1// Copyright (c) 2010 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/message_pump_glib.h"
6
7#include <fcntl.h>
8#include <math.h>
9
10#include <gtk/gtk.h>
11#include <glib.h>
12
13#include "base/eintr_wrapper.h"
14#include "base/logging.h"
15#include "base/threading/platform_thread.h"
16
17namespace {
18
19// We send a byte across a pipe to wakeup the event loop.
20const char kWorkScheduled = '\0';
21
22// Return a timeout suitable for the glib loop, -1 to block forever,
23// 0 to return right away, or a timeout in milliseconds from now.
24int GetTimeIntervalMilliseconds(const base::TimeTicks& from) {
25  if (from.is_null())
26    return -1;
27
28  // Be careful here.  TimeDelta has a precision of microseconds, but we want a
29  // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
30  // 6?  It should be 6 to avoid executing delayed work too early.
31  int delay = static_cast<int>(
32      ceil((from - base::TimeTicks::Now()).InMillisecondsF()));
33
34  // If this value is negative, then we need to run delayed work soon.
35  return delay < 0 ? 0 : delay;
36}
37
38// A brief refresher on GLib:
39//     GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
40// On each iteration of the GLib pump, it calls each source's Prepare function.
41// This function should return TRUE if it wants GLib to call its Dispatch, and
42// FALSE otherwise.  It can also set a timeout in this case for the next time
43// Prepare should be called again (it may be called sooner).
44//     After the Prepare calls, GLib does a poll to check for events from the
45// system.  File descriptors can be attached to the sources.  The poll may block
46// if none of the Prepare calls returned TRUE.  It will block indefinitely, or
47// by the minimum time returned by a source in Prepare.
48//     After the poll, GLib calls Check for each source that returned FALSE
49// from Prepare.  The return value of Check has the same meaning as for Prepare,
50// making Check a second chance to tell GLib we are ready for Dispatch.
51//     Finally, GLib calls Dispatch for each source that is ready.  If Dispatch
52// returns FALSE, GLib will destroy the source.  Dispatch calls may be recursive
53// (i.e., you can call Run from them), but Prepare and Check cannot.
54//     Finalize is called when the source is destroyed.
55// NOTE: It is common for subsytems to want to process pending events while
56// doing intensive work, for example the flash plugin. They usually use the
57// following pattern (recommended by the GTK docs):
58// while (gtk_events_pending()) {
59//   gtk_main_iteration();
60// }
61//
62// gtk_events_pending just calls g_main_context_pending, which does the
63// following:
64// - Call prepare on all the sources.
65// - Do the poll with a timeout of 0 (not blocking).
66// - Call check on all the sources.
67// - *Does not* call dispatch on the sources.
68// - Return true if any of prepare() or check() returned true.
69//
70// gtk_main_iteration just calls g_main_context_iteration, which does the whole
71// thing, respecting the timeout for the poll (and block, although it is
72// expected not to if gtk_events_pending returned true), and call dispatch.
73//
74// Thus it is important to only return true from prepare or check if we
75// actually have events or work to do. We also need to make sure we keep
76// internal state consistent so that if prepare/check return true when called
77// from gtk_events_pending, they will still return true when called right
78// after, from gtk_main_iteration.
79//
80// For the GLib pump we try to follow the Windows UI pump model:
81// - Whenever we receive a wakeup event or the timer for delayed work expires,
82// we run DoWork and/or DoDelayedWork. That part will also run in the other
83// event pumps.
84// - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
85// loop, around event handling.
86
87struct WorkSource : public GSource {
88  base::MessagePumpForUI* pump;
89};
90
91gboolean WorkSourcePrepare(GSource* source,
92                           gint* timeout_ms) {
93  *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
94  // We always return FALSE, so that our timeout is honored.  If we were
95  // to return TRUE, the timeout would be considered to be 0 and the poll
96  // would never block.  Once the poll is finished, Check will be called.
97  return FALSE;
98}
99
100gboolean WorkSourceCheck(GSource* source) {
101  // Only return TRUE if Dispatch should be called.
102  return static_cast<WorkSource*>(source)->pump->HandleCheck();
103}
104
105gboolean WorkSourceDispatch(GSource* source,
106                            GSourceFunc unused_func,
107                            gpointer unused_data) {
108
109  static_cast<WorkSource*>(source)->pump->HandleDispatch();
110  // Always return TRUE so our source stays registered.
111  return TRUE;
112}
113
114// I wish these could be const, but g_source_new wants non-const.
115GSourceFuncs WorkSourceFuncs = {
116  WorkSourcePrepare,
117  WorkSourceCheck,
118  WorkSourceDispatch,
119  NULL
120};
121
122}  // namespace
123
124
125namespace base {
126
127struct MessagePumpForUI::RunState {
128  Delegate* delegate;
129  Dispatcher* dispatcher;
130
131  // Used to flag that the current Run() invocation should return ASAP.
132  bool should_quit;
133
134  // Used to count how many Run() invocations are on the stack.
135  int run_depth;
136
137  // This keeps the state of whether the pump got signaled that there was new
138  // work to be done. Since we eat the message on the wake up pipe as soon as
139  // we get it, we keep that state here to stay consistent.
140  bool has_work;
141};
142
143MessagePumpForUI::MessagePumpForUI()
144    : state_(NULL),
145      context_(g_main_context_default()),
146      wakeup_gpollfd_(new GPollFD) {
147  // Create our wakeup pipe, which is used to flag when work was scheduled.
148  int fds[2];
149  CHECK_EQ(pipe(fds), 0);
150  wakeup_pipe_read_  = fds[0];
151  wakeup_pipe_write_ = fds[1];
152  wakeup_gpollfd_->fd = wakeup_pipe_read_;
153  wakeup_gpollfd_->events = G_IO_IN;
154
155  work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
156  static_cast<WorkSource*>(work_source_)->pump = this;
157  g_source_add_poll(work_source_, wakeup_gpollfd_.get());
158  // Use a low priority so that we let other events in the queue go first.
159  g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
160  // This is needed to allow Run calls inside Dispatch.
161  g_source_set_can_recurse(work_source_, TRUE);
162  g_source_attach(work_source_, context_);
163  gdk_event_handler_set(&EventDispatcher, this, NULL);
164}
165
166MessagePumpForUI::~MessagePumpForUI() {
167  gdk_event_handler_set(reinterpret_cast<GdkEventFunc>(gtk_main_do_event),
168                        this, NULL);
169  g_source_destroy(work_source_);
170  g_source_unref(work_source_);
171  close(wakeup_pipe_read_);
172  close(wakeup_pipe_write_);
173}
174
175void MessagePumpForUI::RunWithDispatcher(Delegate* delegate,
176                                         Dispatcher* dispatcher) {
177#ifndef NDEBUG
178  // Make sure we only run this on one thread.  GTK only has one message pump
179  // so we can only have one UI loop per process.
180  static base::PlatformThreadId thread_id = base::PlatformThread::CurrentId();
181  DCHECK(thread_id == base::PlatformThread::CurrentId()) <<
182      "Running MessagePumpForUI on two different threads; "
183      "this is unsupported by GLib!";
184#endif
185
186  RunState state;
187  state.delegate = delegate;
188  state.dispatcher = dispatcher;
189  state.should_quit = false;
190  state.run_depth = state_ ? state_->run_depth + 1 : 1;
191  state.has_work = false;
192
193  RunState* previous_state = state_;
194  state_ = &state;
195
196  // We really only do a single task for each iteration of the loop.  If we
197  // have done something, assume there is likely something more to do.  This
198  // will mean that we don't block on the message pump until there was nothing
199  // more to do.  We also set this to true to make sure not to block on the
200  // first iteration of the loop, so RunAllPending() works correctly.
201  bool more_work_is_plausible = true;
202
203  // We run our own loop instead of using g_main_loop_quit in one of the
204  // callbacks.  This is so we only quit our own loops, and we don't quit
205  // nested loops run by others.  TODO(deanm): Is this what we want?
206  for (;;) {
207    // Don't block if we think we have more work to do.
208    bool block = !more_work_is_plausible;
209
210    more_work_is_plausible = RunOnce(context_, block);
211    if (state_->should_quit)
212      break;
213
214    more_work_is_plausible |= state_->delegate->DoWork();
215    if (state_->should_quit)
216      break;
217
218    more_work_is_plausible |=
219        state_->delegate->DoDelayedWork(&delayed_work_time_);
220    if (state_->should_quit)
221      break;
222
223    if (more_work_is_plausible)
224      continue;
225
226    more_work_is_plausible = state_->delegate->DoIdleWork();
227    if (state_->should_quit)
228      break;
229  }
230
231  state_ = previous_state;
232}
233
234bool MessagePumpForUI::RunOnce(GMainContext* context, bool block) {
235  // g_main_context_iteration returns true if events have been dispatched.
236  return g_main_context_iteration(context, block);
237}
238
239// Return the timeout we want passed to poll.
240int MessagePumpForUI::HandlePrepare() {
241  // We know we have work, but we haven't called HandleDispatch yet. Don't let
242  // the pump block so that we can do some processing.
243  if (state_ &&  // state_ may be null during tests.
244      state_->has_work)
245    return 0;
246
247  // We don't think we have work to do, but make sure not to block
248  // longer than the next time we need to run delayed work.
249  return GetTimeIntervalMilliseconds(delayed_work_time_);
250}
251
252bool MessagePumpForUI::HandleCheck() {
253  if (!state_)  // state_ may be null during tests.
254    return false;
255
256  // We should only ever have a single message on the wakeup pipe, since we
257  // are only signaled when the queue went from empty to non-empty.  The glib
258  // poll will tell us whether there was data, so this read shouldn't block.
259  if (wakeup_gpollfd_->revents & G_IO_IN) {
260    char msg;
261    if (HANDLE_EINTR(read(wakeup_pipe_read_, &msg, 1)) != 1 || msg != '!') {
262      NOTREACHED() << "Error reading from the wakeup pipe.";
263    }
264    // Since we ate the message, we need to record that we have more work,
265    // because HandleCheck() may be called without HandleDispatch being called
266    // afterwards.
267    state_->has_work = true;
268  }
269
270  if (state_->has_work)
271    return true;
272
273  if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
274    // The timer has expired. That condition will stay true until we process
275    // that delayed work, so we don't need to record this differently.
276    return true;
277  }
278
279  return false;
280}
281
282void MessagePumpForUI::HandleDispatch() {
283  state_->has_work = false;
284  if (state_->delegate->DoWork()) {
285    // NOTE: on Windows at this point we would call ScheduleWork (see
286    // MessagePumpForUI::HandleWorkMessage in message_pump_win.cc). But here,
287    // instead of posting a message on the wakeup pipe, we can avoid the
288    // syscalls and just signal that we have more work.
289    state_->has_work = true;
290  }
291
292  if (state_->should_quit)
293    return;
294
295  state_->delegate->DoDelayedWork(&delayed_work_time_);
296}
297
298void MessagePumpForUI::AddObserver(Observer* observer) {
299  observers_.AddObserver(observer);
300}
301
302void MessagePumpForUI::RemoveObserver(Observer* observer) {
303  observers_.RemoveObserver(observer);
304}
305
306void MessagePumpForUI::DispatchEvents(GdkEvent* event) {
307  WillProcessEvent(event);
308  if (state_ && state_->dispatcher) { // state_ may be null during tests.
309    if (!state_->dispatcher->Dispatch(event))
310      state_->should_quit = true;
311  } else {
312    gtk_main_do_event(event);
313  }
314  DidProcessEvent(event);
315}
316
317void MessagePumpForUI::Run(Delegate* delegate) {
318  RunWithDispatcher(delegate, NULL);
319}
320
321void MessagePumpForUI::Quit() {
322  if (state_) {
323    state_->should_quit = true;
324  } else {
325    NOTREACHED() << "Quit called outside Run!";
326  }
327}
328
329void MessagePumpForUI::ScheduleWork() {
330  // This can be called on any thread, so we don't want to touch any state
331  // variables as we would then need locks all over.  This ensures that if
332  // we are sleeping in a poll that we will wake up.
333  char msg = '!';
334  if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
335    NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
336  }
337}
338
339void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
340  // We need to wake up the loop in case the poll timeout needs to be
341  // adjusted.  This will cause us to try to do work, but that's ok.
342  delayed_work_time_ = delayed_work_time;
343  ScheduleWork();
344}
345
346MessagePumpForUI::Dispatcher* MessagePumpForUI::GetDispatcher() {
347  return state_ ? state_->dispatcher : NULL;
348}
349
350void MessagePumpForUI::WillProcessEvent(GdkEvent* event) {
351  FOR_EACH_OBSERVER(Observer, observers_, WillProcessEvent(event));
352}
353
354void MessagePumpForUI::DidProcessEvent(GdkEvent* event) {
355  FOR_EACH_OBSERVER(Observer, observers_, DidProcessEvent(event));
356}
357
358// static
359void MessagePumpForUI::EventDispatcher(GdkEvent* event, gpointer data) {
360  MessagePumpForUI* message_pump = reinterpret_cast<MessagePumpForUI*>(data);
361  message_pump->DispatchEvents(event);
362}
363
364}  // namespace base
365