1/*
2 *  Licensed to the Apache Software Foundation (ASF) under one or more
3 *  contributor license agreements.  See the NOTICE file distributed with
4 *  this work for additional information regarding copyright ownership.
5 *  The ASF licenses this file to You under the Apache License, Version 2.0
6 *  (the "License"); you may not use this file except in compliance with
7 *  the License.  You may obtain a copy of the License at
8 *
9 *     http://www.apache.org/licenses/LICENSE-2.0
10 *
11 *  Unless required by applicable law or agreed to in writing, software
12 *  distributed under the License is distributed on an "AS IS" BASIS,
13 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 *  See the License for the specific language governing permissions and
15 *  limitations under the License.
16 */
17
18package org.apache.harmony.luni.tests.java.lang;
19
20public class MathTest extends junit.framework.TestCase {
21
22	double HYP = Math.sqrt(2.0);
23
24	double OPP = 1.0;
25
26	double ADJ = 1.0;
27
28	/* Required to make previous preprocessor flags work - do not remove */
29	int unused = 0;
30
31	/**
32	 * @tests java.lang.Math#abs(double)
33	 */
34	public void test_absD() {
35		// Test for method double java.lang.Math.abs(double)
36
37		assertTrue("Incorrect double abs value",
38				(Math.abs(-1908.8976) == 1908.8976));
39		assertTrue("Incorrect double abs value",
40				(Math.abs(1908.8976) == 1908.8976));
41	}
42
43	/**
44	 * @tests java.lang.Math#abs(float)
45	 */
46	public void test_absF() {
47		// Test for method float java.lang.Math.abs(float)
48		assertTrue("Incorrect float abs value",
49				(Math.abs(-1908.8976f) == 1908.8976f));
50		assertTrue("Incorrect float abs value",
51				(Math.abs(1908.8976f) == 1908.8976f));
52	}
53
54	/**
55	 * @tests java.lang.Math#abs(int)
56	 */
57	public void test_absI() {
58		// Test for method int java.lang.Math.abs(int)
59		assertTrue("Incorrect int abs value", (Math.abs(-1908897) == 1908897));
60		assertTrue("Incorrect int abs value", (Math.abs(1908897) == 1908897));
61	}
62
63	/**
64	 * @tests java.lang.Math#abs(long)
65	 */
66	public void test_absJ() {
67		// Test for method long java.lang.Math.abs(long)
68		assertTrue("Incorrect long abs value",
69				(Math.abs(-19088976000089L) == 19088976000089L));
70		assertTrue("Incorrect long abs value",
71				(Math.abs(19088976000089L) == 19088976000089L));
72	}
73
74	/**
75	 * @tests java.lang.Math#acos(double)
76	 */
77	public void test_acosD() {
78		// Test for method double java.lang.Math.acos(double)
79		double r = Math.cos(Math.acos(ADJ / HYP));
80		long lr = Double.doubleToLongBits(r);
81		long t = Double.doubleToLongBits(ADJ / HYP);
82		assertTrue("Returned incorrect arc cosine", lr == t || (lr + 1) == t
83				|| (lr - 1) == t);
84	}
85
86	/**
87	 * @tests java.lang.Math#asin(double)
88	 */
89	public void test_asinD() {
90		// Test for method double java.lang.Math.asin(double)
91		double r = Math.sin(Math.asin(OPP / HYP));
92		long lr = Double.doubleToLongBits(r);
93		long t = Double.doubleToLongBits(OPP / HYP);
94		assertTrue("Returned incorrect arc sine", lr == t || (lr + 1) == t
95				|| (lr - 1) == t);
96	}
97
98	/**
99	 * @tests java.lang.Math#atan(double)
100	 */
101	public void test_atanD() {
102		// Test for method double java.lang.Math.atan(double)
103		double answer = Math.tan(Math.atan(1.0));
104		assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
105				&& answer >= 9.9999999999999983E-1);
106	}
107
108	/**
109	 * @tests java.lang.Math#atan2(double, double)
110	 */
111	public void test_atan2DD() {
112		// Test for method double java.lang.Math.atan2(double, double)
113		double answer = Math.atan(Math.tan(1.0));
114		assertTrue("Returned incorrect arc tangent: " + answer, answer <= 1.0
115				&& answer >= 9.9999999999999983E-1);
116	}
117
118     /**
119     * @tests java.lang.Math#cbrt(double)
120     */
121    public void test_cbrt_D() {
122        //Test for special situations
123        assertTrue("Should return Double.NaN", Double.isNaN(Math
124                .cbrt(Double.NaN)));
125        assertEquals("Should return Double.POSITIVE_INFINITY",
126                Double.POSITIVE_INFINITY, Math
127                        .cbrt(Double.POSITIVE_INFINITY), 0D);
128        assertEquals("Should return Double.NEGATIVE_INFINITY",
129                Double.NEGATIVE_INFINITY, Math
130                        .cbrt(Double.NEGATIVE_INFINITY), 0D);
131        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
132				.cbrt(0.0)));
133		assertEquals(Double.doubleToLongBits(+0.0), Double.doubleToLongBits(Math
134				.cbrt(+0.0)));
135		assertEquals(Double.doubleToLongBits(-0.0), Double.doubleToLongBits(Math
136				.cbrt(-0.0)));
137
138        assertEquals("Should return 3.0", 3.0, Math.cbrt(27.0), 0D);
139        assertEquals("Should return 23.111993172558684", 23.111993172558684,
140                Math.cbrt(12345.6), 0D);
141        assertEquals("Should return 5.643803094122362E102",
142                5.643803094122362E102, Math.cbrt(Double.MAX_VALUE), 0D);
143        assertEquals("Should return 0.01", 0.01, Math.cbrt(0.000001), 0D);
144
145        assertEquals("Should return -3.0", -3.0, Math.cbrt(-27.0), 0D);
146        assertEquals("Should return -23.111993172558684", -23.111993172558684,
147                Math.cbrt(-12345.6), 0D);
148        assertEquals("Should return 1.7031839360032603E-108",
149                1.7031839360032603E-108, Math.cbrt(Double.MIN_VALUE), 0D);
150        assertEquals("Should return -0.01", -0.01, Math.cbrt(-0.000001), 0D);
151    }
152
153	/**
154	 * @tests java.lang.Math#ceil(double)
155	 */
156	public void test_ceilD() {
157		// Test for method double java.lang.Math.ceil(double)
158                assertEquals("Incorrect ceiling for double",
159                             79, Math.ceil(78.89), 0);
160		assertEquals("Incorrect ceiling for double",
161                             -78, Math.ceil(-78.89), 0);
162	}
163
164	/**
165     * cases for test_copySign_DD in MathTest/StrictMathTest
166     */
167    static final double[] COPYSIGN_DD_CASES = new double[] {
168            Double.POSITIVE_INFINITY, Double.MAX_VALUE, 3.4E302, 2.3,
169            Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
170            0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
171            -Double.MIN_NORMAL, -4.5, -3.4E102, -Double.MAX_VALUE,
172            Double.NEGATIVE_INFINITY };
173
174    /**
175     * @tests {@link java.lang.Math#copySign(double, double)}
176     * @since 1.6
177     *
178     */
179    @SuppressWarnings("boxing")
180    public void test_copySign_DD() {
181        for (int i = 0; i < COPYSIGN_DD_CASES.length; i++) {
182            final double magnitude = COPYSIGN_DD_CASES[i];
183            final long absMagnitudeBits = Double.doubleToLongBits(Math
184                    .abs(magnitude));
185            final long negMagnitudeBits = Double.doubleToLongBits(-Math
186                    .abs(magnitude));
187
188            // cases for NaN
189            assertEquals("If the sign is NaN, the result should be positive.",
190                    absMagnitudeBits, Double.doubleToLongBits(Math.copySign(
191                            magnitude, Double.NaN)));
192            assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
193                    Double.NaN, magnitude)));
194
195            for (int j = 0; j < COPYSIGN_DD_CASES.length; j++) {
196                final double sign = COPYSIGN_DD_CASES[j];
197                final long resultBits = Double.doubleToLongBits(Math.copySign(
198                        magnitude, sign));
199
200                if (sign > 0 || Double.valueOf(+0.0).equals(sign)
201                        || Double.valueOf(0.0).equals(sign)) {
202                    assertEquals(
203                            "If the sign is positive, the result should be positive.",
204                            absMagnitudeBits, resultBits);
205                }
206                if (sign < 0 || Double.valueOf(-0.0).equals(sign)) {
207                    assertEquals(
208                            "If the sign is negative, the result should be negative.",
209                            negMagnitudeBits, resultBits);
210                }
211            }
212        }
213
214        assertTrue("The result should be NaN.", Double.isNaN(Math.copySign(
215                Double.NaN, Double.NaN)));
216
217        try {
218            Math.copySign((Double) null, 2.3);
219            fail("Should throw NullPointerException");
220        } catch (NullPointerException e) {
221            // Expected
222        }
223        try {
224            Math.copySign(2.3, (Double) null);
225            fail("Should throw NullPointerException");
226        } catch (NullPointerException e) {
227            // Expected
228        }
229        try {
230            Math.copySign((Double) null, (Double) null);
231            fail("Should throw NullPointerException");
232        } catch (NullPointerException e) {
233            // Expected
234        }
235    }
236
237    /**
238     * cases for test_copySign_FF in MathTest/StrictMathTest
239     */
240    static final float[] COPYSIGN_FF_CASES = new float[] {
241            Float.POSITIVE_INFINITY, Float.MAX_VALUE, 3.4E12f, 2.3f,
242            Float.MIN_NORMAL, Float.MIN_NORMAL / 2, Float.MIN_VALUE, +0.0f,
243            0.0f, -0.0f, -Float.MIN_VALUE, -Float.MIN_NORMAL / 2,
244            -Float.MIN_NORMAL, -4.5f, -5.6442E21f, -Float.MAX_VALUE,
245            Float.NEGATIVE_INFINITY };
246
247    /**
248     * @tests {@link java.lang.Math#copySign(float, float)}
249     * @since 1.6
250     */
251    @SuppressWarnings("boxing")
252    public void test_copySign_FF() {
253        for (int i = 0; i < COPYSIGN_FF_CASES.length; i++) {
254            final float magnitude = COPYSIGN_FF_CASES[i];
255            final int absMagnitudeBits = Float.floatToIntBits(Math
256                    .abs(magnitude));
257            final int negMagnitudeBits = Float.floatToIntBits(-Math
258                    .abs(magnitude));
259
260            // cases for NaN
261            assertEquals("If the sign is NaN, the result should be positive.",
262                    absMagnitudeBits, Float.floatToIntBits(Math.copySign(
263                            magnitude, Float.NaN)));
264            assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
265                    Float.NaN, magnitude)));
266
267            for (int j = 0; j < COPYSIGN_FF_CASES.length; j++) {
268                final float sign = COPYSIGN_FF_CASES[j];
269                final int resultBits = Float.floatToIntBits(Math.copySign(
270                        magnitude, sign));
271                if (sign > 0 || Float.valueOf(+0.0f).equals(sign)
272                        || Float.valueOf(0.0f).equals(sign)) {
273                    assertEquals(
274                            "If the sign is positive, the result should be positive.",
275                            absMagnitudeBits, resultBits);
276                }
277                if (sign < 0 || Float.valueOf(-0.0f).equals(sign)) {
278                    assertEquals(
279                            "If the sign is negative, the result should be negative.",
280                            negMagnitudeBits, resultBits);
281                }
282            }
283        }
284
285        assertTrue("The result should be NaN.", Float.isNaN(Math.copySign(
286                Float.NaN, Float.NaN)));
287
288        try {
289            Math.copySign((Float) null, 2.3f);
290            fail("Should throw NullPointerException");
291        } catch (NullPointerException e) {
292            // Expected
293        }
294        try {
295            Math.copySign(2.3f, (Float) null);
296            fail("Should throw NullPointerException");
297        } catch (NullPointerException e) {
298            // Expected
299        }
300        try {
301            Math.copySign((Float) null, (Float) null);
302            fail("Should throw NullPointerException");
303        } catch (NullPointerException e) {
304            // Expected
305        }
306    }
307
308	/**
309	 * @tests java.lang.Math#cos(double)
310	 */
311	public void test_cosD() {
312		// Test for method double java.lang.Math.cos(double)
313		assertEquals("Incorrect answer", 1.0, Math.cos(0), 0D);
314		assertEquals("Incorrect answer", 0.5403023058681398, Math.cos(1), 0D);
315	}
316
317    /**
318     * @tests java.lang.Math#cosh(double)
319     */
320    public void test_cosh_D() {
321        // Test for special situations
322        assertTrue(Double.isNaN(Math.cosh(Double.NaN)));
323        assertEquals("Should return POSITIVE_INFINITY",
324                Double.POSITIVE_INFINITY, Math.cosh(Double.POSITIVE_INFINITY), 0D);
325        assertEquals("Should return POSITIVE_INFINITY",
326                Double.POSITIVE_INFINITY, Math.cosh(Double.NEGATIVE_INFINITY), 0D);
327        assertEquals("Should return 1.0", 1.0, Math.cosh(+0.0), 0D);
328        assertEquals("Should return 1.0", 1.0, Math.cosh(-0.0), 0D);
329
330        assertEquals("Should return POSITIVE_INFINITY",
331                Double.POSITIVE_INFINITY, Math.cosh(1234.56), 0D);
332        assertEquals("Should return POSITIVE_INFINITY",
333                Double.POSITIVE_INFINITY, Math.cosh(-1234.56), 0D);
334        assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
335                .cosh(0.000001), 0D);
336        assertEquals("Should return 1.0000000000005", 1.0000000000005, Math
337                .cosh(-0.000001), 0D);
338        assertEquals("Should return 5.212214351945598", 5.212214351945598, Math
339                .cosh(2.33482), 0D);
340
341        assertEquals("Should return POSITIVE_INFINITY",
342                Double.POSITIVE_INFINITY, Math.cosh(Double.MAX_VALUE), 0D);
343        assertEquals("Should return 1.0", 1.0, Math.cosh(Double.MIN_VALUE), 0D);
344    }
345
346	/**
347	 * @tests java.lang.Math#exp(double)
348	 */
349	public void test_expD() {
350		// Test for method double java.lang.Math.exp(double)
351		assertTrue("Incorrect answer returned for simple power", Math.abs(Math
352				.exp(4D)
353				- Math.E * Math.E * Math.E * Math.E) < 0.1D);
354		assertTrue("Incorrect answer returned for larger power", Math.log(Math
355				.abs(Math.exp(5.5D)) - 5.5D) < 10.0D);
356	}
357
358    /**
359     * @tests java.lang.Math#expm1(double)
360     */
361    public void test_expm1_D() {
362        // Test for special cases
363        assertTrue("Should return NaN", Double.isNaN(Math.expm1(Double.NaN)));
364        assertEquals("Should return POSITIVE_INFINITY",
365                Double.POSITIVE_INFINITY, Math.expm1(Double.POSITIVE_INFINITY), 0D);
366        assertEquals("Should return -1.0", -1.0, Math
367                .expm1(Double.NEGATIVE_INFINITY), 0D);
368        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
369				.expm1(0.0)));
370		assertEquals(Double.doubleToLongBits(+0.0), Double
371				.doubleToLongBits(Math.expm1(+0.0)));
372		assertEquals(Double.doubleToLongBits(-0.0), Double
373				.doubleToLongBits(Math.expm1(-0.0)));
374
375        assertEquals("Should return -9.999950000166666E-6",
376                -9.999950000166666E-6, Math.expm1(-0.00001), 0D);
377        assertEquals("Should return 1.0145103074469635E60",
378                1.0145103074469635E60, Math.expm1(138.16951162), 0D);
379        assertEquals("Should return POSITIVE_INFINITY",
380                Double.POSITIVE_INFINITY, Math
381                        .expm1(123456789123456789123456789.4521584223), 0D);
382        assertEquals("Should return POSITIVE_INFINITY",
383                Double.POSITIVE_INFINITY, Math.expm1(Double.MAX_VALUE), 0D);
384        assertEquals("Should return MIN_VALUE", Double.MIN_VALUE, Math
385                .expm1(Double.MIN_VALUE), 0D);
386    }
387
388    /**
389     * @tests java.lang.Math#floor(double)
390     */
391    public void test_floorD() {
392        assertEquals("Incorrect floor for int", 42, Math.floor(42), 0);
393        assertEquals("Incorrect floor for -int", -2, Math.floor(-2), 0);
394        assertEquals("Incorrect floor for zero", 0d, Math.floor(0d), 0);
395
396        assertEquals("Incorrect floor for +double", 78, Math.floor(78.89), 0);
397        assertEquals("Incorrect floor for -double", -79, Math.floor(-78.89), 0);
398        assertEquals("floor large +double", 3.7314645675925406E19, Math.floor(3.7314645675925406E19), 0);
399        assertEquals("floor large -double", -8.173521839218E12, Math.floor(-8.173521839218E12), 0);
400        assertEquals("floor small double", 0.0d, Math.floor(1.11895241315E-102), 0);
401
402        // Compare toString representations here since -0.0 = +0.0, and
403        // NaN != NaN and we need to distinguish
404        assertEquals("Floor failed for NaN",
405                Double.toString(Double.NaN), Double.toString(Math.floor(Double.NaN)));
406        assertEquals("Floor failed for +0.0",
407                Double.toString(+0.0d), Double.toString(Math.floor(+0.0d)));
408        assertEquals("Floor failed for -0.0",
409                Double.toString(-0.0d), Double.toString(Math.floor(-0.0d)));
410        assertEquals("Floor failed for +infinity",
411                Double.toString(Double.POSITIVE_INFINITY), Double.toString(Math.floor(Double.POSITIVE_INFINITY)));
412        assertEquals("Floor failed for -infinity",
413                Double.toString(Double.NEGATIVE_INFINITY), Double.toString(Math.floor(Double.NEGATIVE_INFINITY)));
414    }
415
416	/**
417     * cases for test_getExponent_D in MathTest/StrictMathTest
418     */
419    static final double GETEXPONENT_D_CASES[] = new double[] {
420            Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY,
421            Double.MAX_VALUE, -Double.MAX_VALUE, 2.342E231, -2.342E231, 2800.0,
422            -2800.0, 5.323, -5.323, 1.323, -1.323, 0.623, -0.623, 0.323,
423            -0.323, Double.MIN_NORMAL * 24, -Double.MIN_NORMAL * 24,
424            Double.MIN_NORMAL, -Double.MIN_NORMAL, Double.MIN_NORMAL / 2,
425            -Double.MIN_NORMAL / 2, Double.MIN_VALUE, -Double.MIN_VALUE, +0.0,
426            0.0, -0.0, Double.NaN };
427
428    /**
429     * result for test_getExponent_D in MathTest/StrictMathTest
430     */
431    static final int GETEXPONENT_D_RESULTS[] = new int[] {
432            Double.MAX_EXPONENT + 1, Double.MAX_EXPONENT + 1,
433            Double.MAX_EXPONENT, Double.MAX_EXPONENT, 768, 768, 11, 11, 2, 2,
434            0, 0, -1, -1, -2, -2, -1018, -1018, Double.MIN_EXPONENT,
435            Double.MIN_EXPONENT, Double.MIN_EXPONENT - 1,
436            Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
437            Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
438            Double.MIN_EXPONENT - 1, Double.MIN_EXPONENT - 1,
439            Double.MAX_EXPONENT + 1 };
440
441    /**
442     * @tests {@link java.lang.Math#getExponent(double)}
443     * @since 1.6
444     */
445    @SuppressWarnings("boxing")
446    public void test_getExponent_D() {
447        for (int i = 0; i < GETEXPONENT_D_CASES.length; i++) {
448            final double number = GETEXPONENT_D_CASES[i];
449            final int result = GETEXPONENT_D_RESULTS[i];
450            assertEquals("Wrong result of getExponent(double).", result, Math
451                    .getExponent(number));
452        }
453
454        try {
455            Math.getExponent((Double) null);
456            fail("Should throw NullPointerException");
457        } catch (NullPointerException e) {
458            // Expected
459        }
460    }
461
462    /**
463     * cases for test_getExponent_F in MathTest/StrictMathTest
464     */
465    static final float GETEXPONENT_F_CASES[] = new float[] {
466            Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY, Float.MAX_VALUE,
467            -Float.MAX_VALUE, 3.4256E23f, -3.4256E23f, 2800.0f, -2800.0f,
468            5.323f, -5.323f, 1.323f, -1.323f, 0.623f, -0.623f, 0.323f, -0.323f,
469            Float.MIN_NORMAL * 24, -Float.MIN_NORMAL * 24, Float.MIN_NORMAL,
470            -Float.MIN_NORMAL, Float.MIN_NORMAL / 2, -Float.MIN_NORMAL / 2,
471            Float.MIN_VALUE, -Float.MIN_VALUE, +0.0f, 0.0f, -0.0f, Float.NaN,1,Float.MIN_NORMAL * 1.5f };
472
473    /**
474     * result for test_getExponent_F in MathTest/StrictMathTest
475     */
476    static final int GETEXPONENT_F_RESULTS[] = new int[] {
477            Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT + 1, Float.MAX_EXPONENT,
478            Float.MAX_EXPONENT, 78, 78, 11, 11, 2, 2, 0, 0, -1, -1, -2, -2,
479            -122, -122, Float.MIN_EXPONENT, Float.MIN_EXPONENT,
480            Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
481            Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
482            Float.MIN_EXPONENT - 1, Float.MIN_EXPONENT - 1,
483            Float.MIN_EXPONENT - 1, Float.MAX_EXPONENT + 1,0,Float.MIN_EXPONENT };
484
485    /**
486     * @tests {@link java.lang.Math#getExponent(float)}
487     * @since 1.6
488     */
489    @SuppressWarnings("boxing")
490    public void test_getExponent_F() {
491        for (int i = 0; i < GETEXPONENT_F_CASES.length; i++) {
492            final float number = GETEXPONENT_F_CASES[i];
493            final int result = GETEXPONENT_F_RESULTS[i];
494            assertEquals("Wrong result of getExponent(float).", result, Math
495                    .getExponent(number));
496        }
497        try {
498            Math.getExponent((Float) null);
499            fail("Should throw NullPointerException");
500        } catch (NullPointerException e) {
501            // Expected
502        }
503    }
504
505    /**
506     * @tests java.lang.Math#hypot(double, double)
507     */
508    public void test_hypot_DD() {
509        // Test for special cases
510        assertEquals("Should return POSITIVE_INFINITY",
511                Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
512                        1.0), 0D);
513        assertEquals("Should return POSITIVE_INFINITY",
514                Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
515                        123.324), 0D);
516        assertEquals("Should return POSITIVE_INFINITY",
517                Double.POSITIVE_INFINITY, Math.hypot(-758.2587,
518                        Double.POSITIVE_INFINITY), 0D);
519        assertEquals("Should return POSITIVE_INFINITY",
520                Double.POSITIVE_INFINITY, Math.hypot(5687.21,
521                        Double.NEGATIVE_INFINITY), 0D);
522        assertEquals("Should return POSITIVE_INFINITY",
523                Double.POSITIVE_INFINITY, Math.hypot(Double.POSITIVE_INFINITY,
524                        Double.NEGATIVE_INFINITY), 0D);
525        assertEquals("Should return POSITIVE_INFINITY",
526                Double.POSITIVE_INFINITY, Math.hypot(Double.NEGATIVE_INFINITY,
527                        Double.POSITIVE_INFINITY), 0D);
528        assertTrue("Should be NaN", Double.isNaN(Math.hypot(Double.NaN,
529                2342301.89843)));
530        assertTrue("Should be NaN", Double.isNaN(Math.hypot(-345.2680,
531                Double.NaN)));
532
533        assertEquals("Should return 2396424.905416697", 2396424.905416697, Math
534                .hypot(12322.12, -2396393.2258), 0D);
535        assertEquals("Should return 138.16958070558556", 138.16958070558556,
536                Math.hypot(-138.16951162, 0.13817035864), 0D);
537        assertEquals("Should return 1.7976931348623157E308",
538                1.7976931348623157E308, Math.hypot(Double.MAX_VALUE, 211370.35), 0D);
539        assertEquals("Should return 5413.7185", 5413.7185, Math.hypot(
540                -5413.7185, Double.MIN_VALUE), 0D);
541    }
542
543	/**
544	 * @tests java.lang.Math#IEEEremainder(double, double)
545	 */
546	public void test_IEEEremainderDD() {
547		// Test for method double java.lang.Math.IEEEremainder(double, double)
548		assertEquals("Incorrect remainder returned",
549				0.0, Math.IEEEremainder(1.0, 1.0), 0D);
550		assertTrue("Incorrect remainder returned", Math.IEEEremainder(1.32,
551				89.765) >= 1.4705063220631647E-2
552				|| Math.IEEEremainder(1.32, 89.765) >= 1.4705063220631649E-2);
553	}
554
555	/**
556	 * @tests java.lang.Math#log(double)
557	 */
558	public void test_logD() {
559		// Test for method double java.lang.Math.log(double)
560		for (double d = 10; d >= -10; d -= 0.5) {
561			double answer = Math.log(Math.exp(d));
562			assertTrue("Answer does not equal expected answer for d = " + d
563					+ " answer = " + answer, Math.abs(answer - d) <= Math
564					.abs(d * 0.00000001));
565		}
566	}
567
568    /**
569     * @tests java.lang.Math#log10(double)
570     */
571    @SuppressWarnings("boxing")
572    public void test_log10_D() {
573        // Test for special cases
574        assertTrue(Double.isNaN(Math.log10(Double.NaN)));
575        assertTrue(Double.isNaN(Math.log10(-2541.05745687234187532)));
576        assertTrue(Double.isNaN(Math.log10(-0.1)));
577        assertEquals(Double.POSITIVE_INFINITY, Math.log10(Double.POSITIVE_INFINITY));
578        assertEquals(Double.NEGATIVE_INFINITY, Math.log10(0.0));
579        assertEquals(Double.NEGATIVE_INFINITY, Math.log10(+0.0));
580        assertEquals(Double.NEGATIVE_INFINITY, Math.log10(-0.0));
581
582        assertEquals(3.0, Math.log10(1000.0));
583        assertEquals(14.0, Math.log10(Math.pow(10, 14)));
584        assertEquals(3.7389561269540406, Math.log10(5482.2158));
585        assertEquals(14.661551142893833, Math.log10(458723662312872.125782332587));
586        assertEquals(-0.9083828622192334, Math.log10(0.12348583358871));
587        assertEquals(308.25471555991675, Math.log10(Double.MAX_VALUE));
588        assertEquals(-323.3062153431158, Math.log10(Double.MIN_VALUE));
589    }
590
591    /**
592     * @tests java.lang.Math#log1p(double)
593     */
594    public void test_log1p_D() {
595        // Test for special cases
596        assertTrue("Should return NaN", Double.isNaN(Math.log1p(Double.NaN)));
597        assertTrue("Should return NaN", Double.isNaN(Math.log1p(-32.0482175)));
598        assertEquals("Should return POSITIVE_INFINITY",
599                Double.POSITIVE_INFINITY, Math.log1p(Double.POSITIVE_INFINITY), 0D);
600        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
601				.log1p(0.0)));
602		assertEquals(Double.doubleToLongBits(+0.0), Double
603				.doubleToLongBits(Math.log1p(+0.0)));
604		assertEquals(Double.doubleToLongBits(-0.0), Double
605				.doubleToLongBits(Math.log1p(-0.0)));
606
607        assertEquals("Should return -0.2941782295312541", -0.2941782295312541,
608                Math.log1p(-0.254856327), 0D);
609        assertEquals("Should return 7.368050685564151", 7.368050685564151, Math
610                .log1p(1583.542), 0D);
611        assertEquals("Should return 0.4633708685409921", 0.4633708685409921,
612                Math.log1p(0.5894227), 0D);
613        assertEquals("Should return 709.782712893384", 709.782712893384, Math
614                .log1p(Double.MAX_VALUE), 0D);
615        assertEquals("Should return Double.MIN_VALUE", Double.MIN_VALUE, Math
616                .log1p(Double.MIN_VALUE), 0D);
617    }
618
619	/**
620	 * @tests java.lang.Math#max(double, double)
621	 */
622	public void test_maxDD() {
623		// Test for method double java.lang.Math.max(double, double)
624		assertEquals("Incorrect double max value", 1908897.6000089, Math.max(-1908897.6000089,
625				1908897.6000089), 0D);
626		assertEquals("Incorrect double max value",
627				1908897.6000089, Math.max(2.0, 1908897.6000089), 0D);
628		assertEquals("Incorrect double max value", -2.0, Math.max(-2.0,
629				-1908897.6000089), 0D);
630
631		// Compare toString representations here since -0.0 = +0.0, and
632		// NaN != NaN and we need to distinguish
633        assertEquals("Max failed for NaN",
634                Double.toString(Double.NaN), Double.toString(Math.max(Double.NaN, 42.0d)));
635        assertEquals("Max failed for NaN",
636                Double.toString(Double.NaN), Double.toString(Math.max(42.0d, Double.NaN)));
637        assertEquals("Max failed for 0.0",
638                Double.toString(+0.0d), Double.toString(Math.max(+0.0d, -0.0d)));
639        assertEquals("Max failed for 0.0",
640                Double.toString(+0.0d), Double.toString(Math.max(-0.0d, +0.0d)));
641        assertEquals("Max failed for -0.0d",
642                Double.toString(-0.0d), Double.toString(Math.max(-0.0d, -0.0d)));
643        assertEquals("Max failed for 0.0",
644                Double.toString(+0.0d), Double.toString(Math.max(+0.0d, +0.0d)));
645	}
646
647	/**
648	 * @tests java.lang.Math#max(float, float)
649	 */
650	public void test_maxFF() {
651		// Test for method float java.lang.Math.max(float, float)
652		assertTrue("Incorrect float max value", Math.max(-1908897.600f,
653				1908897.600f) == 1908897.600f);
654		assertTrue("Incorrect float max value",
655				Math.max(2.0f, 1908897.600f) == 1908897.600f);
656		assertTrue("Incorrect float max value",
657				Math.max(-2.0f, -1908897.600f) == -2.0f);
658
659	    // Compare toString representations here since -0.0 = +0.0, and
660        // NaN != NaN and we need to distinguish
661        assertEquals("Max failed for NaN",
662                Float.toString(Float.NaN), Float.toString(Math.max(Float.NaN, 42.0f)));
663        assertEquals("Max failed for NaN",
664                Float.toString(Float.NaN), Float.toString(Math.max(42.0f, Float.NaN)));
665        assertEquals("Max failed for 0.0",
666                Float.toString(+0.0f), Float.toString(Math.max(+0.0f, -0.0f)));
667        assertEquals("Max failed for 0.0",
668                Float.toString(+0.0f), Float.toString(Math.max(-0.0f, +0.0f)));
669        assertEquals("Max failed for -0.0f",
670                Float.toString(-0.0f), Float.toString(Math.max(-0.0f, -0.0f)));
671        assertEquals("Max failed for 0.0",
672                Float.toString(+0.0f), Float.toString(Math.max(+0.0f, +0.0f)));
673	}
674
675	/**
676	 * @tests java.lang.Math#max(int, int)
677	 */
678	public void test_maxII() {
679		// Test for method int java.lang.Math.max(int, int)
680		assertEquals("Incorrect int max value",
681				19088976, Math.max(-19088976, 19088976));
682		assertEquals("Incorrect int max value",
683				19088976, Math.max(20, 19088976));
684		assertEquals("Incorrect int max value", -20, Math.max(-20, -19088976));
685	}
686
687	/**
688	 * @tests java.lang.Math#max(long, long)
689	 */
690	public void test_maxJJ() {
691		// Test for method long java.lang.Math.max(long, long)
692		assertEquals("Incorrect long max value", 19088976000089L, Math.max(-19088976000089L,
693				19088976000089L));
694		assertEquals("Incorrect long max value",
695				19088976000089L, Math.max(20, 19088976000089L));
696		assertEquals("Incorrect long max value",
697				-20, Math.max(-20, -19088976000089L));
698	}
699
700	/**
701	 * @tests java.lang.Math#min(double, double)
702	 */
703	public void test_minDD() {
704		// Test for method double java.lang.Math.min(double, double)
705		assertEquals("Incorrect double min value", -1908897.6000089, Math.min(-1908897.6000089,
706				1908897.6000089), 0D);
707		assertEquals("Incorrect double min value",
708				2.0, Math.min(2.0, 1908897.6000089), 0D);
709		assertEquals("Incorrect double min value", -1908897.6000089, Math.min(-2.0,
710				-1908897.6000089), 0D);
711		assertEquals("Incorrect double min value", 1.0d, Math.min(1.0d, 1.0d));
712
713	    // Compare toString representations here since -0.0 = +0.0, and
714        // NaN != NaN and we need to distinguish
715        assertEquals("Min failed for NaN",
716                Double.toString(Double.NaN), Double.toString(Math.min(Double.NaN, 42.0d)));
717        assertEquals("Min failed for NaN",
718                Double.toString(Double.NaN), Double.toString(Math.min(42.0d, Double.NaN)));
719        assertEquals("Min failed for -0.0",
720                Double.toString(-0.0d), Double.toString(Math.min(+0.0d, -0.0d)));
721        assertEquals("Min failed for -0.0",
722                Double.toString(-0.0d), Double.toString(Math.min(-0.0d, +0.0d)));
723        assertEquals("Min failed for -0.0d",
724                Double.toString(-0.0d), Double.toString(Math.min(-0.0d, -0.0d)));
725        assertEquals("Min failed for 0.0",
726                Double.toString(+0.0d), Double.toString(Math.min(+0.0d, +0.0d)));
727	}
728
729	/**
730	 * @tests java.lang.Math#min(float, float)
731	 */
732	public void test_minFF() {
733		// Test for method float java.lang.Math.min(float, float)
734		assertTrue("Incorrect float min value", Math.min(-1908897.600f,
735				1908897.600f) == -1908897.600f);
736		assertTrue("Incorrect float min value",
737				Math.min(2.0f, 1908897.600f) == 2.0f);
738		assertTrue("Incorrect float min value",
739				Math.min(-2.0f, -1908897.600f) == -1908897.600f);
740		assertEquals("Incorrect float min value", 1.0f, Math.min(1.0f, 1.0f));
741
742        // Compare toString representations here since -0.0 = +0.0, and
743        // NaN != NaN and we need to distinguish
744        assertEquals("Min failed for NaN",
745                Float.toString(Float.NaN), Float.toString(Math.min(Float.NaN, 42.0f)));
746        assertEquals("Min failed for NaN",
747                Float.toString(Float.NaN), Float.toString(Math.min(42.0f, Float.NaN)));
748        assertEquals("Min failed for -0.0",
749                Float.toString(-0.0f), Float.toString(Math.min(+0.0f, -0.0f)));
750        assertEquals("Min failed for -0.0",
751                Float.toString(-0.0f), Float.toString(Math.min(-0.0f, +0.0f)));
752        assertEquals("Min failed for -0.0f",
753                Float.toString(-0.0f), Float.toString(Math.min(-0.0f, -0.0f)));
754        assertEquals("Min failed for 0.0",
755                Float.toString(+0.0f), Float.toString(Math.min(+0.0f, +0.0f)));
756	}
757
758	/**
759	 * @tests java.lang.Math#min(int, int)
760	 */
761	public void test_minII() {
762		// Test for method int java.lang.Math.min(int, int)
763		assertEquals("Incorrect int min value",
764				-19088976, Math.min(-19088976, 19088976));
765		assertEquals("Incorrect int min value", 20, Math.min(20, 19088976));
766		assertEquals("Incorrect int min value",
767				-19088976, Math.min(-20, -19088976));
768
769	}
770
771	/**
772	 * @tests java.lang.Math#min(long, long)
773	 */
774	public void test_minJJ() {
775		// Test for method long java.lang.Math.min(long, long)
776		assertEquals("Incorrect long min value", -19088976000089L, Math.min(-19088976000089L,
777				19088976000089L));
778		assertEquals("Incorrect long min value",
779				20, Math.min(20, 19088976000089L));
780		assertEquals("Incorrect long min value",
781				-19088976000089L, Math.min(-20, -19088976000089L));
782	}
783
784	/**
785     * start number cases for test_nextAfter_DD in MathTest/StrictMathTest
786     * NEXTAFTER_DD_START_CASES[i][0] is the start number
787     * NEXTAFTER_DD_START_CASES[i][1] is the nextUp of start number
788     * NEXTAFTER_DD_START_CASES[i][2] is the nextDown of start number
789     */
790    static final double NEXTAFTER_DD_START_CASES[][] = new double[][] {
791            { 3.4, 3.4000000000000004, 3.3999999999999995 },
792            { -3.4, -3.3999999999999995, -3.4000000000000004 },
793            { 3.4233E109, 3.4233000000000005E109, 3.4232999999999996E109 },
794            { -3.4233E109, -3.4232999999999996E109, -3.4233000000000005E109 },
795            { +0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
796            { 0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
797            { -0.0, Double.MIN_VALUE, -Double.MIN_VALUE },
798            { Double.MIN_VALUE, 1.0E-323, +0.0 },
799            { -Double.MIN_VALUE, -0.0, -1.0E-323 },
800            { Double.MIN_NORMAL, 2.225073858507202E-308, 2.225073858507201E-308 },
801            { -Double.MIN_NORMAL, -2.225073858507201E-308,
802                    -2.225073858507202E-308 },
803            { Double.MAX_VALUE, Double.POSITIVE_INFINITY,
804                    1.7976931348623155E308 },
805            { -Double.MAX_VALUE, -1.7976931348623155E308,
806                    Double.NEGATIVE_INFINITY },
807            { Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY,
808                    Double.MAX_VALUE },
809            { Double.NEGATIVE_INFINITY, -Double.MAX_VALUE,
810                    Double.NEGATIVE_INFINITY } };
811
812    /**
813     * direction number cases for test_nextAfter_DD/test_nextAfter_FD in
814     * MathTest/StrictMathTest
815     */
816    static final double NEXTAFTER_DD_FD_DIRECTION_CASES[] = new double[] {
817            Double.POSITIVE_INFINITY, Double.MAX_VALUE, 8.8, 3.4, 1.4,
818            Double.MIN_NORMAL, Double.MIN_NORMAL / 2, Double.MIN_VALUE, +0.0,
819            0.0, -0.0, -Double.MIN_VALUE, -Double.MIN_NORMAL / 2,
820            -Double.MIN_NORMAL, -1.4, -3.4, -8.8, -Double.MAX_VALUE,
821            Double.NEGATIVE_INFINITY };
822
823    /**
824     * @tests {@link java.lang.Math#nextAfter(double, double)}
825     * @since 1.6
826     */
827    @SuppressWarnings("boxing")
828    public void test_nextAfter_DD() {
829        // test for most cases without exception
830        for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
831            final double start = NEXTAFTER_DD_START_CASES[i][0];
832            final long nextUpBits = Double
833                    .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
834            final long nextDownBits = Double
835                    .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][2]);
836
837            for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
838                final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
839                final long resultBits = Double.doubleToLongBits(Math.nextAfter(
840                        start, direction));
841                final long directionBits = Double.doubleToLongBits(direction);
842                if (direction > start) {
843                    assertEquals("Result should be next up-number.",
844                            nextUpBits, resultBits);
845                } else if (direction < start) {
846                    assertEquals("Result should be next down-number.",
847                            nextDownBits, resultBits);
848                } else {
849                    assertEquals("Result should be direction.", directionBits,
850                            resultBits);
851                }
852            }
853        }
854
855        // test for cases with NaN
856        for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
857            assertTrue("The result should be NaN.", Double.isNaN(Math
858                    .nextAfter(NEXTAFTER_DD_START_CASES[i][0], Double.NaN)));
859        }
860        for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
861            assertTrue("The result should be NaN.", Double.isNaN(Math
862                    .nextAfter(Double.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
863        }
864        assertTrue("The result should be NaN.", Double.isNaN(Math.nextAfter(
865                Double.NaN, Double.NaN)));
866
867        // test for exception
868        try {
869            Math.nextAfter((Double) null, 2.3);
870            fail("Should throw NullPointerException");
871        } catch (NullPointerException e) {
872            // Expected
873        }
874        try {
875            Math.nextAfter(2.3, (Double) null);
876            fail("Should throw NullPointerException");
877        } catch (NullPointerException e) {
878            // Expected
879        }
880        try {
881            Math.nextAfter((Double) null, (Double) null);
882            fail("Should throw NullPointerException");
883        } catch (NullPointerException e) {
884            // Expected
885        }
886    }
887
888    /**
889     * start number cases for test_nextAfter_FD in MathTest/StrictMathTest
890     * NEXTAFTER_FD_START_CASES[i][0] is the start number
891     * NEXTAFTER_FD_START_CASES[i][1] is the nextUp of start number
892     * NEXTAFTER_FD_START_CASES[i][2] is the nextDown of start number
893     */
894    static final float NEXTAFTER_FD_START_CASES[][] = new float[][] {
895            { 3.4f, 3.4000003f, 3.3999999f },
896            { -3.4f, -3.3999999f, -3.4000003f },
897            { 3.4233E19f, 3.4233002E19f, 3.4232998E19f },
898            { -3.4233E19f, -3.4232998E19f, -3.4233002E19f },
899            { +0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
900            { 0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
901            { -0.0f, Float.MIN_VALUE, -Float.MIN_VALUE },
902            { Float.MIN_VALUE, 2.8E-45f, +0.0f },
903            { -Float.MIN_VALUE, -0.0f, -2.8E-45f },
904            { Float.MIN_NORMAL, 1.1754945E-38f, 1.1754942E-38f },
905            { -Float.MIN_NORMAL, -1.1754942E-38f, -1.1754945E-38f },
906            { Float.MAX_VALUE, Float.POSITIVE_INFINITY, 3.4028233E38f },
907            { -Float.MAX_VALUE, -3.4028233E38f, Float.NEGATIVE_INFINITY },
908            { Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, Float.MAX_VALUE },
909            { Float.NEGATIVE_INFINITY, -Float.MAX_VALUE,
910                    Float.NEGATIVE_INFINITY } };
911
912    /**
913     * @tests {@link java.lang.Math#nextAfter(float, double)}
914     * @since 1.6
915     */
916    @SuppressWarnings("boxing")
917    public void test_nextAfter_FD() {
918        // test for most cases without exception
919        for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
920            final float start = NEXTAFTER_FD_START_CASES[i][0];
921            final int nextUpBits = Float
922                    .floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
923            final int nextDownBits = Float
924                    .floatToIntBits(NEXTAFTER_FD_START_CASES[i][2]);
925
926            for (int j = 0; j < NEXTAFTER_DD_FD_DIRECTION_CASES.length; j++) {
927                final double direction = NEXTAFTER_DD_FD_DIRECTION_CASES[j];
928                final int resultBits = Float.floatToIntBits(Math.nextAfter(
929                        start, direction));
930                if (direction > start) {
931                    assertEquals("Result should be next up-number.",
932                            nextUpBits, resultBits);
933                } else if (direction < start) {
934                    assertEquals("Result should be next down-number.",
935                            nextDownBits, resultBits);
936                } else {
937                    final int equivalentBits = Float.floatToIntBits(new Float(
938                            direction));
939                    assertEquals(
940                            "Result should be a number equivalent to direction.",
941                            equivalentBits, resultBits);
942                }
943            }
944        }
945
946        // test for cases with NaN
947        for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
948            assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
949                    NEXTAFTER_FD_START_CASES[i][0], Float.NaN)));
950        }
951        for (int i = 0; i < NEXTAFTER_DD_FD_DIRECTION_CASES.length; i++) {
952            assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
953                    Float.NaN, NEXTAFTER_DD_FD_DIRECTION_CASES[i])));
954        }
955        assertTrue("The result should be NaN.", Float.isNaN(Math.nextAfter(
956                Float.NaN, Float.NaN)));
957
958        // test for exception
959        try {
960            Math.nextAfter((Float) null, 2.3);
961            fail("Should throw NullPointerException");
962        } catch (NullPointerException e) {
963            // Expected
964        }
965        try {
966            Math.nextAfter(2.3, (Float) null);
967            fail("Should throw NullPointerException");
968        } catch (NullPointerException e) {
969            // Expected
970        }
971        try {
972            Math.nextAfter((Float) null, (Float) null);
973            fail("Should throw NullPointerException");
974        } catch (NullPointerException e) {
975            // Expected
976        }
977    }
978
979    /**
980     * @tests {@link java.lang.Math#nextUp(double)}
981     * @since 1.6
982     */
983    @SuppressWarnings("boxing")
984    public void test_nextUp_D() {
985        // This method is semantically equivalent to nextAfter(d,
986        // Double.POSITIVE_INFINITY),
987        // so we use the data of test_nextAfter_DD
988        for (int i = 0; i < NEXTAFTER_DD_START_CASES.length; i++) {
989            final double start = NEXTAFTER_DD_START_CASES[i][0];
990            final long nextUpBits = Double
991                    .doubleToLongBits(NEXTAFTER_DD_START_CASES[i][1]);
992            final long resultBits = Double.doubleToLongBits(Math.nextUp(start));
993            assertEquals("Result should be next up-number.", nextUpBits,
994                    resultBits);
995        }
996
997        // test for cases with NaN
998        assertTrue("The result should be NaN.", Double.isNaN(Math
999                .nextUp(Double.NaN)));
1000
1001        // test for exception
1002        try {
1003            Math.nextUp((Double) null);
1004            fail("Should throw NullPointerException");
1005        } catch (NullPointerException e) {
1006            // Expected
1007        }
1008    }
1009
1010    /**
1011     * @tests {@link java.lang.Math#nextUp(float)}
1012     * @since 1.6
1013     */
1014    @SuppressWarnings("boxing")
1015    public void test_nextUp_F() {
1016        // This method is semantically equivalent to nextAfter(f,
1017        // Float.POSITIVE_INFINITY),
1018        // so we use the data of test_nextAfter_FD
1019        for (int i = 0; i < NEXTAFTER_FD_START_CASES.length; i++) {
1020            final float start = NEXTAFTER_FD_START_CASES[i][0];
1021            final int nextUpBits = Float
1022                    .floatToIntBits(NEXTAFTER_FD_START_CASES[i][1]);
1023            final int resultBits = Float.floatToIntBits(Math.nextUp(start));
1024            assertEquals("Result should be next up-number.", nextUpBits,
1025                    resultBits);
1026        }
1027
1028        // test for cases with NaN
1029        assertTrue("The result should be NaN.", Float.isNaN(Math
1030                .nextUp(Float.NaN)));
1031
1032        // test for exception
1033        try {
1034            Math.nextUp((Float) null);
1035            fail("Should throw NullPointerException");
1036        } catch (NullPointerException e) {
1037            // Expected
1038        }
1039    }
1040
1041	/**
1042	 * @tests java.lang.Math#pow(double, double)
1043	 */
1044	public void test_powDD() {
1045		// Test for method double java.lang.Math.pow(double, double)
1046        double NZERO = longTodouble(doubleTolong(0.0) ^ 0x8000000000000000L);
1047        double p1 = 1.0;
1048        double p2 = 2.0;
1049        double p3 = 3.0;
1050        double p4 = 4.0;
1051        double p5 = 5.0;
1052        double p6 = 6.0;
1053        double p7 = 7.0;
1054        double p8 = 8.0;
1055        double p9 = 9.0;
1056        double p10 = 10.0;
1057        double p11 = 11.0;
1058        double p12 = 12.0;
1059        double p13 = 13.0;
1060        double p14 = 14.0;
1061        double p15 = 15.0;
1062        double p16 = 16.0;
1063        double[] values = { p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,
1064                p13, p14, p15, p16 };
1065
1066        for (int x = 0; x < values.length; x++) {
1067            double dval = values[x];
1068            double nagateDval = negateDouble(dval);
1069            if (nagateDval == Double.NaN) {
1070                continue;
1071            }
1072
1073            // If the second argument is positive or negative zero, then the
1074            // result is 1.0.
1075            assertEquals("Result should be Math.pow(" + dval
1076                    + ",-0.0)=+1.0", 1.0, Math.pow(dval, NZERO));
1077            assertEquals("Result should be Math.pow(" + nagateDval
1078                    + ",-0.0)=+1.0", 1.0, Math.pow(nagateDval, NZERO));
1079            assertEquals("Result should be Math.pow(" + dval
1080                    + ",+0.0)=+1.0", 1.0, Math.pow(dval, +0.0));
1081            assertEquals("Result should be Math.pow(" + nagateDval
1082                    + ",+0.0)=+1.0", 1.0, Math.pow(nagateDval, +0.0));
1083
1084            // If the second argument is 1.0, then the result is the same as the
1085            // first argument.
1086            assertEquals("Result should be Math.pow(" + dval + "," + 1.0 + ")="
1087                    + dval, dval, Math.pow(dval, 1.0));
1088            assertEquals("Result should be Math.pow(" + nagateDval + "," + 1.0
1089                    + ")=" + nagateDval, nagateDval, Math.pow(nagateDval, 1.0));
1090
1091            // If the second argument is NaN, then the result is NaN.
1092            assertEquals("Result should be Math.pow(" + dval + "," + Double.NaN
1093                    + ")=" + Double.NaN,  Double.NaN, Math.pow(dval, Double.NaN));
1094            assertEquals("Result should be Math.pow(" + nagateDval + ","
1095                    + Double.NaN + ")=" + Double.NaN,  Double.NaN, Math.pow(nagateDval,
1096                    Double.NaN));
1097
1098            if (dval > 1) {
1099                // If the first argument is NaN and the second argument is
1100                // nonzero,
1101                // then the result is NaN.
1102                assertEquals("Result should be Math.pow(" + Double.NaN + ","
1103                        + dval + ")=" + Double.NaN,  Double.NaN, Math.pow(Double.NaN, dval));
1104                assertEquals("Result should be Math.pow(" + Double.NaN + ","
1105                        + nagateDval + ")=" + Double.NaN,  Double.NaN, Math.pow(Double.NaN,
1106                        nagateDval));
1107
1108                /*
1109                 * If the first argument is positive zero and the second
1110                 * argument is greater than zero, or the first argument is
1111                 * positive infinity and the second argument is less than zero,
1112                 * then the result is positive zero.
1113                 */
1114                assertEquals("Result should be Math.pow(" + 0.0 + "," + dval
1115                        + ")=" + 0.0, +0.0, Math.pow(0.0, dval));
1116                assertEquals("Result should be Math.pow("
1117                        + Double.POSITIVE_INFINITY + "," + nagateDval + ")="
1118                        + 0.0, +0.0, Math.pow(Double.POSITIVE_INFINITY, nagateDval));
1119
1120                /*
1121                 * If the first argument is positive zero and the second
1122                 * argument is less than zero, or the first argument is positive
1123                 * infinity and the second argument is greater than zero, then
1124                 * the result is positive infinity.
1125                 */
1126                assertEquals("Result should be Math.pow(" + 0.0 + ","
1127                        + nagateDval + ")=" + Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,
1128                        Math.pow(0.0, nagateDval));
1129                assertEquals("Result should be Math.pow("
1130                        + Double.POSITIVE_INFINITY + "," + dval + ")="
1131                        + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
1132                        Double.POSITIVE_INFINITY, dval));
1133
1134                // Not a finite odd integer
1135                if (dval % 2 == 0) {
1136                    /*
1137                     * If the first argument is negative zero and the second
1138                     * argument is greater than zero but not a finite odd
1139                     * integer, or the first argument is negative infinity and
1140                     * the second argument is less than zero but not a finite
1141                     * odd integer, then the result is positive zero.
1142                     */
1143                    assertEquals("Result should be Math.pow(" + NZERO + ","
1144                            + dval + ")=" + 0.0, +0.0, Math.pow(NZERO, dval));
1145                    assertEquals("Result should be Math.pow("
1146                            + Double.NEGATIVE_INFINITY + "," + nagateDval
1147                            + ")=" + 0.0, +0.0, Math.pow(Double.NEGATIVE_INFINITY,
1148                            nagateDval));
1149
1150                    /*
1151                     * If the first argument is negative zero and the second
1152                     * argument is less than zero but not a finite odd integer,
1153                     * or the first argument is negative infinity and the second
1154                     * argument is greater than zero but not a finite odd
1155                     * integer, then the result is positive infinity.
1156                     */
1157                    assertEquals("Result should be Math.pow(" + NZERO + ","
1158                            + nagateDval + ")=" + Double.POSITIVE_INFINITY,Double.POSITIVE_INFINITY,
1159                            Math.pow(NZERO, nagateDval));
1160                    assertEquals("Result should be Math.pow("
1161                            + Double.NEGATIVE_INFINITY + "," + dval + ")="
1162                            + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(
1163                            Double.NEGATIVE_INFINITY, dval));
1164                }
1165
1166                // finite odd integer
1167                if (dval % 2 != 0) {
1168                    /*
1169                     * If the first argument is negative zero and the second
1170                     * argument is a positive finite odd integer, or the first
1171                     * argument is negative infinity and the second argument is
1172                     * a negative finite odd integer, then the result is
1173                     * negative zero.
1174                     */
1175                    assertEquals("Result should be Math.pow(" + NZERO + ","
1176                            + dval + ")=" + NZERO, NZERO, Math.pow(NZERO, dval));
1177                    assertEquals("Result should be Math.pow("
1178                            + Double.NEGATIVE_INFINITY + "," + nagateDval
1179                            + ")=" + NZERO, NZERO, Math.pow(Double.NEGATIVE_INFINITY,
1180                            nagateDval));
1181                    /*
1182                     * If the first argument is negative zero and the second
1183                     * argument is a negative finite odd integer, or the first
1184                     * argument is negative infinity and the second argument is
1185                     * a positive finite odd integer then the result is negative
1186                     * infinity.
1187                     */
1188                    assertEquals("Result should be Math.pow(" + NZERO + ","
1189                            + nagateDval + ")=" + Double.NEGATIVE_INFINITY,Double.NEGATIVE_INFINITY,
1190                            Math.pow(NZERO, nagateDval));
1191                    assertEquals("Result should be Math.pow("
1192                            + Double.NEGATIVE_INFINITY + "," + dval + ")="
1193                            + Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Math.pow(
1194                            Double.NEGATIVE_INFINITY, dval));
1195                }
1196
1197                /**
1198                 * 1. If the first argument is finite and less than zero if the
1199                 * second argument is a finite even integer, the result is equal
1200                 * to the result of raising the absolute value of the first
1201                 * argument to the power of the second argument
1202                 *
1203                 * 2. if the second argument is a finite odd integer, the result is equal to the
1204                 * negative of the result of raising the absolute value of the
1205                 * first argument to the power of the second argument
1206                 *
1207                 * 3. if the second argument is finite and not an integer, then the result
1208                 * is NaN.
1209                 */
1210                for (int j = 1; j < values.length; j++) {
1211                    double jval = values[j];
1212                    if (jval % 2.0 == 0.0) {
1213                        assertEquals("" + nagateDval + " " + jval, Math.pow(
1214                                dval, jval), Math.pow(nagateDval, jval));
1215                    } else {
1216                        assertEquals("" + nagateDval + " " + jval, -1.0
1217                                * Math.pow(dval, jval), Math.pow(nagateDval,
1218                                jval));
1219                    }
1220                    assertEquals(Double.NaN, Math
1221                            .pow(nagateDval, jval / 0.5467));
1222                    assertEquals(Double.NaN, Math.pow(nagateDval, -1.0 * jval
1223                            / 0.5467));
1224                }
1225            }
1226
1227            // If the absolute value of the first argument equals 1 and the
1228            // second argument is infinite, then the result is NaN.
1229            if (dval == 1) {
1230                assertEquals("Result should be Math.pow(" + dval + ","
1231                        + Double.POSITIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1232                        .pow(dval, Double.POSITIVE_INFINITY));
1233                assertEquals("Result should be Math.pow(" + dval + ","
1234                        + Double.NEGATIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1235                        .pow(dval, Double.NEGATIVE_INFINITY));
1236
1237                assertEquals("Result should be Math.pow(" + nagateDval + ","
1238                        + Double.POSITIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1239                        .pow(nagateDval, Double.POSITIVE_INFINITY));
1240                assertEquals("Result should be Math.pow(" + nagateDval + ","
1241                        + Double.NEGATIVE_INFINITY + ")=" + Double.NaN, Double.NaN, Math
1242                        .pow(nagateDval, Double.NEGATIVE_INFINITY));
1243            }
1244
1245            if (dval > 1) {
1246                /*
1247                 * If the absolute value of the first argument is greater than 1
1248                 * and the second argument is positive infinity, or the absolute
1249                 * value of the first argument is less than 1 and the second
1250                 * argument is negative infinity, then the result is positive
1251                 * infinity.
1252                 */
1253                assertEquals("Result should be Math.pow(" + dval + ","
1254                        + Double.POSITIVE_INFINITY + ")="
1255                        + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(dval,
1256                        Double.POSITIVE_INFINITY));
1257
1258                assertEquals("Result should be Math.pow(" + nagateDval + ","
1259                        + Double.NEGATIVE_INFINITY + ")="
1260                        + Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Math.pow(-0.13456,
1261                        Double.NEGATIVE_INFINITY));
1262
1263                /*
1264                 * If the absolute value of the first argument is greater than 1
1265                 * and the second argument is negative infinity, or the absolute
1266                 * value of the first argument is less than 1 and the second
1267                 * argument is positive infinity, then the result is positive
1268                 * zero.
1269                 */
1270                assertEquals("Result should be Math.pow(" + dval + ","
1271                        + Double.NEGATIVE_INFINITY + ")= +0.0", +0.0, Math.pow(dval,
1272                        Double.NEGATIVE_INFINITY));
1273                assertEquals("Result should be Math.pow(" + nagateDval + ","
1274                        + Double.POSITIVE_INFINITY + ")= +0.0", +0.0, Math.pow(
1275                        -0.13456, Double.POSITIVE_INFINITY));
1276            }
1277
1278            assertEquals("Result should be Math.pow(" + 0.0 + "," + dval + ")="
1279                    + 0.0, 0.0, Math.pow(0.0, dval));
1280            assertEquals("Result should be Math.pow(" + Double.NaN + "," + dval
1281                    + ")=" + Double.NaN, Double.NaN, Math.pow(Double.NaN, dval));
1282        }
1283		assertTrue("pow returned incorrect value",
1284				(long) Math.pow(2, 8) == 256l);
1285		assertTrue("pow returned incorrect value",
1286				Math.pow(2, -8) == 0.00390625d);
1287		assertEquals("Incorrect root returned1",
1288                             2, Math.sqrt(Math.pow(Math.sqrt(2), 4)), 0);
1289
1290		assertEquals(Double.NEGATIVE_INFINITY, Math.pow(-10.0, 3.093403029238847E15));
1291		assertEquals(Double.POSITIVE_INFINITY, Math.pow(10.0, 3.093403029238847E15));
1292	}
1293
1294    private double longTodouble(long longvalue) {
1295        return Double.longBitsToDouble(longvalue);
1296    }
1297
1298    private long doubleTolong(double doublevalue) {
1299        return Double.doubleToLongBits(doublevalue);
1300    }
1301
1302    private double negateDouble(double doublevalue) {
1303        return doublevalue * -1.0;
1304    }
1305
1306	/**
1307	 * @tests java.lang.Math#rint(double)
1308	 */
1309	public void test_rintD() {
1310		// Test for method double java.lang.Math.rint(double)
1311		assertEquals("Failed to round properly - up to odd",
1312				3.0, Math.rint(2.9), 0D);
1313		assertTrue("Failed to round properly - NaN", Double.isNaN(Math
1314				.rint(Double.NaN)));
1315		assertEquals("Failed to round properly down  to even",
1316				2.0, Math.rint(2.1), 0D);
1317		assertTrue("Failed to round properly " + 2.5 + " to even", Math
1318				.rint(2.5) == 2.0);
1319                assertTrue("Failed to round properly " + (+0.0d),
1320                        Math.rint(+0.0d) == +0.0d);
1321                assertTrue("Failed to round properly " + (-0.0d),
1322                        Math.rint(-0.0d) == -0.0d);
1323	}
1324
1325	/**
1326	 * @tests java.lang.Math#round(double)
1327	 */
1328	public void test_roundD() {
1329		// Test for method long java.lang.Math.round(double)
1330		assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89d));
1331	}
1332
1333	/**
1334	 * @tests java.lang.Math#round(float)
1335	 */
1336	public void test_roundF() {
1337		// Test for method int java.lang.Math.round(float)
1338		assertEquals("Incorrect rounding of a float", -91, Math.round(-90.89f));
1339	}
1340
1341	/**
1342     * @tests {@link java.lang.Math#scalb(double, int)}
1343     * @since 1.6
1344     */
1345    @SuppressWarnings("boxing")
1346    public void test_scalb_DI() {
1347        // result is normal
1348        assertEquals(4.1422946304E7, Math.scalb(1.2345, 25));
1349        assertEquals(3.679096698760986E-8, Math.scalb(1.2345, -25));
1350        assertEquals(1.2345, Math.scalb(1.2345, 0));
1351        assertEquals(7868514.304, Math.scalb(0.2345, 25));
1352
1353        double normal = Math.scalb(0.2345, -25);
1354        assertEquals(6.98864459991455E-9, normal);
1355        // precision kept
1356        assertEquals(0.2345, Math.scalb(normal, 25));
1357
1358        assertEquals(0.2345, Math.scalb(0.2345, 0));
1359        assertEquals(-4.1422946304E7, Math.scalb(-1.2345, 25));
1360        assertEquals(-6.98864459991455E-9, Math.scalb(-0.2345, -25));
1361        assertEquals(2.0, Math.scalb(Double.MIN_NORMAL / 2, 1024));
1362        assertEquals(64.0, Math.scalb(Double.MIN_VALUE, 1080));
1363        assertEquals(234, Math.getExponent(Math.scalb(1.0, 234)));
1364        assertEquals(3.9999999999999996, Math.scalb(Double.MAX_VALUE,
1365                Double.MIN_EXPONENT));
1366
1367        // result is near infinity
1368        double halfMax = Math.scalb(1.0, Double.MAX_EXPONENT);
1369        assertEquals(8.98846567431158E307, halfMax);
1370        assertEquals(Double.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
1371        assertEquals(Double.POSITIVE_INFINITY, halfMax + halfMax);
1372        assertEquals(1.7976931348623155E308, Math.scalb(1.0 - Math.ulp(1.0),
1373                Double.MAX_EXPONENT + 1));
1374        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(1.0 - Math.ulp(1.0),
1375                Double.MAX_EXPONENT + 2));
1376
1377        halfMax = Math.scalb(-1.0, Double.MAX_EXPONENT);
1378        assertEquals(-8.98846567431158E307, halfMax);
1379        assertEquals(-Double.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
1380        assertEquals(Double.NEGATIVE_INFINITY, halfMax + halfMax);
1381
1382        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(0.345, 1234));
1383        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(44.345E102, 934));
1384        assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(-44.345E102, 934));
1385
1386        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1387                Double.MIN_NORMAL / 2, 4000));
1388        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MIN_VALUE,
1389                8000));
1390        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(Double.MAX_VALUE, 1));
1391        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1392                Double.POSITIVE_INFINITY, 0));
1393        assertEquals(Double.POSITIVE_INFINITY, Math.scalb(
1394                Double.POSITIVE_INFINITY, -1));
1395        assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
1396                Double.NEGATIVE_INFINITY, -1));
1397        assertEquals(Double.NEGATIVE_INFINITY, Math.scalb(
1398                Double.NEGATIVE_INFINITY, Double.MIN_EXPONENT));
1399
1400        // result is subnormal/zero
1401        long posZeroBits = Double.doubleToLongBits(+0.0);
1402        long negZeroBits = Double.doubleToLongBits(-0.0);
1403        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0,
1404                Integer.MAX_VALUE)));
1405        assertEquals(posZeroBits, Double.doubleToLongBits(Math
1406                .scalb(+0.0, -123)));
1407        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(+0.0, 0)));
1408        assertEquals(negZeroBits, Double
1409                .doubleToLongBits(Math.scalb(-0.0, 123)));
1410        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-0.0,
1411                Integer.MIN_VALUE)));
1412
1413        assertEquals(Double.MIN_VALUE, Math.scalb(1.0, -1074));
1414        assertEquals(posZeroBits, Double.doubleToLongBits(Math
1415                .scalb(1.0, -1075)));
1416        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-1.0,
1417                -1075)));
1418
1419        // precision lost
1420        assertEquals(Math.scalb(21.405, -1078), Math.scalb(21.405, -1079));
1421        assertEquals(Double.MIN_VALUE, Math.scalb(21.405, -1079));
1422        assertEquals(-Double.MIN_VALUE, Math.scalb(-21.405, -1079));
1423        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(21.405,
1424                -1080)));
1425        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(-21.405,
1426                -1080)));
1427        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1428                Double.MIN_VALUE, -1)));
1429        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1430                -Double.MIN_VALUE, -1)));
1431        assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL, -52));
1432        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1433                Double.MIN_NORMAL, -53)));
1434        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1435                -Double.MIN_NORMAL, -53)));
1436        assertEquals(Double.MIN_VALUE, Math.scalb(Double.MAX_VALUE, -2098));
1437        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1438                Double.MAX_VALUE, -2099)));
1439        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1440                -Double.MAX_VALUE, -2099)));
1441        assertEquals(Double.MIN_VALUE, Math.scalb(Double.MIN_NORMAL / 3, -51));
1442        assertEquals(posZeroBits, Double.doubleToLongBits(Math.scalb(
1443                Double.MIN_NORMAL / 3, -52)));
1444        assertEquals(negZeroBits, Double.doubleToLongBits(Math.scalb(
1445                -Double.MIN_NORMAL / 3, -52)));
1446        double subnormal = Math.scalb(Double.MIN_NORMAL / 3, -25);
1447        assertEquals(2.2104123E-316, subnormal);
1448        // precision lost
1449        assertFalse(Double.MIN_NORMAL / 3 == Math.scalb(subnormal, 25));
1450
1451        // NaN
1452        assertTrue(Double.isNaN(Math.scalb(Double.NaN, 1)));
1453        assertTrue(Double.isNaN(Math.scalb(Double.NaN, 0)));
1454        assertTrue(Double.isNaN(Math.scalb(Double.NaN, -120)));
1455
1456        assertEquals(1283457024, Double.doubleToLongBits(Math.scalb(
1457                Double.MIN_VALUE * 153, 23)));
1458        assertEquals(-9223372035571318784L, Double.doubleToLongBits(Math.scalb(
1459                -Double.MIN_VALUE * 153, 23)));
1460        assertEquals(36908406321184768L, Double.doubleToLongBits(Math.scalb(
1461                Double.MIN_VALUE * 153, 52)));
1462        assertEquals(-9186463630533591040L, Double.doubleToLongBits(Math.scalb(
1463                -Double.MIN_VALUE * 153, 52)));
1464
1465        // test for exception
1466        try {
1467            Math.scalb((Double) null, (Integer) null);
1468            fail("Should throw NullPointerException");
1469        } catch (NullPointerException e) {
1470            // Expected
1471        }
1472        try {
1473            Math.scalb(1.0, (Integer) null);
1474            fail("Should throw NullPointerException");
1475        } catch (NullPointerException e) {
1476            // Expected
1477        }
1478        try {
1479            Math.scalb((Double) null, 1);
1480            fail("Should throw NullPointerException");
1481        } catch (NullPointerException e) {
1482            // Expected
1483        }
1484
1485        long b1em1022 = 0x0010000000000000L; // bit representation of
1486                                                // Double.MIN_NORMAL
1487        long b1em1023 = 0x0008000000000000L; // bit representation of half of
1488                                                // Double.MIN_NORMAL
1489        // assert exact identity
1490        assertEquals(b1em1023, Double.doubleToLongBits(Math.scalb(Double
1491                .longBitsToDouble(b1em1022), -1)));
1492    }
1493
1494    /**
1495     * @tests {@link java.lang.Math#scalb(float, int)}
1496     * @since 1.6
1497     */
1498    @SuppressWarnings("boxing")
1499    public void test_scalb_FI() {
1500        // result is normal
1501        assertEquals(4.1422946304E7f, Math.scalb(1.2345f, 25));
1502        assertEquals(3.679096698760986E-8f, Math.scalb(1.2345f, -25));
1503        assertEquals(1.2345f, Math.scalb(1.2345f, 0));
1504        assertEquals(7868514.304f, Math.scalb(0.2345f, 25));
1505
1506        float normal = Math.scalb(0.2345f, -25);
1507        assertEquals(6.98864459991455E-9f, normal);
1508        // precision kept
1509        assertEquals(0.2345f, Math.scalb(normal, 25));
1510
1511        assertEquals(0.2345f, Math.scalb(0.2345f, 0));
1512        assertEquals(-4.1422946304E7f, Math.scalb(-1.2345f, 25));
1513        assertEquals(-6.98864459991455E-9f, Math.scalb(-0.2345f, -25));
1514        assertEquals(2.0f, Math.scalb(Float.MIN_NORMAL / 2, 128));
1515        assertEquals(64.0f, Math.scalb(Float.MIN_VALUE, 155));
1516        assertEquals(34, Math.getExponent(Math.scalb(1.0f, 34)));
1517        assertEquals(3.9999998f, Math
1518                .scalb(Float.MAX_VALUE, Float.MIN_EXPONENT));
1519
1520        // result is near infinity
1521        float halfMax = Math.scalb(1.0f, Float.MAX_EXPONENT);
1522        assertEquals(1.7014118E38f, halfMax);
1523        assertEquals(Float.MAX_VALUE, halfMax - Math.ulp(halfMax) + halfMax);
1524        assertEquals(Float.POSITIVE_INFINITY, halfMax + halfMax);
1525        assertEquals(3.4028233E38f, Math.scalb(1.0f - Math.ulp(1.0f),
1526                Float.MAX_EXPONENT + 1));
1527        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(1.0f - Math.ulp(1.0f),
1528                Float.MAX_EXPONENT + 2));
1529
1530        halfMax = Math.scalb(-1.0f, Float.MAX_EXPONENT);
1531        assertEquals(-1.7014118E38f, halfMax);
1532        assertEquals(-Float.MAX_VALUE, halfMax + Math.ulp(halfMax) + halfMax);
1533        assertEquals(Float.NEGATIVE_INFINITY, halfMax + halfMax);
1534
1535        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(0.345f, 1234));
1536        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(44.345E10f, 934));
1537        assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(-44.345E10f, 934));
1538
1539        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_NORMAL / 2,
1540                400));
1541        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MIN_VALUE, 800));
1542        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(Float.MAX_VALUE, 1));
1543        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
1544                Float.POSITIVE_INFINITY, 0));
1545        assertEquals(Float.POSITIVE_INFINITY, Math.scalb(
1546                Float.POSITIVE_INFINITY, -1));
1547        assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
1548                Float.NEGATIVE_INFINITY, -1));
1549        assertEquals(Float.NEGATIVE_INFINITY, Math.scalb(
1550                Float.NEGATIVE_INFINITY, Float.MIN_EXPONENT));
1551
1552        // result is subnormal/zero
1553        int posZeroBits = Float.floatToIntBits(+0.0f);
1554        int negZeroBits = Float.floatToIntBits(-0.0f);
1555        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f,
1556                Integer.MAX_VALUE)));
1557        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, -123)));
1558        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(+0.0f, 0)));
1559        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f, 123)));
1560        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-0.0f,
1561                Integer.MIN_VALUE)));
1562
1563        assertEquals(Float.MIN_VALUE, Math.scalb(1.0f, -149));
1564        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(1.0f, -150)));
1565        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-1.0f, -150)));
1566
1567        // precision lost
1568        assertEquals(Math.scalb(21.405f, -154), Math.scalb(21.405f, -153));
1569        assertEquals(Float.MIN_VALUE, Math.scalb(21.405f, -154));
1570        assertEquals(-Float.MIN_VALUE, Math.scalb(-21.405f, -154));
1571        assertEquals(posZeroBits, Float.floatToIntBits(Math
1572                .scalb(21.405f, -155)));
1573        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(-21.405f,
1574                -155)));
1575        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1576                Float.MIN_VALUE, -1)));
1577        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1578                -Float.MIN_VALUE, -1)));
1579        assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL, -23));
1580        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1581                Float.MIN_NORMAL, -24)));
1582        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1583                -Float.MIN_NORMAL, -24)));
1584        assertEquals(Float.MIN_VALUE, Math.scalb(Float.MAX_VALUE, -277));
1585        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1586                Float.MAX_VALUE, -278)));
1587        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1588                -Float.MAX_VALUE, -278)));
1589        assertEquals(Float.MIN_VALUE, Math.scalb(Float.MIN_NORMAL / 3, -22));
1590        assertEquals(posZeroBits, Float.floatToIntBits(Math.scalb(
1591                Float.MIN_NORMAL / 3, -23)));
1592        assertEquals(negZeroBits, Float.floatToIntBits(Math.scalb(
1593                -Float.MIN_NORMAL / 3, -23)));
1594        float subnormal = Math.scalb(Float.MIN_NORMAL / 3, -11);
1595        assertEquals(1.913E-42f, subnormal);
1596        // precision lost
1597        assertFalse(Float.MIN_NORMAL / 3 == Math.scalb(subnormal, 11));
1598
1599        assertEquals(68747264, Float.floatToIntBits(Math.scalb(
1600                Float.MIN_VALUE * 153, 23)));
1601        assertEquals(-2078736384, Float.floatToIntBits(Math.scalb(
1602                -Float.MIN_VALUE * 153, 23)));
1603
1604        assertEquals(4896, Float.floatToIntBits(Math.scalb(
1605                Float.MIN_VALUE * 153, 5)));
1606        assertEquals(-2147478752, Float.floatToIntBits(Math.scalb(
1607                -Float.MIN_VALUE * 153, 5)));
1608
1609        // NaN
1610        assertTrue(Float.isNaN(Math.scalb(Float.NaN, 1)));
1611        assertTrue(Float.isNaN(Math.scalb(Float.NaN, 0)));
1612        assertTrue(Float.isNaN(Math.scalb(Float.NaN, -120)));
1613
1614        // test for exception
1615        try {
1616            Math.scalb((Float) null, (Integer) null);
1617            fail("Should throw NullPointerException");
1618        } catch (NullPointerException e) {
1619            // Expected
1620        }
1621        try {
1622            Math.scalb(1.0f, (Integer) null);
1623            fail("Should throw NullPointerException");
1624        } catch (NullPointerException e) {
1625            // Expected
1626        }
1627        try {
1628            Math.scalb((Float) null, 1);
1629            fail("Should throw NullPointerException");
1630        } catch (NullPointerException e) {
1631            // Expected
1632        }
1633
1634        int b1em126 = 0x00800000; // bit representation of Float.MIN_NORMAL
1635        int b1em127 = 0x00400000; // bit representation of half
1636                                    // Float.MIN_NORMAL
1637        // assert exact identity
1638        assertEquals(b1em127, Float.floatToIntBits(Math.scalb(Float
1639                .intBitsToFloat(b1em126), -1)));
1640    }
1641
1642    /**
1643     * @tests java.lang.Math#signum(double)
1644     */
1645    public void test_signum_D() {
1646        assertTrue(Double.isNaN(Math.signum(Double.NaN)));
1647        assertTrue(Double.isNaN(Math.signum(Double.NaN)));
1648        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
1649                .signum(0.0)));
1650        assertEquals(Double.doubleToLongBits(+0.0), Double
1651                .doubleToLongBits(Math.signum(+0.0)));
1652        assertEquals(Double.doubleToLongBits(-0.0), Double
1653                .doubleToLongBits(Math.signum(-0.0)));
1654
1655        assertEquals(1.0, Math.signum(253681.2187962), 0D);
1656        assertEquals(-1.0, Math.signum(-125874693.56), 0D);
1657        assertEquals(1.0, Math.signum(1.2587E-308), 0D);
1658        assertEquals(-1.0, Math.signum(-1.2587E-308), 0D);
1659
1660        assertEquals(1.0, Math.signum(Double.MAX_VALUE), 0D);
1661        assertEquals(1.0, Math.signum(Double.MIN_VALUE), 0D);
1662        assertEquals(-1.0, Math.signum(-Double.MAX_VALUE), 0D);
1663        assertEquals(-1.0, Math.signum(-Double.MIN_VALUE), 0D);
1664        assertEquals(1.0, Math.signum(Double.POSITIVE_INFINITY), 0D);
1665        assertEquals(-1.0, Math.signum(Double.NEGATIVE_INFINITY), 0D);
1666    }
1667
1668    /**
1669     * @tests java.lang.Math#signum(float)
1670     */
1671    public void test_signum_F() {
1672        assertTrue(Float.isNaN(Math.signum(Float.NaN)));
1673        assertEquals(Float.floatToIntBits(0.0f), Float
1674                .floatToIntBits(Math.signum(0.0f)));
1675        assertEquals(Float.floatToIntBits(+0.0f), Float
1676                .floatToIntBits(Math.signum(+0.0f)));
1677        assertEquals(Float.floatToIntBits(-0.0f), Float
1678                .floatToIntBits(Math.signum(-0.0f)));
1679
1680        assertEquals(1.0f, Math.signum(253681.2187962f), 0f);
1681        assertEquals(-1.0f, Math.signum(-125874693.56f), 0f);
1682        assertEquals(1.0f, Math.signum(1.2587E-11f), 0f);
1683        assertEquals(-1.0f, Math.signum(-1.2587E-11f), 0f);
1684
1685        assertEquals(1.0f, Math.signum(Float.MAX_VALUE), 0f);
1686        assertEquals(1.0f, Math.signum(Float.MIN_VALUE), 0f);
1687        assertEquals(-1.0f, Math.signum(-Float.MAX_VALUE), 0f);
1688        assertEquals(-1.0f, Math.signum(-Float.MIN_VALUE), 0f);
1689        assertEquals(1.0f, Math.signum(Float.POSITIVE_INFINITY), 0f);
1690        assertEquals(-1.0f, Math.signum(Float.NEGATIVE_INFINITY), 0f);
1691    }
1692
1693	/**
1694     * @tests java.lang.Math#sin(double)
1695     */
1696	public void test_sinD() {
1697		// Test for method double java.lang.Math.sin(double)
1698		assertEquals("Incorrect answer", 0.0, Math.sin(0), 0D);
1699		assertEquals("Incorrect answer", 0.8414709848078965, Math.sin(1), 0D);
1700	}
1701
1702    /**
1703     * @tests java.lang.Math#sinh(double)
1704     */
1705    public void test_sinh_D() {
1706        // Test for special situations
1707        assertTrue("Should return NaN", Double.isNaN(Math.sinh(Double.NaN)));
1708        assertEquals("Should return POSITIVE_INFINITY",
1709                Double.POSITIVE_INFINITY, Math.sinh(Double.POSITIVE_INFINITY), 0D);
1710        assertEquals("Should return NEGATIVE_INFINITY",
1711                Double.NEGATIVE_INFINITY, Math.sinh(Double.NEGATIVE_INFINITY), 0D);
1712        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
1713				.sinh(0.0)));
1714		assertEquals(Double.doubleToLongBits(+0.0), Double
1715				.doubleToLongBits(Math.sinh(+0.0)));
1716		assertEquals(Double.doubleToLongBits(-0.0), Double
1717				.doubleToLongBits(Math.sinh(-0.0)));
1718
1719        assertEquals("Should return POSITIVE_INFINITY",
1720                Double.POSITIVE_INFINITY, Math.sinh(1234.56), 0D);
1721        assertEquals("Should return NEGATIVE_INFINITY",
1722                Double.NEGATIVE_INFINITY, Math.sinh(-1234.56), 0D);
1723        assertEquals("Should return 1.0000000000001666E-6",
1724                1.0000000000001666E-6, Math.sinh(0.000001), 0D);
1725        assertEquals("Should return -1.0000000000001666E-6",
1726                -1.0000000000001666E-6, Math.sinh(-0.000001), 0D);
1727        assertEquals("Should return 5.115386441963859", 5.115386441963859, Math
1728                .sinh(2.33482), 0D);
1729        assertEquals("Should return POSITIVE_INFINITY",
1730                Double.POSITIVE_INFINITY, Math.sinh(Double.MAX_VALUE), 0D);
1731        assertEquals("Should return 4.9E-324", 4.9E-324, Math
1732                .sinh(Double.MIN_VALUE), 0D);
1733    }
1734
1735	/**
1736	 * @tests java.lang.Math#sqrt(double)
1737	 */
1738	public void test_sqrtD() {
1739		// Test for method double java.lang.Math.sqrt(double)
1740                assertEquals("Incorrect root returned2", 7, Math.sqrt(49), 0);
1741	}
1742
1743	/**
1744	 * @tests java.lang.Math#tan(double)
1745	 */
1746	public void test_tanD() {
1747		// Test for method double java.lang.Math.tan(double)
1748		assertEquals("Incorrect answer", 0.0, Math.tan(0), 0D);
1749		assertEquals("Incorrect answer", 1.5574077246549023, Math.tan(1), 0D);
1750
1751	}
1752
1753    /**
1754     * @tests java.lang.Math#tanh(double)
1755     */
1756    public void test_tanh_D() {
1757        // Test for special situations
1758        assertTrue("Should return NaN", Double.isNaN(Math.tanh(Double.NaN)));
1759        assertEquals("Should return +1.0", +1.0, Math
1760                .tanh(Double.POSITIVE_INFINITY), 0D);
1761        assertEquals("Should return -1.0", -1.0, Math
1762                .tanh(Double.NEGATIVE_INFINITY), 0D);
1763        assertEquals(Double.doubleToLongBits(0.0), Double.doubleToLongBits(Math
1764				.tanh(0.0)));
1765		assertEquals(Double.doubleToLongBits(+0.0), Double
1766				.doubleToLongBits(Math.tanh(+0.0)));
1767		assertEquals(Double.doubleToLongBits(-0.0), Double
1768				.doubleToLongBits(Math.tanh(-0.0)));
1769
1770        assertEquals("Should return 1.0", 1.0, Math.tanh(1234.56), 0D);
1771        assertEquals("Should return -1.0", -1.0, Math.tanh(-1234.56), 0D);
1772        assertEquals("Should return 9.999999999996666E-7",
1773                9.999999999996666E-7, Math.tanh(0.000001), 0D);
1774        assertEquals("Should return 0.981422884124941", 0.981422884124941, Math
1775                .tanh(2.33482), 0D);
1776        assertEquals("Should return 1.0", 1.0, Math.tanh(Double.MAX_VALUE), 0D);
1777        assertEquals("Should return 4.9E-324", 4.9E-324, Math
1778                .tanh(Double.MIN_VALUE), 0D);
1779    }
1780
1781	/**
1782	 * @tests java.lang.Math#random()
1783	 */
1784	public void test_random() {
1785		// There isn't a place for these tests so just stick them here
1786		assertEquals("Wrong value E",
1787				4613303445314885481L, Double.doubleToLongBits(Math.E));
1788		assertEquals("Wrong value PI",
1789				4614256656552045848L, Double.doubleToLongBits(Math.PI));
1790
1791		for (int i = 500; i >= 0; i--) {
1792			double d = Math.random();
1793			assertTrue("Generated number is out of range: " + d, d >= 0.0
1794					&& d < 1.0);
1795		}
1796	}
1797
1798	/**
1799	 * @tests java.lang.Math#toRadians(double)
1800	 */
1801	public void test_toRadiansD() {
1802		for (double d = 500; d >= 0; d -= 1.0) {
1803			double converted = Math.toDegrees(Math.toRadians(d));
1804			assertTrue("Converted number not equal to original. d = " + d,
1805					converted >= d * 0.99999999 && converted <= d * 1.00000001);
1806		}
1807	}
1808
1809	/**
1810	 * @tests java.lang.Math#toDegrees(double)
1811	 */
1812	public void test_toDegreesD() {
1813		for (double d = 500; d >= 0; d -= 1.0) {
1814			double converted = Math.toRadians(Math.toDegrees(d));
1815			assertTrue("Converted number not equal to original. d = " + d,
1816					converted >= d * 0.99999999 && converted <= d * 1.00000001);
1817		}
1818	}
1819
1820	/**
1821     * @tests java.lang.Math#ulp(double)
1822     */
1823    @SuppressWarnings("boxing")
1824    public void test_ulp_D() {
1825		// Test for special cases
1826		assertTrue("Should return NaN", Double.isNaN(Math.ulp(Double.NaN)));
1827		assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
1828				.ulp(Double.POSITIVE_INFINITY), 0D);
1829		assertEquals("Returned incorrect value", Double.POSITIVE_INFINITY, Math
1830				.ulp(Double.NEGATIVE_INFINITY), 0D);
1831		assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1832				.ulp(0.0), 0D);
1833		assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1834				.ulp(+0.0), 0D);
1835		assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1836				.ulp(-0.0), 0D);
1837		assertEquals("Returned incorrect value", Math.pow(2, 971), Math
1838				.ulp(Double.MAX_VALUE), 0D);
1839		assertEquals("Returned incorrect value", Math.pow(2, 971), Math
1840				.ulp(-Double.MAX_VALUE), 0D);
1841
1842		assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1843				.ulp(Double.MIN_VALUE), 0D);
1844		assertEquals("Returned incorrect value", Double.MIN_VALUE, Math
1845				.ulp(-Double.MIN_VALUE), 0D);
1846
1847		assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
1848				.ulp(1.0), 0D);
1849		assertEquals("Returned incorrect value", 2.220446049250313E-16, Math
1850				.ulp(-1.0), 0D);
1851		assertEquals("Returned incorrect value", 2.2737367544323206E-13, Math
1852				.ulp(1153.0), 0D);
1853	}
1854
1855	/**
1856	 * @tests java.lang.Math#ulp(float)
1857	 */
1858	@SuppressWarnings("boxing")
1859	public void test_ulp_f() {
1860		// Test for special cases
1861		assertTrue("Should return NaN", Float.isNaN(Math.ulp(Float.NaN)));
1862		assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
1863				.ulp(Float.POSITIVE_INFINITY), 0f);
1864		assertEquals("Returned incorrect value", Float.POSITIVE_INFINITY, Math
1865				.ulp(Float.NEGATIVE_INFINITY), 0f);
1866		assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1867				.ulp(0.0f), 0f);
1868		assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1869				.ulp(+0.0f), 0f);
1870		assertEquals("Returned incorrect value", Float.MIN_VALUE, Math
1871				.ulp(-0.0f), 0f);
1872		assertEquals("Returned incorrect value", 2.028241E31f, Math
1873				.ulp(Float.MAX_VALUE), 0f);
1874		assertEquals("Returned incorrect value", 2.028241E31f, Math
1875				.ulp(-Float.MAX_VALUE), 0f);
1876
1877		assertEquals("Returned incorrect value", 1.4E-45f, Math
1878				.ulp(Float.MIN_VALUE), 0f);
1879		assertEquals("Returned incorrect value", 1.4E-45f, Math
1880				.ulp(-Float.MIN_VALUE), 0f);
1881
1882		assertEquals("Returned incorrect value", 1.1920929E-7f, Math.ulp(1.0f),
1883				0f);
1884		assertEquals("Returned incorrect value", 1.1920929E-7f,
1885				Math.ulp(-1.0f), 0f);
1886		assertEquals("Returned incorrect value", 1.2207031E-4f, Math
1887				.ulp(1153.0f), 0f);
1888		assertEquals("Returned incorrect value", 5.6E-45f, Math
1889				.ulp(9.403954E-38f), 0f);
1890    }
1891
1892	/**
1893     * @tests {@link java.lang.Math#shiftIntBits(int, int)}
1894     *
1895     * @since 1.6
1896     */
1897    public void test_shiftIntBits_II() {
1898        class Tuple {
1899            public int result;
1900
1901            public int value;
1902
1903            public int factor;
1904
1905            public Tuple(int result, int value, int factor) {
1906                this.result = result;
1907                this.value = value;
1908                this.factor = factor;
1909            }
1910        }
1911        final Tuple[] TUPLES = new Tuple[] {
1912        // sub-normal to sub-normal
1913                new Tuple(0x00000000, 0x00000001, -1),
1914                // round to even
1915                new Tuple(0x00000002, 0x00000003, -1),
1916                // round to even
1917                new Tuple(0x00000001, 0x00000005, -3),
1918                // round to infinity
1919                new Tuple(0x00000002, 0x0000000d, -3),
1920                // round to infinity
1921
1922                // normal to sub-normal
1923                new Tuple(0x00000002, 0x01a00000, -24),
1924                // round to even
1925                new Tuple(0x00000004, 0x01e00000, -24),
1926                // round to even
1927                new Tuple(0x00000003, 0x01c80000, -24),
1928                // round to infinity
1929                new Tuple(0x00000004, 0x01e80000, -24),
1930        // round to infinity
1931        };
1932        for (int i = 0; i < TUPLES.length; ++i) {
1933            Tuple tuple = TUPLES[i];
1934            assertEquals(tuple.result, Float.floatToIntBits(Math.scalb(Float
1935                    .intBitsToFloat(tuple.value), tuple.factor)));
1936            assertEquals(tuple.result, Float.floatToIntBits(-Math.scalb(-Float
1937                    .intBitsToFloat(tuple.value), tuple.factor)));
1938        }
1939    }
1940
1941    /**
1942     * @tests {@link java.lang.Math#shiftLongBits(long, long)}
1943     *
1944     * Round result to nearest value on precision lost.
1945     *
1946     * @since 1.6
1947     */
1948    public void test_shiftLongBits_LL() {
1949        class Tuple {
1950            public long result;
1951
1952            public long value;
1953
1954            public int factor;
1955
1956            public Tuple(long result, long value, int factor) {
1957                this.result = result;
1958                this.value = value;
1959                this.factor = factor;
1960            }
1961        }
1962        final Tuple[] TUPLES = new Tuple[] {
1963        // sub-normal to sub-normal
1964                new Tuple(0x00000000L, 0x00000001L, -1),
1965                //round to even
1966                new Tuple(0x00000002L, 0x00000003L, -1),
1967                //round to even
1968                new Tuple(0x00000001L, 0x00000005L, -3),
1969                //round to infinity
1970                new Tuple(0x00000002L, 0x0000000dL, -3),
1971                //round to infinity
1972
1973                // normal to sub-normal
1974                new Tuple(0x0000000000000002L, 0x0034000000000000L, -53), // round to even
1975                new Tuple(0x0000000000000004L, 0x003c000000000000L, -53), // round to even
1976                new Tuple(0x0000000000000003L, 0x0035000000000000L, -53), // round to infinity
1977                new Tuple(0x0000000000000004L, 0x003d000000000000L, -53), // round to infinity
1978        };
1979        for (int i = 0; i < TUPLES.length; ++i) {
1980            Tuple tuple = TUPLES[i];
1981            assertEquals(tuple.result, Double.doubleToLongBits(Math.scalb(
1982                    Double.longBitsToDouble(tuple.value), tuple.factor)));
1983            assertEquals(tuple.result, Double.doubleToLongBits(-Math.scalb(
1984                    -Double.longBitsToDouble(tuple.value), tuple.factor)));
1985        }
1986    }
1987}
1988