1/**************************************************************** 2 * 3 * The author of this software is David M. Gay. 4 * 5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. 6 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved. 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose without fee is hereby granted, provided that this entire notice 10 * is included in all copies of any software which is or includes a copy 11 * or modification of this software and in all copies of the supporting 12 * documentation for such software. 13 * 14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED 15 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY 16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY 17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. 18 * 19 ***************************************************************/ 20 21/* Please send bug reports to David M. Gay (dmg at acm dot org, 22 * with " at " changed at "@" and " dot " changed to "."). */ 23 24/* On a machine with IEEE extended-precision registers, it is 25 * necessary to specify double-precision (53-bit) rounding precision 26 * before invoking strtod or dtoa. If the machine uses (the equivalent 27 * of) Intel 80x87 arithmetic, the call 28 * _control87(PC_53, MCW_PC); 29 * does this with many compilers. Whether this or another call is 30 * appropriate depends on the compiler; for this to work, it may be 31 * necessary to #include "float.h" or another system-dependent header 32 * file. 33 */ 34 35#include "config.h" 36#include "dtoa.h" 37 38#include "wtf/CPU.h" 39#include "wtf/MathExtras.h" 40#include "wtf/ThreadingPrimitives.h" 41#include "wtf/Vector.h" 42#include <stdio.h> 43 44#if COMPILER(MSVC) 45#pragma warning(disable: 4244) 46#pragma warning(disable: 4245) 47#pragma warning(disable: 4554) 48#endif 49 50namespace WTF { 51 52Mutex* s_dtoaP5Mutex; 53 54typedef union { 55 double d; 56 uint32_t L[2]; 57} U; 58 59#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) 60#define word0(x) (x)->L[0] 61#define word1(x) (x)->L[1] 62#else 63#define word0(x) (x)->L[1] 64#define word1(x) (x)->L[0] 65#endif 66#define dval(x) (x)->d 67 68/* The following definition of Storeinc is appropriate for MIPS processors. 69 * An alternative that might be better on some machines is 70 * *p++ = high << 16 | low & 0xffff; 71 */ 72static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low) 73{ 74 uint16_t* p16 = reinterpret_cast<uint16_t*>(p); 75#if CPU(BIG_ENDIAN) 76 p16[0] = high; 77 p16[1] = low; 78#else 79 p16[1] = high; 80 p16[0] = low; 81#endif 82 return p + 1; 83} 84 85#define Exp_shift 20 86#define Exp_shift1 20 87#define Exp_msk1 0x100000 88#define Exp_msk11 0x100000 89#define Exp_mask 0x7ff00000 90#define P 53 91#define Bias 1023 92#define Emin (-1022) 93#define Exp_1 0x3ff00000 94#define Exp_11 0x3ff00000 95#define Ebits 11 96#define Frac_mask 0xfffff 97#define Frac_mask1 0xfffff 98#define Ten_pmax 22 99#define Bletch 0x10 100#define Bndry_mask 0xfffff 101#define Bndry_mask1 0xfffff 102#define LSB 1 103#define Sign_bit 0x80000000 104#define Log2P 1 105#define Tiny0 0 106#define Tiny1 1 107#define Quick_max 14 108#define Int_max 14 109 110#define rounded_product(a, b) a *= b 111#define rounded_quotient(a, b) a /= b 112 113#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) 114#define Big1 0xffffffff 115 116#if CPU(PPC64) || CPU(X86_64) 117// FIXME: should we enable this on all 64-bit CPUs? 118// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware. 119#define USE_LONG_LONG 120#endif 121 122struct BigInt { 123 BigInt() : sign(0) { } 124 int sign; 125 126 void clear() 127 { 128 sign = 0; 129 m_words.clear(); 130 } 131 132 size_t size() const 133 { 134 return m_words.size(); 135 } 136 137 void resize(size_t s) 138 { 139 m_words.resize(s); 140 } 141 142 uint32_t* words() 143 { 144 return m_words.data(); 145 } 146 147 const uint32_t* words() const 148 { 149 return m_words.data(); 150 } 151 152 void append(uint32_t w) 153 { 154 m_words.append(w); 155 } 156 157 Vector<uint32_t, 16> m_words; 158}; 159 160static void multadd(BigInt& b, int m, int a) /* multiply by m and add a */ 161{ 162#ifdef USE_LONG_LONG 163 unsigned long long carry; 164#else 165 uint32_t carry; 166#endif 167 168 int wds = b.size(); 169 uint32_t* x = b.words(); 170 int i = 0; 171 carry = a; 172 do { 173#ifdef USE_LONG_LONG 174 unsigned long long y = *x * (unsigned long long)m + carry; 175 carry = y >> 32; 176 *x++ = (uint32_t)y & 0xffffffffUL; 177#else 178 uint32_t xi = *x; 179 uint32_t y = (xi & 0xffff) * m + carry; 180 uint32_t z = (xi >> 16) * m + (y >> 16); 181 carry = z >> 16; 182 *x++ = (z << 16) + (y & 0xffff); 183#endif 184 } while (++i < wds); 185 186 if (carry) 187 b.append((uint32_t)carry); 188} 189 190static int hi0bits(uint32_t x) 191{ 192 int k = 0; 193 194 if (!(x & 0xffff0000)) { 195 k = 16; 196 x <<= 16; 197 } 198 if (!(x & 0xff000000)) { 199 k += 8; 200 x <<= 8; 201 } 202 if (!(x & 0xf0000000)) { 203 k += 4; 204 x <<= 4; 205 } 206 if (!(x & 0xc0000000)) { 207 k += 2; 208 x <<= 2; 209 } 210 if (!(x & 0x80000000)) { 211 k++; 212 if (!(x & 0x40000000)) 213 return 32; 214 } 215 return k; 216} 217 218static int lo0bits(uint32_t* y) 219{ 220 int k; 221 uint32_t x = *y; 222 223 if (x & 7) { 224 if (x & 1) 225 return 0; 226 if (x & 2) { 227 *y = x >> 1; 228 return 1; 229 } 230 *y = x >> 2; 231 return 2; 232 } 233 k = 0; 234 if (!(x & 0xffff)) { 235 k = 16; 236 x >>= 16; 237 } 238 if (!(x & 0xff)) { 239 k += 8; 240 x >>= 8; 241 } 242 if (!(x & 0xf)) { 243 k += 4; 244 x >>= 4; 245 } 246 if (!(x & 0x3)) { 247 k += 2; 248 x >>= 2; 249 } 250 if (!(x & 1)) { 251 k++; 252 x >>= 1; 253 if (!x) 254 return 32; 255 } 256 *y = x; 257 return k; 258} 259 260static void i2b(BigInt& b, int i) 261{ 262 b.sign = 0; 263 b.resize(1); 264 b.words()[0] = i; 265} 266 267static void mult(BigInt& aRef, const BigInt& bRef) 268{ 269 const BigInt* a = &aRef; 270 const BigInt* b = &bRef; 271 BigInt c; 272 int wa, wb, wc; 273 const uint32_t* x = 0; 274 const uint32_t* xa; 275 const uint32_t* xb; 276 const uint32_t* xae; 277 const uint32_t* xbe; 278 uint32_t* xc; 279 uint32_t* xc0; 280 uint32_t y; 281#ifdef USE_LONG_LONG 282 unsigned long long carry, z; 283#else 284 uint32_t carry, z; 285#endif 286 287 if (a->size() < b->size()) { 288 const BigInt* tmp = a; 289 a = b; 290 b = tmp; 291 } 292 293 wa = a->size(); 294 wb = b->size(); 295 wc = wa + wb; 296 c.resize(wc); 297 298 for (xc = c.words(), xa = xc + wc; xc < xa; xc++) 299 *xc = 0; 300 xa = a->words(); 301 xae = xa + wa; 302 xb = b->words(); 303 xbe = xb + wb; 304 xc0 = c.words(); 305#ifdef USE_LONG_LONG 306 for (; xb < xbe; xc0++) { 307 if ((y = *xb++)) { 308 x = xa; 309 xc = xc0; 310 carry = 0; 311 do { 312 z = *x++ * (unsigned long long)y + *xc + carry; 313 carry = z >> 32; 314 *xc++ = (uint32_t)z & 0xffffffffUL; 315 } while (x < xae); 316 *xc = (uint32_t)carry; 317 } 318 } 319#else 320 for (; xb < xbe; xb++, xc0++) { 321 if ((y = *xb & 0xffff)) { 322 x = xa; 323 xc = xc0; 324 carry = 0; 325 do { 326 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; 327 carry = z >> 16; 328 uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; 329 carry = z2 >> 16; 330 xc = storeInc(xc, z2, z); 331 } while (x < xae); 332 *xc = carry; 333 } 334 if ((y = *xb >> 16)) { 335 x = xa; 336 xc = xc0; 337 carry = 0; 338 uint32_t z2 = *xc; 339 do { 340 z = (*x & 0xffff) * y + (*xc >> 16) + carry; 341 carry = z >> 16; 342 xc = storeInc(xc, z, z2); 343 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; 344 carry = z2 >> 16; 345 } while (x < xae); 346 *xc = z2; 347 } 348 } 349#endif 350 for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { } 351 c.resize(wc); 352 aRef = c; 353} 354 355struct P5Node { 356 WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED; 357public: 358 P5Node() { } 359 BigInt val; 360 P5Node* next; 361}; 362 363static P5Node* p5s; 364static int p5sCount; 365 366static ALWAYS_INLINE void pow5mult(BigInt& b, int k) 367{ 368 static int p05[3] = { 5, 25, 125 }; 369 370 if (int i = k & 3) 371 multadd(b, p05[i - 1], 0); 372 373 if (!(k >>= 2)) 374 return; 375 376 s_dtoaP5Mutex->lock(); 377 P5Node* p5 = p5s; 378 379 if (!p5) { 380 /* first time */ 381 p5 = new P5Node; 382 i2b(p5->val, 625); 383 p5->next = 0; 384 p5s = p5; 385 p5sCount = 1; 386 } 387 388 int p5sCountLocal = p5sCount; 389 s_dtoaP5Mutex->unlock(); 390 int p5sUsed = 0; 391 392 for (;;) { 393 if (k & 1) 394 mult(b, p5->val); 395 396 if (!(k >>= 1)) 397 break; 398 399 if (++p5sUsed == p5sCountLocal) { 400 s_dtoaP5Mutex->lock(); 401 if (p5sUsed == p5sCount) { 402 ASSERT(!p5->next); 403 p5->next = new P5Node; 404 p5->next->next = 0; 405 p5->next->val = p5->val; 406 mult(p5->next->val, p5->next->val); 407 ++p5sCount; 408 } 409 410 p5sCountLocal = p5sCount; 411 s_dtoaP5Mutex->unlock(); 412 } 413 p5 = p5->next; 414 } 415} 416 417static ALWAYS_INLINE void lshift(BigInt& b, int k) 418{ 419 int n = k >> 5; 420 421 int origSize = b.size(); 422 int n1 = n + origSize + 1; 423 424 if (k &= 0x1f) 425 b.resize(b.size() + n + 1); 426 else 427 b.resize(b.size() + n); 428 429 const uint32_t* srcStart = b.words(); 430 uint32_t* dstStart = b.words(); 431 const uint32_t* src = srcStart + origSize - 1; 432 uint32_t* dst = dstStart + n1 - 1; 433 if (k) { 434 uint32_t hiSubword = 0; 435 int s = 32 - k; 436 for (; src >= srcStart; --src) { 437 *dst-- = hiSubword | *src >> s; 438 hiSubword = *src << k; 439 } 440 *dst = hiSubword; 441 ASSERT(dst == dstStart + n); 442 443 b.resize(origSize + n + !!b.words()[n1 - 1]); 444 } 445 else { 446 do { 447 *--dst = *src--; 448 } while (src >= srcStart); 449 } 450 for (dst = dstStart + n; dst != dstStart; ) 451 *--dst = 0; 452 453 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); 454} 455 456static int cmp(const BigInt& a, const BigInt& b) 457{ 458 const uint32_t *xa, *xa0, *xb, *xb0; 459 int i, j; 460 461 i = a.size(); 462 j = b.size(); 463 ASSERT(i <= 1 || a.words()[i - 1]); 464 ASSERT(j <= 1 || b.words()[j - 1]); 465 if (i -= j) 466 return i; 467 xa0 = a.words(); 468 xa = xa0 + j; 469 xb0 = b.words(); 470 xb = xb0 + j; 471 for (;;) { 472 if (*--xa != *--xb) 473 return *xa < *xb ? -1 : 1; 474 if (xa <= xa0) 475 break; 476 } 477 return 0; 478} 479 480static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef) 481{ 482 const BigInt* a = &aRef; 483 const BigInt* b = &bRef; 484 int i, wa, wb; 485 uint32_t* xc; 486 487 i = cmp(*a, *b); 488 if (!i) { 489 c.sign = 0; 490 c.resize(1); 491 c.words()[0] = 0; 492 return; 493 } 494 if (i < 0) { 495 const BigInt* tmp = a; 496 a = b; 497 b = tmp; 498 i = 1; 499 } else 500 i = 0; 501 502 wa = a->size(); 503 const uint32_t* xa = a->words(); 504 const uint32_t* xae = xa + wa; 505 wb = b->size(); 506 const uint32_t* xb = b->words(); 507 const uint32_t* xbe = xb + wb; 508 509 c.resize(wa); 510 c.sign = i; 511 xc = c.words(); 512#ifdef USE_LONG_LONG 513 unsigned long long borrow = 0; 514 do { 515 unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow; 516 borrow = y >> 32 & (uint32_t)1; 517 *xc++ = (uint32_t)y & 0xffffffffUL; 518 } while (xb < xbe); 519 while (xa < xae) { 520 unsigned long long y = *xa++ - borrow; 521 borrow = y >> 32 & (uint32_t)1; 522 *xc++ = (uint32_t)y & 0xffffffffUL; 523 } 524#else 525 uint32_t borrow = 0; 526 do { 527 uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; 528 borrow = (y & 0x10000) >> 16; 529 uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; 530 borrow = (z & 0x10000) >> 16; 531 xc = storeInc(xc, z, y); 532 } while (xb < xbe); 533 while (xa < xae) { 534 uint32_t y = (*xa & 0xffff) - borrow; 535 borrow = (y & 0x10000) >> 16; 536 uint32_t z = (*xa++ >> 16) - borrow; 537 borrow = (z & 0x10000) >> 16; 538 xc = storeInc(xc, z, y); 539 } 540#endif 541 while (!*--xc) 542 wa--; 543 c.resize(wa); 544} 545 546static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits) 547{ 548 int de, k; 549 uint32_t* x; 550 uint32_t y, z; 551 int i; 552#define d0 word0(d) 553#define d1 word1(d) 554 555 b.sign = 0; 556 b.resize(1); 557 x = b.words(); 558 559 z = d0 & Frac_mask; 560 d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ 561 if ((de = (int)(d0 >> Exp_shift))) 562 z |= Exp_msk1; 563 if ((y = d1)) { 564 if ((k = lo0bits(&y))) { 565 x[0] = y | (z << (32 - k)); 566 z >>= k; 567 } else 568 x[0] = y; 569 if (z) { 570 b.resize(2); 571 x[1] = z; 572 } 573 574 i = b.size(); 575 } else { 576 k = lo0bits(&z); 577 x[0] = z; 578 i = 1; 579 b.resize(1); 580 k += 32; 581 } 582 if (de) { 583 *e = de - Bias - (P - 1) + k; 584 *bits = P - k; 585 } else { 586 *e = 0 - Bias - (P - 1) + 1 + k; 587 *bits = (32 * i) - hi0bits(x[i - 1]); 588 } 589} 590#undef d0 591#undef d1 592 593static const double tens[] = { 594 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 595 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 596 1e20, 1e21, 1e22 597}; 598 599static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; 600static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 601 9007199254740992. * 9007199254740992.e-256 602 /* = 2^106 * 1e-256 */ 603}; 604 605/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ 606/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ 607#define Scale_Bit 0x10 608#define n_bigtens 5 609 610static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S) 611{ 612 size_t n; 613 uint32_t* bx; 614 uint32_t* bxe; 615 uint32_t q; 616 uint32_t* sx; 617 uint32_t* sxe; 618#ifdef USE_LONG_LONG 619 unsigned long long borrow, carry, y, ys; 620#else 621 uint32_t borrow, carry, y, ys; 622 uint32_t si, z, zs; 623#endif 624 ASSERT(b.size() <= 1 || b.words()[b.size() - 1]); 625 ASSERT(S.size() <= 1 || S.words()[S.size() - 1]); 626 627 n = S.size(); 628 ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem"); 629 if (b.size() < n) 630 return 0; 631 sx = S.words(); 632 sxe = sx + --n; 633 bx = b.words(); 634 bxe = bx + n; 635 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ 636 ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem"); 637 if (q) { 638 borrow = 0; 639 carry = 0; 640 do { 641#ifdef USE_LONG_LONG 642 ys = *sx++ * (unsigned long long)q + carry; 643 carry = ys >> 32; 644 y = *bx - (ys & 0xffffffffUL) - borrow; 645 borrow = y >> 32 & (uint32_t)1; 646 *bx++ = (uint32_t)y & 0xffffffffUL; 647#else 648 si = *sx++; 649 ys = (si & 0xffff) * q + carry; 650 zs = (si >> 16) * q + (ys >> 16); 651 carry = zs >> 16; 652 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 653 borrow = (y & 0x10000) >> 16; 654 z = (*bx >> 16) - (zs & 0xffff) - borrow; 655 borrow = (z & 0x10000) >> 16; 656 bx = storeInc(bx, z, y); 657#endif 658 } while (sx <= sxe); 659 if (!*bxe) { 660 bx = b.words(); 661 while (--bxe > bx && !*bxe) 662 --n; 663 b.resize(n); 664 } 665 } 666 if (cmp(b, S) >= 0) { 667 q++; 668 borrow = 0; 669 carry = 0; 670 bx = b.words(); 671 sx = S.words(); 672 do { 673#ifdef USE_LONG_LONG 674 ys = *sx++ + carry; 675 carry = ys >> 32; 676 y = *bx - (ys & 0xffffffffUL) - borrow; 677 borrow = y >> 32 & (uint32_t)1; 678 *bx++ = (uint32_t)y & 0xffffffffUL; 679#else 680 si = *sx++; 681 ys = (si & 0xffff) + carry; 682 zs = (si >> 16) + (ys >> 16); 683 carry = zs >> 16; 684 y = (*bx & 0xffff) - (ys & 0xffff) - borrow; 685 borrow = (y & 0x10000) >> 16; 686 z = (*bx >> 16) - (zs & 0xffff) - borrow; 687 borrow = (z & 0x10000) >> 16; 688 bx = storeInc(bx, z, y); 689#endif 690 } while (sx <= sxe); 691 bx = b.words(); 692 bxe = bx + n; 693 if (!*bxe) { 694 while (--bxe > bx && !*bxe) 695 --n; 696 b.resize(n); 697 } 698 } 699 return q; 700} 701 702/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. 703 * 704 * Inspired by "How to Print Floating-Point Numbers Accurately" by 705 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. 706 * 707 * Modifications: 708 * 1. Rather than iterating, we use a simple numeric overestimate 709 * to determine k = floor(log10(d)). We scale relevant 710 * quantities using O(log2(k)) rather than O(k) multiplications. 711 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't 712 * try to generate digits strictly left to right. Instead, we 713 * compute with fewer bits and propagate the carry if necessary 714 * when rounding the final digit up. This is often faster. 715 * 3. Under the assumption that input will be rounded nearest, 716 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. 717 * That is, we allow equality in stopping tests when the 718 * round-nearest rule will give the same floating-point value 719 * as would satisfaction of the stopping test with strict 720 * inequality. 721 * 4. We remove common factors of powers of 2 from relevant 722 * quantities. 723 * 5. When converting floating-point integers less than 1e16, 724 * we use floating-point arithmetic rather than resorting 725 * to multiple-precision integers. 726 * 6. When asked to produce fewer than 15 digits, we first try 727 * to get by with floating-point arithmetic; we resort to 728 * multiple-precision integer arithmetic only if we cannot 729 * guarantee that the floating-point calculation has given 730 * the correctly rounded result. For k requested digits and 731 * "uniformly" distributed input, the probability is 732 * something like 10^(k-15) that we must resort to the int32_t 733 * calculation. 734 * 735 * Note: 'leftright' translates to 'generate shortest possible string'. 736 */ 737template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright> 738void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut) 739{ 740 // Exactly one rounding mode must be specified. 741 ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1); 742 // roundingNone only allowed (only sensible?) with leftright set. 743 ASSERT(!roundingNone || leftright); 744 745 ASSERT(std::isfinite(dd)); 746 747 int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, 748 j, j1, k, k0, k_check, m2, m5, s2, s5, 749 spec_case; 750 int32_t L; 751 int denorm; 752 uint32_t x; 753 BigInt b, delta, mlo, mhi, S; 754 U d2, eps, u; 755 double ds; 756 char* s; 757 char* s0; 758 759 u.d = dd; 760 761 /* Infinity or NaN */ 762 ASSERT((word0(&u) & Exp_mask) != Exp_mask); 763 764 // JavaScript toString conversion treats -0 as 0. 765 if (!dval(&u)) { 766 signOut = false; 767 exponentOut = 0; 768 precisionOut = 1; 769 result[0] = '0'; 770 result[1] = '\0'; 771 return; 772 } 773 774 if (word0(&u) & Sign_bit) { 775 signOut = true; 776 word0(&u) &= ~Sign_bit; // clear sign bit 777 } else 778 signOut = false; 779 780 d2b(b, &u, &be, &bbits); 781 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) { 782 dval(&d2) = dval(&u); 783 word0(&d2) &= Frac_mask1; 784 word0(&d2) |= Exp_11; 785 786 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 787 * log10(x) = log(x) / log(10) 788 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) 789 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) 790 * 791 * This suggests computing an approximation k to log10(d) by 792 * 793 * k = (i - Bias)*0.301029995663981 794 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); 795 * 796 * We want k to be too large rather than too small. 797 * The error in the first-order Taylor series approximation 798 * is in our favor, so we just round up the constant enough 799 * to compensate for any error in the multiplication of 800 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, 801 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, 802 * adding 1e-13 to the constant term more than suffices. 803 * Hence we adjust the constant term to 0.1760912590558. 804 * (We could get a more accurate k by invoking log10, 805 * but this is probably not worthwhile.) 806 */ 807 808 i -= Bias; 809 denorm = 0; 810 } else { 811 /* d is denormalized */ 812 813 i = bbits + be + (Bias + (P - 1) - 1); 814 x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32)) 815 : word1(&u) << (32 - i); 816 dval(&d2) = x; 817 word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */ 818 i -= (Bias + (P - 1) - 1) + 1; 819 denorm = 1; 820 } 821 ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981); 822 k = (int)ds; 823 if (ds < 0. && ds != k) 824 k--; /* want k = floor(ds) */ 825 k_check = 1; 826 if (k >= 0 && k <= Ten_pmax) { 827 if (dval(&u) < tens[k]) 828 k--; 829 k_check = 0; 830 } 831 j = bbits - i - 1; 832 if (j >= 0) { 833 b2 = 0; 834 s2 = j; 835 } else { 836 b2 = -j; 837 s2 = 0; 838 } 839 if (k >= 0) { 840 b5 = 0; 841 s5 = k; 842 s2 += k; 843 } else { 844 b2 -= k; 845 b5 = -k; 846 s5 = 0; 847 } 848 849 if (roundingNone) { 850 ilim = ilim1 = -1; 851 i = 18; 852 ndigits = 0; 853 } 854 if (roundingSignificantFigures) { 855 if (ndigits <= 0) 856 ndigits = 1; 857 ilim = ilim1 = i = ndigits; 858 } 859 if (roundingDecimalPlaces) { 860 i = ndigits + k + 1; 861 ilim = i; 862 ilim1 = i - 1; 863 if (i <= 0) 864 i = 1; 865 } 866 867 s = s0 = result; 868 869 if (ilim >= 0 && ilim <= Quick_max) { 870 /* Try to get by with floating-point arithmetic. */ 871 872 i = 0; 873 dval(&d2) = dval(&u); 874 k0 = k; 875 ilim0 = ilim; 876 ieps = 2; /* conservative */ 877 if (k > 0) { 878 ds = tens[k & 0xf]; 879 j = k >> 4; 880 if (j & Bletch) { 881 /* prevent overflows */ 882 j &= Bletch - 1; 883 dval(&u) /= bigtens[n_bigtens - 1]; 884 ieps++; 885 } 886 for (; j; j >>= 1, i++) { 887 if (j & 1) { 888 ieps++; 889 ds *= bigtens[i]; 890 } 891 } 892 dval(&u) /= ds; 893 } else if ((j1 = -k)) { 894 dval(&u) *= tens[j1 & 0xf]; 895 for (j = j1 >> 4; j; j >>= 1, i++) { 896 if (j & 1) { 897 ieps++; 898 dval(&u) *= bigtens[i]; 899 } 900 } 901 } 902 if (k_check && dval(&u) < 1. && ilim > 0) { 903 if (ilim1 <= 0) 904 goto fastFailed; 905 ilim = ilim1; 906 k--; 907 dval(&u) *= 10.; 908 ieps++; 909 } 910 dval(&eps) = (ieps * dval(&u)) + 7.; 911 word0(&eps) -= (P - 1) * Exp_msk1; 912 if (!ilim) { 913 S.clear(); 914 mhi.clear(); 915 dval(&u) -= 5.; 916 if (dval(&u) > dval(&eps)) 917 goto oneDigit; 918 if (dval(&u) < -dval(&eps)) 919 goto noDigits; 920 goto fastFailed; 921 } 922 if (leftright) { 923 /* Use Steele & White method of only 924 * generating digits needed. 925 */ 926 dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps); 927 for (i = 0;;) { 928 L = (long int)dval(&u); 929 dval(&u) -= L; 930 *s++ = '0' + (int)L; 931 if (dval(&u) < dval(&eps)) 932 goto ret; 933 if (1. - dval(&u) < dval(&eps)) 934 goto bumpUp; 935 if (++i >= ilim) 936 break; 937 dval(&eps) *= 10.; 938 dval(&u) *= 10.; 939 } 940 } else { 941 /* Generate ilim digits, then fix them up. */ 942 dval(&eps) *= tens[ilim - 1]; 943 for (i = 1;; i++, dval(&u) *= 10.) { 944 L = (int32_t)(dval(&u)); 945 if (!(dval(&u) -= L)) 946 ilim = i; 947 *s++ = '0' + (int)L; 948 if (i == ilim) { 949 if (dval(&u) > 0.5 + dval(&eps)) 950 goto bumpUp; 951 if (dval(&u) < 0.5 - dval(&eps)) { 952 while (*--s == '0') { } 953 s++; 954 goto ret; 955 } 956 break; 957 } 958 } 959 } 960fastFailed: 961 s = s0; 962 dval(&u) = dval(&d2); 963 k = k0; 964 ilim = ilim0; 965 } 966 967 /* Do we have a "small" integer? */ 968 969 if (be >= 0 && k <= Int_max) { 970 /* Yes. */ 971 ds = tens[k]; 972 if (ndigits < 0 && ilim <= 0) { 973 S.clear(); 974 mhi.clear(); 975 if (ilim < 0 || dval(&u) <= 5 * ds) 976 goto noDigits; 977 goto oneDigit; 978 } 979 for (i = 1;; i++, dval(&u) *= 10.) { 980 L = (int32_t)(dval(&u) / ds); 981 dval(&u) -= L * ds; 982 *s++ = '0' + (int)L; 983 if (!dval(&u)) { 984 break; 985 } 986 if (i == ilim) { 987 dval(&u) += dval(&u); 988 if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) { 989bumpUp: 990 while (*--s == '9') 991 if (s == s0) { 992 k++; 993 *s = '0'; 994 break; 995 } 996 ++*s++; 997 } 998 break; 999 } 1000 } 1001 goto ret; 1002 } 1003 1004 m2 = b2; 1005 m5 = b5; 1006 mhi.clear(); 1007 mlo.clear(); 1008 if (leftright) { 1009 i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits; 1010 b2 += i; 1011 s2 += i; 1012 i2b(mhi, 1); 1013 } 1014 if (m2 > 0 && s2 > 0) { 1015 i = m2 < s2 ? m2 : s2; 1016 b2 -= i; 1017 m2 -= i; 1018 s2 -= i; 1019 } 1020 if (b5 > 0) { 1021 if (leftright) { 1022 if (m5 > 0) { 1023 pow5mult(mhi, m5); 1024 mult(b, mhi); 1025 } 1026 if ((j = b5 - m5)) 1027 pow5mult(b, j); 1028 } else 1029 pow5mult(b, b5); 1030 } 1031 i2b(S, 1); 1032 if (s5 > 0) 1033 pow5mult(S, s5); 1034 1035 /* Check for special case that d is a normalized power of 2. */ 1036 1037 spec_case = 0; 1038 if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) { 1039 /* The special case */ 1040 b2 += Log2P; 1041 s2 += Log2P; 1042 spec_case = 1; 1043 } 1044 1045 /* Arrange for convenient computation of quotients: 1046 * shift left if necessary so divisor has 4 leading 0 bits. 1047 * 1048 * Perhaps we should just compute leading 28 bits of S once 1049 * and for all and pass them and a shift to quorem, so it 1050 * can do shifts and ors to compute the numerator for q. 1051 */ 1052 if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f)) 1053 i = 32 - i; 1054 if (i > 4) { 1055 i -= 4; 1056 b2 += i; 1057 m2 += i; 1058 s2 += i; 1059 } else if (i < 4) { 1060 i += 28; 1061 b2 += i; 1062 m2 += i; 1063 s2 += i; 1064 } 1065 if (b2 > 0) 1066 lshift(b, b2); 1067 if (s2 > 0) 1068 lshift(S, s2); 1069 if (k_check) { 1070 if (cmp(b, S) < 0) { 1071 k--; 1072 multadd(b, 10, 0); /* we botched the k estimate */ 1073 if (leftright) 1074 multadd(mhi, 10, 0); 1075 ilim = ilim1; 1076 } 1077 } 1078 if (ilim <= 0 && roundingDecimalPlaces) { 1079 if (ilim < 0) 1080 goto noDigits; 1081 multadd(S, 5, 0); 1082 // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero. 1083 if (cmp(b, S) < 0) 1084 goto noDigits; 1085 goto oneDigit; 1086 } 1087 if (leftright) { 1088 if (m2 > 0) 1089 lshift(mhi, m2); 1090 1091 /* Compute mlo -- check for special case 1092 * that d is a normalized power of 2. 1093 */ 1094 1095 mlo = mhi; 1096 if (spec_case) 1097 lshift(mhi, Log2P); 1098 1099 for (i = 1;;i++) { 1100 dig = quorem(b, S) + '0'; 1101 /* Do we yet have the shortest decimal string 1102 * that will round to d? 1103 */ 1104 j = cmp(b, mlo); 1105 diff(delta, S, mhi); 1106 j1 = delta.sign ? 1 : cmp(b, delta); 1107#ifdef DTOA_ROUND_BIASED 1108 if (j < 0 || !j) { 1109#else 1110 // FIXME: ECMA-262 specifies that equidistant results round away from 1111 // zero, which probably means we shouldn't be on the unbiased code path 1112 // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't 1113 // yet understood this code well enough to make the call, but we should 1114 // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner 1115 // case to understand is probably "Math.pow(0.5, 24).toString()". 1116 // I believe this value is interesting because I think it is precisely 1117 // representable in binary floating point, and its decimal representation 1118 // has a single digit that Steele & White reduction can remove, with the 1119 // value 5 (thus equidistant from the next numbers above and below). 1120 // We produce the correct answer using either codepath, and I don't as 1121 // yet understand why. :-) 1122 if (!j1 && !(word1(&u) & 1)) { 1123 if (dig == '9') 1124 goto round9up; 1125 if (j > 0) 1126 dig++; 1127 *s++ = dig; 1128 goto ret; 1129 } 1130 if (j < 0 || (!j && !(word1(&u) & 1))) { 1131#endif 1132 if ((b.words()[0] || b.size() > 1) && (j1 > 0)) { 1133 lshift(b, 1); 1134 j1 = cmp(b, S); 1135 // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))), 1136 // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should 1137 // be rounded away from zero. 1138 if (j1 >= 0) { 1139 if (dig == '9') 1140 goto round9up; 1141 dig++; 1142 } 1143 } 1144 *s++ = dig; 1145 goto ret; 1146 } 1147 if (j1 > 0) { 1148 if (dig == '9') { /* possible if i == 1 */ 1149round9up: 1150 *s++ = '9'; 1151 goto roundoff; 1152 } 1153 *s++ = dig + 1; 1154 goto ret; 1155 } 1156 *s++ = dig; 1157 if (i == ilim) 1158 break; 1159 multadd(b, 10, 0); 1160 multadd(mlo, 10, 0); 1161 multadd(mhi, 10, 0); 1162 } 1163 } else { 1164 for (i = 1;; i++) { 1165 *s++ = dig = quorem(b, S) + '0'; 1166 if (!b.words()[0] && b.size() <= 1) 1167 goto ret; 1168 if (i >= ilim) 1169 break; 1170 multadd(b, 10, 0); 1171 } 1172 } 1173 1174 /* Round off last digit */ 1175 1176 lshift(b, 1); 1177 j = cmp(b, S); 1178 // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))), 1179 // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should 1180 // be rounded away from zero. 1181 if (j >= 0) { 1182roundoff: 1183 while (*--s == '9') 1184 if (s == s0) { 1185 k++; 1186 *s++ = '1'; 1187 goto ret; 1188 } 1189 ++*s++; 1190 } else { 1191 while (*--s == '0') { } 1192 s++; 1193 } 1194 goto ret; 1195noDigits: 1196 exponentOut = 0; 1197 precisionOut = 1; 1198 result[0] = '0'; 1199 result[1] = '\0'; 1200 return; 1201oneDigit: 1202 *s++ = '1'; 1203 k++; 1204 goto ret; 1205ret: 1206 ASSERT(s > result); 1207 *s = 0; 1208 exponentOut = k; 1209 precisionOut = s - result; 1210} 1211 1212void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision) 1213{ 1214 // flags are roundingNone, leftright. 1215 dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision); 1216} 1217 1218void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) 1219{ 1220 // flag is roundingSignificantFigures. 1221 dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision); 1222} 1223 1224void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision) 1225{ 1226 // flag is roundingDecimalPlaces. 1227 dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision); 1228} 1229 1230const char* numberToString(double d, NumberToStringBuffer buffer) 1231{ 1232 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength); 1233 const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter(); 1234 converter.ToShortest(d, &builder); 1235 return builder.Finalize(); 1236} 1237 1238static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder) 1239{ 1240 size_t length = builder.position(); 1241 size_t decimalPointPosition = 0; 1242 for (; decimalPointPosition < length; ++decimalPointPosition) { 1243 if (buffer[decimalPointPosition] == '.') 1244 break; 1245 } 1246 1247 // No decimal seperator found, early exit. 1248 if (decimalPointPosition == length) 1249 return builder.Finalize(); 1250 1251 size_t truncatedLength = length - 1; 1252 for (; truncatedLength > decimalPointPosition; --truncatedLength) { 1253 if (buffer[truncatedLength] != '0') 1254 break; 1255 } 1256 1257 // No trailing zeros found to strip. 1258 if (truncatedLength == length - 1) 1259 return builder.Finalize(); 1260 1261 // If we removed all trailing zeros, remove the decimal point as well. 1262 if (truncatedLength == decimalPointPosition) { 1263 ASSERT(truncatedLength > 0); 1264 --truncatedLength; 1265 } 1266 1267 // Truncate the StringBuilder, and return the final result. 1268 builder.SetPosition(truncatedLength + 1); 1269 return builder.Finalize(); 1270} 1271 1272const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros) 1273{ 1274 // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities. 1275 // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision. 1276 // The e format is used only when the exponent of the value is less than –4 or greater than or equal to the 1277 // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it. 1278 // "precision": The precision specifies the maximum number of significant digits printed. 1279 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength); 1280 const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter(); 1281 converter.ToPrecision(d, significantFigures, &builder); 1282 if (!truncateTrailingZeros) 1283 return builder.Finalize(); 1284 return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder); 1285} 1286 1287const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer) 1288{ 1289 // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities. 1290 // "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or more decimal digits. 1291 // The number of digits before the decimal point depends on the magnitude of the number, and 1292 // the number of digits after the decimal point depends on the requested precision. 1293 // "precision": The precision value specifies the number of digits after the decimal point. 1294 // If a decimal point appears, at least one digit appears before it. 1295 // The value is rounded to the appropriate number of digits. 1296 double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength); 1297 const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter(); 1298 converter.ToFixed(d, decimalPlaces, &builder); 1299 return builder.Finalize(); 1300} 1301 1302namespace Internal { 1303 1304double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength) 1305{ 1306 Vector<LChar> conversionBuffer(length); 1307 for (size_t i = 0; i < length; ++i) 1308 conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0; 1309 return parseDouble(conversionBuffer.data(), length, parsedLength); 1310} 1311 1312} // namespace Internal 1313 1314} // namespace WTF 1315