1// Copyright 2007, 2008 Google Inc.
2// Authors: Jeff Dean, Sanjay Ghemawat, Lincoln Smith
3//
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7//
8//      http://www.apache.org/licenses/LICENSE-2.0
9//
10// Unless required by applicable law or agreed to in writing, software
11// distributed under the License is distributed on an "AS IS" BASIS,
12// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13// See the License for the specific language governing permissions and
14// limitations under the License.
15
16#ifndef OPEN_VCDIFF_ROLLING_HASH_H_
17#define OPEN_VCDIFF_ROLLING_HASH_H_
18
19#include <config.h>
20#include <stdint.h>  // uint32_t
21#include "logging.h"
22
23namespace open_vcdiff {
24
25// Rabin-Karp hasher module -- this is a faster version with different
26// constants, so it's not quite Rabin-Karp fingerprinting, but its behavior is
27// close enough for most applications.
28
29// Definitions common to all hash window sizes.
30class RollingHashUtil {
31 public:
32  // Multiplier for incremental hashing.  The compiler should be smart enough to
33  // convert (val * kMult) into ((val << 8) + val).
34  static const uint32_t kMult = 257;
35
36  // All hashes are returned modulo "kBase".  Current implementation requires
37  // kBase <= 2^32/kMult to avoid overflow.  Also, kBase must be a power of two
38  // so that we can compute modulus efficiently.
39  static const uint32_t kBase = (1 << 23);
40
41  // Returns operand % kBase, assuming that kBase is a power of two.
42  static inline uint32_t ModBase(uint32_t operand) {
43    return operand & (kBase - 1);
44  }
45
46  // Given an unsigned integer "operand", returns an unsigned integer "result"
47  // such that
48  //     result < kBase
49  // and
50  //     ModBase(operand + result) == 0
51  static inline uint32_t FindModBaseInverse(uint32_t operand) {
52    // The subtraction (0 - operand) produces an unsigned underflow for any
53    // operand except 0.  The underflow results in a (very large) unsigned
54    // number.  Binary subtraction is used instead of unary negation because
55    // some compilers (e.g. Visual Studio 7+) produce a warning if an unsigned
56    // value is negated.
57    //
58    // The C++ mod operation (operand % kBase) may produce different results for
59    // different compilers if operand is negative.  That is not a problem in
60    // this case, since all numbers used are unsigned, and ModBase does its work
61    // using bitwise arithmetic rather than the % operator.
62    return ModBase(uint32_t(0) - operand);
63  }
64
65  // Here's the heart of the hash algorithm.  Start with a partial_hash value of
66  // 0, and run this HashStep once against each byte in the data window to be
67  // hashed.  The result will be the hash value for the entire data window.  The
68  // Hash() function, below, does exactly this, albeit with some refinements.
69  static inline uint32_t HashStep(uint32_t partial_hash,
70                                  unsigned char next_byte) {
71    return ModBase((partial_hash * kMult) + next_byte);
72  }
73
74  // Use this function to start computing a new hash value based on the first
75  // two bytes in the window.  It is equivalent to calling
76  //     HashStep(HashStep(0, ptr[0]), ptr[1])
77  // but takes advantage of the fact that the maximum value of
78  // (ptr[0] * kMult) + ptr[1] is not large enough to exceed kBase, thus
79  // avoiding an unnecessary ModBase operation.
80  static inline uint32_t HashFirstTwoBytes(const char* ptr) {
81    return (static_cast<unsigned char>(ptr[0]) * kMult)
82        + static_cast<unsigned char>(ptr[1]);
83  }
84 private:
85  // Making these private avoids copy constructor and assignment operator.
86  // No objects of this type should be constructed.
87  RollingHashUtil();
88  RollingHashUtil(const RollingHashUtil&);  // NOLINT
89  void operator=(const RollingHashUtil&);
90};
91
92// window_size must be >= 2.
93template<int window_size>
94class RollingHash {
95 public:
96  // Perform global initialization that is required in order to instantiate a
97  // RollingHash.  This function *must* be called (preferably on startup) by any
98  // program that uses a RollingHash.  It is harmless to call this function more
99  // than once.  It is not thread-safe, but calling it from two different
100  // threads at the same time can only cause a memory leak, not incorrect
101  // behavior.  Make sure to call it before spawning any threads that could use
102  // RollingHash.  The function returns true if initialization succeeds, or
103  // false if initialization fails, in which case the caller should not proceed
104  // to construct any objects of type RollingHash.
105  static bool Init();
106
107  // Initialize hasher to maintain a window of the specified size.  You need an
108  // instance of this type to use UpdateHash(), but Hash() does not depend on
109  // remove_table_, so it is static.
110  RollingHash() {
111    if (!remove_table_) {
112      LOG(DFATAL) << "RollingHash object instantiated"
113                     " before calling RollingHash::Init()" << LOG_ENDL;
114    }
115  }
116
117  // Compute a hash of the window "ptr[0, window_size - 1]".
118  static uint32_t Hash(const char* ptr) {
119    uint32_t h = RollingHashUtil::HashFirstTwoBytes(ptr);
120    for (int i = 2; i < window_size; ++i) {
121      h = RollingHashUtil::HashStep(h, ptr[i]);
122    }
123    return h;
124  }
125
126  // Update a hash by removing the oldest byte and adding a new byte.
127  //
128  // UpdateHash takes the hash value of buffer[0] ... buffer[window_size -1]
129  // along with the value of buffer[0] (the "old_first_byte" argument)
130  // and the value of buffer[window_size] (the "new_last_byte" argument).
131  // It quickly computes the hash value of buffer[1] ... buffer[window_size]
132  // without having to run Hash() on the entire window.
133  //
134  // The larger the window, the more advantage comes from using UpdateHash()
135  // (which runs in time independent of window_size) instead of Hash().
136  // Each time window_size doubles, the time to execute Hash() also doubles,
137  // while the time to execute UpdateHash() remains constant.  Empirical tests
138  // have borne out this statement.
139  uint32_t UpdateHash(uint32_t old_hash,
140                      const char old_first_byte,
141                      const char new_last_byte) const {
142    uint32_t partial_hash = RemoveFirstByteFromHash(old_hash, old_first_byte);
143    return RollingHashUtil::HashStep(partial_hash, new_last_byte);
144  }
145
146 protected:
147  // Given a full hash value for buffer[0] ... buffer[window_size -1], plus the
148  // value of the first byte buffer[0], this function returns a *partial* hash
149  // value for buffer[1] ... buffer[window_size -1].  See the comments in
150  // Init(), below, for a description of how the contents of remove_table_ are
151  // computed.
152  static uint32_t RemoveFirstByteFromHash(uint32_t full_hash,
153                                          unsigned char first_byte) {
154    return RollingHashUtil::ModBase(full_hash + remove_table_[first_byte]);
155  }
156
157 private:
158  // We keep a table that maps from any byte "b" to
159  //    (- b * pow(kMult, window_size - 1)) % kBase
160  static const uint32_t* remove_table_;
161};
162
163// For each window_size, fill a 256-entry table such that
164//        the hash value of buffer[0] ... buffer[window_size - 1]
165//      + remove_table_[buffer[0]]
166//     == the hash value of buffer[1] ... buffer[window_size - 1]
167// See the comments in Init(), below, for a description of how the contents of
168// remove_table_ are computed.
169template<int window_size>
170const uint32_t* RollingHash<window_size>::remove_table_ = NULL;
171
172// Init() checks to make sure that the static object remove_table_ has been
173// initialized; if not, it does the considerable work of populating it.  Once
174// it's ready, the table can be used for any number of RollingHash objects of
175// the same window_size.
176//
177template<int window_size>
178bool RollingHash<window_size>::Init() {
179  if (window_size < 2) {
180    LOG(ERROR) << "RollingHash window size " << window_size
181               << " is too small" << LOG_ENDL;
182    return false;
183  }
184  if (remove_table_ == NULL) {
185    // The new object is placed into a local pointer instead of directly into
186    // remove_table_, for two reasons:
187    //   1. remove_table_ is a pointer to const.  The table is populated using
188    //      the non-const local pointer and then assigned to the global const
189    //      pointer once it's ready.
190    //   2. No other thread will ever see remove_table_ pointing to a
191    //      partially-initialized table.  If two threads happen to call Init()
192    //      at the same time, two tables with the same contents may be created
193    //      (causing a memory leak), but the results will be consistent
194    //      no matter which of the two tables is used.
195    uint32_t* new_remove_table = new uint32_t[256];
196    // Compute multiplier.  Concisely, it is:
197    //     pow(kMult, (window_size - 1)) % kBase,
198    // but we compute the power in integer form.
199    uint32_t multiplier = 1;
200    for (int i = 0; i < window_size - 1; ++i) {
201      multiplier =
202          RollingHashUtil::ModBase(multiplier * RollingHashUtil::kMult);
203    }
204    // For each character removed_byte, compute
205    //     remove_table_[removed_byte] ==
206    //         (- (removed_byte * pow(kMult, (window_size - 1)))) % kBase
207    // where the power operator "pow" is taken in integer form.
208    //
209    // If you take a hash value fp representing the hash of
210    //     buffer[0] ... buffer[window_size - 1]
211    // and add the value of remove_table_[buffer[0]] to it, the result will be
212    // a partial hash value for
213    //     buffer[1] ... buffer[window_size - 1]
214    // that is to say, it no longer includes buffer[0].
215    //
216    // The following byte at buffer[window_size] can then be merged with this
217    // partial hash value to arrive quickly at the hash value for a window that
218    // has advanced by one byte, to
219    //     buffer[1] ... buffer[window_size]
220    // In fact, that is precisely what happens in UpdateHash, above.
221    uint32_t byte_times_multiplier = 0;
222    for (int removed_byte = 0; removed_byte < 256; ++removed_byte) {
223      new_remove_table[removed_byte] =
224          RollingHashUtil::FindModBaseInverse(byte_times_multiplier);
225      // Iteratively adding the multiplier in this loop is equivalent to
226      // computing (removed_byte * multiplier), and is faster
227      byte_times_multiplier =
228          RollingHashUtil::ModBase(byte_times_multiplier + multiplier);
229    }
230    remove_table_ = new_remove_table;
231  }
232  return true;
233}
234
235}  // namespace open_vcdiff
236
237#endif  // OPEN_VCDIFF_ROLLING_HASH_H_
238