1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/synchronization/waitable_event.h"
6
7#include "base/synchronization/condition_variable.h"
8#include "base/synchronization/lock.h"
9#include "base/message_loop.h"
10
11// -----------------------------------------------------------------------------
12// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
13// support cross-process events (where one process can signal an event which
14// others are waiting on). Because of this, we can avoid having one thread per
15// listener in several cases.
16//
17// The WaitableEvent maintains a list of waiters, protected by a lock. Each
18// waiter is either an async wait, in which case we have a Task and the
19// MessageLoop to run it on, or a blocking wait, in which case we have the
20// condition variable to signal.
21//
22// Waiting involves grabbing the lock and adding oneself to the wait list. Async
23// waits can be canceled, which means grabbing the lock and removing oneself
24// from the list.
25//
26// Waiting on multiple events is handled by adding a single, synchronous wait to
27// the wait-list of many events. An event passes a pointer to itself when
28// firing a waiter and so we can store that pointer to find out which event
29// triggered.
30// -----------------------------------------------------------------------------
31
32namespace base {
33
34// -----------------------------------------------------------------------------
35// This is just an abstract base class for waking the two types of waiters
36// -----------------------------------------------------------------------------
37WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
38    : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
39}
40
41WaitableEvent::~WaitableEvent() {
42}
43
44void WaitableEvent::Reset() {
45  base::AutoLock locked(kernel_->lock_);
46  kernel_->signaled_ = false;
47}
48
49void WaitableEvent::Signal() {
50  base::AutoLock locked(kernel_->lock_);
51
52  if (kernel_->signaled_)
53    return;
54
55  if (kernel_->manual_reset_) {
56    SignalAll();
57    kernel_->signaled_ = true;
58  } else {
59    // In the case of auto reset, if no waiters were woken, we remain
60    // signaled.
61    if (!SignalOne())
62      kernel_->signaled_ = true;
63  }
64}
65
66bool WaitableEvent::IsSignaled() {
67  base::AutoLock locked(kernel_->lock_);
68
69  const bool result = kernel_->signaled_;
70  if (result && !kernel_->manual_reset_)
71    kernel_->signaled_ = false;
72  return result;
73}
74
75// -----------------------------------------------------------------------------
76// Synchronous waits
77
78// -----------------------------------------------------------------------------
79// This is a synchronous waiter. The thread is waiting on the given condition
80// variable and the fired flag in this object.
81// -----------------------------------------------------------------------------
82class SyncWaiter : public WaitableEvent::Waiter {
83 public:
84  SyncWaiter()
85      : fired_(false),
86        signaling_event_(NULL),
87        lock_(),
88        cv_(&lock_) {
89  }
90
91  bool Fire(WaitableEvent* signaling_event) {
92    base::AutoLock locked(lock_);
93
94    if (fired_)
95      return false;
96
97    fired_ = true;
98    signaling_event_ = signaling_event;
99
100    cv_.Broadcast();
101
102    // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
103    // the blocking thread's stack.  There is no |delete this;| in Fire.  The
104    // SyncWaiter object is destroyed when it goes out of scope.
105
106    return true;
107  }
108
109  WaitableEvent* signaling_event() const {
110    return signaling_event_;
111  }
112
113  // ---------------------------------------------------------------------------
114  // These waiters are always stack allocated and don't delete themselves. Thus
115  // there's no problem and the ABA tag is the same as the object pointer.
116  // ---------------------------------------------------------------------------
117  bool Compare(void* tag) {
118    return this == tag;
119  }
120
121  // ---------------------------------------------------------------------------
122  // Called with lock held.
123  // ---------------------------------------------------------------------------
124  bool fired() const {
125    return fired_;
126  }
127
128  // ---------------------------------------------------------------------------
129  // During a TimedWait, we need a way to make sure that an auto-reset
130  // WaitableEvent doesn't think that this event has been signaled between
131  // unlocking it and removing it from the wait-list. Called with lock held.
132  // ---------------------------------------------------------------------------
133  void Disable() {
134    fired_ = true;
135  }
136
137  base::Lock* lock() {
138    return &lock_;
139  }
140
141  base::ConditionVariable* cv() {
142    return &cv_;
143  }
144
145 private:
146  bool fired_;
147  WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
148  base::Lock lock_;
149  base::ConditionVariable cv_;
150};
151
152bool WaitableEvent::Wait() {
153  return TimedWait(TimeDelta::FromSeconds(-1));
154}
155
156bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
157  const Time end_time(Time::Now() + max_time);
158  const bool finite_time = max_time.ToInternalValue() >= 0;
159
160  kernel_->lock_.Acquire();
161    if (kernel_->signaled_) {
162      if (!kernel_->manual_reset_) {
163        // In this case we were signaled when we had no waiters. Now that
164        // someone has waited upon us, we can automatically reset.
165        kernel_->signaled_ = false;
166      }
167
168      kernel_->lock_.Release();
169      return true;
170    }
171
172    SyncWaiter sw;
173    sw.lock()->Acquire();
174
175    Enqueue(&sw);
176  kernel_->lock_.Release();
177  // We are violating locking order here by holding the SyncWaiter lock but not
178  // the WaitableEvent lock. However, this is safe because we don't lock @lock_
179  // again before unlocking it.
180
181  for (;;) {
182    const Time current_time(Time::Now());
183
184    if (sw.fired() || (finite_time && current_time >= end_time)) {
185      const bool return_value = sw.fired();
186
187      // We can't acquire @lock_ before releasing the SyncWaiter lock (because
188      // of locking order), however, in between the two a signal could be fired
189      // and @sw would accept it, however we will still return false, so the
190      // signal would be lost on an auto-reset WaitableEvent. Thus we call
191      // Disable which makes sw::Fire return false.
192      sw.Disable();
193      sw.lock()->Release();
194
195      kernel_->lock_.Acquire();
196        kernel_->Dequeue(&sw, &sw);
197      kernel_->lock_.Release();
198
199      return return_value;
200    }
201
202    if (finite_time) {
203      const TimeDelta max_wait(end_time - current_time);
204      sw.cv()->TimedWait(max_wait);
205    } else {
206      sw.cv()->Wait();
207    }
208  }
209}
210
211// -----------------------------------------------------------------------------
212// Synchronous waiting on multiple objects.
213
214static bool  // StrictWeakOrdering
215cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
216             const std::pair<WaitableEvent*, unsigned> &b) {
217  return a.first < b.first;
218}
219
220// static
221size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
222                               size_t count) {
223  DCHECK(count) << "Cannot wait on no events";
224
225  // We need to acquire the locks in a globally consistent order. Thus we sort
226  // the array of waitables by address. We actually sort a pairs so that we can
227  // map back to the original index values later.
228  std::vector<std::pair<WaitableEvent*, size_t> > waitables;
229  waitables.reserve(count);
230  for (size_t i = 0; i < count; ++i)
231    waitables.push_back(std::make_pair(raw_waitables[i], i));
232
233  DCHECK_EQ(count, waitables.size());
234
235  sort(waitables.begin(), waitables.end(), cmp_fst_addr);
236
237  // The set of waitables must be distinct. Since we have just sorted by
238  // address, we can check this cheaply by comparing pairs of consecutive
239  // elements.
240  for (size_t i = 0; i < waitables.size() - 1; ++i) {
241    DCHECK(waitables[i].first != waitables[i+1].first);
242  }
243
244  SyncWaiter sw;
245
246  const size_t r = EnqueueMany(&waitables[0], count, &sw);
247  if (r) {
248    // One of the events is already signaled. The SyncWaiter has not been
249    // enqueued anywhere. EnqueueMany returns the count of remaining waitables
250    // when the signaled one was seen, so the index of the signaled event is
251    // @count - @r.
252    return waitables[count - r].second;
253  }
254
255  // At this point, we hold the locks on all the WaitableEvents and we have
256  // enqueued our waiter in them all.
257  sw.lock()->Acquire();
258    // Release the WaitableEvent locks in the reverse order
259    for (size_t i = 0; i < count; ++i) {
260      waitables[count - (1 + i)].first->kernel_->lock_.Release();
261    }
262
263    for (;;) {
264      if (sw.fired())
265        break;
266
267      sw.cv()->Wait();
268    }
269  sw.lock()->Release();
270
271  // The address of the WaitableEvent which fired is stored in the SyncWaiter.
272  WaitableEvent *const signaled_event = sw.signaling_event();
273  // This will store the index of the raw_waitables which fired.
274  size_t signaled_index = 0;
275
276  // Take the locks of each WaitableEvent in turn (except the signaled one) and
277  // remove our SyncWaiter from the wait-list
278  for (size_t i = 0; i < count; ++i) {
279    if (raw_waitables[i] != signaled_event) {
280      raw_waitables[i]->kernel_->lock_.Acquire();
281        // There's no possible ABA issue with the address of the SyncWaiter here
282        // because it lives on the stack. Thus the tag value is just the pointer
283        // value again.
284        raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
285      raw_waitables[i]->kernel_->lock_.Release();
286    } else {
287      signaled_index = i;
288    }
289  }
290
291  return signaled_index;
292}
293
294// -----------------------------------------------------------------------------
295// If return value == 0:
296//   The locks of the WaitableEvents have been taken in order and the Waiter has
297//   been enqueued in the wait-list of each. None of the WaitableEvents are
298//   currently signaled
299// else:
300//   None of the WaitableEvent locks are held. The Waiter has not been enqueued
301//   in any of them and the return value is the index of the first WaitableEvent
302//   which was signaled, from the end of the array.
303// -----------------------------------------------------------------------------
304// static
305size_t WaitableEvent::EnqueueMany
306    (std::pair<WaitableEvent*, size_t>* waitables,
307     size_t count, Waiter* waiter) {
308  if (!count)
309    return 0;
310
311  waitables[0].first->kernel_->lock_.Acquire();
312    if (waitables[0].first->kernel_->signaled_) {
313      if (!waitables[0].first->kernel_->manual_reset_)
314        waitables[0].first->kernel_->signaled_ = false;
315      waitables[0].first->kernel_->lock_.Release();
316      return count;
317    }
318
319    const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
320    if (r) {
321      waitables[0].first->kernel_->lock_.Release();
322    } else {
323      waitables[0].first->Enqueue(waiter);
324    }
325
326    return r;
327}
328
329// -----------------------------------------------------------------------------
330
331
332// -----------------------------------------------------------------------------
333// Private functions...
334
335WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
336                                                        bool initially_signaled)
337    : manual_reset_(manual_reset),
338      signaled_(initially_signaled) {
339}
340
341WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
342}
343
344// -----------------------------------------------------------------------------
345// Wake all waiting waiters. Called with lock held.
346// -----------------------------------------------------------------------------
347bool WaitableEvent::SignalAll() {
348  bool signaled_at_least_one = false;
349
350  for (std::list<Waiter*>::iterator
351       i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
352    if ((*i)->Fire(this))
353      signaled_at_least_one = true;
354  }
355
356  kernel_->waiters_.clear();
357  return signaled_at_least_one;
358}
359
360// ---------------------------------------------------------------------------
361// Try to wake a single waiter. Return true if one was woken. Called with lock
362// held.
363// ---------------------------------------------------------------------------
364bool WaitableEvent::SignalOne() {
365  for (;;) {
366    if (kernel_->waiters_.empty())
367      return false;
368
369    const bool r = (*kernel_->waiters_.begin())->Fire(this);
370    kernel_->waiters_.pop_front();
371    if (r)
372      return true;
373  }
374}
375
376// -----------------------------------------------------------------------------
377// Add a waiter to the list of those waiting. Called with lock held.
378// -----------------------------------------------------------------------------
379void WaitableEvent::Enqueue(Waiter* waiter) {
380  kernel_->waiters_.push_back(waiter);
381}
382
383// -----------------------------------------------------------------------------
384// Remove a waiter from the list of those waiting. Return true if the waiter was
385// actually removed. Called with lock held.
386// -----------------------------------------------------------------------------
387bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
388  for (std::list<Waiter*>::iterator
389       i = waiters_.begin(); i != waiters_.end(); ++i) {
390    if (*i == waiter && (*i)->Compare(tag)) {
391      waiters_.erase(i);
392      return true;
393    }
394  }
395
396  return false;
397}
398
399// -----------------------------------------------------------------------------
400
401}  // namespace base
402