4023}
4024
4025/*
4026 * vA = arrayReg;
4027 * vB = idxReg;
4028 * vC = endConditionReg;
4029 * arg[0] = maxC
4030 * arg[1] = minC
4031 * arg[2] = loopBranchConditionCode
4032 */
4033static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
4034{
4035    DecodedInstruction *dInsn = &mir->dalvikInsn;
4036    const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
4037    const int regLength = dvmCompilerAllocTemp(cUnit);
4038    const int maxC = dInsn->arg[0];
4039    RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
4040    RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
4041
4042    /* regArray <- arrayRef */
4043    rlArray = loadValue(cUnit, rlArray, kCoreReg);
4044    rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
4045    genRegImmCheck(cUnit, kMipsCondEq, rlArray.lowReg, 0, 0,
4046                   (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4047
4048    /* regLength <- len(arrayRef) */
4049    loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
4050
4051    if (maxC) {
4052        int tReg = dvmCompilerAllocTemp(cUnit);
4053        opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
4054        rlIdxInit.lowReg = tReg;
4055        dvmCompilerFreeTemp(cUnit, tReg);
4056    }
4057
4058    /* Punt if "regIdxInit < len(Array)" is false */
4059    genRegRegCheck(cUnit, kMipsCondGe, rlIdxInit.lowReg, regLength, 0,
4060                   (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4061}
4062
4063/*
4064 * vA = idxReg;
4065 * vB = minC;
4066 */
4067static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
4068{
4069    DecodedInstruction *dInsn = &mir->dalvikInsn;
4070    const int minC = dInsn->vB;
4071    RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
4072
4073    /* regIdx <- initial index value */
4074    rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
4075
4076    /* Punt if "regIdxInit + minC >= 0" is false */
4077    genRegImmCheck(cUnit, kMipsCondLt, rlIdx.lowReg, -minC, 0,
4078                   (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4079}
4080
4081/*
4082 * vC = this
4083 *
4084 * A predicted inlining target looks like the following, where instructions
4085 * between 0x2f130d24 and 0x2f130d40 are checking if the predicted class
4086 * matches "this", and the verificaion code is generated by this routine.
4087 *
4088 * (C) means the instruction is inlined from the callee, and (PI) means the
4089 * instruction is the predicted inlined invoke, whose corresponding
4090 * instructions are still generated to handle the mispredicted case.
4091 *
4092 * D/dalvikvm( 2377): -------- kMirOpCheckInlinePrediction
4093 * D/dalvikvm( 2377): 0x2f130d24 (0020):  lw       v0,16(s1)
4094 * D/dalvikvm( 2377): 0x2f130d28 (0024):  lui      v1,0x0011(17)
4095 * D/dalvikvm( 2377): 0x2f130d2c (0028):  ori      v1,v1,0x11e418(1172504)
4096 * D/dalvikvm( 2377): 0x2f130d30 (002c):  beqz     v0,0x2f130df0 (L0x11f1f0)
4097 * D/dalvikvm( 2377): 0x2f130d34 (0030):  pref     0,0(v0)
4098 * D/dalvikvm( 2377): 0x2f130d38 (0034):  lw       a0,0(v0)
4099 * D/dalvikvm( 2377): 0x2f130d3c (0038):  bne      v1,a0,0x2f130d54 (L0x11f518)
4100 * D/dalvikvm( 2377): 0x2f130d40 (003c):  pref     0,8(v0)
4101 * D/dalvikvm( 2377): -------- dalvik offset: 0x000a @ +iget-object-quick (C) v3, v4, (#8)
4102 * D/dalvikvm( 2377): 0x2f130d44 (0040):  lw       a1,8(v0)
4103 * D/dalvikvm( 2377): -------- dalvik offset: 0x000a @ +invoke-virtual-quick (PI) v4
4104 * D/dalvikvm( 2377): 0x2f130d48 (0044):  sw       a1,12(s1)
4105 * D/dalvikvm( 2377): 0x2f130d4c (0048):  b        0x2f130e18 (L0x120150)
4106 * D/dalvikvm( 2377): 0x2f130d50 (004c):  lw       a0,116(s2)
4107 * D/dalvikvm( 2377): L0x11f518:
4108 * D/dalvikvm( 2377): 0x2f130d54 (0050):  lw       a0,16(s1)
4109 * D/dalvikvm( 2377): 0x2f130d58 (0054):  addiu    s4,s1,0xffffffe8(-24)
4110 * D/dalvikvm( 2377): 0x2f130d5c (0058):  beqz     a0,0x2f130e00 (L0x11f618)
4111 * D/dalvikvm( 2377): 0x2f130d60 (005c):  pref     1,0(s4)
4112 * D/dalvikvm( 2377): -------- BARRIER
4113 * D/dalvikvm( 2377): 0x2f130d64 (0060):  sw       a0,0(s4)
4114 * D/dalvikvm( 2377): 0x2f130d68 (0064):  addiu    s4,s4,0x0004(4)
4115 * D/dalvikvm( 2377): -------- BARRIER
4116 * D/dalvikvm( 2377): 0x2f130d6c (0068):  lui      s0,0x2d22(11554)
4117 * D/dalvikvm( 2377): 0x2f130d70 (006c):  ori      s0,s0,0x2d228464(757236836)
4118 * D/dalvikvm( 2377): 0x2f130d74 (0070):  lahi/lui a1,0x2f13(12051)
4119 * D/dalvikvm( 2377): 0x2f130d78 (0074):  lalo/ori a1,a1,0x2f130ddc(789777884)
4120 * D/dalvikvm( 2377): 0x2f130d7c (0078):  lahi/lui a2,0x2f13(12051)
4121 * D/dalvikvm( 2377): 0x2f130d80 (007c):  lalo/ori a2,a2,0x2f130e24(789777956)
4122 * D/dalvikvm( 2377): 0x2f130d84 (0080):  jal      0x2f12d1ec(789762540)
4123 * D/dalvikvm( 2377): 0x2f130d88 (0084):  nop
4124 * D/dalvikvm( 2377): 0x2f130d8c (0088):  b        0x2f130e24 (L0x11ed6c)
4125 * D/dalvikvm( 2377): 0x2f130d90 (008c):  nop
4126 * D/dalvikvm( 2377): 0x2f130d94 (0090):  b        0x2f130e04 (L0x11ffd0)
4127 * D/dalvikvm( 2377): 0x2f130d98 (0094):  lui      a0,0x2d22(11554)
4128 * D/dalvikvm( 2377): 0x2f130d9c (0098):  lw       a0,44(s4)
4129 * D/dalvikvm( 2377): 0x2f130da0 (009c):  bgtz     a1,0x2f130dc4 (L0x11fb98)
4130 * D/dalvikvm( 2377): 0x2f130da4 (00a0):  nop
4131 * D/dalvikvm( 2377): 0x2f130da8 (00a4):  lui      t9,0x2aba(10938)
4132 * D/dalvikvm( 2377): 0x2f130dac (00a8):  ori      t9,t9,0x2abae3f8(716891128)
4133 * D/dalvikvm( 2377): 0x2f130db0 (00ac):  move     a1,s2
4134 * D/dalvikvm( 2377): 0x2f130db4 (00b0):  jalr     ra,t9
4135 * D/dalvikvm( 2377): 0x2f130db8 (00b4):  nop
4136 * D/dalvikvm( 2377): 0x2f130dbc (00b8):  lw       gp,84(sp)
4137 * D/dalvikvm( 2377): 0x2f130dc0 (00bc):  move     a0,v0
4138 * D/dalvikvm( 2377): 0x2f130dc4 (00c0):  lahi/lui a1,0x2f13(12051)
4139 * D/dalvikvm( 2377): 0x2f130dc8 (00c4):  lalo/ori a1,a1,0x2f130ddc(789777884)
4140 * D/dalvikvm( 2377): 0x2f130dcc (00c8):  jal      0x2f12d0c4(789762244)
4141 * D/dalvikvm( 2377): 0x2f130dd0 (00cc):  nop
4142 * D/dalvikvm( 2377): 0x2f130dd4 (00d0):  b        0x2f130e04 (L0x11ffd0)
4143 * D/dalvikvm( 2377): 0x2f130dd8 (00d4):  lui      a0,0x2d22(11554)
4144 * D/dalvikvm( 2377): 0x2f130ddc (00d8): .align4
4145 * D/dalvikvm( 2377): L0x11ed2c:
4146 * D/dalvikvm( 2377): -------- dalvik offset: 0x000d @ move-result-object (PI) v3, (#0), (#0)
4147 * D/dalvikvm( 2377): 0x2f130ddc (00d8):  lw       a2,16(s2)
4148 * D/dalvikvm( 2377): 0x2f130de0 (00dc):  sw       a2,12(s1)
4149 * D/dalvikvm( 2377): 0x2f130de4 (00e0):  b        0x2f130e18 (L0x120150)
4150 * D/dalvikvm( 2377): 0x2f130de8 (00e4):  lw       a0,116(s2)
4151 * D/dalvikvm( 2377): 0x2f130dec (00e8):  undefined
4152 * D/dalvikvm( 2377): L0x11f1f0:
4153 * D/dalvikvm( 2377): -------- reconstruct dalvik PC : 0x2d228464 @ +0x000a
4154 * D/dalvikvm( 2377): 0x2f130df0 (00ec):  lui      a0,0x2d22(11554)
4155 * D/dalvikvm( 2377): 0x2f130df4 (00f0):  ori      a0,a0,0x2d228464(757236836)
4156 * D/dalvikvm( 2377): 0x2f130df8 (00f4):  b        0x2f130e0c (L0x120090)
4157 * D/dalvikvm( 2377): 0x2f130dfc (00f8):  lw       a1,108(s2)
4158 * D/dalvikvm( 2377): L0x11f618:
4159 * D/dalvikvm( 2377): -------- reconstruct dalvik PC : 0x2d228464 @ +0x000a
4160 * D/dalvikvm( 2377): 0x2f130e00 (00fc):  lui      a0,0x2d22(11554)
4161 * D/dalvikvm( 2377): 0x2f130e04 (0100):  ori      a0,a0,0x2d228464(757236836)
4162 * D/dalvikvm( 2377): Exception_Handling:
4163 * D/dalvikvm( 2377): 0x2f130e08 (0104):  lw       a1,108(s2)
4164 * D/dalvikvm( 2377): 0x2f130e0c (0108):  jalr     ra,a1
4165 * D/dalvikvm( 2377): 0x2f130e10 (010c):  nop
4166 * D/dalvikvm( 2377): 0x2f130e14 (0110): .align4
4167 * D/dalvikvm( 2377): L0x11edac:
4168 * D/dalvikvm( 2377): -------- chaining cell (hot): 0x000e
4169 * D/dalvikvm( 2377): 0x2f130e14 (0110):  lw       a0,116(s2)
4170 * D/dalvikvm( 2377): 0x2f130e18 (0114):  jalr     ra,a0
4171 * D/dalvikvm( 2377): 0x2f130e1c (0118):  nop
4172 * D/dalvikvm( 2377): 0x2f130e20 (011c):  data     0x2d22846c(757236844)
4173 * D/dalvikvm( 2377): 0x2f130e24 (0120): .align4
4174 * D/dalvikvm( 2377): L0x11ed6c:
4175 * D/dalvikvm( 2377): -------- chaining cell (predicted)
4176 * D/dalvikvm( 2377): 0x2f130e24 (0120):  data     0xe7fe(59390)
4177 * D/dalvikvm( 2377): 0x2f130e28 (0124):  data     0x0000(0)
4178 * D/dalvikvm( 2377): 0x2f130e2c (0128):  data     0x0000(0)
4179 * D/dalvikvm( 2377): 0x2f130e30 (012c):  data     0x0000(0)
4180 * D/dalvikvm( 2377): 0x2f130e34 (0130):  data     0x0000(0)
4181 */
4182static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
4183{
4184    CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
4185    RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
4186
4187    rlThis = loadValue(cUnit, rlThis, kCoreReg);
4188    int regPredictedClass = dvmCompilerAllocTemp(cUnit);
4189    loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
4190    genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
4191                 NULL);/* null object? */
4192    int regActualClass = dvmCompilerAllocTemp(cUnit);
4193    loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
4194//    opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
4195    /*
4196     * Set the misPredBranchOver target so that it will be generated when the
4197     * code for the non-optimized invoke is generated.
4198     */
4199    callsiteInfo->misPredBranchOver = (LIR *) opCompareBranch(cUnit, kMipsBne, regPredictedClass, regActualClass);
4200}
4201
4202/* Extended MIR instructions like PHI */
4203static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
4204{
4205    int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
4206    char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
4207                                       false);
4208    strcpy(msg, extendedMIROpNames[opOffset]);
4209    newLIR1(cUnit, kMipsPseudoExtended, (int) msg);
4210
4211    switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
4212        case kMirOpPhi: {
4213            char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4214            newLIR1(cUnit, kMipsPseudoSSARep, (int) ssaString);
4215            break;
4216        }
4217        case kMirOpNullNRangeUpCheck: {
4218            genHoistedChecksForCountUpLoop(cUnit, mir);
4219            break;
4220        }
4221        case kMirOpNullNRangeDownCheck: {
4222            genHoistedChecksForCountDownLoop(cUnit, mir);
4223            break;
4224        }
4225        case kMirOpLowerBound: {
4226            genHoistedLowerBoundCheck(cUnit, mir);
4227            break;
4228        }
4229        case kMirOpPunt: {
4230            genUnconditionalBranch(cUnit,
4231                                   (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4232            break;
4233        }
4234        case kMirOpCheckInlinePrediction: {
4235            genValidationForPredictedInline(cUnit, mir);
4236            break;
4237        }
4238        default:
4239            break;
4240    }
4241}
4242
4243/*
4244 * Create a PC-reconstruction cell for the starting offset of this trace.
4245 * Since the PCR cell is placed near the end of the compiled code which is
4246 * usually out of range for a conditional branch, we put two branches (one
4247 * branch over to the loop body and one layover branch to the actual PCR) at the
4248 * end of the entry block.
4249 */
4250static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
4251                                MipsLIR *bodyLabel)
4252{
4253    /* Set up the place holder to reconstruct this Dalvik PC */
4254    MipsLIR *pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4255    pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
4256    pcrLabel->operands[0] =
4257        (int) (cUnit->method->insns + entry->startOffset);
4258    pcrLabel->operands[1] = entry->startOffset;
4259    /* Insert the place holder to the growable list */
4260    dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
4261
4262    /*
4263     * Next, create two branches - one branch over to the loop body and the
4264     * other branch to the PCR cell to punt.
4265     */
4266    MipsLIR *branchToBody = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4267    branchToBody->opcode = kMipsB;
4268    branchToBody->generic.target = (LIR *) bodyLabel;
4269    setupResourceMasks(branchToBody);
4270    cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
4271
4272    MipsLIR *branchToPCR = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4273    branchToPCR->opcode = kMipsB;
4274    branchToPCR->generic.target = (LIR *) pcrLabel;
4275    setupResourceMasks(branchToPCR);
4276    cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
4277}
4278
4279#if defined(WITH_SELF_VERIFICATION)
4280static bool selfVerificationPuntOps(MIR *mir)
4281{
4282assert(0); /* MIPSTODO port selfVerificationPuntOps() */
4283    DecodedInstruction *decInsn = &mir->dalvikInsn;
4284
4285    /*
4286     * All opcodes that can throw exceptions and use the
4287     * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
4288     * under self-verification mode.
4289     */
4290    switch (decInsn->opcode) {
4291        case OP_MONITOR_ENTER:
4292        case OP_MONITOR_EXIT:
4293        case OP_NEW_INSTANCE:
4294        case OP_NEW_ARRAY:
4295        case OP_CHECK_CAST:
4296        case OP_MOVE_EXCEPTION:
4297        case OP_FILL_ARRAY_DATA:
4298        case OP_EXECUTE_INLINE:
4299        case OP_EXECUTE_INLINE_RANGE:
4300            return true;
4301        default:
4302            return false;
4303    }
4304}
4305#endif
4306
4307void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
4308{
4309    /* Used to hold the labels of each block */
4310    MipsLIR *labelList =
4311        (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR) * cUnit->numBlocks, true);
4312    MipsLIR *headLIR = NULL;
4313    GrowableList chainingListByType[kChainingCellGap];
4314    int i;
4315
4316    /*
4317     * Initialize various types chaining lists.
4318     */
4319    for (i = 0; i < kChainingCellGap; i++) {
4320        dvmInitGrowableList(&chainingListByType[i], 2);
4321    }
4322
4323    /* Clear the visited flag for each block */
4324    dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
4325                                          kAllNodes, false /* isIterative */);
4326
4327    GrowableListIterator iterator;
4328    dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
4329
4330    /* Traces start with a profiling entry point.  Generate it here */
4331    cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
4332
4333    /* Handle the content in each basic block */
4334    for (i = 0; ; i++) {
4335        MIR *mir;
4336        BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
4337        if (bb == NULL) break;
4338        if (bb->visited == true) continue;
4339
4340        labelList[i].operands[0] = bb->startOffset;
4341
4342        if (bb->blockType >= kChainingCellGap) {
4343            if (bb->isFallThroughFromInvoke == true) {
4344                /* Align this block first since it is a return chaining cell */
4345                newLIR0(cUnit, kMipsPseudoPseudoAlign4);
4346            }
4347            /*
4348             * Append the label pseudo LIR first. Chaining cells will be handled
4349             * separately afterwards.
4350             */
4351            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
4352        }
4353
4354        if (bb->blockType == kEntryBlock) {
4355            labelList[i].opcode = kMipsPseudoEntryBlock;
4356            if (bb->firstMIRInsn == NULL) {
4357                continue;
4358            } else {
4359              setupLoopEntryBlock(cUnit, bb,
4360                                  &labelList[bb->fallThrough->id]);
4361            }
4362        } else if (bb->blockType == kExitBlock) {
4363            labelList[i].opcode = kMipsPseudoExitBlock;
4364            goto gen_fallthrough;
4365        } else if (bb->blockType == kDalvikByteCode) {
4366            if (bb->hidden == true) continue;
4367            labelList[i].opcode = kMipsPseudoNormalBlockLabel;
4368            /* Reset the register state */
4369            dvmCompilerResetRegPool(cUnit);
4370            dvmCompilerClobberAllRegs(cUnit);
4371            dvmCompilerResetNullCheck(cUnit);
4372        } else {
4373            switch (bb->blockType) {
4374                case kChainingCellNormal:
4375                    labelList[i].opcode = kMipsPseudoChainingCellNormal;
4376                    /* handle the codegen later */
4377                    dvmInsertGrowableList(
4378                        &chainingListByType[kChainingCellNormal], i);
4379                    break;
4380                case kChainingCellInvokeSingleton:
4381                    labelList[i].opcode =
4382                        kMipsPseudoChainingCellInvokeSingleton;
4383                    labelList[i].operands[0] =
4384                        (int) bb->containingMethod;
4385                    /* handle the codegen later */
4386                    dvmInsertGrowableList(
4387                        &chainingListByType[kChainingCellInvokeSingleton], i);
4388                    break;
4389                case kChainingCellInvokePredicted:
4390                    labelList[i].opcode =
4391                        kMipsPseudoChainingCellInvokePredicted;
4392                    /*
4393                     * Move the cached method pointer from operand 1 to 0.
4394                     * Operand 0 was clobbered earlier in this routine to store
4395                     * the block starting offset, which is not applicable to
4396                     * predicted chaining cell.
4397                     */
4398                    labelList[i].operands[0] = labelList[i].operands[1];
4399                    /* handle the codegen later */
4400                    dvmInsertGrowableList(
4401                        &chainingListByType[kChainingCellInvokePredicted], i);
4402                    break;
4403                case kChainingCellHot:
4404                    labelList[i].opcode =
4405                        kMipsPseudoChainingCellHot;
4406                    /* handle the codegen later */
4407                    dvmInsertGrowableList(
4408                        &chainingListByType[kChainingCellHot], i);
4409                    break;
4410                case kPCReconstruction:
4411                    /* Make sure exception handling block is next */
4412                    labelList[i].opcode =
4413                        kMipsPseudoPCReconstructionBlockLabel;
4414                    handlePCReconstruction(cUnit,
4415                                           &labelList[cUnit->puntBlock->id]);
4416                    break;
4417                case kExceptionHandling:
4418                    labelList[i].opcode = kMipsPseudoEHBlockLabel;
4419                    if (cUnit->pcReconstructionList.numUsed) {
4420                        loadWordDisp(cUnit, rSELF, offsetof(Thread,
4421                                     jitToInterpEntries.dvmJitToInterpPunt),
4422                                     r_A1);
4423                        opReg(cUnit, kOpBlx, r_A1);
4424                    }
4425                    break;
4426                case kChainingCellBackwardBranch:
4427                    labelList[i].opcode =
4428                        kMipsPseudoChainingCellBackwardBranch;
4429                    /* handle the codegen later */
4430                    dvmInsertGrowableList(
4431                        &chainingListByType[kChainingCellBackwardBranch],
4432                        i);
4433                    break;
4434                default:
4435                    break;
4436            }
4437            continue;
4438        }
4439
4440        /*
4441         * Try to build a longer optimization unit. Currently if the previous
4442         * block ends with a goto, we continue adding instructions and don't
4443         * reset the register allocation pool.
4444         */
4445        for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
4446            bb = nextBB;
4447            bb->visited = true;
4448            cUnit->nextCodegenBlock = NULL;
4449
4450            for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
4451
4452                dvmCompilerResetRegPool(cUnit);
4453                if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
4454                    dvmCompilerClobberAllRegs(cUnit);
4455                }
4456
4457                if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
4458                    dvmCompilerResetDefTracking(cUnit);
4459                }
4460
4461                if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
4462                    handleExtendedMIR(cUnit, mir);
4463                    continue;
4464                }
4465
4466                Opcode dalvikOpcode = mir->dalvikInsn.opcode;
4467                InstructionFormat dalvikFormat =
4468                    dexGetFormatFromOpcode(dalvikOpcode);
4469                const char *note;
4470                if (mir->OptimizationFlags & MIR_INLINED) {
4471                    note = " (I)";
4472                } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
4473                    note = " (PI)";
4474                } else if (mir->OptimizationFlags & MIR_CALLEE) {
4475                    note = " (C)";
4476                } else {
4477                    note = NULL;
4478                }
4479
4480                MipsLIR *boundaryLIR =
4481                    newLIR2(cUnit, kMipsPseudoDalvikByteCodeBoundary,
4482                            mir->offset,
4483                            (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn,
4484                                                                  note));
4485                if (mir->ssaRep) {
4486                    char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4487                    newLIR1(cUnit, kMipsPseudoSSARep, (int) ssaString);
4488                }
4489
4490                /* Remember the first LIR for this block */
4491                if (headLIR == NULL) {
4492                    headLIR = boundaryLIR;
4493                    /* Set the first boundaryLIR as a scheduling barrier */
4494                    headLIR->defMask = ENCODE_ALL;
4495                }
4496
4497                bool notHandled;
4498                /*
4499                 * Debugging: screen the opcode first to see if it is in the
4500                 * do[-not]-compile list
4501                 */
4502                bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
4503#if defined(WITH_SELF_VERIFICATION)
4504              if (singleStepMe == false) {
4505                  singleStepMe = selfVerificationPuntOps(mir);
4506              }
4507#endif
4508                if (singleStepMe || cUnit->allSingleStep) {
4509                    notHandled = false;
4510                    genInterpSingleStep(cUnit, mir);
4511                } else {
4512                    opcodeCoverage[dalvikOpcode]++;
4513                    switch (dalvikFormat) {
4514                        case kFmt10t:
4515                        case kFmt20t:
4516                        case kFmt30t:
4517                            notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
4518                                      mir, bb, labelList);
4519                            break;
4520                        case kFmt10x:
4521                            notHandled = handleFmt10x(cUnit, mir);
4522                            break;
4523                        case kFmt11n:
4524                        case kFmt31i:
4525                            notHandled = handleFmt11n_Fmt31i(cUnit, mir);
4526                            break;
4527                        case kFmt11x:
4528                            notHandled = handleFmt11x(cUnit, mir);
4529                            break;
4530                        case kFmt12x:
4531                            notHandled = handleFmt12x(cUnit, mir);
4532                            break;
4533                        case kFmt20bc:
4534                            notHandled = handleFmt20bc(cUnit, mir);
4535                            break;
4536                        case kFmt21c:
4537                        case kFmt31c:
4538                            notHandled = handleFmt21c_Fmt31c(cUnit, mir);
4539                            break;
4540                        case kFmt21h:
4541                            notHandled = handleFmt21h(cUnit, mir);
4542                            break;
4543                        case kFmt21s:
4544                            notHandled = handleFmt21s(cUnit, mir);
4545                            break;
4546                        case kFmt21t:
4547                            notHandled = handleFmt21t(cUnit, mir, bb,
4548                                                      labelList);
4549                            break;
4550                        case kFmt22b:
4551                        case kFmt22s:
4552                            notHandled = handleFmt22b_Fmt22s(cUnit, mir);
4553                            break;
4554                        case kFmt22c:
4555                            notHandled = handleFmt22c(cUnit, mir);
4556                            break;
4557                        case kFmt22cs:
4558                            notHandled = handleFmt22cs(cUnit, mir);
4559                            break;
4560                        case kFmt22t:
4561                            notHandled = handleFmt22t(cUnit, mir, bb,
4562                                                      labelList);
4563                            break;
4564                        case kFmt22x:
4565                        case kFmt32x:
4566                            notHandled = handleFmt22x_Fmt32x(cUnit, mir);
4567                            break;
4568                        case kFmt23x:
4569                            notHandled = handleFmt23x(cUnit, mir);
4570                            break;
4571                        case kFmt31t:
4572                            notHandled = handleFmt31t(cUnit, mir);
4573                            break;
4574                        case kFmt3rc:
4575                        case kFmt35c:
4576                            notHandled = handleFmt35c_3rc(cUnit, mir, bb,
4577                                                          labelList);
4578                            break;
4579                        case kFmt3rms:
4580                        case kFmt35ms:
4581                            notHandled = handleFmt35ms_3rms(cUnit, mir,bb,
4582                                                            labelList);
4583                            break;
4584                        case kFmt35mi:
4585                        case kFmt3rmi:
4586                            notHandled = handleExecuteInline(cUnit, mir);
4587                            break;
4588                        case kFmt51l:
4589                            notHandled = handleFmt51l(cUnit, mir);
4590                            break;
4591                        default:
4592                            notHandled = true;
4593                            break;
4594                    }
4595                }
4596                if (notHandled) {
4597                    ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
4598                         mir->offset,
4599                         dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
4600                         dalvikFormat);
4601                    dvmCompilerAbort(cUnit);
4602                    break;
4603                }
4604            }
4605        }
4606
4607        if (bb->blockType == kEntryBlock) {
4608            dvmCompilerAppendLIR(cUnit,
4609                                 (LIR *) cUnit->loopAnalysis->branchToBody);
4610            dvmCompilerAppendLIR(cUnit,
4611                                 (LIR *) cUnit->loopAnalysis->branchToPCR);
4612        }
4613
4614        if (headLIR) {
4615            /*
4616             * Eliminate redundant loads/stores and delay stores into later
4617             * slots
4618             */
4619            dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
4620                                               cUnit->lastLIRInsn);
4621            /* Reset headLIR which is also the optimization boundary */
4622            headLIR = NULL;
4623        }
4624
4625gen_fallthrough:
4626        /*
4627         * Check if the block is terminated due to trace length constraint -
4628         * insert an unconditional branch to the chaining cell.
4629         */
4630        if (bb->needFallThroughBranch) {
4631            genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
4632        }
4633    }
4634
4635    /* Handle the chaining cells in predefined order */
4636    for (i = 0; i < kChainingCellGap; i++) {
4637        size_t j;
4638        int *blockIdList = (int *) chainingListByType[i].elemList;
4639
4640        cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
4641
4642        /* No chaining cells of this type */
4643        if (cUnit->numChainingCells[i] == 0)
4644            continue;
4645
4646        /* Record the first LIR for a new type of chaining cell */
4647        cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
4648
4649        for (j = 0; j < chainingListByType[i].numUsed; j++) {
4650            int blockId = blockIdList[j];
4651            BasicBlock *chainingBlock =
4652                (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
4653                                                         blockId);
4654
4655            /* Align this chaining cell first */
4656            newLIR0(cUnit, kMipsPseudoPseudoAlign4);
4657
4658            /* Insert the pseudo chaining instruction */
4659            dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
4660
4661
4662            switch (chainingBlock->blockType) {
4663                case kChainingCellNormal:
4664                    handleNormalChainingCell(cUnit, chainingBlock->startOffset);
4665                    break;
4666                case kChainingCellInvokeSingleton:
4667                    handleInvokeSingletonChainingCell(cUnit,
4668                        chainingBlock->containingMethod);
4669                    break;
4670                case kChainingCellInvokePredicted:
4671                    handleInvokePredictedChainingCell(cUnit);
4672                    break;
4673                case kChainingCellHot:
4674                    handleHotChainingCell(cUnit, chainingBlock->startOffset);
4675                    break;
4676                case kChainingCellBackwardBranch:
4677                    handleBackwardBranchChainingCell(cUnit,
4678                        chainingBlock->startOffset);
4679                    break;
4680                default:
4681                    ALOGE("Bad blocktype %d", chainingBlock->blockType);
4682                    dvmCompilerAbort(cUnit);
4683            }
4684        }
4685    }
4686
4687    /* Mark the bottom of chaining cells */
4688    cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kMipsChainingCellBottom);
4689
4690    /*
4691     * Generate the branch to the dvmJitToInterpNoChain entry point at the end
4692     * of all chaining cells for the overflow cases.
4693     */
4694    if (cUnit->switchOverflowPad) {
4695        loadConstant(cUnit, r_A0, (int) cUnit->switchOverflowPad);
4696        loadWordDisp(cUnit, rSELF, offsetof(Thread,
4697                     jitToInterpEntries.dvmJitToInterpNoChain), r_A2);
4698        opRegReg(cUnit, kOpAdd, r_A1, r_A1);
4699        opRegRegReg(cUnit, kOpAdd, r4PC, r_A0, r_A1);
4700#if defined(WITH_JIT_TUNING)
4701        loadConstant(cUnit, r_A0, kSwitchOverflow);
4702#endif
4703        opReg(cUnit, kOpBlx, r_A2);
4704    }
4705
4706    dvmCompilerApplyGlobalOptimizations(cUnit);
4707
4708#if defined(WITH_SELF_VERIFICATION)
4709    selfVerificationBranchInsertPass(cUnit);
4710#endif
4711}
4712
4713/*
4714 * Accept the work and start compiling.  Returns true if compilation
4715 * is attempted.
4716 */
4717bool dvmCompilerDoWork(CompilerWorkOrder *work)
4718{
4719    JitTraceDescription *desc;
4720    bool isCompile;
4721    bool success = true;
4722
4723    if (gDvmJit.codeCacheFull) {
4724        return false;
4725    }
4726
4727    switch (work->kind) {
4728        case kWorkOrderTrace:
4729            isCompile = true;
4730            /* Start compilation with maximally allowed trace length */
4731            desc = (JitTraceDescription *)work->info;
4732            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4733                                        work->bailPtr, 0 /* no hints */);
4734            break;
4735        case kWorkOrderTraceDebug: {
4736            bool oldPrintMe = gDvmJit.printMe;
4737            gDvmJit.printMe = true;
4738            isCompile = true;
4739            /* Start compilation with maximally allowed trace length */
4740            desc = (JitTraceDescription *)work->info;
4741            success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4742                                        work->bailPtr, 0 /* no hints */);
4743            gDvmJit.printMe = oldPrintMe;
4744            break;
4745        }
4746        case kWorkOrderProfileMode:
4747            dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
4748            isCompile = false;
4749            break;
4750        default:
4751            isCompile = false;
4752            ALOGE("Jit: unknown work order type");
4753            assert(0);  // Bail if debug build, discard otherwise
4754    }
4755    if (!success)
4756        work->result.codeAddress = NULL;
4757    return isCompile;
4758}
4759
4760/* Architectural-specific debugging helpers go here */
4761void dvmCompilerArchDump(void)
4762{
4763    /* Print compiled opcode in this VM instance */
4764    int i, start, streak;
4765    char buf[1024];
4766
4767    streak = i = 0;
4768    buf[0] = 0;
4769    while (opcodeCoverage[i] == 0 && i < 256) {
4770        i++;
4771    }
4772    if (i == 256) {
4773        return;
4774    }
4775    for (start = i++, streak = 1; i < 256; i++) {
4776        if (opcodeCoverage[i]) {
4777            streak++;
4778        } else {
4779            if (streak == 1) {
4780                sprintf(buf+strlen(buf), "%x,", start);
4781            } else {
4782                sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
4783            }
4784            streak = 0;
4785            while (opcodeCoverage[i] == 0 && i < 256) {
4786                i++;
4787            }
4788            if (i < 256) {
4789                streak = 1;
4790                start = i;
4791            }
4792        }
4793    }
4794    if (streak) {
4795        if (streak == 1) {
4796            sprintf(buf+strlen(buf), "%x", start);
4797        } else {
4798            sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
4799        }
4800    }
4801    if (strlen(buf)) {
4802        ALOGD("dalvik.vm.jit.op = %s", buf);
4803    }
4804}
4805
4806/* Common initialization routine for an architecture family */
4807bool dvmCompilerArchInit()
4808{
4809    int i;
4810
4811    for (i = 0; i < kMipsLast; i++) {
4812        if (EncodingMap[i].opcode != i) {
4813            ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
4814                 EncodingMap[i].name, i, EncodingMap[i].opcode);
4815            dvmAbort();  // OK to dvmAbort - build error
4816        }
4817    }
4818
4819    return dvmCompilerArchVariantInit();
4820}
4821
4822void *dvmCompilerGetInterpretTemplate()
4823{
4824      return (void*) ((int)gDvmJit.codeCache +
4825                      templateEntryOffsets[TEMPLATE_INTERPRET]);
4826}
4827
4828JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
4829{
4830    return DALVIK_JIT_MIPS;
4831}
4832
4833/* Needed by the Assembler */
4834void dvmCompilerSetupResourceMasks(MipsLIR *lir)
4835{
4836    setupResourceMasks(lir);
4837}
4838
4839/* Needed by the ld/st optmizatons */
4840MipsLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
4841{
4842    return genRegCopyNoInsert(cUnit, rDest, rSrc);
4843}
4844
4845/* Needed by the register allocator */
4846MipsLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
4847{
4848    return genRegCopy(cUnit, rDest, rSrc);
4849}
4850
4851/* Needed by the register allocator */
4852void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
4853                            int srcLo, int srcHi)
4854{
4855    genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
4856}
4857
4858void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
4859                             int displacement, int rSrc, OpSize size)
4860{
4861    storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
4862}
4863
4864void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
4865                                 int displacement, int rSrcLo, int rSrcHi)
4866{
4867    storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
4868}
4869