1// Copyright (c) 2009 The Chromium Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style license that can be 3// found in the LICENSE file. 4 5// This is the browser side of the cache manager, it tracks the activity of the 6// render processes and allocates available memory cache resources. 7 8#ifndef CHROME_BROWSER_RENDERER_HOST_WEB_CACHE_MANAGER_H_ 9#define CHROME_BROWSER_RENDERER_HOST_WEB_CACHE_MANAGER_H_ 10#pragma once 11 12#include <map> 13#include <list> 14#include <set> 15 16#include "base/basictypes.h" 17#include "base/gtest_prod_util.h" 18#include "base/task.h" 19#include "base/time.h" 20#include "third_party/WebKit/Source/WebKit/chromium/public/WebCache.h" 21 22template<typename Type> 23struct DefaultSingletonTraits; 24class PrefService; 25 26class WebCacheManager { 27 friend class WebCacheManagerTest; 28 FRIEND_TEST_ALL_PREFIXES(WebCacheManagerBrowserTest, CrashOnceOnly); 29 30 public: 31 static void RegisterPrefs(PrefService* prefs); 32 33 // Gets the singleton WebCacheManager object. The first time this method 34 // is called, a WebCacheManager object is constructed and returned. 35 // Subsequent calls will return the same object. 36 static WebCacheManager* GetInstance(); 37 38 // When a render process is created, it registers itself with the cache 39 // manager host, causing the renderer to be allocated cache resources. 40 void Add(int renderer_id); 41 42 // When a render process ends, it removes itself from the cache manager host, 43 // freeing the manager to assign its cache resources to other renderers. 44 void Remove(int renderer_id); 45 46 // The cache manager assigns more cache resources to active renderer. When a 47 // renderer is active, it should inform the cache manager to receive more 48 // cache resources. 49 // 50 // When a renderer moves from being inactive to being active, the cache 51 // manager may decide to adjust its resource allocation, but it will delay 52 // the recalculation, allowing ObserveActivity to return quickly. 53 void ObserveActivity(int renderer_id); 54 55 // Periodically, renderers should inform the cache manager of their current 56 // statistics. The more up-to-date the cache manager's statistics, the 57 // better it can allocate cache resources. 58 void ObserveStats( 59 int renderer_id, const WebKit::WebCache::UsageStats& stats); 60 61 // The global limit on the number of bytes in all the in-memory caches. 62 size_t global_size_limit() const { return global_size_limit_; } 63 64 // Sets the global size limit, forcing a recalculation of cache allocations. 65 void SetGlobalSizeLimit(size_t bytes); 66 67 // Clears all in-memory caches. 68 void ClearCache(); 69 70 // Gets the default global size limit. This interrogates system metrics to 71 // tune the default size to the current system. 72 static size_t GetDefaultGlobalSizeLimit(); 73 74 protected: 75 // The amount of idle time before we consider a tab to be "inactive" 76 static const int kRendererInactiveThresholdMinutes = 5; 77 78 // Keep track of some renderer information. 79 struct RendererInfo : WebKit::WebCache::UsageStats { 80 // The access time for this renderer. 81 base::Time access; 82 }; 83 84 typedef std::map<int, RendererInfo> StatsMap; 85 86 // An allocation is the number of bytes a specific renderer should use for 87 // its cache. 88 typedef std::pair<int,size_t> Allocation; 89 90 // An allocation strategy is a list of allocations specifying the resources 91 // each renderer is permitted to consume for its cache. 92 typedef std::list<Allocation> AllocationStrategy; 93 94 // This class is a singleton. Do not instantiate directly. 95 WebCacheManager(); 96 friend struct DefaultSingletonTraits<WebCacheManager>; 97 98 ~WebCacheManager(); 99 100 // Recomputes the allocation of cache resources among the renderers. Also 101 // informs the renderers of their new allocation. 102 void ReviseAllocationStrategy(); 103 104 // Schedules a call to ReviseAllocationStrategy after a short delay. 105 void ReviseAllocationStrategyLater(); 106 107 // The various tactics used as part of an allocation strategy. To decide 108 // how many resources a given renderer should be allocated, we consider its 109 // usage statistics. Each tactic specifies the function that maps usage 110 // statistics to resource allocations. 111 // 112 // Determining a resource allocation strategy amounts to picking a tactic 113 // for each renderer and checking that the total memory required fits within 114 // our |global_size_limit_|. 115 enum AllocationTactic { 116 // Ignore cache statistics and divide resources equally among the given 117 // set of caches. 118 DIVIDE_EVENLY, 119 120 // Allow each renderer to keep its current set of cached resources, with 121 // some extra allocation to store new objects. 122 KEEP_CURRENT_WITH_HEADROOM, 123 124 // Allow each renderer to keep its current set of cached resources. 125 KEEP_CURRENT, 126 127 // Allow each renderer to keep cache resources it believes are currently 128 // being used, with some extra allocation to store new objects. 129 KEEP_LIVE_WITH_HEADROOM, 130 131 // Allow each renderer to keep cache resources it believes are currently 132 // being used, but instruct the renderer to discard all other data. 133 KEEP_LIVE, 134 }; 135 136 // Helper functions for devising an allocation strategy 137 138 // Add up all the stats from the given set of renderers and place the result 139 // in |stats|. 140 void GatherStats(const std::set<int>& renderers, 141 WebKit::WebCache::UsageStats* stats); 142 143 // Get the amount of memory that would be required to implement |tactic| 144 // using the specified allocation tactic. This function defines the 145 // semantics for each of the tactics. 146 static size_t GetSize(AllocationTactic tactic, 147 const WebKit::WebCache::UsageStats& stats); 148 149 // Attempt to use the specified tactics to compute an allocation strategy 150 // and place the result in |strategy|. |active_stats| and |inactive_stats| 151 // are the aggregate statistics for |active_renderers_| and 152 // |inactive_renderers_|, respectively. 153 // 154 // Returns |true| on success and |false| on failure. Does not modify 155 // |strategy| on failure. 156 bool AttemptTactic(AllocationTactic active_tactic, 157 const WebKit::WebCache::UsageStats& active_stats, 158 AllocationTactic inactive_tactic, 159 const WebKit::WebCache::UsageStats& inactive_stats, 160 AllocationStrategy* strategy); 161 162 // For each renderer in |renderers|, computes its allocation according to 163 // |tactic| and add the result to |strategy|. Any |extra_bytes_to_allocate| 164 // is divided evenly among the renderers. 165 void AddToStrategy(const std::set<int>& renderers, 166 AllocationTactic tactic, 167 size_t extra_bytes_to_allocate, 168 AllocationStrategy* strategy); 169 170 // Enact an allocation strategy by informing the renderers of their 171 // allocations according to |strategy|. 172 void EnactStrategy(const AllocationStrategy& strategy); 173 174 // Inform all |renderers| to clear their cache. 175 void ClearRendederCache(const std::set<int>& renderers); 176 177 // Check to see if any active renderers have fallen inactive. 178 void FindInactiveRenderers(); 179 180 // The global size limit for all in-memory caches. 181 size_t global_size_limit_; 182 183 // Maps every renderer_id our most recent copy of its statistics. 184 StatsMap stats_; 185 186 // Every renderer we think is still around is in one of these two sets. 187 // 188 // Active renderers are those renderers that have been active more recently 189 // than they have been inactive. 190 std::set<int> active_renderers_; 191 // Inactive renderers are those renderers that have been inactive more 192 // recently than they have been active. 193 std::set<int> inactive_renderers_; 194 195 ScopedRunnableMethodFactory<WebCacheManager> revise_allocation_factory_; 196 197 DISALLOW_COPY_AND_ASSIGN(WebCacheManager); 198}; 199 200#endif // CHROME_BROWSER_RENDERER_HOST_WEB_CACHE_MANAGER_H_ 201