1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkMatrix44_DEFINED
9#define SkMatrix44_DEFINED
10
11#include "SkMatrix.h"
12#include "SkScalar.h"
13
14#ifdef SK_MSCALAR_IS_DOUBLE
15#ifdef SK_MSCALAR_IS_FLOAT
16    #error "can't define MSCALAR both as DOUBLE and FLOAT"
17#endif
18    typedef double SkMScalar;
19
20    static inline double SkFloatToMScalar(float x) {
21        return static_cast<double>(x);
22    }
23    static inline float SkMScalarToFloat(double x) {
24        return static_cast<float>(x);
25    }
26    static inline double SkDoubleToMScalar(double x) {
27        return x;
28    }
29    static inline double SkMScalarToDouble(double x) {
30        return x;
31    }
32    static const SkMScalar SK_MScalarPI = 3.141592653589793;
33#elif defined SK_MSCALAR_IS_FLOAT
34#ifdef SK_MSCALAR_IS_DOUBLE
35    #error "can't define MSCALAR both as DOUBLE and FLOAT"
36#endif
37    typedef float SkMScalar;
38
39    static inline float SkFloatToMScalar(float x) {
40        return x;
41    }
42    static inline float SkMScalarToFloat(float x) {
43        return x;
44    }
45    static inline float SkDoubleToMScalar(double x) {
46        return static_cast<float>(x);
47    }
48    static inline double SkMScalarToDouble(float x) {
49        return static_cast<double>(x);
50    }
51    static const SkMScalar SK_MScalarPI = 3.14159265f;
52#endif
53
54#define SkMScalarToScalar SkMScalarToFloat
55#define SkScalarToMScalar SkFloatToMScalar
56
57static const SkMScalar SK_MScalar1 = 1;
58
59///////////////////////////////////////////////////////////////////////////////
60
61struct SkVector4 {
62    SkScalar fData[4];
63
64    SkVector4() {
65        this->set(0, 0, 0, 1);
66    }
67    SkVector4(const SkVector4& src) {
68        memcpy(fData, src.fData, sizeof(fData));
69    }
70    SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
71        fData[0] = x;
72        fData[1] = y;
73        fData[2] = z;
74        fData[3] = w;
75    }
76
77    SkVector4& operator=(const SkVector4& src) {
78        memcpy(fData, src.fData, sizeof(fData));
79        return *this;
80    }
81
82    bool operator==(const SkVector4& v) {
83        return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
84               fData[2] == v.fData[2] && fData[3] == v.fData[3];
85    }
86    bool operator!=(const SkVector4& v) {
87        return !(*this == v);
88    }
89    bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
90        return fData[0] == x && fData[1] == y &&
91               fData[2] == z && fData[3] == w;
92    }
93
94    void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
95        fData[0] = x;
96        fData[1] = y;
97        fData[2] = z;
98        fData[3] = w;
99    }
100};
101
102class SK_API SkMatrix44 {
103public:
104
105    enum Uninitialized_Constructor {
106        kUninitialized_Constructor
107    };
108    enum Identity_Constructor {
109        kIdentity_Constructor
110    };
111
112    SkMatrix44(Uninitialized_Constructor) { }
113    SkMatrix44(Identity_Constructor) { this->setIdentity(); }
114
115    // DEPRECATED: use the constructors that take an enum
116    SkMatrix44() { this->setIdentity(); }
117
118    SkMatrix44(const SkMatrix44& src) {
119        memcpy(fMat, src.fMat, sizeof(fMat));
120        fTypeMask = src.fTypeMask;
121    }
122
123    SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
124        this->setConcat(a, b);
125    }
126
127    SkMatrix44& operator=(const SkMatrix44& src) {
128        if (&src != this) {
129            memcpy(fMat, src.fMat, sizeof(fMat));
130            fTypeMask = src.fTypeMask;
131        }
132        return *this;
133    }
134
135    bool operator==(const SkMatrix44& other) const;
136    bool operator!=(const SkMatrix44& other) const {
137        return !(other == *this);
138    }
139
140    SkMatrix44(const SkMatrix&);
141    SkMatrix44& operator=(const SkMatrix& src);
142    operator SkMatrix() const;
143
144    /**
145     *  Return a reference to a const identity matrix
146     */
147    static const SkMatrix44& I();
148
149    enum TypeMask {
150        kIdentity_Mask      = 0,
151        kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
152        kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
153        kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
154        kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
155    };
156
157    /**
158     *  Returns a bitfield describing the transformations the matrix may
159     *  perform. The bitfield is computed conservatively, so it may include
160     *  false positives. For example, when kPerspective_Mask is true, all
161     *  other bits may be set to true even in the case of a pure perspective
162     *  transform.
163     */
164    inline TypeMask getType() const {
165        if (fTypeMask & kUnknown_Mask) {
166            fTypeMask = this->computeTypeMask();
167        }
168        SkASSERT(!(fTypeMask & kUnknown_Mask));
169        return (TypeMask)fTypeMask;
170    }
171
172    /**
173     *  Return true if the matrix is identity.
174     */
175    inline bool isIdentity() const {
176        return kIdentity_Mask == this->getType();
177    }
178
179    /**
180     *  Return true if the matrix contains translate or is identity.
181     */
182    inline bool isTranslate() const {
183        return !(this->getType() & ~kTranslate_Mask);
184    }
185
186    /**
187     *  Return true if the matrix only contains scale or translate or is identity.
188     */
189    inline bool isScaleTranslate() const {
190        return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
191    }
192
193    void setIdentity();
194    inline void reset() { this->setIdentity();}
195
196    /**
197     *  get a value from the matrix. The row,col parameters work as follows:
198     *  (0, 0)  scale-x
199     *  (0, 3)  translate-x
200     *  (3, 0)  perspective-x
201     */
202    inline SkMScalar get(int row, int col) const {
203        SkASSERT((unsigned)row <= 3);
204        SkASSERT((unsigned)col <= 3);
205        return fMat[col][row];
206    }
207
208    /**
209     *  set a value in the matrix. The row,col parameters work as follows:
210     *  (0, 0)  scale-x
211     *  (0, 3)  translate-x
212     *  (3, 0)  perspective-x
213     */
214    inline void set(int row, int col, SkMScalar value) {
215        SkASSERT((unsigned)row <= 3);
216        SkASSERT((unsigned)col <= 3);
217        fMat[col][row] = value;
218        this->dirtyTypeMask();
219    }
220
221    inline double getDouble(int row, int col) const {
222        return SkMScalarToDouble(this->get(row, col));
223    }
224    inline void setDouble(int row, int col, double value) {
225        this->set(row, col, SkDoubleToMScalar(value));
226    }
227
228    /** These methods allow one to efficiently read matrix entries into an
229     *  array. The given array must have room for exactly 16 entries. Whenever
230     *  possible, they will try to use memcpy rather than an entry-by-entry
231     *  copy.
232     */
233    void asColMajorf(float[]) const;
234    void asColMajord(double[]) const;
235    void asRowMajorf(float[]) const;
236    void asRowMajord(double[]) const;
237
238    /** These methods allow one to efficiently set all matrix entries from an
239     *  array. The given array must have room for exactly 16 entries. Whenever
240     *  possible, they will try to use memcpy rather than an entry-by-entry
241     *  copy.
242     */
243    void setColMajorf(const float[]);
244    void setColMajord(const double[]);
245    void setRowMajorf(const float[]);
246    void setRowMajord(const double[]);
247
248#ifdef SK_MSCALAR_IS_FLOAT
249    void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
250    void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
251#else
252    void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
253    void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
254#endif
255
256    void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
257                SkMScalar m10, SkMScalar m11, SkMScalar m12,
258                SkMScalar m20, SkMScalar m21, SkMScalar m22);
259
260    void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
261    void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
262    void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
263
264    void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
265    void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
266    void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
267
268    inline void setScale(SkMScalar scale) {
269        this->setScale(scale, scale, scale);
270    }
271    inline void preScale(SkMScalar scale) {
272        this->preScale(scale, scale, scale);
273    }
274    inline void postScale(SkMScalar scale) {
275        this->postScale(scale, scale, scale);
276    }
277
278    void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
279                               SkMScalar degrees) {
280        this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
281    }
282
283    /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
284        it will be automatically resized.
285     */
286    void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
287                        SkMScalar radians);
288    /** Rotate about the vector [x,y,z]. Does not check the length of the
289        vector, assuming it is unit-length.
290     */
291    void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
292                            SkMScalar radians);
293
294    void setConcat(const SkMatrix44& a, const SkMatrix44& b);
295    inline void preConcat(const SkMatrix44& m) {
296        this->setConcat(*this, m);
297    }
298    inline void postConcat(const SkMatrix44& m) {
299        this->setConcat(m, *this);
300    }
301
302    friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
303        return SkMatrix44(a, b);
304    }
305
306    /** If this is invertible, return that in inverse and return true. If it is
307        not invertible, return false and ignore the inverse parameter.
308     */
309    bool invert(SkMatrix44* inverse) const;
310
311    /** Transpose this matrix in place. */
312    void transpose();
313
314    /** Apply the matrix to the src vector, returning the new vector in dst.
315        It is legal for src and dst to point to the same memory.
316     */
317    void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
318    inline void mapScalars(SkScalar vec[4]) const {
319        this->mapScalars(vec, vec);
320    }
321
322    // DEPRECATED: call mapScalars()
323    void map(const SkScalar src[4], SkScalar dst[4]) const {
324        this->mapScalars(src, dst);
325    }
326    // DEPRECATED: call mapScalars()
327    void map(SkScalar vec[4]) const {
328        this->mapScalars(vec, vec);
329    }
330
331#ifdef SK_MSCALAR_IS_DOUBLE
332    void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
333#elif defined SK_MSCALAR_IS_FLOAT
334    inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
335        this->mapScalars(src, dst);
336    }
337#endif
338    inline void mapMScalars(SkMScalar vec[4]) const {
339        this->mapMScalars(vec, vec);
340    }
341
342    friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
343        SkVector4 dst;
344        m.map(src.fData, dst.fData);
345        return dst;
346    }
347
348    /**
349     *  map an array of [x, y, 0, 1] through the matrix, returning an array
350     *  of [x', y', z', w'].
351     *
352     *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
353     *  @param count    number of [x, y] pairs in src2
354     *  @param dst4     array of [x', y', z', w'] quads as the output.
355     */
356    void map2(const float src2[], int count, float dst4[]) const;
357    void map2(const double src2[], int count, double dst4[]) const;
358
359    void dump() const;
360
361    double determinant() const;
362
363private:
364    SkMScalar           fMat[4][4];
365    mutable unsigned    fTypeMask;
366
367    enum {
368        kUnknown_Mask = 0x80,
369
370        kAllPublic_Masks = 0xF
371    };
372
373    SkMScalar transX() const { return fMat[3][0]; }
374    SkMScalar transY() const { return fMat[3][1]; }
375    SkMScalar transZ() const { return fMat[3][2]; }
376
377    SkMScalar scaleX() const { return fMat[0][0]; }
378    SkMScalar scaleY() const { return fMat[1][1]; }
379    SkMScalar scaleZ() const { return fMat[2][2]; }
380
381    SkMScalar perspX() const { return fMat[0][3]; }
382    SkMScalar perspY() const { return fMat[1][3]; }
383    SkMScalar perspZ() const { return fMat[2][3]; }
384
385    int computeTypeMask() const;
386
387    inline void dirtyTypeMask() {
388        fTypeMask = kUnknown_Mask;
389    }
390
391    inline void setTypeMask(int mask) {
392        SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
393        fTypeMask = mask;
394    }
395
396    /**
397     *  Does not take the time to 'compute' the typemask. Only returns true if
398     *  we already know that this matrix is identity.
399     */
400    inline bool isTriviallyIdentity() const {
401        return 0 == fTypeMask;
402    }
403};
404
405#endif
406