1// Copyright 2012 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28#include "v8.h" 29 30#if V8_TARGET_ARCH_IA32 31 32#include "codegen.h" 33#include "deoptimizer.h" 34#include "full-codegen.h" 35#include "safepoint-table.h" 36 37namespace v8 { 38namespace internal { 39 40const int Deoptimizer::table_entry_size_ = 10; 41 42 43int Deoptimizer::patch_size() { 44 return Assembler::kCallInstructionLength; 45} 46 47 48void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) { 49 Isolate* isolate = code->GetIsolate(); 50 HandleScope scope(isolate); 51 52 // Compute the size of relocation information needed for the code 53 // patching in Deoptimizer::DeoptimizeFunction. 54 int min_reloc_size = 0; 55 int prev_pc_offset = 0; 56 DeoptimizationInputData* deopt_data = 57 DeoptimizationInputData::cast(code->deoptimization_data()); 58 for (int i = 0; i < deopt_data->DeoptCount(); i++) { 59 int pc_offset = deopt_data->Pc(i)->value(); 60 if (pc_offset == -1) continue; 61 ASSERT_GE(pc_offset, prev_pc_offset); 62 int pc_delta = pc_offset - prev_pc_offset; 63 // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes 64 // if encodable with small pc delta encoding and up to 6 bytes 65 // otherwise. 66 if (pc_delta <= RelocInfo::kMaxSmallPCDelta) { 67 min_reloc_size += 2; 68 } else { 69 min_reloc_size += 6; 70 } 71 prev_pc_offset = pc_offset; 72 } 73 74 // If the relocation information is not big enough we create a new 75 // relocation info object that is padded with comments to make it 76 // big enough for lazy doptimization. 77 int reloc_length = code->relocation_info()->length(); 78 if (min_reloc_size > reloc_length) { 79 int comment_reloc_size = RelocInfo::kMinRelocCommentSize; 80 // Padding needed. 81 int min_padding = min_reloc_size - reloc_length; 82 // Number of comments needed to take up at least that much space. 83 int additional_comments = 84 (min_padding + comment_reloc_size - 1) / comment_reloc_size; 85 // Actual padding size. 86 int padding = additional_comments * comment_reloc_size; 87 // Allocate new relocation info and copy old relocation to the end 88 // of the new relocation info array because relocation info is 89 // written and read backwards. 90 Factory* factory = isolate->factory(); 91 Handle<ByteArray> new_reloc = 92 factory->NewByteArray(reloc_length + padding, TENURED); 93 OS::MemCopy(new_reloc->GetDataStartAddress() + padding, 94 code->relocation_info()->GetDataStartAddress(), 95 reloc_length); 96 // Create a relocation writer to write the comments in the padding 97 // space. Use position 0 for everything to ensure short encoding. 98 RelocInfoWriter reloc_info_writer( 99 new_reloc->GetDataStartAddress() + padding, 0); 100 intptr_t comment_string 101 = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString); 102 RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL); 103 for (int i = 0; i < additional_comments; ++i) { 104#ifdef DEBUG 105 byte* pos_before = reloc_info_writer.pos(); 106#endif 107 reloc_info_writer.Write(&rinfo); 108 ASSERT(RelocInfo::kMinRelocCommentSize == 109 pos_before - reloc_info_writer.pos()); 110 } 111 // Replace relocation information on the code object. 112 code->set_relocation_info(*new_reloc); 113 } 114} 115 116 117void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) { 118 Address code_start_address = code->instruction_start(); 119 // We will overwrite the code's relocation info in-place. Relocation info 120 // is written backward. The relocation info is the payload of a byte 121 // array. Later on we will slide this to the start of the byte array and 122 // create a filler object in the remaining space. 123 ByteArray* reloc_info = code->relocation_info(); 124 Address reloc_end_address = reloc_info->address() + reloc_info->Size(); 125 RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address); 126 127 // For each LLazyBailout instruction insert a call to the corresponding 128 // deoptimization entry. 129 130 // Since the call is a relative encoding, write new 131 // reloc info. We do not need any of the existing reloc info because the 132 // existing code will not be used again (we zap it in debug builds). 133 // 134 // Emit call to lazy deoptimization at all lazy deopt points. 135 DeoptimizationInputData* deopt_data = 136 DeoptimizationInputData::cast(code->deoptimization_data()); 137#ifdef DEBUG 138 Address prev_call_address = NULL; 139#endif 140 for (int i = 0; i < deopt_data->DeoptCount(); i++) { 141 if (deopt_data->Pc(i)->value() == -1) continue; 142 // Patch lazy deoptimization entry. 143 Address call_address = code_start_address + deopt_data->Pc(i)->value(); 144 CodePatcher patcher(call_address, patch_size()); 145 Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY); 146 patcher.masm()->call(deopt_entry, RelocInfo::NONE32); 147 // We use RUNTIME_ENTRY for deoptimization bailouts. 148 RelocInfo rinfo(call_address + 1, // 1 after the call opcode. 149 RelocInfo::RUNTIME_ENTRY, 150 reinterpret_cast<intptr_t>(deopt_entry), 151 NULL); 152 reloc_info_writer.Write(&rinfo); 153 ASSERT_GE(reloc_info_writer.pos(), 154 reloc_info->address() + ByteArray::kHeaderSize); 155 ASSERT(prev_call_address == NULL || 156 call_address >= prev_call_address + patch_size()); 157 ASSERT(call_address + patch_size() <= code->instruction_end()); 158#ifdef DEBUG 159 prev_call_address = call_address; 160#endif 161 } 162 163 // Move the relocation info to the beginning of the byte array. 164 int new_reloc_size = reloc_end_address - reloc_info_writer.pos(); 165 OS::MemMove( 166 code->relocation_start(), reloc_info_writer.pos(), new_reloc_size); 167 168 // The relocation info is in place, update the size. 169 reloc_info->set_length(new_reloc_size); 170 171 // Handle the junk part after the new relocation info. We will create 172 // a non-live object in the extra space at the end of the former reloc info. 173 Address junk_address = reloc_info->address() + reloc_info->Size(); 174 ASSERT(junk_address <= reloc_end_address); 175 isolate->heap()->CreateFillerObjectAt(junk_address, 176 reloc_end_address - junk_address); 177} 178 179 180static const byte kJnsInstruction = 0x79; 181static const byte kJnsOffset = 0x11; 182static const byte kCallInstruction = 0xe8; 183static const byte kNopByteOne = 0x66; 184static const byte kNopByteTwo = 0x90; 185 186// The back edge bookkeeping code matches the pattern: 187// 188// sub <profiling_counter>, <delta> 189// jns ok 190// call <interrupt stub> 191// ok: 192// 193// The patched back edge looks like this: 194// 195// sub <profiling_counter>, <delta> ;; Not changed 196// nop 197// nop 198// call <on-stack replacment> 199// ok: 200 201void Deoptimizer::PatchInterruptCodeAt(Code* unoptimized_code, 202 Address pc_after, 203 Code* interrupt_code, 204 Code* replacement_code) { 205 ASSERT(!InterruptCodeIsPatched(unoptimized_code, 206 pc_after, 207 interrupt_code, 208 replacement_code)); 209 // Turn the jump into nops. 210 Address call_target_address = pc_after - kIntSize; 211 *(call_target_address - 3) = kNopByteOne; 212 *(call_target_address - 2) = kNopByteTwo; 213 // Replace the call address. 214 Assembler::set_target_address_at(call_target_address, 215 replacement_code->entry()); 216 217 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( 218 unoptimized_code, call_target_address, replacement_code); 219} 220 221 222void Deoptimizer::RevertInterruptCodeAt(Code* unoptimized_code, 223 Address pc_after, 224 Code* interrupt_code, 225 Code* replacement_code) { 226 ASSERT(InterruptCodeIsPatched(unoptimized_code, 227 pc_after, 228 interrupt_code, 229 replacement_code)); 230 // Restore the original jump. 231 Address call_target_address = pc_after - kIntSize; 232 *(call_target_address - 3) = kJnsInstruction; 233 *(call_target_address - 2) = kJnsOffset; 234 // Restore the original call address. 235 Assembler::set_target_address_at(call_target_address, 236 interrupt_code->entry()); 237 238 interrupt_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( 239 unoptimized_code, call_target_address, interrupt_code); 240} 241 242 243#ifdef DEBUG 244bool Deoptimizer::InterruptCodeIsPatched(Code* unoptimized_code, 245 Address pc_after, 246 Code* interrupt_code, 247 Code* replacement_code) { 248 Address call_target_address = pc_after - kIntSize; 249 ASSERT_EQ(kCallInstruction, *(call_target_address - 1)); 250 if (*(call_target_address - 3) == kNopByteOne) { 251 ASSERT_EQ(replacement_code->entry(), 252 Assembler::target_address_at(call_target_address)); 253 ASSERT_EQ(kNopByteTwo, *(call_target_address - 2)); 254 return true; 255 } else { 256 ASSERT_EQ(interrupt_code->entry(), 257 Assembler::target_address_at(call_target_address)); 258 ASSERT_EQ(kJnsInstruction, *(call_target_address - 3)); 259 ASSERT_EQ(kJnsOffset, *(call_target_address - 2)); 260 return false; 261 } 262} 263#endif // DEBUG 264 265 266static int LookupBailoutId(DeoptimizationInputData* data, BailoutId ast_id) { 267 ByteArray* translations = data->TranslationByteArray(); 268 int length = data->DeoptCount(); 269 for (int i = 0; i < length; i++) { 270 if (data->AstId(i) == ast_id) { 271 TranslationIterator it(translations, data->TranslationIndex(i)->value()); 272 int value = it.Next(); 273 ASSERT(Translation::BEGIN == static_cast<Translation::Opcode>(value)); 274 // Read the number of frames. 275 value = it.Next(); 276 if (value == 1) return i; 277 } 278 } 279 UNREACHABLE(); 280 return -1; 281} 282 283 284void Deoptimizer::DoComputeOsrOutputFrame() { 285 DeoptimizationInputData* data = DeoptimizationInputData::cast( 286 compiled_code_->deoptimization_data()); 287 unsigned ast_id = data->OsrAstId()->value(); 288 // TODO(kasperl): This should not be the bailout_id_. It should be 289 // the ast id. Confusing. 290 ASSERT(bailout_id_ == ast_id); 291 292 int bailout_id = LookupBailoutId(data, BailoutId(ast_id)); 293 unsigned translation_index = data->TranslationIndex(bailout_id)->value(); 294 ByteArray* translations = data->TranslationByteArray(); 295 296 TranslationIterator iterator(translations, translation_index); 297 Translation::Opcode opcode = 298 static_cast<Translation::Opcode>(iterator.Next()); 299 ASSERT(Translation::BEGIN == opcode); 300 USE(opcode); 301 int count = iterator.Next(); 302 iterator.Next(); // Drop JS frames count. 303 ASSERT(count == 1); 304 USE(count); 305 306 opcode = static_cast<Translation::Opcode>(iterator.Next()); 307 USE(opcode); 308 ASSERT(Translation::JS_FRAME == opcode); 309 unsigned node_id = iterator.Next(); 310 USE(node_id); 311 ASSERT(node_id == ast_id); 312 int closure_id = iterator.Next(); 313 USE(closure_id); 314 ASSERT_EQ(Translation::kSelfLiteralId, closure_id); 315 unsigned height = iterator.Next(); 316 unsigned height_in_bytes = height * kPointerSize; 317 USE(height_in_bytes); 318 319 unsigned fixed_size = ComputeFixedSize(function_); 320 unsigned input_frame_size = input_->GetFrameSize(); 321 ASSERT(fixed_size + height_in_bytes == input_frame_size); 322 323 unsigned stack_slot_size = compiled_code_->stack_slots() * kPointerSize; 324 unsigned outgoing_height = data->ArgumentsStackHeight(bailout_id)->value(); 325 unsigned outgoing_size = outgoing_height * kPointerSize; 326 unsigned output_frame_size = fixed_size + stack_slot_size + outgoing_size; 327 ASSERT(outgoing_size == 0); // OSR does not happen in the middle of a call. 328 329 if (FLAG_trace_osr) { 330 PrintF("[on-stack replacement: begin 0x%08" V8PRIxPTR " ", 331 reinterpret_cast<intptr_t>(function_)); 332 PrintFunctionName(); 333 PrintF(" => node=%u, frame=%d->%d, ebp:esp=0x%08x:0x%08x]\n", 334 ast_id, 335 input_frame_size, 336 output_frame_size, 337 input_->GetRegister(ebp.code()), 338 input_->GetRegister(esp.code())); 339 } 340 341 // There's only one output frame in the OSR case. 342 output_count_ = 1; 343 output_ = new FrameDescription*[1]; 344 output_[0] = new(output_frame_size) FrameDescription( 345 output_frame_size, function_); 346 output_[0]->SetFrameType(StackFrame::JAVA_SCRIPT); 347 348 // Clear the incoming parameters in the optimized frame to avoid 349 // confusing the garbage collector. 350 unsigned output_offset = output_frame_size - kPointerSize; 351 int parameter_count = function_->shared()->formal_parameter_count() + 1; 352 for (int i = 0; i < parameter_count; ++i) { 353 output_[0]->SetFrameSlot(output_offset, 0); 354 output_offset -= kPointerSize; 355 } 356 357 // Translate the incoming parameters. This may overwrite some of the 358 // incoming argument slots we've just cleared. 359 int input_offset = input_frame_size - kPointerSize; 360 bool ok = true; 361 int limit = input_offset - (parameter_count * kPointerSize); 362 while (ok && input_offset > limit) { 363 ok = DoOsrTranslateCommand(&iterator, &input_offset); 364 } 365 366 // There are no translation commands for the caller's pc and fp, the 367 // context, and the function. Set them up explicitly. 368 for (int i = StandardFrameConstants::kCallerPCOffset; 369 ok && i >= StandardFrameConstants::kMarkerOffset; 370 i -= kPointerSize) { 371 uint32_t input_value = input_->GetFrameSlot(input_offset); 372 if (FLAG_trace_osr) { 373 const char* name = "UNKNOWN"; 374 switch (i) { 375 case StandardFrameConstants::kCallerPCOffset: 376 name = "caller's pc"; 377 break; 378 case StandardFrameConstants::kCallerFPOffset: 379 name = "fp"; 380 break; 381 case StandardFrameConstants::kContextOffset: 382 name = "context"; 383 break; 384 case StandardFrameConstants::kMarkerOffset: 385 name = "function"; 386 break; 387 } 388 PrintF(" [sp + %d] <- 0x%08x ; [sp + %d] (fixed part - %s)\n", 389 output_offset, 390 input_value, 391 input_offset, 392 name); 393 } 394 output_[0]->SetFrameSlot(output_offset, input_->GetFrameSlot(input_offset)); 395 input_offset -= kPointerSize; 396 output_offset -= kPointerSize; 397 } 398 399 // All OSR stack frames are dynamically aligned to an 8-byte boundary. 400 int frame_pointer = input_->GetRegister(ebp.code()); 401 if ((frame_pointer & kPointerSize) != 0) { 402 frame_pointer -= kPointerSize; 403 has_alignment_padding_ = 1; 404 } 405 406 int32_t alignment_state = (has_alignment_padding_ == 1) ? 407 kAlignmentPaddingPushed : 408 kNoAlignmentPadding; 409 if (FLAG_trace_osr) { 410 PrintF(" [sp + %d] <- 0x%08x ; (alignment state)\n", 411 output_offset, 412 alignment_state); 413 } 414 output_[0]->SetFrameSlot(output_offset, alignment_state); 415 output_offset -= kPointerSize; 416 417 // Translate the rest of the frame. 418 while (ok && input_offset >= 0) { 419 ok = DoOsrTranslateCommand(&iterator, &input_offset); 420 } 421 422 // If translation of any command failed, continue using the input frame. 423 if (!ok) { 424 delete output_[0]; 425 output_[0] = input_; 426 output_[0]->SetPc(reinterpret_cast<uint32_t>(from_)); 427 } else { 428 // Set up the frame pointer and the context pointer. 429 output_[0]->SetRegister(ebp.code(), frame_pointer); 430 output_[0]->SetRegister(esi.code(), input_->GetRegister(esi.code())); 431 432 unsigned pc_offset = data->OsrPcOffset()->value(); 433 uint32_t pc = reinterpret_cast<uint32_t>( 434 compiled_code_->entry() + pc_offset); 435 output_[0]->SetPc(pc); 436 } 437 Code* continuation = 438 function_->GetIsolate()->builtins()->builtin(Builtins::kNotifyOSR); 439 output_[0]->SetContinuation( 440 reinterpret_cast<uint32_t>(continuation->entry())); 441 442 if (FLAG_trace_osr) { 443 PrintF("[on-stack replacement translation %s: 0x%08" V8PRIxPTR " ", 444 ok ? "finished" : "aborted", 445 reinterpret_cast<intptr_t>(function_)); 446 PrintFunctionName(); 447 PrintF(" => pc=0x%0x]\n", output_[0]->GetPc()); 448 } 449} 450 451 452void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { 453 // Set the register values. The values are not important as there are no 454 // callee saved registers in JavaScript frames, so all registers are 455 // spilled. Registers ebp and esp are set to the correct values though. 456 457 for (int i = 0; i < Register::kNumRegisters; i++) { 458 input_->SetRegister(i, i * 4); 459 } 460 input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp())); 461 input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp())); 462 for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) { 463 input_->SetDoubleRegister(i, 0.0); 464 } 465 466 // Fill the frame content from the actual data on the frame. 467 for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { 468 input_->SetFrameSlot(i, Memory::uint32_at(tos + i)); 469 } 470} 471 472 473void Deoptimizer::SetPlatformCompiledStubRegisters( 474 FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) { 475 intptr_t handler = 476 reinterpret_cast<intptr_t>(descriptor->deoptimization_handler_); 477 int params = descriptor->register_param_count_; 478 if (descriptor->stack_parameter_count_ != NULL) { 479 params++; 480 } 481 output_frame->SetRegister(eax.code(), params); 482 output_frame->SetRegister(ebx.code(), handler); 483} 484 485 486void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) { 487 for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { 488 double double_value = input_->GetDoubleRegister(i); 489 output_frame->SetDoubleRegister(i, double_value); 490 } 491} 492 493 494bool Deoptimizer::HasAlignmentPadding(JSFunction* function) { 495 int parameter_count = function->shared()->formal_parameter_count() + 1; 496 unsigned input_frame_size = input_->GetFrameSize(); 497 unsigned alignment_state_offset = 498 input_frame_size - parameter_count * kPointerSize - 499 StandardFrameConstants::kFixedFrameSize - 500 kPointerSize; 501 ASSERT(JavaScriptFrameConstants::kDynamicAlignmentStateOffset == 502 JavaScriptFrameConstants::kLocal0Offset); 503 int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset); 504 return (alignment_state == kAlignmentPaddingPushed); 505} 506 507 508#define __ masm()-> 509 510void Deoptimizer::EntryGenerator::Generate() { 511 GeneratePrologue(); 512 513 // Save all general purpose registers before messing with them. 514 const int kNumberOfRegisters = Register::kNumRegisters; 515 516 const int kDoubleRegsSize = kDoubleSize * 517 XMMRegister::kNumAllocatableRegisters; 518 __ sub(esp, Immediate(kDoubleRegsSize)); 519 if (CpuFeatures::IsSupported(SSE2)) { 520 CpuFeatureScope scope(masm(), SSE2); 521 for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { 522 XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); 523 int offset = i * kDoubleSize; 524 __ movdbl(Operand(esp, offset), xmm_reg); 525 } 526 } 527 528 __ pushad(); 529 530 const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + 531 kDoubleRegsSize; 532 533 // Get the bailout id from the stack. 534 __ mov(ebx, Operand(esp, kSavedRegistersAreaSize)); 535 536 // Get the address of the location in the code object 537 // and compute the fp-to-sp delta in register edx. 538 __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize)); 539 __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize)); 540 541 __ sub(edx, ebp); 542 __ neg(edx); 543 544 // Allocate a new deoptimizer object. 545 __ PrepareCallCFunction(6, eax); 546 __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); 547 __ mov(Operand(esp, 0 * kPointerSize), eax); // Function. 548 __ mov(Operand(esp, 1 * kPointerSize), Immediate(type())); // Bailout type. 549 __ mov(Operand(esp, 2 * kPointerSize), ebx); // Bailout id. 550 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Code address or 0. 551 __ mov(Operand(esp, 4 * kPointerSize), edx); // Fp-to-sp delta. 552 __ mov(Operand(esp, 5 * kPointerSize), 553 Immediate(ExternalReference::isolate_address(isolate()))); 554 { 555 AllowExternalCallThatCantCauseGC scope(masm()); 556 __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6); 557 } 558 559 // Preserve deoptimizer object in register eax and get the input 560 // frame descriptor pointer. 561 __ mov(ebx, Operand(eax, Deoptimizer::input_offset())); 562 563 // Fill in the input registers. 564 for (int i = kNumberOfRegisters - 1; i >= 0; i--) { 565 int offset = (i * kPointerSize) + FrameDescription::registers_offset(); 566 __ pop(Operand(ebx, offset)); 567 } 568 569 int double_regs_offset = FrameDescription::double_registers_offset(); 570 if (CpuFeatures::IsSupported(SSE2)) { 571 CpuFeatureScope scope(masm(), SSE2); 572 // Fill in the double input registers. 573 for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { 574 int dst_offset = i * kDoubleSize + double_regs_offset; 575 int src_offset = i * kDoubleSize; 576 __ movdbl(xmm0, Operand(esp, src_offset)); 577 __ movdbl(Operand(ebx, dst_offset), xmm0); 578 } 579 } 580 581 // Clear FPU all exceptions. 582 // TODO(ulan): Find out why the TOP register is not zero here in some cases, 583 // and check that the generated code never deoptimizes with unbalanced stack. 584 __ fnclex(); 585 586 // Remove the bailout id, return address and the double registers. 587 __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize)); 588 589 // Compute a pointer to the unwinding limit in register ecx; that is 590 // the first stack slot not part of the input frame. 591 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); 592 __ add(ecx, esp); 593 594 // Unwind the stack down to - but not including - the unwinding 595 // limit and copy the contents of the activation frame to the input 596 // frame description. 597 __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset())); 598 Label pop_loop_header; 599 __ jmp(&pop_loop_header); 600 Label pop_loop; 601 __ bind(&pop_loop); 602 __ pop(Operand(edx, 0)); 603 __ add(edx, Immediate(sizeof(uint32_t))); 604 __ bind(&pop_loop_header); 605 __ cmp(ecx, esp); 606 __ j(not_equal, &pop_loop); 607 608 // Compute the output frame in the deoptimizer. 609 __ push(eax); 610 __ PrepareCallCFunction(1, ebx); 611 __ mov(Operand(esp, 0 * kPointerSize), eax); 612 { 613 AllowExternalCallThatCantCauseGC scope(masm()); 614 __ CallCFunction( 615 ExternalReference::compute_output_frames_function(isolate()), 1); 616 } 617 __ pop(eax); 618 619 if (type() != OSR) { 620 // If frame was dynamically aligned, pop padding. 621 Label no_padding; 622 __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()), 623 Immediate(0)); 624 __ j(equal, &no_padding); 625 __ pop(ecx); 626 if (FLAG_debug_code) { 627 __ cmp(ecx, Immediate(kAlignmentZapValue)); 628 __ Assert(equal, kAlignmentMarkerExpected); 629 } 630 __ bind(&no_padding); 631 } else { 632 // If frame needs dynamic alignment push padding. 633 Label no_padding; 634 __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()), 635 Immediate(0)); 636 __ j(equal, &no_padding); 637 __ push(Immediate(kAlignmentZapValue)); 638 __ bind(&no_padding); 639 } 640 641 // Replace the current frame with the output frames. 642 Label outer_push_loop, inner_push_loop, 643 outer_loop_header, inner_loop_header; 644 // Outer loop state: eax = current FrameDescription**, edx = one past the 645 // last FrameDescription**. 646 __ mov(edx, Operand(eax, Deoptimizer::output_count_offset())); 647 __ mov(eax, Operand(eax, Deoptimizer::output_offset())); 648 __ lea(edx, Operand(eax, edx, times_4, 0)); 649 __ jmp(&outer_loop_header); 650 __ bind(&outer_push_loop); 651 // Inner loop state: ebx = current FrameDescription*, ecx = loop index. 652 __ mov(ebx, Operand(eax, 0)); 653 __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset())); 654 __ jmp(&inner_loop_header); 655 __ bind(&inner_push_loop); 656 __ sub(ecx, Immediate(sizeof(uint32_t))); 657 __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset())); 658 __ bind(&inner_loop_header); 659 __ test(ecx, ecx); 660 __ j(not_zero, &inner_push_loop); 661 __ add(eax, Immediate(kPointerSize)); 662 __ bind(&outer_loop_header); 663 __ cmp(eax, edx); 664 __ j(below, &outer_push_loop); 665 666 // In case of OSR or a failed STUB, we have to restore the XMM registers. 667 if (CpuFeatures::IsSupported(SSE2)) { 668 CpuFeatureScope scope(masm(), SSE2); 669 for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { 670 XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); 671 int src_offset = i * kDoubleSize + double_regs_offset; 672 __ movdbl(xmm_reg, Operand(ebx, src_offset)); 673 } 674 } 675 676 // Push state, pc, and continuation from the last output frame. 677 if (type() != OSR) { 678 __ push(Operand(ebx, FrameDescription::state_offset())); 679 } 680 __ push(Operand(ebx, FrameDescription::pc_offset())); 681 __ push(Operand(ebx, FrameDescription::continuation_offset())); 682 683 684 // Push the registers from the last output frame. 685 for (int i = 0; i < kNumberOfRegisters; i++) { 686 int offset = (i * kPointerSize) + FrameDescription::registers_offset(); 687 __ push(Operand(ebx, offset)); 688 } 689 690 // Restore the registers from the stack. 691 __ popad(); 692 693 // Return to the continuation point. 694 __ ret(0); 695} 696 697 698void Deoptimizer::TableEntryGenerator::GeneratePrologue() { 699 // Create a sequence of deoptimization entries. 700 Label done; 701 for (int i = 0; i < count(); i++) { 702 int start = masm()->pc_offset(); 703 USE(start); 704 __ push_imm32(i); 705 __ jmp(&done); 706 ASSERT(masm()->pc_offset() - start == table_entry_size_); 707 } 708 __ bind(&done); 709} 710 711 712void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { 713 SetFrameSlot(offset, value); 714} 715 716 717void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { 718 SetFrameSlot(offset, value); 719} 720 721 722#undef __ 723 724 725} } // namespace v8::internal 726 727#endif // V8_TARGET_ARCH_IA32 728