1/************************************************************************
2 * Copyright (C) 1996-2008, International Business Machines Corporation *
3 * and others. All Rights Reserved.                                     *
4 ************************************************************************
5 *  2003-nov-07   srl       Port from Java
6 */
7
8#include "astro.h"
9
10#if !UCONFIG_NO_FORMATTING
11
12#include "unicode/calendar.h"
13#include <math.h>
14#include <float.h>
15#include "unicode/putil.h"
16#include "uhash.h"
17#include "umutex.h"
18#include "ucln_in.h"
19#include "putilimp.h"
20#include <stdio.h>  // for toString()
21
22#if defined (PI)
23#undef PI
24#endif
25
26#ifdef U_DEBUG_ASTRO
27# include "uresimp.h" // for debugging
28
29static void debug_astro_loc(const char *f, int32_t l)
30{
31  fprintf(stderr, "%s:%d: ", f, l);
32}
33
34static void debug_astro_msg(const char *pat, ...)
35{
36  va_list ap;
37  va_start(ap, pat);
38  vfprintf(stderr, pat, ap);
39  fflush(stderr);
40}
41#include "unicode/datefmt.h"
42#include "unicode/ustring.h"
43static const char * debug_astro_date(UDate d) {
44  static char gStrBuf[1024];
45  static DateFormat *df = NULL;
46  if(df == NULL) {
47    df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
48    df->adoptTimeZone(TimeZone::getGMT()->clone());
49  }
50  UnicodeString str;
51  df->format(d,str);
52  u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
53  return gStrBuf;
54}
55
56// must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
57#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
58#else
59#define U_DEBUG_ASTRO_MSG(x)
60#endif
61
62static inline UBool isINVALID(double d) {
63  return(uprv_isNaN(d));
64}
65
66static UMTX ccLock = NULL;
67
68U_CDECL_BEGIN
69static UBool calendar_astro_cleanup(void) {
70  umtx_destroy(&ccLock);
71  return TRUE;
72}
73U_CDECL_END
74
75U_NAMESPACE_BEGIN
76
77/**
78 * The number of standard hours in one sidereal day.
79 * Approximately 24.93.
80 * @internal
81 * @deprecated ICU 2.4. This class may be removed or modified.
82 */
83#define SIDEREAL_DAY (23.93446960027)
84
85/**
86 * The number of sidereal hours in one mean solar day.
87 * Approximately 24.07.
88 * @internal
89 * @deprecated ICU 2.4. This class may be removed or modified.
90 */
91#define SOLAR_DAY  (24.065709816)
92
93/**
94 * The average number of solar days from one new moon to the next.  This is the time
95 * it takes for the moon to return the same ecliptic longitude as the sun.
96 * It is longer than the sidereal month because the sun's longitude increases
97 * during the year due to the revolution of the earth around the sun.
98 * Approximately 29.53.
99 *
100 * @see #SIDEREAL_MONTH
101 * @internal
102 * @deprecated ICU 2.4. This class may be removed or modified.
103 */
104const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
105
106/**
107 * The average number of days it takes
108 * for the moon to return to the same ecliptic longitude relative to the
109 * stellar background.  This is referred to as the sidereal month.
110 * It is shorter than the synodic month due to
111 * the revolution of the earth around the sun.
112 * Approximately 27.32.
113 *
114 * @see #SYNODIC_MONTH
115 * @internal
116 * @deprecated ICU 2.4. This class may be removed or modified.
117 */
118#define SIDEREAL_MONTH  27.32166
119
120/**
121 * The average number number of days between successive vernal equinoxes.
122 * Due to the precession of the earth's
123 * axis, this is not precisely the same as the sidereal year.
124 * Approximately 365.24
125 *
126 * @see #SIDEREAL_YEAR
127 * @internal
128 * @deprecated ICU 2.4. This class may be removed or modified.
129 */
130#define TROPICAL_YEAR  365.242191
131
132/**
133 * The average number of days it takes
134 * for the sun to return to the same position against the fixed stellar
135 * background.  This is the duration of one orbit of the earth about the sun
136 * as it would appear to an outside observer.
137 * Due to the precession of the earth's
138 * axis, this is not precisely the same as the tropical year.
139 * Approximately 365.25.
140 *
141 * @see #TROPICAL_YEAR
142 * @internal
143 * @deprecated ICU 2.4. This class may be removed or modified.
144 */
145#define SIDEREAL_YEAR  365.25636
146
147//-------------------------------------------------------------------------
148// Time-related constants
149//-------------------------------------------------------------------------
150
151/**
152 * The number of milliseconds in one second.
153 * @internal
154 * @deprecated ICU 2.4. This class may be removed or modified.
155 */
156#define SECOND_MS  U_MILLIS_PER_SECOND
157
158/**
159 * The number of milliseconds in one minute.
160 * @internal
161 * @deprecated ICU 2.4. This class may be removed or modified.
162 */
163#define MINUTE_MS  U_MILLIS_PER_MINUTE
164
165/**
166 * The number of milliseconds in one hour.
167 * @internal
168 * @deprecated ICU 2.4. This class may be removed or modified.
169 */
170#define HOUR_MS   U_MILLIS_PER_HOUR
171
172/**
173 * The number of milliseconds in one day.
174 * @internal
175 * @deprecated ICU 2.4. This class may be removed or modified.
176 */
177#define DAY_MS U_MILLIS_PER_DAY
178
179/**
180 * The start of the julian day numbering scheme used by astronomers, which
181 * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
182 * since 1/1/1970 AD (Gregorian), a negative number.
183 * Note that julian day numbers and
184 * the Julian calendar are <em>not</em> the same thing.  Also note that
185 * julian days start at <em>noon</em>, not midnight.
186 * @internal
187 * @deprecated ICU 2.4. This class may be removed or modified.
188 */
189#define JULIAN_EPOCH_MS  -210866760000000.0
190
191
192/**
193 * Milliseconds value for 0.0 January 2000 AD.
194 */
195#define EPOCH_2000_MS  946598400000.0
196
197//-------------------------------------------------------------------------
198// Assorted private data used for conversions
199//-------------------------------------------------------------------------
200
201// My own copies of these so compilers are more likely to optimize them away
202const double CalendarAstronomer::PI = 3.14159265358979323846;
203
204#define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
205#define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
206#define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
207#define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
208
209/***
210 * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
211 * The modulus operator.
212 */
213inline static double normalize(double value, double range)  {
214    return value - range * ClockMath::floorDivide(value, range);
215}
216
217/**
218 * Normalize an angle so that it's in the range 0 - 2pi.
219 * For positive angles this is just (angle % 2pi), but the Java
220 * mod operator doesn't work that way for negative numbers....
221 */
222inline static double norm2PI(double angle)  {
223    return normalize(angle, CalendarAstronomer::PI * 2.0);
224}
225
226/**
227 * Normalize an angle into the range -PI - PI
228 */
229inline static  double normPI(double angle)  {
230    return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
231}
232
233//-------------------------------------------------------------------------
234// Constructors
235//-------------------------------------------------------------------------
236
237/**
238 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
239 * the current date and time.
240 * @internal
241 * @deprecated ICU 2.4. This class may be removed or modified.
242 */
243CalendarAstronomer::CalendarAstronomer():
244  fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
245  clearCache();
246}
247
248/**
249 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
250 * the specified date and time.
251 * @internal
252 * @deprecated ICU 2.4. This class may be removed or modified.
253 */
254CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) {
255  clearCache();
256}
257
258/**
259 * Construct a new <code>CalendarAstronomer</code> object with the given
260 * latitude and longitude.  The object's time is set to the current
261 * date and time.
262 * <p>
263 * @param longitude The desired longitude, in <em>degrees</em> east of
264 *                  the Greenwich meridian.
265 *
266 * @param latitude  The desired latitude, in <em>degrees</em>.  Positive
267 *                  values signify North, negative South.
268 *
269 * @see java.util.Date#getTime()
270 * @internal
271 * @deprecated ICU 2.4. This class may be removed or modified.
272 */
273CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
274  fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) {
275  fLongitude = normPI(longitude * (double)DEG_RAD);
276  fLatitude  = normPI(latitude  * (double)DEG_RAD);
277  fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
278  clearCache();
279}
280
281CalendarAstronomer::~CalendarAstronomer()
282{
283}
284
285//-------------------------------------------------------------------------
286// Time and date getters and setters
287//-------------------------------------------------------------------------
288
289/**
290 * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
291 * astronomical calculations are performed based on this time setting.
292 *
293 * @param aTime the date and time, expressed as the number of milliseconds since
294 *              1/1/1970 0:00 GMT (Gregorian).
295 *
296 * @see #setDate
297 * @see #getTime
298 * @internal
299 * @deprecated ICU 2.4. This class may be removed or modified.
300 */
301void CalendarAstronomer::setTime(UDate aTime) {
302    fTime = aTime;
303    U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
304    clearCache();
305}
306
307/**
308 * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
309 * astronomical calculations are performed based on this time setting.
310 *
311 * @param jdn   the desired time, expressed as a "julian day number",
312 *              which is the number of elapsed days since
313 *              1/1/4713 BC (Julian), 12:00 GMT.  Note that julian day
314 *              numbers start at <em>noon</em>.  To get the jdn for
315 *              the corresponding midnight, subtract 0.5.
316 *
317 * @see #getJulianDay
318 * @see #JULIAN_EPOCH_MS
319 * @internal
320 * @deprecated ICU 2.4. This class may be removed or modified.
321 */
322void CalendarAstronomer::setJulianDay(double jdn) {
323    fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
324    clearCache();
325    julianDay = jdn;
326}
327
328/**
329 * Get the current time of this <code>CalendarAstronomer</code> object,
330 * represented as the number of milliseconds since
331 * 1/1/1970 AD 0:00 GMT (Gregorian).
332 *
333 * @see #setTime
334 * @see #getDate
335 * @internal
336 * @deprecated ICU 2.4. This class may be removed or modified.
337 */
338UDate CalendarAstronomer::getTime() {
339    return fTime;
340}
341
342/**
343 * Get the current time of this <code>CalendarAstronomer</code> object,
344 * expressed as a "julian day number", which is the number of elapsed
345 * days since 1/1/4713 BC (Julian), 12:00 GMT.
346 *
347 * @see #setJulianDay
348 * @see #JULIAN_EPOCH_MS
349 * @internal
350 * @deprecated ICU 2.4. This class may be removed or modified.
351 */
352double CalendarAstronomer::getJulianDay() {
353    if (isINVALID(julianDay)) {
354        julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
355    }
356    return julianDay;
357}
358
359/**
360 * Return this object's time expressed in julian centuries:
361 * the number of centuries after 1/1/1900 AD, 12:00 GMT
362 *
363 * @see #getJulianDay
364 * @internal
365 * @deprecated ICU 2.4. This class may be removed or modified.
366 */
367double CalendarAstronomer::getJulianCentury() {
368    if (isINVALID(julianCentury)) {
369        julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
370    }
371    return julianCentury;
372}
373
374/**
375 * Returns the current Greenwich sidereal time, measured in hours
376 * @internal
377 * @deprecated ICU 2.4. This class may be removed or modified.
378 */
379double CalendarAstronomer::getGreenwichSidereal() {
380    if (isINVALID(siderealTime)) {
381        // See page 86 of "Practial Astronomy with your Calculator",
382        // by Peter Duffet-Smith, for details on the algorithm.
383
384        double UT = normalize(fTime/(double)HOUR_MS, 24.);
385
386        siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
387    }
388    return siderealTime;
389}
390
391double CalendarAstronomer::getSiderealOffset() {
392    if (isINVALID(siderealT0)) {
393        double JD  = uprv_floor(getJulianDay() - 0.5) + 0.5;
394        double S   = JD - 2451545.0;
395        double T   = S / 36525.0;
396        siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
397    }
398    return siderealT0;
399}
400
401/**
402 * Returns the current local sidereal time, measured in hours
403 * @internal
404 * @deprecated ICU 2.4. This class may be removed or modified.
405 */
406double CalendarAstronomer::getLocalSidereal() {
407    return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
408}
409
410/**
411 * Converts local sidereal time to Universal Time.
412 *
413 * @param lst   The Local Sidereal Time, in hours since sidereal midnight
414 *              on this object's current date.
415 *
416 * @return      The corresponding Universal Time, in milliseconds since
417 *              1 Jan 1970, GMT.
418 */
419double CalendarAstronomer::lstToUT(double lst) {
420    // Convert to local mean time
421    double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
422
423    // Then find local midnight on this day
424    double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
425
426    //out("    lt  =" + lt + " hours");
427    //out("    base=" + new Date(base));
428
429    return base + (long)(lt * HOUR_MS);
430}
431
432
433//-------------------------------------------------------------------------
434// Coordinate transformations, all based on the current time of this object
435//-------------------------------------------------------------------------
436
437/**
438 * Convert from ecliptic to equatorial coordinates.
439 *
440 * @param ecliptic  A point in the sky in ecliptic coordinates.
441 * @return          The corresponding point in equatorial coordinates.
442 * @internal
443 * @deprecated ICU 2.4. This class may be removed or modified.
444 */
445CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
446{
447    return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
448}
449
450/**
451 * Convert from ecliptic to equatorial coordinates.
452 *
453 * @param eclipLong     The ecliptic longitude
454 * @param eclipLat      The ecliptic latitude
455 *
456 * @return              The corresponding point in equatorial coordinates.
457 * @internal
458 * @deprecated ICU 2.4. This class may be removed or modified.
459 */
460CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
461{
462    // See page 42 of "Practial Astronomy with your Calculator",
463    // by Peter Duffet-Smith, for details on the algorithm.
464
465    double obliq = eclipticObliquity();
466    double sinE = ::sin(obliq);
467    double cosE = cos(obliq);
468
469    double sinL = ::sin(eclipLong);
470    double cosL = cos(eclipLong);
471
472    double sinB = ::sin(eclipLat);
473    double cosB = cos(eclipLat);
474    double tanB = tan(eclipLat);
475
476    result.set(atan2(sinL*cosE - tanB*sinE, cosL),
477        asin(sinB*cosE + cosB*sinE*sinL) );
478    return result;
479}
480
481/**
482 * Convert from ecliptic longitude to equatorial coordinates.
483 *
484 * @param eclipLong     The ecliptic longitude
485 *
486 * @return              The corresponding point in equatorial coordinates.
487 * @internal
488 * @deprecated ICU 2.4. This class may be removed or modified.
489 */
490CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
491{
492    return eclipticToEquatorial(result, eclipLong, 0);  // TODO: optimize
493}
494
495/**
496 * @internal
497 * @deprecated ICU 2.4. This class may be removed or modified.
498 */
499CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
500{
501    Equatorial equatorial;
502    eclipticToEquatorial(equatorial, eclipLong);
503
504    double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension;     // Hour-angle
505
506    double sinH = ::sin(H);
507    double cosH = cos(H);
508    double sinD = ::sin(equatorial.declination);
509    double cosD = cos(equatorial.declination);
510    double sinL = ::sin(fLatitude);
511    double cosL = cos(fLatitude);
512
513    double altitude = asin(sinD*sinL + cosD*cosL*cosH);
514    double azimuth  = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
515
516    result.set(azimuth, altitude);
517    return result;
518}
519
520
521//-------------------------------------------------------------------------
522// The Sun
523//-------------------------------------------------------------------------
524
525//
526// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
527// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
528//
529#define JD_EPOCH  2447891.5 // Julian day of epoch
530
531#define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
532#define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
533#define SUN_E         0.016713          // Eccentricity of orbit
534//double sunR0        1.495585e8        // Semi-major axis in KM
535//double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
536
537// The following three methods, which compute the sun parameters
538// given above for an arbitrary epoch (whatever time the object is
539// set to), make only a small difference as compared to using the
540// above constants.  E.g., Sunset times might differ by ~12
541// seconds.  Furthermore, the eta-g computation is befuddled by
542// Duffet-Smith's incorrect coefficients (p.86).  I've corrected
543// the first-order coefficient but the others may be off too - no
544// way of knowing without consulting another source.
545
546//  /**
547//   * Return the sun's ecliptic longitude at perigee for the current time.
548//   * See Duffett-Smith, p. 86.
549//   * @return radians
550//   */
551//  private double getSunOmegaG() {
552//      double T = getJulianCentury();
553//      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
554//  }
555
556//  /**
557//   * Return the sun's ecliptic longitude for the current time.
558//   * See Duffett-Smith, p. 86.
559//   * @return radians
560//   */
561//  private double getSunEtaG() {
562//      double T = getJulianCentury();
563//      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
564//      //
565//      // The above line is from Duffett-Smith, and yields manifestly wrong
566//      // results.  The below constant is derived empirically to match the
567//      // constant he gives for the 1990 EPOCH.
568//      //
569//      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
570//  }
571
572//  /**
573//   * Return the sun's eccentricity of orbit for the current time.
574//   * See Duffett-Smith, p. 86.
575//   * @return double
576//   */
577//  private double getSunE() {
578//      double T = getJulianCentury();
579//      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
580//  }
581
582/**
583 * Find the "true anomaly" (longitude) of an object from
584 * its mean anomaly and the eccentricity of its orbit.  This uses
585 * an iterative solution to Kepler's equation.
586 *
587 * @param meanAnomaly   The object's longitude calculated as if it were in
588 *                      a regular, circular orbit, measured in radians
589 *                      from the point of perigee.
590 *
591 * @param eccentricity  The eccentricity of the orbit
592 *
593 * @return The true anomaly (longitude) measured in radians
594 */
595static double trueAnomaly(double meanAnomaly, double eccentricity)
596{
597    // First, solve Kepler's equation iteratively
598    // Duffett-Smith, p.90
599    double delta;
600    double E = meanAnomaly;
601    do {
602        delta = E - eccentricity * ::sin(E) - meanAnomaly;
603        E = E - delta / (1 - eccentricity * ::cos(E));
604    }
605    while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
606
607    return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
608                                             /(1-eccentricity) ) );
609}
610
611/**
612 * The longitude of the sun at the time specified by this object.
613 * The longitude is measured in radians along the ecliptic
614 * from the "first point of Aries," the point at which the ecliptic
615 * crosses the earth's equatorial plane at the vernal equinox.
616 * <p>
617 * Currently, this method uses an approximation of the two-body Kepler's
618 * equation for the earth and the sun.  It does not take into account the
619 * perturbations caused by the other planets, the moon, etc.
620 * @internal
621 * @deprecated ICU 2.4. This class may be removed or modified.
622 */
623double CalendarAstronomer::getSunLongitude()
624{
625    // See page 86 of "Practial Astronomy with your Calculator",
626    // by Peter Duffet-Smith, for details on the algorithm.
627
628    if (isINVALID(sunLongitude)) {
629        getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
630    }
631    return sunLongitude;
632}
633
634/**
635 * TODO Make this public when the entire class is package-private.
636 */
637/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
638{
639    // See page 86 of "Practial Astronomy with your Calculator",
640    // by Peter Duffet-Smith, for details on the algorithm.
641
642    double day = jDay - JD_EPOCH;       // Days since epoch
643
644    // Find the angular distance the sun in a fictitious
645    // circular orbit has travelled since the epoch.
646    double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
647
648    // The epoch wasn't at the sun's perigee; find the angular distance
649    // since perigee, which is called the "mean anomaly"
650    meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
651
652    // Now find the "true anomaly", e.g. the real solar longitude
653    // by solving Kepler's equation for an elliptical orbit
654    // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
655    // equations; omega_g is to be correct.
656    longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
657}
658
659/**
660 * The position of the sun at this object's current date and time,
661 * in equatorial coordinates.
662 * @internal
663 * @deprecated ICU 2.4. This class may be removed or modified.
664 */
665CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
666    return eclipticToEquatorial(result, getSunLongitude(), 0);
667}
668
669
670/**
671 * Constant representing the vernal equinox.
672 * For use with {@link #getSunTime getSunTime}.
673 * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
674 * @internal
675 * @deprecated ICU 2.4. This class may be removed or modified.
676 */
677/*double CalendarAstronomer::VERNAL_EQUINOX() {
678  return 0;
679}*/
680
681/**
682 * Constant representing the summer solstice.
683 * For use with {@link #getSunTime getSunTime}.
684 * Note: In this case, "summer" refers to the northern hemisphere's seasons.
685 * @internal
686 * @deprecated ICU 2.4. This class may be removed or modified.
687 */
688double CalendarAstronomer::SUMMER_SOLSTICE() {
689    return  (CalendarAstronomer::PI/2);
690}
691
692/**
693 * Constant representing the autumnal equinox.
694 * For use with {@link #getSunTime getSunTime}.
695 * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
696 * @internal
697 * @deprecated ICU 2.4. This class may be removed or modified.
698 */
699/*double CalendarAstronomer::AUTUMN_EQUINOX() {
700  return  (CalendarAstronomer::PI);
701}*/
702
703/**
704 * Constant representing the winter solstice.
705 * For use with {@link #getSunTime getSunTime}.
706 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
707 * @internal
708 * @deprecated ICU 2.4. This class may be removed or modified.
709 */
710double CalendarAstronomer::WINTER_SOLSTICE() {
711    return  ((CalendarAstronomer::PI*3)/2);
712}
713
714CalendarAstronomer::AngleFunc::~AngleFunc() {}
715
716/**
717 * Find the next time at which the sun's ecliptic longitude will have
718 * the desired value.
719 * @internal
720 * @deprecated ICU 2.4. This class may be removed or modified.
721 */
722class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
723public:
724    virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); }
725};
726
727UDate CalendarAstronomer::getSunTime(double desired, UBool next)
728{
729    SunTimeAngleFunc func;
730    return timeOfAngle( func,
731                        desired,
732                        TROPICAL_YEAR,
733                        MINUTE_MS,
734                        next);
735}
736
737CalendarAstronomer::CoordFunc::~CoordFunc() {}
738
739class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
740public:
741    virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) {  a.getSunPosition(result); }
742};
743
744UDate CalendarAstronomer::getSunRiseSet(UBool rise)
745{
746    UDate t0 = fTime;
747
748    // Make a rough guess: 6am or 6pm local time on the current day
749    double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
750
751    U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
752    setTime(noon +  ((rise ? -6 : 6) * HOUR_MS));
753    U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
754
755    RiseSetCoordFunc func;
756    double t = riseOrSet(func,
757                         rise,
758                         .533 * DEG_RAD,        // Angular Diameter
759                         34. /60.0 * DEG_RAD,    // Refraction correction
760                         MINUTE_MS / 12.);       // Desired accuracy
761
762    setTime(t0);
763    return t;
764}
765
766// Commented out - currently unused. ICU 2.6, Alan
767//    //-------------------------------------------------------------------------
768//    // Alternate Sun Rise/Set
769//    // See Duffett-Smith p.93
770//    //-------------------------------------------------------------------------
771//
772//    // This yields worse results (as compared to USNO data) than getSunRiseSet().
773//    /**
774//     * TODO Make this when the entire class is package-private.
775//     */
776//    /*public*/ long getSunRiseSet2(boolean rise) {
777//        // 1. Calculate coordinates of the sun's center for midnight
778//        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
779//        double[] sl = getSunLongitude(jd);//        double lambda1 = sl[0];
780//        Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
781//
782//        // 2. Add ... to lambda to get position 24 hours later
783//        double lambda2 = lambda1 + 0.985647*DEG_RAD;
784//        Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
785//
786//        // 3. Calculate LSTs of rising and setting for these two positions
787//        double tanL = ::tan(fLatitude);
788//        double H = ::acos(-tanL * ::tan(pos1.declination));
789//        double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
790//        double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
791//               H = ::acos(-tanL * ::tan(pos2.declination));
792//        double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
793//        double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
794//        if (lst1r > 24) lst1r -= 24;
795//        if (lst1s > 24) lst1s -= 24;
796//        if (lst2r > 24) lst2r -= 24;
797//        if (lst2s > 24) lst2s -= 24;
798//
799//        // 4. Convert LSTs to GSTs.  If GST1 > GST2, add 24 to GST2.
800//        double gst1r = lstToGst(lst1r);
801//        double gst1s = lstToGst(lst1s);
802//        double gst2r = lstToGst(lst2r);
803//        double gst2s = lstToGst(lst2s);
804//        if (gst1r > gst2r) gst2r += 24;
805//        if (gst1s > gst2s) gst2s += 24;
806//
807//        // 5. Calculate GST at 0h UT of this date
808//        double t00 = utToGst(0);
809//
810//        // 6. Calculate GST at 0h on the observer's longitude
811//        double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
812//        double t00p = t00 - offset*1.002737909;
813//        if (t00p < 0) t00p += 24; // do NOT normalize
814//
815//        // 7. Adjust
816//        if (gst1r < t00p) {
817//            gst1r += 24;
818//            gst2r += 24;
819//        }
820//        if (gst1s < t00p) {
821//            gst1s += 24;
822//            gst2s += 24;
823//        }
824//
825//        // 8.
826//        double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
827//        double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
828//
829//        // 9. Correct for parallax, refraction, and sun's diameter
830//        double dec = (pos1.declination + pos2.declination) / 2;
831//        double psi = ::acos(sin(fLatitude) / cos(dec));
832//        double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
833//        double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
834//        double delta_t = 240 * y / cos(dec) / 3600; // hours
835//
836//        // 10. Add correction to GSTs, subtract from GSTr
837//        gstr -= delta_t;
838//        gsts += delta_t;
839//
840//        // 11. Convert GST to UT and then to local civil time
841//        double ut = gstToUt(rise ? gstr : gsts);
842//        //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
843//        long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
844//        return midnight + (long) (ut * 3600000);
845//    }
846
847// Commented out - currently unused. ICU 2.6, Alan
848//    /**
849//     * Convert local sidereal time to Greenwich sidereal time.
850//     * Section 15.  Duffett-Smith p.21
851//     * @param lst in hours (0..24)
852//     * @return GST in hours (0..24)
853//     */
854//    double lstToGst(double lst) {
855//        double delta = fLongitude * 24 / CalendarAstronomer_PI2;
856//        return normalize(lst - delta, 24);
857//    }
858
859// Commented out - currently unused. ICU 2.6, Alan
860//    /**
861//     * Convert UT to GST on this date.
862//     * Section 12.  Duffett-Smith p.17
863//     * @param ut in hours
864//     * @return GST in hours
865//     */
866//    double utToGst(double ut) {
867//        return normalize(getT0() + ut*1.002737909, 24);
868//    }
869
870// Commented out - currently unused. ICU 2.6, Alan
871//    /**
872//     * Convert GST to UT on this date.
873//     * Section 13.  Duffett-Smith p.18
874//     * @param gst in hours
875//     * @return UT in hours
876//     */
877//    double gstToUt(double gst) {
878//        return normalize(gst - getT0(), 24) * 0.9972695663;
879//    }
880
881// Commented out - currently unused. ICU 2.6, Alan
882//    double getT0() {
883//        // Common computation for UT <=> GST
884//
885//        // Find JD for 0h UT
886//        double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
887//
888//        double s = jd - 2451545.0;
889//        double t = s / 36525.0;
890//        double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
891//        return t0;
892//    }
893
894// Commented out - currently unused. ICU 2.6, Alan
895//    //-------------------------------------------------------------------------
896//    // Alternate Sun Rise/Set
897//    // See sci.astro FAQ
898//    // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
899//    //-------------------------------------------------------------------------
900//
901//    // Note: This method appears to produce inferior accuracy as
902//    // compared to getSunRiseSet().
903//
904//    /**
905//     * TODO Make this when the entire class is package-private.
906//     */
907//    /*public*/ long getSunRiseSet3(boolean rise) {
908//
909//        // Compute day number for 0.0 Jan 2000 epoch
910//        double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
911//
912//        // Now compute the Local Sidereal Time, LST:
913//        //
914//        double LST  =  98.9818  +  0.985647352 * d  +  /*UT*15  +  long*/
915//            fLongitude*RAD_DEG;
916//        //
917//        // (east long. positive).  Note that LST is here expressed in degrees,
918//        // where 15 degrees corresponds to one hour.  Since LST really is an angle,
919//        // it's convenient to use one unit---degrees---throughout.
920//
921//        //    COMPUTING THE SUN'S POSITION
922//        //    ----------------------------
923//        //
924//        // To be able to compute the Sun's rise/set times, you need to be able to
925//        // compute the Sun's position at any time.  First compute the "day
926//        // number" d as outlined above, for the desired moment.  Next compute:
927//        //
928//        double oblecl = 23.4393 - 3.563E-7 * d;
929//        //
930//        double w  =  282.9404  +  4.70935E-5   * d;
931//        double M  =  356.0470  +  0.9856002585 * d;
932//        double e  =  0.016709  -  1.151E-9     * d;
933//        //
934//        // This is the obliquity of the ecliptic, plus some of the elements of
935//        // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
936//        // argument of perihelion, M = mean anomaly, e = eccentricity.
937//        // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
938//        // true, this is still an accurate approximation).  Next compute E, the
939//        // eccentric anomaly:
940//        //
941//        double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
942//        //
943//        // where E and M are in degrees.  This is it---no further iterations are
944//        // needed because we know e has a sufficiently small value.  Next compute
945//        // the true anomaly, v, and the distance, r:
946//        //
947//        /*      r * cos(v)  =  */ double A  =  cos(E*DEG_RAD) - e;
948//        /*      r * ::sin(v)  =  */ double B  =  ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
949//        //
950//        // and
951//        //
952//        //      r  =  sqrt( A*A + B*B )
953//        double v  =  ::atan2( B, A )*RAD_DEG;
954//        //
955//        // The Sun's true longitude, slon, can now be computed:
956//        //
957//        double slon  =  v + w;
958//        //
959//        // Since the Sun is always at the ecliptic (or at least very very close to
960//        // it), we can use simplified formulae to convert slon (the Sun's ecliptic
961//        // longitude) to sRA and sDec (the Sun's RA and Dec):
962//        //
963//        //                   ::sin(slon) * cos(oblecl)
964//        //     tan(sRA)  =  -------------------------
965//        //            cos(slon)
966//        //
967//        //     ::sin(sDec) =  ::sin(oblecl) * ::sin(slon)
968//        //
969//        // As was the case when computing az, the Azimuth, if possible use an
970//        // atan2() function to compute sRA.
971//
972//        double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
973//
974//        double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
975//        double sDec = ::asin(sin_sDec)*RAD_DEG;
976//
977//        //    COMPUTING RISE AND SET TIMES
978//        //    ----------------------------
979//        //
980//        // To compute when an object rises or sets, you must compute when it
981//        // passes the meridian and the HA of rise/set.  Then the rise time is
982//        // the meridian time minus HA for rise/set, and the set time is the
983//        // meridian time plus the HA for rise/set.
984//        //
985//        // To find the meridian time, compute the Local Sidereal Time at 0h local
986//        // time (or 0h UT if you prefer to work in UT) as outlined above---name
987//        // that quantity LST0.  The Meridian Time, MT, will now be:
988//        //
989//        //     MT  =  RA - LST0
990//        double MT = normalize(sRA - LST, 360);
991//        //
992//        // where "RA" is the object's Right Ascension (in degrees!).  If negative,
993//        // add 360 deg to MT.  If the object is the Sun, leave the time as it is,
994//        // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
995//        // sidereal to solar time.  Now, compute HA for rise/set, name that
996//        // quantity HA0:
997//        //
998//        //                 ::sin(h0)  -  ::sin(lat) * ::sin(Dec)
999//        // cos(HA0)  =  ---------------------------------
1000//        //                      cos(lat) * cos(Dec)
1001//        //
1002//        // where h0 is the altitude selected to represent rise/set.  For a purely
1003//        // mathematical horizon, set h0 = 0 and simplify to:
1004//        //
1005//        //    cos(HA0)  =  - tan(lat) * tan(Dec)
1006//        //
1007//        // If you want to account for refraction on the atmosphere, set h0 = -35/60
1008//        // degrees (-35 arc minutes), and if you want to compute the rise/set times
1009//        // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
1010//        //
1011//        double h0 = -50/60 * DEG_RAD;
1012//
1013//        double HA0 = ::acos(
1014//          (sin(h0) - ::sin(fLatitude) * sin_sDec) /
1015//          (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
1016//
1017//        // When HA0 has been computed, leave it as it is for the Sun but multiply
1018//        // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
1019//        // solar time.  Finally compute:
1020//        //
1021//        //    Rise time  =  MT - HA0
1022//        //    Set  time  =  MT + HA0
1023//        //
1024//        // convert the times from degrees to hours by dividing by 15.
1025//        //
1026//        // If you'd like to check that your calculations are accurate or just
1027//        // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
1028//        // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
1029//
1030//        double result = MT + (rise ? -HA0 : HA0); // in degrees
1031//
1032//        // Find UT midnight on this day
1033//        long midnight = DAY_MS * (time / DAY_MS);
1034//
1035//        return midnight + (long) (result * 3600000 / 15);
1036//    }
1037
1038//-------------------------------------------------------------------------
1039// The Moon
1040//-------------------------------------------------------------------------
1041
1042#define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
1043#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
1044#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
1045#define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
1046#define moonE  (   0.054900 )            // Eccentricity of orbit
1047
1048// These aren't used right now
1049#define moonA  (   3.84401e5 )           // semi-major axis (km)
1050#define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
1051#define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
1052
1053/**
1054 * The position of the moon at the time set on this
1055 * object, in equatorial coordinates.
1056 * @internal
1057 * @deprecated ICU 2.4. This class may be removed or modified.
1058 */
1059const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
1060{
1061    //
1062    // See page 142 of "Practial Astronomy with your Calculator",
1063    // by Peter Duffet-Smith, for details on the algorithm.
1064    //
1065    if (moonPositionSet == FALSE) {
1066        // Calculate the solar longitude.  Has the side effect of
1067        // filling in "meanAnomalySun" as well.
1068        getSunLongitude();
1069
1070        //
1071        // Find the # of days since the epoch of our orbital parameters.
1072        // TODO: Convert the time of day portion into ephemeris time
1073        //
1074        double day = getJulianDay() - JD_EPOCH;       // Days since epoch
1075
1076        // Calculate the mean longitude and anomaly of the moon, based on
1077        // a circular orbit.  Similar to the corresponding solar calculation.
1078        double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
1079        meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
1080
1081        //
1082        // Calculate the following corrections:
1083        //  Evection:   the sun's gravity affects the moon's eccentricity
1084        //  Annual Eqn: variation in the effect due to earth-sun distance
1085        //  A3:         correction factor (for ???)
1086        //
1087        double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
1088            - meanAnomalyMoon);
1089        double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
1090        double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
1091
1092        meanAnomalyMoon += evection - annual - a3;
1093
1094        //
1095        // More correction factors:
1096        //  center  equation of the center correction
1097        //  a4      yet another error correction (???)
1098        //
1099        // TODO: Skip the equation of the center correction and solve Kepler's eqn?
1100        //
1101        double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
1102        double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
1103
1104        // Now find the moon's corrected longitude
1105        moonLongitude = meanLongitude + evection + center - annual + a4;
1106
1107        //
1108        // And finally, find the variation, caused by the fact that the sun's
1109        // gravitational pull on the moon varies depending on which side of
1110        // the earth the moon is on
1111        //
1112        double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
1113
1114        moonLongitude += variation;
1115
1116        //
1117        // What we've calculated so far is the moon's longitude in the plane
1118        // of its own orbit.  Now map to the ecliptic to get the latitude
1119        // and longitude.  First we need to find the longitude of the ascending
1120        // node, the position on the ecliptic where it is crossed by the moon's
1121        // orbit as it crosses from the southern to the northern hemisphere.
1122        //
1123        double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
1124
1125        nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
1126
1127        double y = ::sin(moonLongitude - nodeLongitude);
1128        double x = cos(moonLongitude - nodeLongitude);
1129
1130        moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
1131        double moonEclipLat = ::asin(y * ::sin(moonI));
1132
1133        eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
1134        moonPositionSet = TRUE;
1135    }
1136    return moonPosition;
1137}
1138
1139/**
1140 * The "age" of the moon at the time specified in this object.
1141 * This is really the angle between the
1142 * current ecliptic longitudes of the sun and the moon,
1143 * measured in radians.
1144 *
1145 * @see #getMoonPhase
1146 * @internal
1147 * @deprecated ICU 2.4. This class may be removed or modified.
1148 */
1149double CalendarAstronomer::getMoonAge() {
1150    // See page 147 of "Practial Astronomy with your Calculator",
1151    // by Peter Duffet-Smith, for details on the algorithm.
1152    //
1153    // Force the moon's position to be calculated.  We're going to use
1154    // some the intermediate results cached during that calculation.
1155    //
1156    getMoonPosition();
1157
1158    return norm2PI(moonEclipLong - sunLongitude);
1159}
1160
1161/**
1162 * Calculate the phase of the moon at the time set in this object.
1163 * The returned phase is a <code>double</code> in the range
1164 * <code>0 <= phase < 1</code>, interpreted as follows:
1165 * <ul>
1166 * <li>0.00: New moon
1167 * <li>0.25: First quarter
1168 * <li>0.50: Full moon
1169 * <li>0.75: Last quarter
1170 * </ul>
1171 *
1172 * @see #getMoonAge
1173 * @internal
1174 * @deprecated ICU 2.4. This class may be removed or modified.
1175 */
1176double CalendarAstronomer::getMoonPhase() {
1177    // See page 147 of "Practial Astronomy with your Calculator",
1178    // by Peter Duffet-Smith, for details on the algorithm.
1179    return 0.5 * (1 - cos(getMoonAge()));
1180}
1181
1182/**
1183 * Constant representing a new moon.
1184 * For use with {@link #getMoonTime getMoonTime}
1185 * @internal
1186 * @deprecated ICU 2.4. This class may be removed or modified.
1187 */
1188const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
1189    return  CalendarAstronomer::MoonAge(0);
1190}
1191
1192/**
1193 * Constant representing the moon's first quarter.
1194 * For use with {@link #getMoonTime getMoonTime}
1195 * @internal
1196 * @deprecated ICU 2.4. This class may be removed or modified.
1197 */
1198/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
1199  return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1200}*/
1201
1202/**
1203 * Constant representing a full moon.
1204 * For use with {@link #getMoonTime getMoonTime}
1205 * @internal
1206 * @deprecated ICU 2.4. This class may be removed or modified.
1207 */
1208const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
1209    return   CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
1210}
1211/**
1212 * Constant representing the moon's last quarter.
1213 * For use with {@link #getMoonTime getMoonTime}
1214 * @internal
1215 * @deprecated ICU 2.4. This class may be removed or modified.
1216 */
1217
1218class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
1219public:
1220    virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); }
1221};
1222
1223/*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
1224  return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1225}*/
1226
1227/**
1228 * Find the next or previous time at which the Moon's ecliptic
1229 * longitude will have the desired value.
1230 * <p>
1231 * @param desired   The desired longitude.
1232 * @param next      <tt>true</tt> if the next occurrance of the phase
1233 *                  is desired, <tt>false</tt> for the previous occurrance.
1234 * @internal
1235 * @deprecated ICU 2.4. This class may be removed or modified.
1236 */
1237UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
1238{
1239    MoonTimeAngleFunc func;
1240    return timeOfAngle( func,
1241                        desired,
1242                        SYNODIC_MONTH,
1243                        MINUTE_MS,
1244                        next);
1245}
1246
1247/**
1248 * Find the next or previous time at which the moon will be in the
1249 * desired phase.
1250 * <p>
1251 * @param desired   The desired phase of the moon.
1252 * @param next      <tt>true</tt> if the next occurrance of the phase
1253 *                  is desired, <tt>false</tt> for the previous occurrance.
1254 * @internal
1255 * @deprecated ICU 2.4. This class may be removed or modified.
1256 */
1257UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
1258    return getMoonTime(desired.value, next);
1259}
1260
1261class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
1262public:
1263    virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer&a) { result = a.getMoonPosition(); }
1264};
1265
1266/**
1267 * Returns the time (GMT) of sunrise or sunset on the local date to which
1268 * this calendar is currently set.
1269 * @internal
1270 * @deprecated ICU 2.4. This class may be removed or modified.
1271 */
1272UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
1273{
1274    MoonRiseSetCoordFunc func;
1275    return riseOrSet(func,
1276                     rise,
1277                     .533 * DEG_RAD,        // Angular Diameter
1278                     34 /60.0 * DEG_RAD,    // Refraction correction
1279                     MINUTE_MS);            // Desired accuracy
1280}
1281
1282//-------------------------------------------------------------------------
1283// Interpolation methods for finding the time at which a given event occurs
1284//-------------------------------------------------------------------------
1285
1286UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
1287                                      double periodDays, double epsilon, UBool next)
1288{
1289    // Find the value of the function at the current time
1290    double lastAngle = func.eval(*this);
1291
1292    // Find out how far we are from the desired angle
1293    double deltaAngle = norm2PI(desired - lastAngle) ;
1294
1295    // Using the average period, estimate the next (or previous) time at
1296    // which the desired angle occurs.
1297    double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
1298
1299    double lastDeltaT = deltaT; // Liu
1300    UDate startTime = fTime; // Liu
1301
1302    setTime(fTime + uprv_ceil(deltaT));
1303
1304    // Now iterate until we get the error below epsilon.  Throughout
1305    // this loop we use normPI to get values in the range -Pi to Pi,
1306    // since we're using them as correction factors rather than absolute angles.
1307    do {
1308        // Evaluate the function at the time we've estimated
1309        double angle = func.eval(*this);
1310
1311        // Find the # of milliseconds per radian at this point on the curve
1312        double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
1313
1314        // Correct the time estimate based on how far off the angle is
1315        deltaT = normPI(desired - angle) * factor;
1316
1317        // HACK:
1318        //
1319        // If abs(deltaT) begins to diverge we need to quit this loop.
1320        // This only appears to happen when attempting to locate, for
1321        // example, a new moon on the day of the new moon.  E.g.:
1322        //
1323        // This result is correct:
1324        // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
1325        //   Sun Jul 22 10:57:41 CST 1990
1326        //
1327        // But attempting to make the same call a day earlier causes deltaT
1328        // to diverge:
1329        // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
1330        //   1.3649828540224032E9
1331        // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
1332        //   Sun Jul 08 13:56:15 CST 1990
1333        //
1334        // As a temporary solution, we catch this specific condition and
1335        // adjust our start time by one eighth period days (either forward
1336        // or backward) and try again.
1337        // Liu 11/9/00
1338        if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
1339            double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
1340            setTime(startTime + (next ? delta : -delta));
1341            return timeOfAngle(func, desired, periodDays, epsilon, next);
1342        }
1343
1344        lastDeltaT = deltaT;
1345        lastAngle = angle;
1346
1347        setTime(fTime + uprv_ceil(deltaT));
1348    }
1349    while (uprv_fabs(deltaT) > epsilon);
1350
1351    return fTime;
1352}
1353
1354UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
1355                                    double diameter, double refraction,
1356                                    double epsilon)
1357{
1358    Equatorial pos;
1359    double      tanL   = ::tan(fLatitude);
1360    double     deltaT = 0;
1361    int32_t         count = 0;
1362
1363    //
1364    // Calculate the object's position at the current time, then use that
1365    // position to calculate the time of rising or setting.  The position
1366    // will be different at that time, so iterate until the error is allowable.
1367    //
1368    U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
1369        rise?"T":"F", diameter, refraction, epsilon));
1370    do {
1371        // See "Practical Astronomy With Your Calculator, section 33.
1372        func.eval(pos, *this);
1373        double angle = ::acos(-tanL * ::tan(pos.declination));
1374        double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
1375
1376        // Convert from LST to Universal Time.
1377        UDate newTime = lstToUT( lst );
1378
1379        deltaT = newTime - fTime;
1380        setTime(newTime);
1381        U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf,   A=%.3lf/D=%.3lf\n",
1382            count, deltaT, angle, lst, pos.ascension, pos.declination));
1383    }
1384    while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
1385
1386    // Calculate the correction due to refraction and the object's angular diameter
1387    double cosD  = ::cos(pos.declination);
1388    double psi   = ::acos(sin(fLatitude) / cosD);
1389    double x     = diameter / 2 + refraction;
1390    double y     = ::asin(sin(x) / ::sin(psi));
1391    long  delta  = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
1392
1393    return fTime + (rise ? -delta : delta);
1394}
1395											   /**
1396 * Return the obliquity of the ecliptic (the angle between the ecliptic
1397 * and the earth's equator) at the current time.  This varies due to
1398 * the precession of the earth's axis.
1399 *
1400 * @return  the obliquity of the ecliptic relative to the equator,
1401 *          measured in radians.
1402 */
1403double CalendarAstronomer::eclipticObliquity() {
1404    if (isINVALID(eclipObliquity)) {
1405        const double epoch = 2451545.0;     // 2000 AD, January 1.5
1406
1407        double T = (getJulianDay() - epoch) / 36525;
1408
1409        eclipObliquity = 23.439292
1410            - 46.815/3600 * T
1411            - 0.0006/3600 * T*T
1412            + 0.00181/3600 * T*T*T;
1413
1414        eclipObliquity *= DEG_RAD;
1415    }
1416    return eclipObliquity;
1417}
1418
1419
1420//-------------------------------------------------------------------------
1421// Private data
1422//-------------------------------------------------------------------------
1423void CalendarAstronomer::clearCache() {
1424    const double INVALID = uprv_getNaN();
1425
1426    julianDay       = INVALID;
1427    julianCentury   = INVALID;
1428    sunLongitude    = INVALID;
1429    meanAnomalySun  = INVALID;
1430    moonLongitude   = INVALID;
1431    moonEclipLong   = INVALID;
1432    meanAnomalyMoon = INVALID;
1433    eclipObliquity  = INVALID;
1434    siderealTime    = INVALID;
1435    siderealT0      = INVALID;
1436    moonPositionSet = FALSE;
1437}
1438
1439//private static void out(String s) {
1440//    System.out.println(s);
1441//}
1442
1443//private static String deg(double rad) {
1444//    return Double.toString(rad * RAD_DEG);
1445//}
1446
1447//private static String hours(long ms) {
1448//    return Double.toString((double)ms / HOUR_MS) + " hours";
1449//}
1450
1451/**
1452 * @internal
1453 * @deprecated ICU 2.4. This class may be removed or modified.
1454 */
1455/*UDate CalendarAstronomer::local(UDate localMillis) {
1456  // TODO - srl ?
1457  TimeZone *tz = TimeZone::createDefault();
1458  int32_t rawOffset;
1459  int32_t dstOffset;
1460  UErrorCode status = U_ZERO_ERROR;
1461  tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
1462  delete tz;
1463  return localMillis - rawOffset;
1464}*/
1465
1466// Debugging functions
1467UnicodeString CalendarAstronomer::Ecliptic::toString() const
1468{
1469#ifdef U_DEBUG_ASTRO
1470    char tmp[800];
1471    sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
1472    return UnicodeString(tmp, "");
1473#else
1474    return UnicodeString();
1475#endif
1476}
1477
1478UnicodeString CalendarAstronomer::Equatorial::toString() const
1479{
1480#ifdef U_DEBUG_ASTRO
1481    char tmp[400];
1482    sprintf(tmp, "%f,%f",
1483        (ascension*RAD_DEG), (declination*RAD_DEG));
1484    return UnicodeString(tmp, "");
1485#else
1486    return UnicodeString();
1487#endif
1488}
1489
1490UnicodeString CalendarAstronomer::Horizon::toString() const
1491{
1492#ifdef U_DEBUG_ASTRO
1493    char tmp[800];
1494    sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
1495    return UnicodeString(tmp, "");
1496#else
1497    return UnicodeString();
1498#endif
1499}
1500
1501
1502//  static private String radToHms(double angle) {
1503//    int hrs = (int) (angle*RAD_HOUR);
1504//    int min = (int)((angle*RAD_HOUR - hrs) * 60);
1505//    int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
1506
1507//    return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
1508//  }
1509
1510//  static private String radToDms(double angle) {
1511//    int deg = (int) (angle*RAD_DEG);
1512//    int min = (int)((angle*RAD_DEG - deg) * 60);
1513//    int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
1514
1515//    return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
1516//  }
1517
1518// =============== Calendar Cache ================
1519
1520void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
1521    ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
1522    if(cache == NULL) {
1523        status = U_MEMORY_ALLOCATION_ERROR;
1524    } else {
1525        *cache = new CalendarCache(32, status);
1526        if(U_FAILURE(status)) {
1527            delete *cache;
1528            *cache = NULL;
1529        }
1530    }
1531}
1532
1533int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
1534    int32_t res;
1535
1536    if(U_FAILURE(status)) {
1537        return 0;
1538    }
1539    umtx_lock(&ccLock);
1540
1541    if(*cache == NULL) {
1542        createCache(cache, status);
1543        if(U_FAILURE(status)) {
1544            umtx_unlock(&ccLock);
1545            return 0;
1546        }
1547    }
1548
1549    res = uhash_igeti((*cache)->fTable, key);
1550    U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
1551
1552    umtx_unlock(&ccLock);
1553    return res;
1554}
1555
1556void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
1557    if(U_FAILURE(status)) {
1558        return;
1559    }
1560    umtx_lock(&ccLock);
1561
1562    if(*cache == NULL) {
1563        createCache(cache, status);
1564        if(U_FAILURE(status)) {
1565            umtx_unlock(&ccLock);
1566            return;
1567        }
1568    }
1569
1570    uhash_iputi((*cache)->fTable, key, value, &status);
1571    U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
1572
1573    umtx_unlock(&ccLock);
1574}
1575
1576CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
1577    fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &status);
1578    U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
1579}
1580
1581CalendarCache::~CalendarCache() {
1582    if(fTable != NULL) {
1583        U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
1584        uhash_close(fTable);
1585    }
1586}
1587
1588U_NAMESPACE_END
1589
1590#endif //  !UCONFIG_NO_FORMATTING
1591