1/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose without fee is hereby granted, provided that this entire notice
10 * is included in all copies of any software which is or includes a copy
11 * or modification of this software and in all copies of the supporting
12 * documentation for such software.
13 *
14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
15 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
18 *
19 ***************************************************************/
20
21/* Please send bug reports to David M. Gay (dmg at acm dot org,
22 * with " at " changed at "@" and " dot " changed to ".").    */
23
24/* On a machine with IEEE extended-precision registers, it is
25 * necessary to specify double-precision (53-bit) rounding precision
26 * before invoking strtod or dtoa.  If the machine uses (the equivalent
27 * of) Intel 80x87 arithmetic, the call
28 *    _control87(PC_53, MCW_PC);
29 * does this with many compilers.  Whether this or another call is
30 * appropriate depends on the compiler; for this to work, it may be
31 * necessary to #include "float.h" or another system-dependent header
32 * file.
33 */
34
35#include "config.h"
36#include "dtoa.h"
37
38#include "wtf/CPU.h"
39#include "wtf/MathExtras.h"
40#include "wtf/ThreadingPrimitives.h"
41#include "wtf/Vector.h"
42#include <stdio.h>
43
44#if COMPILER(MSVC)
45#pragma warning(disable: 4244)
46#pragma warning(disable: 4245)
47#pragma warning(disable: 4554)
48#endif
49
50namespace WTF {
51
52Mutex* s_dtoaP5Mutex;
53
54typedef union {
55    double d;
56    uint32_t L[2];
57} U;
58
59#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
60#define word0(x) (x)->L[0]
61#define word1(x) (x)->L[1]
62#else
63#define word0(x) (x)->L[1]
64#define word1(x) (x)->L[0]
65#endif
66#define dval(x) (x)->d
67
68/* The following definition of Storeinc is appropriate for MIPS processors.
69 * An alternative that might be better on some machines is
70 *  *p++ = high << 16 | low & 0xffff;
71 */
72static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
73{
74    uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
75#if CPU(BIG_ENDIAN)
76    p16[0] = high;
77    p16[1] = low;
78#else
79    p16[1] = high;
80    p16[0] = low;
81#endif
82    return p + 1;
83}
84
85#define Exp_shift  20
86#define Exp_shift1 20
87#define Exp_msk1    0x100000
88#define Exp_msk11   0x100000
89#define Exp_mask  0x7ff00000
90#define P 53
91#define Bias 1023
92#define Emin (-1022)
93#define Exp_1  0x3ff00000
94#define Exp_11 0x3ff00000
95#define Ebits 11
96#define Frac_mask  0xfffff
97#define Frac_mask1 0xfffff
98#define Ten_pmax 22
99#define Bletch 0x10
100#define Bndry_mask  0xfffff
101#define Bndry_mask1 0xfffff
102#define LSB 1
103#define Sign_bit 0x80000000
104#define Log2P 1
105#define Tiny0 0
106#define Tiny1 1
107#define Quick_max 14
108#define Int_max 14
109
110#define rounded_product(a, b) a *= b
111#define rounded_quotient(a, b) a /= b
112
113#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
114#define Big1 0xffffffff
115
116#if CPU(PPC64) || CPU(X86_64)
117// FIXME: should we enable this on all 64-bit CPUs?
118// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
119#define USE_LONG_LONG
120#endif
121
122struct BigInt {
123    BigInt() : sign(0) { }
124    int sign;
125
126    void clear()
127    {
128        sign = 0;
129        m_words.clear();
130    }
131
132    size_t size() const
133    {
134        return m_words.size();
135    }
136
137    void resize(size_t s)
138    {
139        m_words.resize(s);
140    }
141
142    uint32_t* words()
143    {
144        return m_words.data();
145    }
146
147    const uint32_t* words() const
148    {
149        return m_words.data();
150    }
151
152    void append(uint32_t w)
153    {
154        m_words.append(w);
155    }
156
157    Vector<uint32_t, 16> m_words;
158};
159
160static void multadd(BigInt& b, int m, int a)    /* multiply by m and add a */
161{
162#ifdef USE_LONG_LONG
163    unsigned long long carry;
164#else
165    uint32_t carry;
166#endif
167
168    int wds = b.size();
169    uint32_t* x = b.words();
170    int i = 0;
171    carry = a;
172    do {
173#ifdef USE_LONG_LONG
174        unsigned long long y = *x * (unsigned long long)m + carry;
175        carry = y >> 32;
176        *x++ = (uint32_t)y & 0xffffffffUL;
177#else
178        uint32_t xi = *x;
179        uint32_t y = (xi & 0xffff) * m + carry;
180        uint32_t z = (xi >> 16) * m + (y >> 16);
181        carry = z >> 16;
182        *x++ = (z << 16) + (y & 0xffff);
183#endif
184    } while (++i < wds);
185
186    if (carry)
187        b.append((uint32_t)carry);
188}
189
190static int hi0bits(uint32_t x)
191{
192    int k = 0;
193
194    if (!(x & 0xffff0000)) {
195        k = 16;
196        x <<= 16;
197    }
198    if (!(x & 0xff000000)) {
199        k += 8;
200        x <<= 8;
201    }
202    if (!(x & 0xf0000000)) {
203        k += 4;
204        x <<= 4;
205    }
206    if (!(x & 0xc0000000)) {
207        k += 2;
208        x <<= 2;
209    }
210    if (!(x & 0x80000000)) {
211        k++;
212        if (!(x & 0x40000000))
213            return 32;
214    }
215    return k;
216}
217
218static int lo0bits(uint32_t* y)
219{
220    int k;
221    uint32_t x = *y;
222
223    if (x & 7) {
224        if (x & 1)
225            return 0;
226        if (x & 2) {
227            *y = x >> 1;
228            return 1;
229        }
230        *y = x >> 2;
231        return 2;
232    }
233    k = 0;
234    if (!(x & 0xffff)) {
235        k = 16;
236        x >>= 16;
237    }
238    if (!(x & 0xff)) {
239        k += 8;
240        x >>= 8;
241    }
242    if (!(x & 0xf)) {
243        k += 4;
244        x >>= 4;
245    }
246    if (!(x & 0x3)) {
247        k += 2;
248        x >>= 2;
249    }
250    if (!(x & 1)) {
251        k++;
252        x >>= 1;
253        if (!x)
254            return 32;
255    }
256    *y = x;
257    return k;
258}
259
260static void i2b(BigInt& b, int i)
261{
262    b.sign = 0;
263    b.resize(1);
264    b.words()[0] = i;
265}
266
267static void mult(BigInt& aRef, const BigInt& bRef)
268{
269    const BigInt* a = &aRef;
270    const BigInt* b = &bRef;
271    BigInt c;
272    int wa, wb, wc;
273    const uint32_t* x = 0;
274    const uint32_t* xa;
275    const uint32_t* xb;
276    const uint32_t* xae;
277    const uint32_t* xbe;
278    uint32_t* xc;
279    uint32_t* xc0;
280    uint32_t y;
281#ifdef USE_LONG_LONG
282    unsigned long long carry, z;
283#else
284    uint32_t carry, z;
285#endif
286
287    if (a->size() < b->size()) {
288        const BigInt* tmp = a;
289        a = b;
290        b = tmp;
291    }
292
293    wa = a->size();
294    wb = b->size();
295    wc = wa + wb;
296    c.resize(wc);
297
298    for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
299        *xc = 0;
300    xa = a->words();
301    xae = xa + wa;
302    xb = b->words();
303    xbe = xb + wb;
304    xc0 = c.words();
305#ifdef USE_LONG_LONG
306    for (; xb < xbe; xc0++) {
307        if ((y = *xb++)) {
308            x = xa;
309            xc = xc0;
310            carry = 0;
311            do {
312                z = *x++ * (unsigned long long)y + *xc + carry;
313                carry = z >> 32;
314                *xc++ = (uint32_t)z & 0xffffffffUL;
315            } while (x < xae);
316            *xc = (uint32_t)carry;
317        }
318    }
319#else
320    for (; xb < xbe; xb++, xc0++) {
321        if ((y = *xb & 0xffff)) {
322            x = xa;
323            xc = xc0;
324            carry = 0;
325            do {
326                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
327                carry = z >> 16;
328                uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
329                carry = z2 >> 16;
330                xc = storeInc(xc, z2, z);
331            } while (x < xae);
332            *xc = carry;
333        }
334        if ((y = *xb >> 16)) {
335            x = xa;
336            xc = xc0;
337            carry = 0;
338            uint32_t z2 = *xc;
339            do {
340                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
341                carry = z >> 16;
342                xc = storeInc(xc, z, z2);
343                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
344                carry = z2 >> 16;
345            } while (x < xae);
346            *xc = z2;
347        }
348    }
349#endif
350    for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
351    c.resize(wc);
352    aRef = c;
353}
354
355struct P5Node {
356    WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
357public:
358    P5Node() { }
359    BigInt val;
360    P5Node* next;
361};
362
363static P5Node* p5s;
364static int p5sCount;
365
366static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
367{
368    static int p05[3] = { 5, 25, 125 };
369
370    if (int i = k & 3)
371        multadd(b, p05[i - 1], 0);
372
373    if (!(k >>= 2))
374        return;
375
376    s_dtoaP5Mutex->lock();
377    P5Node* p5 = p5s;
378
379    if (!p5) {
380        /* first time */
381        p5 = new P5Node;
382        i2b(p5->val, 625);
383        p5->next = 0;
384        p5s = p5;
385        p5sCount = 1;
386    }
387
388    int p5sCountLocal = p5sCount;
389    s_dtoaP5Mutex->unlock();
390    int p5sUsed = 0;
391
392    for (;;) {
393        if (k & 1)
394            mult(b, p5->val);
395
396        if (!(k >>= 1))
397            break;
398
399        if (++p5sUsed == p5sCountLocal) {
400            s_dtoaP5Mutex->lock();
401            if (p5sUsed == p5sCount) {
402                ASSERT(!p5->next);
403                p5->next = new P5Node;
404                p5->next->next = 0;
405                p5->next->val = p5->val;
406                mult(p5->next->val, p5->next->val);
407                ++p5sCount;
408            }
409
410            p5sCountLocal = p5sCount;
411            s_dtoaP5Mutex->unlock();
412        }
413        p5 = p5->next;
414    }
415}
416
417static ALWAYS_INLINE void lshift(BigInt& b, int k)
418{
419    int n = k >> 5;
420
421    int origSize = b.size();
422    int n1 = n + origSize + 1;
423
424    if (k &= 0x1f)
425        b.resize(b.size() + n + 1);
426    else
427        b.resize(b.size() + n);
428
429    const uint32_t* srcStart = b.words();
430    uint32_t* dstStart = b.words();
431    const uint32_t* src = srcStart + origSize - 1;
432    uint32_t* dst = dstStart + n1 - 1;
433    if (k) {
434        uint32_t hiSubword = 0;
435        int s = 32 - k;
436        for (; src >= srcStart; --src) {
437            *dst-- = hiSubword | *src >> s;
438            hiSubword = *src << k;
439        }
440        *dst = hiSubword;
441        ASSERT(dst == dstStart + n);
442
443        b.resize(origSize + n + !!b.words()[n1 - 1]);
444    }
445    else {
446        do {
447            *--dst = *src--;
448        } while (src >= srcStart);
449    }
450    for (dst = dstStart + n; dst != dstStart; )
451        *--dst = 0;
452
453    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
454}
455
456static int cmp(const BigInt& a, const BigInt& b)
457{
458    const uint32_t *xa, *xa0, *xb, *xb0;
459    int i, j;
460
461    i = a.size();
462    j = b.size();
463    ASSERT(i <= 1 || a.words()[i - 1]);
464    ASSERT(j <= 1 || b.words()[j - 1]);
465    if (i -= j)
466        return i;
467    xa0 = a.words();
468    xa = xa0 + j;
469    xb0 = b.words();
470    xb = xb0 + j;
471    for (;;) {
472        if (*--xa != *--xb)
473            return *xa < *xb ? -1 : 1;
474        if (xa <= xa0)
475            break;
476    }
477    return 0;
478}
479
480static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
481{
482    const BigInt* a = &aRef;
483    const BigInt* b = &bRef;
484    int i, wa, wb;
485    uint32_t* xc;
486
487    i = cmp(*a, *b);
488    if (!i) {
489        c.sign = 0;
490        c.resize(1);
491        c.words()[0] = 0;
492        return;
493    }
494    if (i < 0) {
495        const BigInt* tmp = a;
496        a = b;
497        b = tmp;
498        i = 1;
499    } else
500        i = 0;
501
502    wa = a->size();
503    const uint32_t* xa = a->words();
504    const uint32_t* xae = xa + wa;
505    wb = b->size();
506    const uint32_t* xb = b->words();
507    const uint32_t* xbe = xb + wb;
508
509    c.resize(wa);
510    c.sign = i;
511    xc = c.words();
512#ifdef USE_LONG_LONG
513    unsigned long long borrow = 0;
514    do {
515        unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
516        borrow = y >> 32 & (uint32_t)1;
517        *xc++ = (uint32_t)y & 0xffffffffUL;
518    } while (xb < xbe);
519    while (xa < xae) {
520        unsigned long long y = *xa++ - borrow;
521        borrow = y >> 32 & (uint32_t)1;
522        *xc++ = (uint32_t)y & 0xffffffffUL;
523    }
524#else
525    uint32_t borrow = 0;
526    do {
527        uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
528        borrow = (y & 0x10000) >> 16;
529        uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
530        borrow = (z & 0x10000) >> 16;
531        xc = storeInc(xc, z, y);
532    } while (xb < xbe);
533    while (xa < xae) {
534        uint32_t y = (*xa & 0xffff) - borrow;
535        borrow = (y & 0x10000) >> 16;
536        uint32_t z = (*xa++ >> 16) - borrow;
537        borrow = (z & 0x10000) >> 16;
538        xc = storeInc(xc, z, y);
539    }
540#endif
541    while (!*--xc)
542        wa--;
543    c.resize(wa);
544}
545
546static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
547{
548    int de, k;
549    uint32_t* x;
550    uint32_t y, z;
551    int i;
552#define d0 word0(d)
553#define d1 word1(d)
554
555    b.sign = 0;
556    b.resize(1);
557    x = b.words();
558
559    z = d0 & Frac_mask;
560    d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
561    if ((de = (int)(d0 >> Exp_shift)))
562        z |= Exp_msk1;
563    if ((y = d1)) {
564        if ((k = lo0bits(&y))) {
565            x[0] = y | (z << (32 - k));
566            z >>= k;
567        } else
568            x[0] = y;
569        if (z) {
570            b.resize(2);
571            x[1] = z;
572        }
573
574        i = b.size();
575    } else {
576        k = lo0bits(&z);
577        x[0] = z;
578        i = 1;
579        b.resize(1);
580        k += 32;
581    }
582    if (de) {
583        *e = de - Bias - (P - 1) + k;
584        *bits = P - k;
585    } else {
586        *e = 0 - Bias - (P - 1) + 1 + k;
587        *bits = (32 * i) - hi0bits(x[i - 1]);
588    }
589}
590#undef d0
591#undef d1
592
593static const double tens[] = {
594    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
595    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
596    1e20, 1e21, 1e22
597};
598
599static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
600static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
601    9007199254740992. * 9007199254740992.e-256
602    /* = 2^106 * 1e-256 */
603};
604
605/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
606/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
607#define Scale_Bit 0x10
608#define n_bigtens 5
609
610static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
611{
612    size_t n;
613    uint32_t* bx;
614    uint32_t* bxe;
615    uint32_t q;
616    uint32_t* sx;
617    uint32_t* sxe;
618#ifdef USE_LONG_LONG
619    unsigned long long borrow, carry, y, ys;
620#else
621    uint32_t borrow, carry, y, ys;
622    uint32_t si, z, zs;
623#endif
624    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
625    ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
626
627    n = S.size();
628    ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
629    if (b.size() < n)
630        return 0;
631    sx = S.words();
632    sxe = sx + --n;
633    bx = b.words();
634    bxe = bx + n;
635    q = *bxe / (*sxe + 1);    /* ensure q <= true quotient */
636    ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
637    if (q) {
638        borrow = 0;
639        carry = 0;
640        do {
641#ifdef USE_LONG_LONG
642            ys = *sx++ * (unsigned long long)q + carry;
643            carry = ys >> 32;
644            y = *bx - (ys & 0xffffffffUL) - borrow;
645            borrow = y >> 32 & (uint32_t)1;
646            *bx++ = (uint32_t)y & 0xffffffffUL;
647#else
648            si = *sx++;
649            ys = (si & 0xffff) * q + carry;
650            zs = (si >> 16) * q + (ys >> 16);
651            carry = zs >> 16;
652            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
653            borrow = (y & 0x10000) >> 16;
654            z = (*bx >> 16) - (zs & 0xffff) - borrow;
655            borrow = (z & 0x10000) >> 16;
656            bx = storeInc(bx, z, y);
657#endif
658        } while (sx <= sxe);
659        if (!*bxe) {
660            bx = b.words();
661            while (--bxe > bx && !*bxe)
662                --n;
663            b.resize(n);
664        }
665    }
666    if (cmp(b, S) >= 0) {
667        q++;
668        borrow = 0;
669        carry = 0;
670        bx = b.words();
671        sx = S.words();
672        do {
673#ifdef USE_LONG_LONG
674            ys = *sx++ + carry;
675            carry = ys >> 32;
676            y = *bx - (ys & 0xffffffffUL) - borrow;
677            borrow = y >> 32 & (uint32_t)1;
678            *bx++ = (uint32_t)y & 0xffffffffUL;
679#else
680            si = *sx++;
681            ys = (si & 0xffff) + carry;
682            zs = (si >> 16) + (ys >> 16);
683            carry = zs >> 16;
684            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
685            borrow = (y & 0x10000) >> 16;
686            z = (*bx >> 16) - (zs & 0xffff) - borrow;
687            borrow = (z & 0x10000) >> 16;
688            bx = storeInc(bx, z, y);
689#endif
690        } while (sx <= sxe);
691        bx = b.words();
692        bxe = bx + n;
693        if (!*bxe) {
694            while (--bxe > bx && !*bxe)
695                --n;
696            b.resize(n);
697        }
698    }
699    return q;
700}
701
702/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
703 *
704 * Inspired by "How to Print Floating-Point Numbers Accurately" by
705 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
706 *
707 * Modifications:
708 *    1. Rather than iterating, we use a simple numeric overestimate
709 *       to determine k = floor(log10(d)).  We scale relevant
710 *       quantities using O(log2(k)) rather than O(k) multiplications.
711 *    2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
712 *       try to generate digits strictly left to right.  Instead, we
713 *       compute with fewer bits and propagate the carry if necessary
714 *       when rounding the final digit up.  This is often faster.
715 *    3. Under the assumption that input will be rounded nearest,
716 *       mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
717 *       That is, we allow equality in stopping tests when the
718 *       round-nearest rule will give the same floating-point value
719 *       as would satisfaction of the stopping test with strict
720 *       inequality.
721 *    4. We remove common factors of powers of 2 from relevant
722 *       quantities.
723 *    5. When converting floating-point integers less than 1e16,
724 *       we use floating-point arithmetic rather than resorting
725 *       to multiple-precision integers.
726 *    6. When asked to produce fewer than 15 digits, we first try
727 *       to get by with floating-point arithmetic; we resort to
728 *       multiple-precision integer arithmetic only if we cannot
729 *       guarantee that the floating-point calculation has given
730 *       the correctly rounded result.  For k requested digits and
731 *       "uniformly" distributed input, the probability is
732 *       something like 10^(k-15) that we must resort to the int32_t
733 *       calculation.
734 *
735 * Note: 'leftright' translates to 'generate shortest possible string'.
736 */
737template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
738void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
739{
740    // Exactly one rounding mode must be specified.
741    ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
742    // roundingNone only allowed (only sensible?) with leftright set.
743    ASSERT(!roundingNone || leftright);
744
745    ASSERT(std::isfinite(dd));
746
747    int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
748        j, j1, k, k0, k_check, m2, m5, s2, s5,
749        spec_case;
750    int32_t L;
751    int denorm;
752    uint32_t x;
753    BigInt b, delta, mlo, mhi, S;
754    U d2, eps, u;
755    double ds;
756    char* s;
757    char* s0;
758
759    u.d = dd;
760
761    /* Infinity or NaN */
762    ASSERT((word0(&u) & Exp_mask) != Exp_mask);
763
764    // JavaScript toString conversion treats -0 as 0.
765    if (!dval(&u)) {
766        signOut = false;
767        exponentOut = 0;
768        precisionOut = 1;
769        result[0] = '0';
770        result[1] = '\0';
771        return;
772    }
773
774    if (word0(&u) & Sign_bit) {
775        signOut = true;
776        word0(&u) &= ~Sign_bit; // clear sign bit
777    } else
778        signOut = false;
779
780    d2b(b, &u, &be, &bbits);
781    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
782        dval(&d2) = dval(&u);
783        word0(&d2) &= Frac_mask1;
784        word0(&d2) |= Exp_11;
785
786        /* log(x)    ~=~ log(1.5) + (x-1.5)/1.5
787         * log10(x)     =  log(x) / log(10)
788         *        ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
789         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
790         *
791         * This suggests computing an approximation k to log10(d) by
792         *
793         * k = (i - Bias)*0.301029995663981
794         *    + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
795         *
796         * We want k to be too large rather than too small.
797         * The error in the first-order Taylor series approximation
798         * is in our favor, so we just round up the constant enough
799         * to compensate for any error in the multiplication of
800         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
801         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
802         * adding 1e-13 to the constant term more than suffices.
803         * Hence we adjust the constant term to 0.1760912590558.
804         * (We could get a more accurate k by invoking log10,
805         *  but this is probably not worthwhile.)
806         */
807
808        i -= Bias;
809        denorm = 0;
810    } else {
811        /* d is denormalized */
812
813        i = bbits + be + (Bias + (P - 1) - 1);
814        x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
815                : word1(&u) << (32 - i);
816        dval(&d2) = x;
817        word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
818        i -= (Bias + (P - 1) - 1) + 1;
819        denorm = 1;
820    }
821    ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
822    k = (int)ds;
823    if (ds < 0. && ds != k)
824        k--;    /* want k = floor(ds) */
825    k_check = 1;
826    if (k >= 0 && k <= Ten_pmax) {
827        if (dval(&u) < tens[k])
828            k--;
829        k_check = 0;
830    }
831    j = bbits - i - 1;
832    if (j >= 0) {
833        b2 = 0;
834        s2 = j;
835    } else {
836        b2 = -j;
837        s2 = 0;
838    }
839    if (k >= 0) {
840        b5 = 0;
841        s5 = k;
842        s2 += k;
843    } else {
844        b2 -= k;
845        b5 = -k;
846        s5 = 0;
847    }
848
849    if (roundingNone) {
850        ilim = ilim1 = -1;
851        i = 18;
852        ndigits = 0;
853    }
854    if (roundingSignificantFigures) {
855        if (ndigits <= 0)
856            ndigits = 1;
857        ilim = ilim1 = i = ndigits;
858    }
859    if (roundingDecimalPlaces) {
860        i = ndigits + k + 1;
861        ilim = i;
862        ilim1 = i - 1;
863        if (i <= 0)
864            i = 1;
865    }
866
867    s = s0 = result;
868
869    if (ilim >= 0 && ilim <= Quick_max) {
870        /* Try to get by with floating-point arithmetic. */
871
872        i = 0;
873        dval(&d2) = dval(&u);
874        k0 = k;
875        ilim0 = ilim;
876        ieps = 2; /* conservative */
877        if (k > 0) {
878            ds = tens[k & 0xf];
879            j = k >> 4;
880            if (j & Bletch) {
881                /* prevent overflows */
882                j &= Bletch - 1;
883                dval(&u) /= bigtens[n_bigtens - 1];
884                ieps++;
885            }
886            for (; j; j >>= 1, i++) {
887                if (j & 1) {
888                    ieps++;
889                    ds *= bigtens[i];
890                }
891            }
892            dval(&u) /= ds;
893        } else if ((j1 = -k)) {
894            dval(&u) *= tens[j1 & 0xf];
895            for (j = j1 >> 4; j; j >>= 1, i++) {
896                if (j & 1) {
897                    ieps++;
898                    dval(&u) *= bigtens[i];
899                }
900            }
901        }
902        if (k_check && dval(&u) < 1. && ilim > 0) {
903            if (ilim1 <= 0)
904                goto fastFailed;
905            ilim = ilim1;
906            k--;
907            dval(&u) *= 10.;
908            ieps++;
909        }
910        dval(&eps) = (ieps * dval(&u)) + 7.;
911        word0(&eps) -= (P - 1) * Exp_msk1;
912        if (!ilim) {
913            S.clear();
914            mhi.clear();
915            dval(&u) -= 5.;
916            if (dval(&u) > dval(&eps))
917                goto oneDigit;
918            if (dval(&u) < -dval(&eps))
919                goto noDigits;
920            goto fastFailed;
921        }
922        if (leftright) {
923            /* Use Steele & White method of only
924             * generating digits needed.
925             */
926            dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
927            for (i = 0;;) {
928                L = (long int)dval(&u);
929                dval(&u) -= L;
930                *s++ = '0' + (int)L;
931                if (dval(&u) < dval(&eps))
932                    goto ret;
933                if (1. - dval(&u) < dval(&eps))
934                    goto bumpUp;
935                if (++i >= ilim)
936                    break;
937                dval(&eps) *= 10.;
938                dval(&u) *= 10.;
939            }
940        } else {
941            /* Generate ilim digits, then fix them up. */
942            dval(&eps) *= tens[ilim - 1];
943            for (i = 1;; i++, dval(&u) *= 10.) {
944                L = (int32_t)(dval(&u));
945                if (!(dval(&u) -= L))
946                    ilim = i;
947                *s++ = '0' + (int)L;
948                if (i == ilim) {
949                    if (dval(&u) > 0.5 + dval(&eps))
950                        goto bumpUp;
951                    if (dval(&u) < 0.5 - dval(&eps)) {
952                        while (*--s == '0') { }
953                        s++;
954                        goto ret;
955                    }
956                    break;
957                }
958            }
959        }
960fastFailed:
961        s = s0;
962        dval(&u) = dval(&d2);
963        k = k0;
964        ilim = ilim0;
965    }
966
967    /* Do we have a "small" integer? */
968
969    if (be >= 0 && k <= Int_max) {
970        /* Yes. */
971        ds = tens[k];
972        if (ndigits < 0 && ilim <= 0) {
973            S.clear();
974            mhi.clear();
975            if (ilim < 0 || dval(&u) <= 5 * ds)
976                goto noDigits;
977            goto oneDigit;
978        }
979        for (i = 1;; i++, dval(&u) *= 10.) {
980            L = (int32_t)(dval(&u) / ds);
981            dval(&u) -= L * ds;
982            *s++ = '0' + (int)L;
983            if (!dval(&u)) {
984                break;
985            }
986            if (i == ilim) {
987                dval(&u) += dval(&u);
988                if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
989bumpUp:
990                    while (*--s == '9')
991                        if (s == s0) {
992                            k++;
993                            *s = '0';
994                            break;
995                        }
996                    ++*s++;
997                }
998                break;
999            }
1000        }
1001        goto ret;
1002    }
1003
1004    m2 = b2;
1005    m5 = b5;
1006    mhi.clear();
1007    mlo.clear();
1008    if (leftright) {
1009        i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
1010        b2 += i;
1011        s2 += i;
1012        i2b(mhi, 1);
1013    }
1014    if (m2 > 0 && s2 > 0) {
1015        i = m2 < s2 ? m2 : s2;
1016        b2 -= i;
1017        m2 -= i;
1018        s2 -= i;
1019    }
1020    if (b5 > 0) {
1021        if (leftright) {
1022            if (m5 > 0) {
1023                pow5mult(mhi, m5);
1024                mult(b, mhi);
1025            }
1026            if ((j = b5 - m5))
1027                pow5mult(b, j);
1028        } else
1029            pow5mult(b, b5);
1030    }
1031    i2b(S, 1);
1032    if (s5 > 0)
1033        pow5mult(S, s5);
1034
1035    /* Check for special case that d is a normalized power of 2. */
1036
1037    spec_case = 0;
1038    if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
1039        /* The special case */
1040        b2 += Log2P;
1041        s2 += Log2P;
1042        spec_case = 1;
1043    }
1044
1045    /* Arrange for convenient computation of quotients:
1046     * shift left if necessary so divisor has 4 leading 0 bits.
1047     *
1048     * Perhaps we should just compute leading 28 bits of S once
1049     * and for all and pass them and a shift to quorem, so it
1050     * can do shifts and ors to compute the numerator for q.
1051     */
1052    if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
1053        i = 32 - i;
1054    if (i > 4) {
1055        i -= 4;
1056        b2 += i;
1057        m2 += i;
1058        s2 += i;
1059    } else if (i < 4) {
1060        i += 28;
1061        b2 += i;
1062        m2 += i;
1063        s2 += i;
1064    }
1065    if (b2 > 0)
1066        lshift(b, b2);
1067    if (s2 > 0)
1068        lshift(S, s2);
1069    if (k_check) {
1070        if (cmp(b, S) < 0) {
1071            k--;
1072            multadd(b, 10, 0);    /* we botched the k estimate */
1073            if (leftright)
1074                multadd(mhi, 10, 0);
1075            ilim = ilim1;
1076        }
1077    }
1078    if (ilim <= 0 && roundingDecimalPlaces) {
1079        if (ilim < 0)
1080            goto noDigits;
1081        multadd(S, 5, 0);
1082        // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
1083        if (cmp(b, S) < 0)
1084            goto noDigits;
1085        goto oneDigit;
1086    }
1087    if (leftright) {
1088        if (m2 > 0)
1089            lshift(mhi, m2);
1090
1091        /* Compute mlo -- check for special case
1092         * that d is a normalized power of 2.
1093         */
1094
1095        mlo = mhi;
1096        if (spec_case)
1097            lshift(mhi, Log2P);
1098
1099        for (i = 1;;i++) {
1100            dig = quorem(b, S) + '0';
1101            /* Do we yet have the shortest decimal string
1102             * that will round to d?
1103             */
1104            j = cmp(b, mlo);
1105            diff(delta, S, mhi);
1106            j1 = delta.sign ? 1 : cmp(b, delta);
1107#ifdef DTOA_ROUND_BIASED
1108            if (j < 0 || !j) {
1109#else
1110            // FIXME: ECMA-262 specifies that equidistant results round away from
1111            // zero, which probably means we shouldn't be on the unbiased code path
1112            // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
1113            // yet understood this code well enough to make the call, but we should
1114            // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
1115            // case to understand is probably "Math.pow(0.5, 24).toString()".
1116            // I believe this value is interesting because I think it is precisely
1117            // representable in binary floating point, and its decimal representation
1118            // has a single digit that Steele & White reduction can remove, with the
1119            // value 5 (thus equidistant from the next numbers above and below).
1120            // We produce the correct answer using either codepath, and I don't as
1121            // yet understand why. :-)
1122            if (!j1 && !(word1(&u) & 1)) {
1123                if (dig == '9')
1124                    goto round9up;
1125                if (j > 0)
1126                    dig++;
1127                *s++ = dig;
1128                goto ret;
1129            }
1130            if (j < 0 || (!j && !(word1(&u) & 1))) {
1131#endif
1132                if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
1133                    lshift(b, 1);
1134                    j1 = cmp(b, S);
1135                    // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
1136                    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1137                    // be rounded away from zero.
1138                    if (j1 >= 0) {
1139                        if (dig == '9')
1140                            goto round9up;
1141                        dig++;
1142                    }
1143                }
1144                *s++ = dig;
1145                goto ret;
1146            }
1147            if (j1 > 0) {
1148                if (dig == '9') { /* possible if i == 1 */
1149round9up:
1150                    *s++ = '9';
1151                    goto roundoff;
1152                }
1153                *s++ = dig + 1;
1154                goto ret;
1155            }
1156            *s++ = dig;
1157            if (i == ilim)
1158                break;
1159            multadd(b, 10, 0);
1160            multadd(mlo, 10, 0);
1161            multadd(mhi, 10, 0);
1162        }
1163    } else {
1164        for (i = 1;; i++) {
1165            *s++ = dig = quorem(b, S) + '0';
1166            if (!b.words()[0] && b.size() <= 1)
1167                goto ret;
1168            if (i >= ilim)
1169                break;
1170            multadd(b, 10, 0);
1171        }
1172    }
1173
1174    /* Round off last digit */
1175
1176    lshift(b, 1);
1177    j = cmp(b, S);
1178    // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
1179    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1180    // be rounded away from zero.
1181    if (j >= 0) {
1182roundoff:
1183        while (*--s == '9')
1184            if (s == s0) {
1185                k++;
1186                *s++ = '1';
1187                goto ret;
1188            }
1189        ++*s++;
1190    } else {
1191        while (*--s == '0') { }
1192        s++;
1193    }
1194    goto ret;
1195noDigits:
1196    exponentOut = 0;
1197    precisionOut = 1;
1198    result[0] = '0';
1199    result[1] = '\0';
1200    return;
1201oneDigit:
1202    *s++ = '1';
1203    k++;
1204    goto ret;
1205ret:
1206    ASSERT(s > result);
1207    *s = 0;
1208    exponentOut = k;
1209    precisionOut = s - result;
1210}
1211
1212void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
1213{
1214    // flags are roundingNone, leftright.
1215    dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
1216}
1217
1218void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1219{
1220    // flag is roundingSignificantFigures.
1221    dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
1222}
1223
1224void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1225{
1226    // flag is roundingDecimalPlaces.
1227    dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
1228}
1229
1230const char* numberToString(double d, NumberToStringBuffer buffer)
1231{
1232    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1233    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1234    converter.ToShortest(d, &builder);
1235    return builder.Finalize();
1236}
1237
1238static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
1239{
1240    size_t length = builder.position();
1241    size_t decimalPointPosition = 0;
1242    for (; decimalPointPosition < length; ++decimalPointPosition) {
1243        if (buffer[decimalPointPosition] == '.')
1244            break;
1245    }
1246
1247    // No decimal seperator found, early exit.
1248    if (decimalPointPosition == length)
1249        return builder.Finalize();
1250
1251    size_t truncatedLength = length - 1;
1252    for (; truncatedLength > decimalPointPosition; --truncatedLength) {
1253        if (buffer[truncatedLength] != '0')
1254            break;
1255    }
1256
1257    // No trailing zeros found to strip.
1258    if (truncatedLength == length - 1)
1259        return builder.Finalize();
1260
1261    // If we removed all trailing zeros, remove the decimal point as well.
1262    if (truncatedLength == decimalPointPosition) {
1263        ASSERT(truncatedLength > 0);
1264        --truncatedLength;
1265    }
1266
1267    // Truncate the StringBuilder, and return the final result.
1268    builder.SetPosition(truncatedLength + 1);
1269    return builder.Finalize();
1270}
1271
1272const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
1273{
1274    // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
1275    // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
1276    // The e format is used only when the exponent of the value is less than –4 or greater than or equal to the
1277    // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
1278    // "precision": The precision specifies the maximum number of significant digits printed.
1279    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1280    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1281    converter.ToPrecision(d, significantFigures, &builder);
1282    if (!truncateTrailingZeros)
1283        return builder.Finalize();
1284    return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
1285}
1286
1287const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
1288{
1289    // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
1290    // "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or more decimal digits.
1291    // The number of digits before the decimal point depends on the magnitude of the number, and
1292    // the number of digits after the decimal point depends on the requested precision.
1293    // "precision": The precision value specifies the number of digits after the decimal point.
1294    // If a decimal point appears, at least one digit appears before it.
1295    // The value is rounded to the appropriate number of digits.
1296    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1297    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1298    converter.ToFixed(d, decimalPlaces, &builder);
1299    return builder.Finalize();
1300}
1301
1302namespace Internal {
1303
1304double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
1305{
1306    Vector<LChar> conversionBuffer(length);
1307    for (size_t i = 0; i < length; ++i)
1308        conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
1309    return parseDouble(conversionBuffer.data(), length, parsedLength);
1310}
1311
1312} // namespace Internal
1313
1314} // namespace WTF
1315