1//===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "ABIInfo.h"
17#include "CGCXXABI.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "TargetInfo.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/MC/SubtargetFeature.h"
31#include "llvm/Support/CallSite.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace clang;
34using namespace CodeGen;
35
36/***/
37
38static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39  switch (CC) {
40  default: return llvm::CallingConv::C;
41  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
45  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
46  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
47  // TODO: add support for CC_X86Pascal to llvm
48  }
49}
50
51/// Derives the 'this' type for codegen purposes, i.e. ignoring method
52/// qualification.
53/// FIXME: address space qualification?
54static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
55  QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
56  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
57}
58
59/// Returns the canonical formal type of the given C++ method.
60static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
61  return MD->getType()->getCanonicalTypeUnqualified()
62           .getAs<FunctionProtoType>();
63}
64
65/// Returns the "extra-canonicalized" return type, which discards
66/// qualifiers on the return type.  Codegen doesn't care about them,
67/// and it makes ABI code a little easier to be able to assume that
68/// all parameter and return types are top-level unqualified.
69static CanQualType GetReturnType(QualType RetTy) {
70  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
71}
72
73/// Arrange the argument and result information for a value of the given
74/// unprototyped freestanding function type.
75const CGFunctionInfo &
76CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
77  // When translating an unprototyped function type, always use a
78  // variadic type.
79  return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
80                                 None, FTNP->getExtInfo(), RequiredArgs(0));
81}
82
83/// Arrange the LLVM function layout for a value of the given function
84/// type, on top of any implicit parameters already stored.  Use the
85/// given ExtInfo instead of the ExtInfo from the function type.
86static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
87                                       SmallVectorImpl<CanQualType> &prefix,
88                                             CanQual<FunctionProtoType> FTP,
89                                              FunctionType::ExtInfo extInfo) {
90  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
91  // FIXME: Kill copy.
92  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
93    prefix.push_back(FTP->getArgType(i));
94  CanQualType resultType = FTP->getResultType().getUnqualifiedType();
95  return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
96}
97
98/// Arrange the argument and result information for a free function (i.e.
99/// not a C++ or ObjC instance method) of the given type.
100static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
101                                      SmallVectorImpl<CanQualType> &prefix,
102                                            CanQual<FunctionProtoType> FTP) {
103  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
104}
105
106/// Given the formal ext-info of a C++ instance method, adjust it
107/// according to the C++ ABI in effect.
108static void adjustCXXMethodInfo(CodeGenTypes &CGT,
109                                FunctionType::ExtInfo &extInfo,
110                                bool isVariadic) {
111  if (extInfo.getCC() == CC_Default) {
112    CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
113    extInfo = extInfo.withCallingConv(CC);
114  }
115}
116
117/// Arrange the argument and result information for a free function (i.e.
118/// not a C++ or ObjC instance method) of the given type.
119static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
120                                      SmallVectorImpl<CanQualType> &prefix,
121                                            CanQual<FunctionProtoType> FTP) {
122  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
123  adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
124  return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
125}
126
127/// Arrange the argument and result information for a value of the
128/// given freestanding function type.
129const CGFunctionInfo &
130CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
131  SmallVector<CanQualType, 16> argTypes;
132  return ::arrangeFreeFunctionType(*this, argTypes, FTP);
133}
134
135static CallingConv getCallingConventionForDecl(const Decl *D) {
136  // Set the appropriate calling convention for the Function.
137  if (D->hasAttr<StdCallAttr>())
138    return CC_X86StdCall;
139
140  if (D->hasAttr<FastCallAttr>())
141    return CC_X86FastCall;
142
143  if (D->hasAttr<ThisCallAttr>())
144    return CC_X86ThisCall;
145
146  if (D->hasAttr<PascalAttr>())
147    return CC_X86Pascal;
148
149  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
150    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
151
152  if (D->hasAttr<PnaclCallAttr>())
153    return CC_PnaclCall;
154
155  if (D->hasAttr<IntelOclBiccAttr>())
156    return CC_IntelOclBicc;
157
158  return CC_C;
159}
160
161/// Arrange the argument and result information for a call to an
162/// unknown C++ non-static member function of the given abstract type.
163/// The member function must be an ordinary function, i.e. not a
164/// constructor or destructor.
165const CGFunctionInfo &
166CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                   const FunctionProtoType *FTP) {
168  SmallVector<CanQualType, 16> argTypes;
169
170  // Add the 'this' pointer.
171  argTypes.push_back(GetThisType(Context, RD));
172
173  return ::arrangeCXXMethodType(*this, argTypes,
174              FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
175}
176
177/// Arrange the argument and result information for a declaration or
178/// definition of the given C++ non-static member function.  The
179/// member function must be an ordinary function, i.e. not a
180/// constructor or destructor.
181const CGFunctionInfo &
182CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
183  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
184  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
185
186  CanQual<FunctionProtoType> prototype = GetFormalType(MD);
187
188  if (MD->isInstance()) {
189    // The abstract case is perfectly fine.
190    return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
191  }
192
193  return arrangeFreeFunctionType(prototype);
194}
195
196/// Arrange the argument and result information for a declaration
197/// or definition to the given constructor variant.
198const CGFunctionInfo &
199CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
200                                               CXXCtorType ctorKind) {
201  SmallVector<CanQualType, 16> argTypes;
202  argTypes.push_back(GetThisType(Context, D->getParent()));
203
204  GlobalDecl GD(D, ctorKind);
205  CanQualType resultType =
206    TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
207
208  TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
209
210  CanQual<FunctionProtoType> FTP = GetFormalType(D);
211
212  RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
213
214  // Add the formal parameters.
215  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
216    argTypes.push_back(FTP->getArgType(i));
217
218  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
219  adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
220  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
221}
222
223/// Arrange the argument and result information for a declaration,
224/// definition, or call to the given destructor variant.  It so
225/// happens that all three cases produce the same information.
226const CGFunctionInfo &
227CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
228                                   CXXDtorType dtorKind) {
229  SmallVector<CanQualType, 2> argTypes;
230  argTypes.push_back(GetThisType(Context, D->getParent()));
231
232  GlobalDecl GD(D, dtorKind);
233  CanQualType resultType =
234    TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
235
236  TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
237
238  CanQual<FunctionProtoType> FTP = GetFormalType(D);
239  assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
240  assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
241
242  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
243  adjustCXXMethodInfo(*this, extInfo, false);
244  return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
245                                 RequiredArgs::All);
246}
247
248/// Arrange the argument and result information for the declaration or
249/// definition of the given function.
250const CGFunctionInfo &
251CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
252  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
253    if (MD->isInstance())
254      return arrangeCXXMethodDeclaration(MD);
255
256  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
257
258  assert(isa<FunctionType>(FTy));
259
260  // When declaring a function without a prototype, always use a
261  // non-variadic type.
262  if (isa<FunctionNoProtoType>(FTy)) {
263    CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
264    return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
265                                   noProto->getExtInfo(), RequiredArgs::All);
266  }
267
268  assert(isa<FunctionProtoType>(FTy));
269  return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
270}
271
272/// Arrange the argument and result information for the declaration or
273/// definition of an Objective-C method.
274const CGFunctionInfo &
275CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
276  // It happens that this is the same as a call with no optional
277  // arguments, except also using the formal 'self' type.
278  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
279}
280
281/// Arrange the argument and result information for the function type
282/// through which to perform a send to the given Objective-C method,
283/// using the given receiver type.  The receiver type is not always
284/// the 'self' type of the method or even an Objective-C pointer type.
285/// This is *not* the right method for actually performing such a
286/// message send, due to the possibility of optional arguments.
287const CGFunctionInfo &
288CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
289                                              QualType receiverType) {
290  SmallVector<CanQualType, 16> argTys;
291  argTys.push_back(Context.getCanonicalParamType(receiverType));
292  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
293  // FIXME: Kill copy?
294  for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
295         e = MD->param_end(); i != e; ++i) {
296    argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
297  }
298
299  FunctionType::ExtInfo einfo;
300  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
301
302  if (getContext().getLangOpts().ObjCAutoRefCount &&
303      MD->hasAttr<NSReturnsRetainedAttr>())
304    einfo = einfo.withProducesResult(true);
305
306  RequiredArgs required =
307    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
308
309  return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
310                                 einfo, required);
311}
312
313const CGFunctionInfo &
314CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
315  // FIXME: Do we need to handle ObjCMethodDecl?
316  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
317
318  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
319    return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
320
321  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
322    return arrangeCXXDestructor(DD, GD.getDtorType());
323
324  return arrangeFunctionDeclaration(FD);
325}
326
327/// Arrange a call as unto a free function, except possibly with an
328/// additional number of formal parameters considered required.
329static const CGFunctionInfo &
330arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
331                            const CallArgList &args,
332                            const FunctionType *fnType,
333                            unsigned numExtraRequiredArgs) {
334  assert(args.size() >= numExtraRequiredArgs);
335
336  // In most cases, there are no optional arguments.
337  RequiredArgs required = RequiredArgs::All;
338
339  // If we have a variadic prototype, the required arguments are the
340  // extra prefix plus the arguments in the prototype.
341  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
342    if (proto->isVariadic())
343      required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
344
345  // If we don't have a prototype at all, but we're supposed to
346  // explicitly use the variadic convention for unprototyped calls,
347  // treat all of the arguments as required but preserve the nominal
348  // possibility of variadics.
349  } else if (CGT.CGM.getTargetCodeGenInfo()
350               .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
351    required = RequiredArgs(args.size());
352  }
353
354  return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
355                                     fnType->getExtInfo(), required);
356}
357
358/// Figure out the rules for calling a function with the given formal
359/// type using the given arguments.  The arguments are necessary
360/// because the function might be unprototyped, in which case it's
361/// target-dependent in crazy ways.
362const CGFunctionInfo &
363CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
364                                      const FunctionType *fnType) {
365  return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
366}
367
368/// A block function call is essentially a free-function call with an
369/// extra implicit argument.
370const CGFunctionInfo &
371CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
372                                       const FunctionType *fnType) {
373  return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
374}
375
376const CGFunctionInfo &
377CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
378                                      const CallArgList &args,
379                                      FunctionType::ExtInfo info,
380                                      RequiredArgs required) {
381  // FIXME: Kill copy.
382  SmallVector<CanQualType, 16> argTypes;
383  for (CallArgList::const_iterator i = args.begin(), e = args.end();
384       i != e; ++i)
385    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
386  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
387                                 required);
388}
389
390/// Arrange a call to a C++ method, passing the given arguments.
391const CGFunctionInfo &
392CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
393                                   const FunctionProtoType *FPT,
394                                   RequiredArgs required) {
395  // FIXME: Kill copy.
396  SmallVector<CanQualType, 16> argTypes;
397  for (CallArgList::const_iterator i = args.begin(), e = args.end();
398       i != e; ++i)
399    argTypes.push_back(Context.getCanonicalParamType(i->Ty));
400
401  FunctionType::ExtInfo info = FPT->getExtInfo();
402  adjustCXXMethodInfo(*this, info, FPT->isVariadic());
403  return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
404                                 argTypes, info, required);
405}
406
407const CGFunctionInfo &
408CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
409                                         const FunctionArgList &args,
410                                         const FunctionType::ExtInfo &info,
411                                         bool isVariadic) {
412  // FIXME: Kill copy.
413  SmallVector<CanQualType, 16> argTypes;
414  for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
415       i != e; ++i)
416    argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
417
418  RequiredArgs required =
419    (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
420  return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
421                                 required);
422}
423
424const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
425  return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
426                                 FunctionType::ExtInfo(), RequiredArgs::All);
427}
428
429/// Arrange the argument and result information for an abstract value
430/// of a given function type.  This is the method which all of the
431/// above functions ultimately defer to.
432const CGFunctionInfo &
433CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
434                                      ArrayRef<CanQualType> argTypes,
435                                      FunctionType::ExtInfo info,
436                                      RequiredArgs required) {
437#ifndef NDEBUG
438  for (ArrayRef<CanQualType>::const_iterator
439         I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
440    assert(I->isCanonicalAsParam());
441#endif
442
443  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
444
445  // Lookup or create unique function info.
446  llvm::FoldingSetNodeID ID;
447  CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
448
449  void *insertPos = 0;
450  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
451  if (FI)
452    return *FI;
453
454  // Construct the function info.  We co-allocate the ArgInfos.
455  FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
456  FunctionInfos.InsertNode(FI, insertPos);
457
458  bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
459  assert(inserted && "Recursively being processed?");
460
461  // Compute ABI information.
462  getABIInfo().computeInfo(*FI);
463
464  // Loop over all of the computed argument and return value info.  If any of
465  // them are direct or extend without a specified coerce type, specify the
466  // default now.
467  ABIArgInfo &retInfo = FI->getReturnInfo();
468  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
469    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
470
471  for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
472       I != E; ++I)
473    if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
474      I->info.setCoerceToType(ConvertType(I->type));
475
476  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
477  assert(erased && "Not in set?");
478
479  return *FI;
480}
481
482CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
483                                       const FunctionType::ExtInfo &info,
484                                       CanQualType resultType,
485                                       ArrayRef<CanQualType> argTypes,
486                                       RequiredArgs required) {
487  void *buffer = operator new(sizeof(CGFunctionInfo) +
488                              sizeof(ArgInfo) * (argTypes.size() + 1));
489  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
490  FI->CallingConvention = llvmCC;
491  FI->EffectiveCallingConvention = llvmCC;
492  FI->ASTCallingConvention = info.getCC();
493  FI->NoReturn = info.getNoReturn();
494  FI->ReturnsRetained = info.getProducesResult();
495  FI->Required = required;
496  FI->HasRegParm = info.getHasRegParm();
497  FI->RegParm = info.getRegParm();
498  FI->NumArgs = argTypes.size();
499  FI->getArgsBuffer()[0].type = resultType;
500  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
501    FI->getArgsBuffer()[i + 1].type = argTypes[i];
502  return FI;
503}
504
505/***/
506
507void CodeGenTypes::GetExpandedTypes(QualType type,
508                     SmallVectorImpl<llvm::Type*> &expandedTypes) {
509  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
510    uint64_t NumElts = AT->getSize().getZExtValue();
511    for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
512      GetExpandedTypes(AT->getElementType(), expandedTypes);
513  } else if (const RecordType *RT = type->getAs<RecordType>()) {
514    const RecordDecl *RD = RT->getDecl();
515    assert(!RD->hasFlexibleArrayMember() &&
516           "Cannot expand structure with flexible array.");
517    if (RD->isUnion()) {
518      // Unions can be here only in degenerative cases - all the fields are same
519      // after flattening. Thus we have to use the "largest" field.
520      const FieldDecl *LargestFD = 0;
521      CharUnits UnionSize = CharUnits::Zero();
522
523      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
524           i != e; ++i) {
525        const FieldDecl *FD = *i;
526        assert(!FD->isBitField() &&
527               "Cannot expand structure with bit-field members.");
528        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
529        if (UnionSize < FieldSize) {
530          UnionSize = FieldSize;
531          LargestFD = FD;
532        }
533      }
534      if (LargestFD)
535        GetExpandedTypes(LargestFD->getType(), expandedTypes);
536    } else {
537      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
538           i != e; ++i) {
539        assert(!i->isBitField() &&
540               "Cannot expand structure with bit-field members.");
541        GetExpandedTypes(i->getType(), expandedTypes);
542      }
543    }
544  } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
545    llvm::Type *EltTy = ConvertType(CT->getElementType());
546    expandedTypes.push_back(EltTy);
547    expandedTypes.push_back(EltTy);
548  } else
549    expandedTypes.push_back(ConvertType(type));
550}
551
552llvm::Function::arg_iterator
553CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
554                                    llvm::Function::arg_iterator AI) {
555  assert(LV.isSimple() &&
556         "Unexpected non-simple lvalue during struct expansion.");
557
558  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
559    unsigned NumElts = AT->getSize().getZExtValue();
560    QualType EltTy = AT->getElementType();
561    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
562      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
563      LValue LV = MakeAddrLValue(EltAddr, EltTy);
564      AI = ExpandTypeFromArgs(EltTy, LV, AI);
565    }
566  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
567    RecordDecl *RD = RT->getDecl();
568    if (RD->isUnion()) {
569      // Unions can be here only in degenerative cases - all the fields are same
570      // after flattening. Thus we have to use the "largest" field.
571      const FieldDecl *LargestFD = 0;
572      CharUnits UnionSize = CharUnits::Zero();
573
574      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
575           i != e; ++i) {
576        const FieldDecl *FD = *i;
577        assert(!FD->isBitField() &&
578               "Cannot expand structure with bit-field members.");
579        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
580        if (UnionSize < FieldSize) {
581          UnionSize = FieldSize;
582          LargestFD = FD;
583        }
584      }
585      if (LargestFD) {
586        // FIXME: What are the right qualifiers here?
587        LValue SubLV = EmitLValueForField(LV, LargestFD);
588        AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
589      }
590    } else {
591      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
592           i != e; ++i) {
593        FieldDecl *FD = *i;
594        QualType FT = FD->getType();
595
596        // FIXME: What are the right qualifiers here?
597        LValue SubLV = EmitLValueForField(LV, FD);
598        AI = ExpandTypeFromArgs(FT, SubLV, AI);
599      }
600    }
601  } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
602    QualType EltTy = CT->getElementType();
603    llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
604    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
605    llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
606    EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
607  } else {
608    EmitStoreThroughLValue(RValue::get(AI), LV);
609    ++AI;
610  }
611
612  return AI;
613}
614
615/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
616/// accessing some number of bytes out of it, try to gep into the struct to get
617/// at its inner goodness.  Dive as deep as possible without entering an element
618/// with an in-memory size smaller than DstSize.
619static llvm::Value *
620EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
621                                   llvm::StructType *SrcSTy,
622                                   uint64_t DstSize, CodeGenFunction &CGF) {
623  // We can't dive into a zero-element struct.
624  if (SrcSTy->getNumElements() == 0) return SrcPtr;
625
626  llvm::Type *FirstElt = SrcSTy->getElementType(0);
627
628  // If the first elt is at least as large as what we're looking for, or if the
629  // first element is the same size as the whole struct, we can enter it.
630  uint64_t FirstEltSize =
631    CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
632  if (FirstEltSize < DstSize &&
633      FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
634    return SrcPtr;
635
636  // GEP into the first element.
637  SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
638
639  // If the first element is a struct, recurse.
640  llvm::Type *SrcTy =
641    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
642  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
643    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
644
645  return SrcPtr;
646}
647
648/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
649/// are either integers or pointers.  This does a truncation of the value if it
650/// is too large or a zero extension if it is too small.
651///
652/// This behaves as if the value were coerced through memory, so on big-endian
653/// targets the high bits are preserved in a truncation, while little-endian
654/// targets preserve the low bits.
655static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
656                                             llvm::Type *Ty,
657                                             CodeGenFunction &CGF) {
658  if (Val->getType() == Ty)
659    return Val;
660
661  if (isa<llvm::PointerType>(Val->getType())) {
662    // If this is Pointer->Pointer avoid conversion to and from int.
663    if (isa<llvm::PointerType>(Ty))
664      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
665
666    // Convert the pointer to an integer so we can play with its width.
667    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
668  }
669
670  llvm::Type *DestIntTy = Ty;
671  if (isa<llvm::PointerType>(DestIntTy))
672    DestIntTy = CGF.IntPtrTy;
673
674  if (Val->getType() != DestIntTy) {
675    const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
676    if (DL.isBigEndian()) {
677      // Preserve the high bits on big-endian targets.
678      // That is what memory coercion does.
679      uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
680      uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
681      if (SrcSize > DstSize) {
682        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
683        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
684      } else {
685        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
686        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
687      }
688    } else {
689      // Little-endian targets preserve the low bits. No shifts required.
690      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
691    }
692  }
693
694  if (isa<llvm::PointerType>(Ty))
695    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
696  return Val;
697}
698
699
700
701/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
702/// a pointer to an object of type \arg Ty.
703///
704/// This safely handles the case when the src type is smaller than the
705/// destination type; in this situation the values of bits which not
706/// present in the src are undefined.
707static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
708                                      llvm::Type *Ty,
709                                      CodeGenFunction &CGF) {
710  llvm::Type *SrcTy =
711    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
712
713  // If SrcTy and Ty are the same, just do a load.
714  if (SrcTy == Ty)
715    return CGF.Builder.CreateLoad(SrcPtr);
716
717  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
718
719  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
720    SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
721    SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
722  }
723
724  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
725
726  // If the source and destination are integer or pointer types, just do an
727  // extension or truncation to the desired type.
728  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
729      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
730    llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
731    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
732  }
733
734  // If load is legal, just bitcast the src pointer.
735  if (SrcSize >= DstSize) {
736    // Generally SrcSize is never greater than DstSize, since this means we are
737    // losing bits. However, this can happen in cases where the structure has
738    // additional padding, for example due to a user specified alignment.
739    //
740    // FIXME: Assert that we aren't truncating non-padding bits when have access
741    // to that information.
742    llvm::Value *Casted =
743      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
744    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
745    // FIXME: Use better alignment / avoid requiring aligned load.
746    Load->setAlignment(1);
747    return Load;
748  }
749
750  // Otherwise do coercion through memory. This is stupid, but
751  // simple.
752  llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
753  llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
754  llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
755  llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
756  // FIXME: Use better alignment.
757  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
758      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
759      1, false);
760  return CGF.Builder.CreateLoad(Tmp);
761}
762
763// Function to store a first-class aggregate into memory.  We prefer to
764// store the elements rather than the aggregate to be more friendly to
765// fast-isel.
766// FIXME: Do we need to recurse here?
767static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
768                          llvm::Value *DestPtr, bool DestIsVolatile,
769                          bool LowAlignment) {
770  // Prefer scalar stores to first-class aggregate stores.
771  if (llvm::StructType *STy =
772        dyn_cast<llvm::StructType>(Val->getType())) {
773    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
774      llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
775      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
776      llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
777                                                    DestIsVolatile);
778      if (LowAlignment)
779        SI->setAlignment(1);
780    }
781  } else {
782    llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
783    if (LowAlignment)
784      SI->setAlignment(1);
785  }
786}
787
788/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
789/// where the source and destination may have different types.
790///
791/// This safely handles the case when the src type is larger than the
792/// destination type; the upper bits of the src will be lost.
793static void CreateCoercedStore(llvm::Value *Src,
794                               llvm::Value *DstPtr,
795                               bool DstIsVolatile,
796                               CodeGenFunction &CGF) {
797  llvm::Type *SrcTy = Src->getType();
798  llvm::Type *DstTy =
799    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
800  if (SrcTy == DstTy) {
801    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
802    return;
803  }
804
805  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
806
807  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
808    DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
809    DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
810  }
811
812  // If the source and destination are integer or pointer types, just do an
813  // extension or truncation to the desired type.
814  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
815      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
816    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
817    CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
818    return;
819  }
820
821  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
822
823  // If store is legal, just bitcast the src pointer.
824  if (SrcSize <= DstSize) {
825    llvm::Value *Casted =
826      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
827    // FIXME: Use better alignment / avoid requiring aligned store.
828    BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
829  } else {
830    // Otherwise do coercion through memory. This is stupid, but
831    // simple.
832
833    // Generally SrcSize is never greater than DstSize, since this means we are
834    // losing bits. However, this can happen in cases where the structure has
835    // additional padding, for example due to a user specified alignment.
836    //
837    // FIXME: Assert that we aren't truncating non-padding bits when have access
838    // to that information.
839    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
840    CGF.Builder.CreateStore(Src, Tmp);
841    llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
842    llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
843    llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
844    // FIXME: Use better alignment.
845    CGF.Builder.CreateMemCpy(DstCasted, Casted,
846        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
847        1, false);
848  }
849}
850
851/***/
852
853bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
854  return FI.getReturnInfo().isIndirect();
855}
856
857bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
858  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
859    switch (BT->getKind()) {
860    default:
861      return false;
862    case BuiltinType::Float:
863      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
864    case BuiltinType::Double:
865      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
866    case BuiltinType::LongDouble:
867      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
868    }
869  }
870
871  return false;
872}
873
874bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
875  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
876    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
877      if (BT->getKind() == BuiltinType::LongDouble)
878        return getTarget().useObjCFP2RetForComplexLongDouble();
879    }
880  }
881
882  return false;
883}
884
885llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
886  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
887  return GetFunctionType(FI);
888}
889
890llvm::FunctionType *
891CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
892
893  bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
894  assert(Inserted && "Recursively being processed?");
895
896  SmallVector<llvm::Type*, 8> argTypes;
897  llvm::Type *resultType = 0;
898
899  const ABIArgInfo &retAI = FI.getReturnInfo();
900  switch (retAI.getKind()) {
901  case ABIArgInfo::Expand:
902    llvm_unreachable("Invalid ABI kind for return argument");
903
904  case ABIArgInfo::Extend:
905  case ABIArgInfo::Direct:
906    resultType = retAI.getCoerceToType();
907    break;
908
909  case ABIArgInfo::Indirect: {
910    assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
911    resultType = llvm::Type::getVoidTy(getLLVMContext());
912
913    QualType ret = FI.getReturnType();
914    llvm::Type *ty = ConvertType(ret);
915    unsigned addressSpace = Context.getTargetAddressSpace(ret);
916    argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
917    break;
918  }
919
920  case ABIArgInfo::Ignore:
921    resultType = llvm::Type::getVoidTy(getLLVMContext());
922    break;
923  }
924
925  // Add in all of the required arguments.
926  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
927  if (FI.isVariadic()) {
928    ie = it + FI.getRequiredArgs().getNumRequiredArgs();
929  } else {
930    ie = FI.arg_end();
931  }
932  for (; it != ie; ++it) {
933    const ABIArgInfo &argAI = it->info;
934
935    // Insert a padding type to ensure proper alignment.
936    if (llvm::Type *PaddingType = argAI.getPaddingType())
937      argTypes.push_back(PaddingType);
938
939    switch (argAI.getKind()) {
940    case ABIArgInfo::Ignore:
941      break;
942
943    case ABIArgInfo::Indirect: {
944      // indirect arguments are always on the stack, which is addr space #0.
945      llvm::Type *LTy = ConvertTypeForMem(it->type);
946      argTypes.push_back(LTy->getPointerTo());
947      break;
948    }
949
950    case ABIArgInfo::Extend:
951    case ABIArgInfo::Direct: {
952      // If the coerce-to type is a first class aggregate, flatten it.  Either
953      // way is semantically identical, but fast-isel and the optimizer
954      // generally likes scalar values better than FCAs.
955      llvm::Type *argType = argAI.getCoerceToType();
956      if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
957        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
958          argTypes.push_back(st->getElementType(i));
959      } else {
960        argTypes.push_back(argType);
961      }
962      break;
963    }
964
965    case ABIArgInfo::Expand:
966      GetExpandedTypes(it->type, argTypes);
967      break;
968    }
969  }
970
971  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
972  assert(Erased && "Not in set?");
973
974  return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
975}
976
977llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
978  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
979  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
980
981  if (!isFuncTypeConvertible(FPT))
982    return llvm::StructType::get(getLLVMContext());
983
984  const CGFunctionInfo *Info;
985  if (isa<CXXDestructorDecl>(MD))
986    Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
987  else
988    Info = &arrangeCXXMethodDeclaration(MD);
989  return GetFunctionType(*Info);
990}
991
992void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
993                                           const Decl *TargetDecl,
994                                           AttributeListType &PAL,
995                                           unsigned &CallingConv,
996                                           bool AttrOnCallSite) {
997  llvm::AttrBuilder FuncAttrs;
998  llvm::AttrBuilder RetAttrs;
999
1000  CallingConv = FI.getEffectiveCallingConvention();
1001
1002  if (FI.isNoReturn())
1003    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1004
1005  // FIXME: handle sseregparm someday...
1006  if (TargetDecl) {
1007    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1008      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1009    if (TargetDecl->hasAttr<NoThrowAttr>())
1010      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1011    if (TargetDecl->hasAttr<NoReturnAttr>())
1012      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1013
1014    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1015      const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1016      if (FPT && FPT->isNothrow(getContext()))
1017        FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1018      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1019      // These attributes are not inherited by overloads.
1020      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1021      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1022        FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1023    }
1024
1025    // 'const' and 'pure' attribute functions are also nounwind.
1026    if (TargetDecl->hasAttr<ConstAttr>()) {
1027      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1028      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1029    } else if (TargetDecl->hasAttr<PureAttr>()) {
1030      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1031      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1032    }
1033    if (TargetDecl->hasAttr<MallocAttr>())
1034      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1035  }
1036
1037  if (CodeGenOpts.OptimizeSize)
1038    FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1039  if (CodeGenOpts.OptimizeSize == 2)
1040    FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1041  if (CodeGenOpts.DisableRedZone)
1042    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1043  if (CodeGenOpts.NoImplicitFloat)
1044    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1045
1046  if (AttrOnCallSite) {
1047    // Attributes that should go on the call site only.
1048    if (!CodeGenOpts.SimplifyLibCalls)
1049      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1050  } else {
1051    // Attributes that should go on the function, but not the call site.
1052    if (!CodeGenOpts.DisableFPElim) {
1053      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1054      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
1055    } else if (CodeGenOpts.OmitLeafFramePointer) {
1056      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1057      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1058    } else {
1059      FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1060      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1061    }
1062
1063    FuncAttrs.addAttribute("less-precise-fpmad",
1064                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1065    FuncAttrs.addAttribute("no-infs-fp-math",
1066                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1067    FuncAttrs.addAttribute("no-nans-fp-math",
1068                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1069    FuncAttrs.addAttribute("unsafe-fp-math",
1070                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1071    FuncAttrs.addAttribute("use-soft-float",
1072                           llvm::toStringRef(CodeGenOpts.SoftFloat));
1073    FuncAttrs.addAttribute("stack-protector-buffer-size",
1074                           llvm::utostr(CodeGenOpts.SSPBufferSize));
1075
1076    bool NoFramePointerElimNonLeaf;
1077    if (!CodeGenOpts.DisableFPElim) {
1078      NoFramePointerElimNonLeaf = false;
1079    } else if (CodeGenOpts.OmitLeafFramePointer) {
1080      NoFramePointerElimNonLeaf = true;
1081    } else {
1082      NoFramePointerElimNonLeaf = true;
1083    }
1084
1085    FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf",
1086                           llvm::toStringRef(NoFramePointerElimNonLeaf));
1087
1088    if (!CodeGenOpts.StackRealignment)
1089      FuncAttrs.addAttribute("no-realign-stack");
1090  }
1091
1092  QualType RetTy = FI.getReturnType();
1093  unsigned Index = 1;
1094  const ABIArgInfo &RetAI = FI.getReturnInfo();
1095  switch (RetAI.getKind()) {
1096  case ABIArgInfo::Extend:
1097    if (RetTy->hasSignedIntegerRepresentation())
1098      RetAttrs.addAttribute(llvm::Attribute::SExt);
1099    else if (RetTy->hasUnsignedIntegerRepresentation())
1100      RetAttrs.addAttribute(llvm::Attribute::ZExt);
1101    // FALL THROUGH
1102  case ABIArgInfo::Direct:
1103    if (RetAI.getInReg())
1104      RetAttrs.addAttribute(llvm::Attribute::InReg);
1105    break;
1106  case ABIArgInfo::Ignore:
1107    break;
1108
1109  case ABIArgInfo::Indirect: {
1110    llvm::AttrBuilder SRETAttrs;
1111    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1112    if (RetAI.getInReg())
1113      SRETAttrs.addAttribute(llvm::Attribute::InReg);
1114    PAL.push_back(llvm::
1115                  AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1116
1117    ++Index;
1118    // sret disables readnone and readonly
1119    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1120      .removeAttribute(llvm::Attribute::ReadNone);
1121    break;
1122  }
1123
1124  case ABIArgInfo::Expand:
1125    llvm_unreachable("Invalid ABI kind for return argument");
1126  }
1127
1128  if (RetAttrs.hasAttributes())
1129    PAL.push_back(llvm::
1130                  AttributeSet::get(getLLVMContext(),
1131                                    llvm::AttributeSet::ReturnIndex,
1132                                    RetAttrs));
1133
1134  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1135         ie = FI.arg_end(); it != ie; ++it) {
1136    QualType ParamType = it->type;
1137    const ABIArgInfo &AI = it->info;
1138    llvm::AttrBuilder Attrs;
1139
1140    if (AI.getPaddingType()) {
1141      if (AI.getPaddingInReg())
1142        PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1143                                              llvm::Attribute::InReg));
1144      // Increment Index if there is padding.
1145      ++Index;
1146    }
1147
1148    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1149    // have the corresponding parameter variable.  It doesn't make
1150    // sense to do it here because parameters are so messed up.
1151    switch (AI.getKind()) {
1152    case ABIArgInfo::Extend:
1153      if (ParamType->isSignedIntegerOrEnumerationType())
1154        Attrs.addAttribute(llvm::Attribute::SExt);
1155      else if (ParamType->isUnsignedIntegerOrEnumerationType())
1156        Attrs.addAttribute(llvm::Attribute::ZExt);
1157      // FALL THROUGH
1158    case ABIArgInfo::Direct:
1159      if (AI.getInReg())
1160        Attrs.addAttribute(llvm::Attribute::InReg);
1161
1162      // FIXME: handle sseregparm someday...
1163
1164      if (llvm::StructType *STy =
1165          dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1166        unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1167        if (Attrs.hasAttributes())
1168          for (unsigned I = 0; I < Extra; ++I)
1169            PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1170                                                  Attrs));
1171        Index += Extra;
1172      }
1173      break;
1174
1175    case ABIArgInfo::Indirect:
1176      if (AI.getInReg())
1177        Attrs.addAttribute(llvm::Attribute::InReg);
1178
1179      if (AI.getIndirectByVal())
1180        Attrs.addAttribute(llvm::Attribute::ByVal);
1181
1182      Attrs.addAlignmentAttr(AI.getIndirectAlign());
1183
1184      // byval disables readnone and readonly.
1185      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1186        .removeAttribute(llvm::Attribute::ReadNone);
1187      break;
1188
1189    case ABIArgInfo::Ignore:
1190      // Skip increment, no matching LLVM parameter.
1191      continue;
1192
1193    case ABIArgInfo::Expand: {
1194      SmallVector<llvm::Type*, 8> types;
1195      // FIXME: This is rather inefficient. Do we ever actually need to do
1196      // anything here? The result should be just reconstructed on the other
1197      // side, so extension should be a non-issue.
1198      getTypes().GetExpandedTypes(ParamType, types);
1199      Index += types.size();
1200      continue;
1201    }
1202    }
1203
1204    if (Attrs.hasAttributes())
1205      PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1206    ++Index;
1207  }
1208  if (FuncAttrs.hasAttributes())
1209    PAL.push_back(llvm::
1210                  AttributeSet::get(getLLVMContext(),
1211                                    llvm::AttributeSet::FunctionIndex,
1212                                    FuncAttrs));
1213}
1214
1215/// An argument came in as a promoted argument; demote it back to its
1216/// declared type.
1217static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1218                                         const VarDecl *var,
1219                                         llvm::Value *value) {
1220  llvm::Type *varType = CGF.ConvertType(var->getType());
1221
1222  // This can happen with promotions that actually don't change the
1223  // underlying type, like the enum promotions.
1224  if (value->getType() == varType) return value;
1225
1226  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1227         && "unexpected promotion type");
1228
1229  if (isa<llvm::IntegerType>(varType))
1230    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1231
1232  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1233}
1234
1235void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1236                                         llvm::Function *Fn,
1237                                         const FunctionArgList &Args) {
1238  // If this is an implicit-return-zero function, go ahead and
1239  // initialize the return value.  TODO: it might be nice to have
1240  // a more general mechanism for this that didn't require synthesized
1241  // return statements.
1242  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1243    if (FD->hasImplicitReturnZero()) {
1244      QualType RetTy = FD->getResultType().getUnqualifiedType();
1245      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1246      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1247      Builder.CreateStore(Zero, ReturnValue);
1248    }
1249  }
1250
1251  // FIXME: We no longer need the types from FunctionArgList; lift up and
1252  // simplify.
1253
1254  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1255  llvm::Function::arg_iterator AI = Fn->arg_begin();
1256
1257  // Name the struct return argument.
1258  if (CGM.ReturnTypeUsesSRet(FI)) {
1259    AI->setName("agg.result");
1260    AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1261                                        AI->getArgNo() + 1,
1262                                        llvm::Attribute::NoAlias));
1263    ++AI;
1264  }
1265
1266  assert(FI.arg_size() == Args.size() &&
1267         "Mismatch between function signature & arguments.");
1268  unsigned ArgNo = 1;
1269  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1270  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1271       i != e; ++i, ++info_it, ++ArgNo) {
1272    const VarDecl *Arg = *i;
1273    QualType Ty = info_it->type;
1274    const ABIArgInfo &ArgI = info_it->info;
1275
1276    bool isPromoted =
1277      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1278
1279    // Skip the dummy padding argument.
1280    if (ArgI.getPaddingType())
1281      ++AI;
1282
1283    switch (ArgI.getKind()) {
1284    case ABIArgInfo::Indirect: {
1285      llvm::Value *V = AI;
1286
1287      if (!hasScalarEvaluationKind(Ty)) {
1288        // Aggregates and complex variables are accessed by reference.  All we
1289        // need to do is realign the value, if requested
1290        if (ArgI.getIndirectRealign()) {
1291          llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1292
1293          // Copy from the incoming argument pointer to the temporary with the
1294          // appropriate alignment.
1295          //
1296          // FIXME: We should have a common utility for generating an aggregate
1297          // copy.
1298          llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1299          CharUnits Size = getContext().getTypeSizeInChars(Ty);
1300          llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1301          llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1302          Builder.CreateMemCpy(Dst,
1303                               Src,
1304                               llvm::ConstantInt::get(IntPtrTy,
1305                                                      Size.getQuantity()),
1306                               ArgI.getIndirectAlign(),
1307                               false);
1308          V = AlignedTemp;
1309        }
1310      } else {
1311        // Load scalar value from indirect argument.
1312        CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1313        V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1314
1315        if (isPromoted)
1316          V = emitArgumentDemotion(*this, Arg, V);
1317      }
1318      EmitParmDecl(*Arg, V, ArgNo);
1319      break;
1320    }
1321
1322    case ABIArgInfo::Extend:
1323    case ABIArgInfo::Direct: {
1324
1325      // If we have the trivial case, handle it with no muss and fuss.
1326      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1327          ArgI.getCoerceToType() == ConvertType(Ty) &&
1328          ArgI.getDirectOffset() == 0) {
1329        assert(AI != Fn->arg_end() && "Argument mismatch!");
1330        llvm::Value *V = AI;
1331
1332        if (Arg->getType().isRestrictQualified())
1333          AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1334                                              AI->getArgNo() + 1,
1335                                              llvm::Attribute::NoAlias));
1336
1337        // Ensure the argument is the correct type.
1338        if (V->getType() != ArgI.getCoerceToType())
1339          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1340
1341        if (isPromoted)
1342          V = emitArgumentDemotion(*this, Arg, V);
1343
1344        // Because of merging of function types from multiple decls it is
1345        // possible for the type of an argument to not match the corresponding
1346        // type in the function type. Since we are codegening the callee
1347        // in here, add a cast to the argument type.
1348        llvm::Type *LTy = ConvertType(Arg->getType());
1349        if (V->getType() != LTy)
1350          V = Builder.CreateBitCast(V, LTy);
1351
1352        EmitParmDecl(*Arg, V, ArgNo);
1353        break;
1354      }
1355
1356      llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1357
1358      // The alignment we need to use is the max of the requested alignment for
1359      // the argument plus the alignment required by our access code below.
1360      unsigned AlignmentToUse =
1361        CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1362      AlignmentToUse = std::max(AlignmentToUse,
1363                        (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1364
1365      Alloca->setAlignment(AlignmentToUse);
1366      llvm::Value *V = Alloca;
1367      llvm::Value *Ptr = V;    // Pointer to store into.
1368
1369      // If the value is offset in memory, apply the offset now.
1370      if (unsigned Offs = ArgI.getDirectOffset()) {
1371        Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1372        Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1373        Ptr = Builder.CreateBitCast(Ptr,
1374                          llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1375      }
1376
1377      // If the coerce-to type is a first class aggregate, we flatten it and
1378      // pass the elements. Either way is semantically identical, but fast-isel
1379      // and the optimizer generally likes scalar values better than FCAs.
1380      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1381      if (STy && STy->getNumElements() > 1) {
1382        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1383        llvm::Type *DstTy =
1384          cast<llvm::PointerType>(Ptr->getType())->getElementType();
1385        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1386
1387        if (SrcSize <= DstSize) {
1388          Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1389
1390          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1391            assert(AI != Fn->arg_end() && "Argument mismatch!");
1392            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1393            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1394            Builder.CreateStore(AI++, EltPtr);
1395          }
1396        } else {
1397          llvm::AllocaInst *TempAlloca =
1398            CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1399          TempAlloca->setAlignment(AlignmentToUse);
1400          llvm::Value *TempV = TempAlloca;
1401
1402          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1403            assert(AI != Fn->arg_end() && "Argument mismatch!");
1404            AI->setName(Arg->getName() + ".coerce" + Twine(i));
1405            llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1406            Builder.CreateStore(AI++, EltPtr);
1407          }
1408
1409          Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1410        }
1411      } else {
1412        // Simple case, just do a coerced store of the argument into the alloca.
1413        assert(AI != Fn->arg_end() && "Argument mismatch!");
1414        AI->setName(Arg->getName() + ".coerce");
1415        CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1416      }
1417
1418
1419      // Match to what EmitParmDecl is expecting for this type.
1420      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1421        V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1422        if (isPromoted)
1423          V = emitArgumentDemotion(*this, Arg, V);
1424      }
1425      EmitParmDecl(*Arg, V, ArgNo);
1426      continue;  // Skip ++AI increment, already done.
1427    }
1428
1429    case ABIArgInfo::Expand: {
1430      // If this structure was expanded into multiple arguments then
1431      // we need to create a temporary and reconstruct it from the
1432      // arguments.
1433      llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1434      CharUnits Align = getContext().getDeclAlign(Arg);
1435      Alloca->setAlignment(Align.getQuantity());
1436      LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1437      llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1438      EmitParmDecl(*Arg, Alloca, ArgNo);
1439
1440      // Name the arguments used in expansion and increment AI.
1441      unsigned Index = 0;
1442      for (; AI != End; ++AI, ++Index)
1443        AI->setName(Arg->getName() + "." + Twine(Index));
1444      continue;
1445    }
1446
1447    case ABIArgInfo::Ignore:
1448      // Initialize the local variable appropriately.
1449      if (!hasScalarEvaluationKind(Ty))
1450        EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1451      else
1452        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1453                     ArgNo);
1454
1455      // Skip increment, no matching LLVM parameter.
1456      continue;
1457    }
1458
1459    ++AI;
1460  }
1461  assert(AI == Fn->arg_end() && "Argument mismatch!");
1462}
1463
1464static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1465  while (insn->use_empty()) {
1466    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1467    if (!bitcast) return;
1468
1469    // This is "safe" because we would have used a ConstantExpr otherwise.
1470    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1471    bitcast->eraseFromParent();
1472  }
1473}
1474
1475/// Try to emit a fused autorelease of a return result.
1476static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1477                                                    llvm::Value *result) {
1478  // We must be immediately followed the cast.
1479  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1480  if (BB->empty()) return 0;
1481  if (&BB->back() != result) return 0;
1482
1483  llvm::Type *resultType = result->getType();
1484
1485  // result is in a BasicBlock and is therefore an Instruction.
1486  llvm::Instruction *generator = cast<llvm::Instruction>(result);
1487
1488  SmallVector<llvm::Instruction*,4> insnsToKill;
1489
1490  // Look for:
1491  //  %generator = bitcast %type1* %generator2 to %type2*
1492  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1493    // We would have emitted this as a constant if the operand weren't
1494    // an Instruction.
1495    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1496
1497    // Require the generator to be immediately followed by the cast.
1498    if (generator->getNextNode() != bitcast)
1499      return 0;
1500
1501    insnsToKill.push_back(bitcast);
1502  }
1503
1504  // Look for:
1505  //   %generator = call i8* @objc_retain(i8* %originalResult)
1506  // or
1507  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1508  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1509  if (!call) return 0;
1510
1511  bool doRetainAutorelease;
1512
1513  if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1514    doRetainAutorelease = true;
1515  } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1516                                          .objc_retainAutoreleasedReturnValue) {
1517    doRetainAutorelease = false;
1518
1519    // If we emitted an assembly marker for this call (and the
1520    // ARCEntrypoints field should have been set if so), go looking
1521    // for that call.  If we can't find it, we can't do this
1522    // optimization.  But it should always be the immediately previous
1523    // instruction, unless we needed bitcasts around the call.
1524    if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1525      llvm::Instruction *prev = call->getPrevNode();
1526      assert(prev);
1527      if (isa<llvm::BitCastInst>(prev)) {
1528        prev = prev->getPrevNode();
1529        assert(prev);
1530      }
1531      assert(isa<llvm::CallInst>(prev));
1532      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1533               CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1534      insnsToKill.push_back(prev);
1535    }
1536  } else {
1537    return 0;
1538  }
1539
1540  result = call->getArgOperand(0);
1541  insnsToKill.push_back(call);
1542
1543  // Keep killing bitcasts, for sanity.  Note that we no longer care
1544  // about precise ordering as long as there's exactly one use.
1545  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1546    if (!bitcast->hasOneUse()) break;
1547    insnsToKill.push_back(bitcast);
1548    result = bitcast->getOperand(0);
1549  }
1550
1551  // Delete all the unnecessary instructions, from latest to earliest.
1552  for (SmallVectorImpl<llvm::Instruction*>::iterator
1553         i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1554    (*i)->eraseFromParent();
1555
1556  // Do the fused retain/autorelease if we were asked to.
1557  if (doRetainAutorelease)
1558    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1559
1560  // Cast back to the result type.
1561  return CGF.Builder.CreateBitCast(result, resultType);
1562}
1563
1564/// If this is a +1 of the value of an immutable 'self', remove it.
1565static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1566                                          llvm::Value *result) {
1567  // This is only applicable to a method with an immutable 'self'.
1568  const ObjCMethodDecl *method =
1569    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1570  if (!method) return 0;
1571  const VarDecl *self = method->getSelfDecl();
1572  if (!self->getType().isConstQualified()) return 0;
1573
1574  // Look for a retain call.
1575  llvm::CallInst *retainCall =
1576    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1577  if (!retainCall ||
1578      retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1579    return 0;
1580
1581  // Look for an ordinary load of 'self'.
1582  llvm::Value *retainedValue = retainCall->getArgOperand(0);
1583  llvm::LoadInst *load =
1584    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1585  if (!load || load->isAtomic() || load->isVolatile() ||
1586      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1587    return 0;
1588
1589  // Okay!  Burn it all down.  This relies for correctness on the
1590  // assumption that the retain is emitted as part of the return and
1591  // that thereafter everything is used "linearly".
1592  llvm::Type *resultType = result->getType();
1593  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1594  assert(retainCall->use_empty());
1595  retainCall->eraseFromParent();
1596  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1597
1598  return CGF.Builder.CreateBitCast(load, resultType);
1599}
1600
1601/// Emit an ARC autorelease of the result of a function.
1602///
1603/// \return the value to actually return from the function
1604static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1605                                            llvm::Value *result) {
1606  // If we're returning 'self', kill the initial retain.  This is a
1607  // heuristic attempt to "encourage correctness" in the really unfortunate
1608  // case where we have a return of self during a dealloc and we desperately
1609  // need to avoid the possible autorelease.
1610  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1611    return self;
1612
1613  // At -O0, try to emit a fused retain/autorelease.
1614  if (CGF.shouldUseFusedARCCalls())
1615    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1616      return fused;
1617
1618  return CGF.EmitARCAutoreleaseReturnValue(result);
1619}
1620
1621/// Heuristically search for a dominating store to the return-value slot.
1622static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1623  // If there are multiple uses of the return-value slot, just check
1624  // for something immediately preceding the IP.  Sometimes this can
1625  // happen with how we generate implicit-returns; it can also happen
1626  // with noreturn cleanups.
1627  if (!CGF.ReturnValue->hasOneUse()) {
1628    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1629    if (IP->empty()) return 0;
1630    llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1631    if (!store) return 0;
1632    if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1633    assert(!store->isAtomic() && !store->isVolatile()); // see below
1634    return store;
1635  }
1636
1637  llvm::StoreInst *store =
1638    dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1639  if (!store) return 0;
1640
1641  // These aren't actually possible for non-coerced returns, and we
1642  // only care about non-coerced returns on this code path.
1643  assert(!store->isAtomic() && !store->isVolatile());
1644
1645  // Now do a first-and-dirty dominance check: just walk up the
1646  // single-predecessors chain from the current insertion point.
1647  llvm::BasicBlock *StoreBB = store->getParent();
1648  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1649  while (IP != StoreBB) {
1650    if (!(IP = IP->getSinglePredecessor()))
1651      return 0;
1652  }
1653
1654  // Okay, the store's basic block dominates the insertion point; we
1655  // can do our thing.
1656  return store;
1657}
1658
1659void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1660                                         bool EmitRetDbgLoc) {
1661  // Functions with no result always return void.
1662  if (ReturnValue == 0) {
1663    Builder.CreateRetVoid();
1664    return;
1665  }
1666
1667  llvm::DebugLoc RetDbgLoc;
1668  llvm::Value *RV = 0;
1669  QualType RetTy = FI.getReturnType();
1670  const ABIArgInfo &RetAI = FI.getReturnInfo();
1671
1672  switch (RetAI.getKind()) {
1673  case ABIArgInfo::Indirect: {
1674    switch (getEvaluationKind(RetTy)) {
1675    case TEK_Complex: {
1676      ComplexPairTy RT =
1677        EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
1678      EmitStoreOfComplex(RT,
1679                       MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1680                         /*isInit*/ true);
1681      break;
1682    }
1683    case TEK_Aggregate:
1684      // Do nothing; aggregrates get evaluated directly into the destination.
1685      break;
1686    case TEK_Scalar:
1687      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1688                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1689                        /*isInit*/ true);
1690      break;
1691    }
1692    break;
1693  }
1694
1695  case ABIArgInfo::Extend:
1696  case ABIArgInfo::Direct:
1697    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1698        RetAI.getDirectOffset() == 0) {
1699      // The internal return value temp always will have pointer-to-return-type
1700      // type, just do a load.
1701
1702      // If there is a dominating store to ReturnValue, we can elide
1703      // the load, zap the store, and usually zap the alloca.
1704      if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1705        // Reuse the debug location from the store unless there is
1706        // cleanup code to be emitted between the store and return
1707        // instruction.
1708        if (EmitRetDbgLoc && !AutoreleaseResult)
1709          RetDbgLoc = SI->getDebugLoc();
1710        // Get the stored value and nuke the now-dead store.
1711        RV = SI->getValueOperand();
1712        SI->eraseFromParent();
1713
1714        // If that was the only use of the return value, nuke it as well now.
1715        if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1716          cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1717          ReturnValue = 0;
1718        }
1719
1720      // Otherwise, we have to do a simple load.
1721      } else {
1722        RV = Builder.CreateLoad(ReturnValue);
1723      }
1724    } else {
1725      llvm::Value *V = ReturnValue;
1726      // If the value is offset in memory, apply the offset now.
1727      if (unsigned Offs = RetAI.getDirectOffset()) {
1728        V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1729        V = Builder.CreateConstGEP1_32(V, Offs);
1730        V = Builder.CreateBitCast(V,
1731                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1732      }
1733
1734      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1735    }
1736
1737    // In ARC, end functions that return a retainable type with a call
1738    // to objc_autoreleaseReturnValue.
1739    if (AutoreleaseResult) {
1740      assert(getLangOpts().ObjCAutoRefCount &&
1741             !FI.isReturnsRetained() &&
1742             RetTy->isObjCRetainableType());
1743      RV = emitAutoreleaseOfResult(*this, RV);
1744    }
1745
1746    break;
1747
1748  case ABIArgInfo::Ignore:
1749    break;
1750
1751  case ABIArgInfo::Expand:
1752    llvm_unreachable("Invalid ABI kind for return argument");
1753  }
1754
1755  llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1756  if (!RetDbgLoc.isUnknown())
1757    Ret->setDebugLoc(RetDbgLoc);
1758}
1759
1760void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1761                                          const VarDecl *param) {
1762  // StartFunction converted the ABI-lowered parameter(s) into a
1763  // local alloca.  We need to turn that into an r-value suitable
1764  // for EmitCall.
1765  llvm::Value *local = GetAddrOfLocalVar(param);
1766
1767  QualType type = param->getType();
1768
1769  // For the most part, we just need to load the alloca, except:
1770  // 1) aggregate r-values are actually pointers to temporaries, and
1771  // 2) references to non-scalars are pointers directly to the aggregate.
1772  // I don't know why references to scalars are different here.
1773  if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1774    if (!hasScalarEvaluationKind(ref->getPointeeType()))
1775      return args.add(RValue::getAggregate(local), type);
1776
1777    // Locals which are references to scalars are represented
1778    // with allocas holding the pointer.
1779    return args.add(RValue::get(Builder.CreateLoad(local)), type);
1780  }
1781
1782  args.add(convertTempToRValue(local, type), type);
1783}
1784
1785static bool isProvablyNull(llvm::Value *addr) {
1786  return isa<llvm::ConstantPointerNull>(addr);
1787}
1788
1789static bool isProvablyNonNull(llvm::Value *addr) {
1790  return isa<llvm::AllocaInst>(addr);
1791}
1792
1793/// Emit the actual writing-back of a writeback.
1794static void emitWriteback(CodeGenFunction &CGF,
1795                          const CallArgList::Writeback &writeback) {
1796  const LValue &srcLV = writeback.Source;
1797  llvm::Value *srcAddr = srcLV.getAddress();
1798  assert(!isProvablyNull(srcAddr) &&
1799         "shouldn't have writeback for provably null argument");
1800
1801  llvm::BasicBlock *contBB = 0;
1802
1803  // If the argument wasn't provably non-null, we need to null check
1804  // before doing the store.
1805  bool provablyNonNull = isProvablyNonNull(srcAddr);
1806  if (!provablyNonNull) {
1807    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1808    contBB = CGF.createBasicBlock("icr.done");
1809
1810    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1811    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1812    CGF.EmitBlock(writebackBB);
1813  }
1814
1815  // Load the value to writeback.
1816  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1817
1818  // Cast it back, in case we're writing an id to a Foo* or something.
1819  value = CGF.Builder.CreateBitCast(value,
1820               cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1821                            "icr.writeback-cast");
1822
1823  // Perform the writeback.
1824
1825  // If we have a "to use" value, it's something we need to emit a use
1826  // of.  This has to be carefully threaded in: if it's done after the
1827  // release it's potentially undefined behavior (and the optimizer
1828  // will ignore it), and if it happens before the retain then the
1829  // optimizer could move the release there.
1830  if (writeback.ToUse) {
1831    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1832
1833    // Retain the new value.  No need to block-copy here:  the block's
1834    // being passed up the stack.
1835    value = CGF.EmitARCRetainNonBlock(value);
1836
1837    // Emit the intrinsic use here.
1838    CGF.EmitARCIntrinsicUse(writeback.ToUse);
1839
1840    // Load the old value (primitively).
1841    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
1842
1843    // Put the new value in place (primitively).
1844    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1845
1846    // Release the old value.
1847    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1848
1849  // Otherwise, we can just do a normal lvalue store.
1850  } else {
1851    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1852  }
1853
1854  // Jump to the continuation block.
1855  if (!provablyNonNull)
1856    CGF.EmitBlock(contBB);
1857}
1858
1859static void emitWritebacks(CodeGenFunction &CGF,
1860                           const CallArgList &args) {
1861  for (CallArgList::writeback_iterator
1862         i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1863    emitWriteback(CGF, *i);
1864}
1865
1866static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
1867                                            const CallArgList &CallArgs) {
1868  assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
1869  ArrayRef<CallArgList::CallArgCleanup> Cleanups =
1870    CallArgs.getCleanupsToDeactivate();
1871  // Iterate in reverse to increase the likelihood of popping the cleanup.
1872  for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
1873         I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
1874    CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
1875    I->IsActiveIP->eraseFromParent();
1876  }
1877}
1878
1879static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1880  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1881    if (uop->getOpcode() == UO_AddrOf)
1882      return uop->getSubExpr();
1883  return 0;
1884}
1885
1886/// Emit an argument that's being passed call-by-writeback.  That is,
1887/// we are passing the address of
1888static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1889                             const ObjCIndirectCopyRestoreExpr *CRE) {
1890  LValue srcLV;
1891
1892  // Make an optimistic effort to emit the address as an l-value.
1893  // This can fail if the the argument expression is more complicated.
1894  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1895    srcLV = CGF.EmitLValue(lvExpr);
1896
1897  // Otherwise, just emit it as a scalar.
1898  } else {
1899    llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1900
1901    QualType srcAddrType =
1902      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1903    srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1904  }
1905  llvm::Value *srcAddr = srcLV.getAddress();
1906
1907  // The dest and src types don't necessarily match in LLVM terms
1908  // because of the crazy ObjC compatibility rules.
1909
1910  llvm::PointerType *destType =
1911    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1912
1913  // If the address is a constant null, just pass the appropriate null.
1914  if (isProvablyNull(srcAddr)) {
1915    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1916             CRE->getType());
1917    return;
1918  }
1919
1920  // Create the temporary.
1921  llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1922                                           "icr.temp");
1923  // Loading an l-value can introduce a cleanup if the l-value is __weak,
1924  // and that cleanup will be conditional if we can't prove that the l-value
1925  // isn't null, so we need to register a dominating point so that the cleanups
1926  // system will make valid IR.
1927  CodeGenFunction::ConditionalEvaluation condEval(CGF);
1928
1929  // Zero-initialize it if we're not doing a copy-initialization.
1930  bool shouldCopy = CRE->shouldCopy();
1931  if (!shouldCopy) {
1932    llvm::Value *null =
1933      llvm::ConstantPointerNull::get(
1934        cast<llvm::PointerType>(destType->getElementType()));
1935    CGF.Builder.CreateStore(null, temp);
1936  }
1937
1938  llvm::BasicBlock *contBB = 0;
1939  llvm::BasicBlock *originBB = 0;
1940
1941  // If the address is *not* known to be non-null, we need to switch.
1942  llvm::Value *finalArgument;
1943
1944  bool provablyNonNull = isProvablyNonNull(srcAddr);
1945  if (provablyNonNull) {
1946    finalArgument = temp;
1947  } else {
1948    llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1949
1950    finalArgument = CGF.Builder.CreateSelect(isNull,
1951                                   llvm::ConstantPointerNull::get(destType),
1952                                             temp, "icr.argument");
1953
1954    // If we need to copy, then the load has to be conditional, which
1955    // means we need control flow.
1956    if (shouldCopy) {
1957      originBB = CGF.Builder.GetInsertBlock();
1958      contBB = CGF.createBasicBlock("icr.cont");
1959      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1960      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1961      CGF.EmitBlock(copyBB);
1962      condEval.begin(CGF);
1963    }
1964  }
1965
1966  llvm::Value *valueToUse = 0;
1967
1968  // Perform a copy if necessary.
1969  if (shouldCopy) {
1970    RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1971    assert(srcRV.isScalar());
1972
1973    llvm::Value *src = srcRV.getScalarVal();
1974    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1975                                    "icr.cast");
1976
1977    // Use an ordinary store, not a store-to-lvalue.
1978    CGF.Builder.CreateStore(src, temp);
1979
1980    // If optimization is enabled, and the value was held in a
1981    // __strong variable, we need to tell the optimizer that this
1982    // value has to stay alive until we're doing the store back.
1983    // This is because the temporary is effectively unretained,
1984    // and so otherwise we can violate the high-level semantics.
1985    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1986        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1987      valueToUse = src;
1988    }
1989  }
1990
1991  // Finish the control flow if we needed it.
1992  if (shouldCopy && !provablyNonNull) {
1993    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1994    CGF.EmitBlock(contBB);
1995
1996    // Make a phi for the value to intrinsically use.
1997    if (valueToUse) {
1998      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
1999                                                      "icr.to-use");
2000      phiToUse->addIncoming(valueToUse, copyBB);
2001      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2002                            originBB);
2003      valueToUse = phiToUse;
2004    }
2005
2006    condEval.end(CGF);
2007  }
2008
2009  args.addWriteback(srcLV, temp, valueToUse);
2010  args.add(RValue::get(finalArgument), CRE->getType());
2011}
2012
2013void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2014                                  QualType type) {
2015  if (const ObjCIndirectCopyRestoreExpr *CRE
2016        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2017    assert(getLangOpts().ObjCAutoRefCount);
2018    assert(getContext().hasSameType(E->getType(), type));
2019    return emitWritebackArg(*this, args, CRE);
2020  }
2021
2022  assert(type->isReferenceType() == E->isGLValue() &&
2023         "reference binding to unmaterialized r-value!");
2024
2025  if (E->isGLValue()) {
2026    assert(E->getObjectKind() == OK_Ordinary);
2027    return args.add(EmitReferenceBindingToExpr(E), type);
2028  }
2029
2030  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2031
2032  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2033  // However, we still have to push an EH-only cleanup in case we unwind before
2034  // we make it to the call.
2035  if (HasAggregateEvalKind &&
2036      CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
2037    const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2038    if (RD && RD->hasNonTrivialDestructor()) {
2039      AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
2040      Slot.setExternallyDestructed();
2041      EmitAggExpr(E, Slot);
2042      RValue RV = Slot.asRValue();
2043      args.add(RV, type);
2044
2045      pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
2046                  /*useEHCleanupForArray*/ true);
2047      // This unreachable is a temporary marker which will be removed later.
2048      llvm::Instruction *IsActive = Builder.CreateUnreachable();
2049      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2050      return;
2051    }
2052  }
2053
2054  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2055      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2056    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2057    assert(L.isSimple());
2058    if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2059      args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2060    } else {
2061      // We can't represent a misaligned lvalue in the CallArgList, so copy
2062      // to an aligned temporary now.
2063      llvm::Value *tmp = CreateMemTemp(type);
2064      EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2065                        L.getAlignment());
2066      args.add(RValue::getAggregate(tmp), type);
2067    }
2068    return;
2069  }
2070
2071  args.add(EmitAnyExprToTemp(E), type);
2072}
2073
2074// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2075// optimizer it can aggressively ignore unwind edges.
2076void
2077CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2078  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2079      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2080    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2081                      CGM.getNoObjCARCExceptionsMetadata());
2082}
2083
2084/// Emits a call to the given no-arguments nounwind runtime function.
2085llvm::CallInst *
2086CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2087                                         const llvm::Twine &name) {
2088  return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2089}
2090
2091/// Emits a call to the given nounwind runtime function.
2092llvm::CallInst *
2093CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2094                                         ArrayRef<llvm::Value*> args,
2095                                         const llvm::Twine &name) {
2096  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2097  call->setDoesNotThrow();
2098  return call;
2099}
2100
2101/// Emits a simple call (never an invoke) to the given no-arguments
2102/// runtime function.
2103llvm::CallInst *
2104CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2105                                 const llvm::Twine &name) {
2106  return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2107}
2108
2109/// Emits a simple call (never an invoke) to the given runtime
2110/// function.
2111llvm::CallInst *
2112CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2113                                 ArrayRef<llvm::Value*> args,
2114                                 const llvm::Twine &name) {
2115  llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2116  call->setCallingConv(getRuntimeCC());
2117  return call;
2118}
2119
2120/// Emits a call or invoke to the given noreturn runtime function.
2121void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2122                                               ArrayRef<llvm::Value*> args) {
2123  if (getInvokeDest()) {
2124    llvm::InvokeInst *invoke =
2125      Builder.CreateInvoke(callee,
2126                           getUnreachableBlock(),
2127                           getInvokeDest(),
2128                           args);
2129    invoke->setDoesNotReturn();
2130    invoke->setCallingConv(getRuntimeCC());
2131  } else {
2132    llvm::CallInst *call = Builder.CreateCall(callee, args);
2133    call->setDoesNotReturn();
2134    call->setCallingConv(getRuntimeCC());
2135    Builder.CreateUnreachable();
2136  }
2137}
2138
2139/// Emits a call or invoke instruction to the given nullary runtime
2140/// function.
2141llvm::CallSite
2142CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2143                                         const Twine &name) {
2144  return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2145}
2146
2147/// Emits a call or invoke instruction to the given runtime function.
2148llvm::CallSite
2149CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2150                                         ArrayRef<llvm::Value*> args,
2151                                         const Twine &name) {
2152  llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2153  callSite.setCallingConv(getRuntimeCC());
2154  return callSite;
2155}
2156
2157llvm::CallSite
2158CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2159                                  const Twine &Name) {
2160  return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2161}
2162
2163/// Emits a call or invoke instruction to the given function, depending
2164/// on the current state of the EH stack.
2165llvm::CallSite
2166CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2167                                  ArrayRef<llvm::Value *> Args,
2168                                  const Twine &Name) {
2169  llvm::BasicBlock *InvokeDest = getInvokeDest();
2170
2171  llvm::Instruction *Inst;
2172  if (!InvokeDest)
2173    Inst = Builder.CreateCall(Callee, Args, Name);
2174  else {
2175    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2176    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2177    EmitBlock(ContBB);
2178  }
2179
2180  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2181  // optimizer it can aggressively ignore unwind edges.
2182  if (CGM.getLangOpts().ObjCAutoRefCount)
2183    AddObjCARCExceptionMetadata(Inst);
2184
2185  return Inst;
2186}
2187
2188static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2189                            llvm::FunctionType *FTy) {
2190  if (ArgNo < FTy->getNumParams())
2191    assert(Elt->getType() == FTy->getParamType(ArgNo));
2192  else
2193    assert(FTy->isVarArg());
2194  ++ArgNo;
2195}
2196
2197void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2198                                       SmallVectorImpl<llvm::Value *> &Args,
2199                                       llvm::FunctionType *IRFuncTy) {
2200  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2201    unsigned NumElts = AT->getSize().getZExtValue();
2202    QualType EltTy = AT->getElementType();
2203    llvm::Value *Addr = RV.getAggregateAddr();
2204    for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2205      llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2206      RValue EltRV = convertTempToRValue(EltAddr, EltTy);
2207      ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2208    }
2209  } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2210    RecordDecl *RD = RT->getDecl();
2211    assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2212    LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2213
2214    if (RD->isUnion()) {
2215      const FieldDecl *LargestFD = 0;
2216      CharUnits UnionSize = CharUnits::Zero();
2217
2218      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2219           i != e; ++i) {
2220        const FieldDecl *FD = *i;
2221        assert(!FD->isBitField() &&
2222               "Cannot expand structure with bit-field members.");
2223        CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2224        if (UnionSize < FieldSize) {
2225          UnionSize = FieldSize;
2226          LargestFD = FD;
2227        }
2228      }
2229      if (LargestFD) {
2230        RValue FldRV = EmitRValueForField(LV, LargestFD);
2231        ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2232      }
2233    } else {
2234      for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2235           i != e; ++i) {
2236        FieldDecl *FD = *i;
2237
2238        RValue FldRV = EmitRValueForField(LV, FD);
2239        ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2240      }
2241    }
2242  } else if (Ty->isAnyComplexType()) {
2243    ComplexPairTy CV = RV.getComplexVal();
2244    Args.push_back(CV.first);
2245    Args.push_back(CV.second);
2246  } else {
2247    assert(RV.isScalar() &&
2248           "Unexpected non-scalar rvalue during struct expansion.");
2249
2250    // Insert a bitcast as needed.
2251    llvm::Value *V = RV.getScalarVal();
2252    if (Args.size() < IRFuncTy->getNumParams() &&
2253        V->getType() != IRFuncTy->getParamType(Args.size()))
2254      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2255
2256    Args.push_back(V);
2257  }
2258}
2259
2260
2261RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2262                                 llvm::Value *Callee,
2263                                 ReturnValueSlot ReturnValue,
2264                                 const CallArgList &CallArgs,
2265                                 const Decl *TargetDecl,
2266                                 llvm::Instruction **callOrInvoke) {
2267  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2268  SmallVector<llvm::Value*, 16> Args;
2269
2270  // Handle struct-return functions by passing a pointer to the
2271  // location that we would like to return into.
2272  QualType RetTy = CallInfo.getReturnType();
2273  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2274
2275  // IRArgNo - Keep track of the argument number in the callee we're looking at.
2276  unsigned IRArgNo = 0;
2277  llvm::FunctionType *IRFuncTy =
2278    cast<llvm::FunctionType>(
2279                  cast<llvm::PointerType>(Callee->getType())->getElementType());
2280
2281  // If the call returns a temporary with struct return, create a temporary
2282  // alloca to hold the result, unless one is given to us.
2283  if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2284    llvm::Value *Value = ReturnValue.getValue();
2285    if (!Value)
2286      Value = CreateMemTemp(RetTy);
2287    Args.push_back(Value);
2288    checkArgMatches(Value, IRArgNo, IRFuncTy);
2289  }
2290
2291  assert(CallInfo.arg_size() == CallArgs.size() &&
2292         "Mismatch between function signature & arguments.");
2293  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2294  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2295       I != E; ++I, ++info_it) {
2296    const ABIArgInfo &ArgInfo = info_it->info;
2297    RValue RV = I->RV;
2298
2299    CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2300
2301    // Insert a padding argument to ensure proper alignment.
2302    if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2303      Args.push_back(llvm::UndefValue::get(PaddingType));
2304      ++IRArgNo;
2305    }
2306
2307    switch (ArgInfo.getKind()) {
2308    case ABIArgInfo::Indirect: {
2309      if (RV.isScalar() || RV.isComplex()) {
2310        // Make a temporary alloca to pass the argument.
2311        llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2312        if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2313          AI->setAlignment(ArgInfo.getIndirectAlign());
2314        Args.push_back(AI);
2315
2316        LValue argLV =
2317          MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2318
2319        if (RV.isScalar())
2320          EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2321        else
2322          EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2323
2324        // Validate argument match.
2325        checkArgMatches(AI, IRArgNo, IRFuncTy);
2326      } else {
2327        // We want to avoid creating an unnecessary temporary+copy here;
2328        // however, we need one in three cases:
2329        // 1. If the argument is not byval, and we are required to copy the
2330        //    source.  (This case doesn't occur on any common architecture.)
2331        // 2. If the argument is byval, RV is not sufficiently aligned, and
2332        //    we cannot force it to be sufficiently aligned.
2333        // 3. If the argument is byval, but RV is located in an address space
2334        //    different than that of the argument (0).
2335        llvm::Value *Addr = RV.getAggregateAddr();
2336        unsigned Align = ArgInfo.getIndirectAlign();
2337        const llvm::DataLayout *TD = &CGM.getDataLayout();
2338        const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2339        const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2340          IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2341        if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2342            (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2343             llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2344             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2345          // Create an aligned temporary, and copy to it.
2346          llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2347          if (Align > AI->getAlignment())
2348            AI->setAlignment(Align);
2349          Args.push_back(AI);
2350          EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2351
2352          // Validate argument match.
2353          checkArgMatches(AI, IRArgNo, IRFuncTy);
2354        } else {
2355          // Skip the extra memcpy call.
2356          Args.push_back(Addr);
2357
2358          // Validate argument match.
2359          checkArgMatches(Addr, IRArgNo, IRFuncTy);
2360        }
2361      }
2362      break;
2363    }
2364
2365    case ABIArgInfo::Ignore:
2366      break;
2367
2368    case ABIArgInfo::Extend:
2369    case ABIArgInfo::Direct: {
2370      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2371          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2372          ArgInfo.getDirectOffset() == 0) {
2373        llvm::Value *V;
2374        if (RV.isScalar())
2375          V = RV.getScalarVal();
2376        else
2377          V = Builder.CreateLoad(RV.getAggregateAddr());
2378
2379        // If the argument doesn't match, perform a bitcast to coerce it.  This
2380        // can happen due to trivial type mismatches.
2381        if (IRArgNo < IRFuncTy->getNumParams() &&
2382            V->getType() != IRFuncTy->getParamType(IRArgNo))
2383          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2384        Args.push_back(V);
2385
2386        checkArgMatches(V, IRArgNo, IRFuncTy);
2387        break;
2388      }
2389
2390      // FIXME: Avoid the conversion through memory if possible.
2391      llvm::Value *SrcPtr;
2392      if (RV.isScalar() || RV.isComplex()) {
2393        SrcPtr = CreateMemTemp(I->Ty, "coerce");
2394        LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2395        if (RV.isScalar()) {
2396          EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2397        } else {
2398          EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2399        }
2400      } else
2401        SrcPtr = RV.getAggregateAddr();
2402
2403      // If the value is offset in memory, apply the offset now.
2404      if (unsigned Offs = ArgInfo.getDirectOffset()) {
2405        SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2406        SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2407        SrcPtr = Builder.CreateBitCast(SrcPtr,
2408                       llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2409
2410      }
2411
2412      // If the coerce-to type is a first class aggregate, we flatten it and
2413      // pass the elements. Either way is semantically identical, but fast-isel
2414      // and the optimizer generally likes scalar values better than FCAs.
2415      if (llvm::StructType *STy =
2416            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2417        llvm::Type *SrcTy =
2418          cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2419        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2420        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2421
2422        // If the source type is smaller than the destination type of the
2423        // coerce-to logic, copy the source value into a temp alloca the size
2424        // of the destination type to allow loading all of it. The bits past
2425        // the source value are left undef.
2426        if (SrcSize < DstSize) {
2427          llvm::AllocaInst *TempAlloca
2428            = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2429          Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2430          SrcPtr = TempAlloca;
2431        } else {
2432          SrcPtr = Builder.CreateBitCast(SrcPtr,
2433                                         llvm::PointerType::getUnqual(STy));
2434        }
2435
2436        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2437          llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2438          llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2439          // We don't know what we're loading from.
2440          LI->setAlignment(1);
2441          Args.push_back(LI);
2442
2443          // Validate argument match.
2444          checkArgMatches(LI, IRArgNo, IRFuncTy);
2445        }
2446      } else {
2447        // In the simple case, just pass the coerced loaded value.
2448        Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2449                                         *this));
2450
2451        // Validate argument match.
2452        checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2453      }
2454
2455      break;
2456    }
2457
2458    case ABIArgInfo::Expand:
2459      ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2460      IRArgNo = Args.size();
2461      break;
2462    }
2463  }
2464
2465  if (!CallArgs.getCleanupsToDeactivate().empty())
2466    deactivateArgCleanupsBeforeCall(*this, CallArgs);
2467
2468  // If the callee is a bitcast of a function to a varargs pointer to function
2469  // type, check to see if we can remove the bitcast.  This handles some cases
2470  // with unprototyped functions.
2471  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2472    if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2473      llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2474      llvm::FunctionType *CurFT =
2475        cast<llvm::FunctionType>(CurPT->getElementType());
2476      llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2477
2478      if (CE->getOpcode() == llvm::Instruction::BitCast &&
2479          ActualFT->getReturnType() == CurFT->getReturnType() &&
2480          ActualFT->getNumParams() == CurFT->getNumParams() &&
2481          ActualFT->getNumParams() == Args.size() &&
2482          (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2483        bool ArgsMatch = true;
2484        for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2485          if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2486            ArgsMatch = false;
2487            break;
2488          }
2489
2490        // Strip the cast if we can get away with it.  This is a nice cleanup,
2491        // but also allows us to inline the function at -O0 if it is marked
2492        // always_inline.
2493        if (ArgsMatch)
2494          Callee = CalleeF;
2495      }
2496    }
2497
2498  unsigned CallingConv;
2499  CodeGen::AttributeListType AttributeList;
2500  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2501                             CallingConv, true);
2502  llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2503                                                     AttributeList);
2504
2505  llvm::BasicBlock *InvokeDest = 0;
2506  if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2507                          llvm::Attribute::NoUnwind))
2508    InvokeDest = getInvokeDest();
2509
2510  llvm::CallSite CS;
2511  if (!InvokeDest) {
2512    CS = Builder.CreateCall(Callee, Args);
2513  } else {
2514    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2515    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2516    EmitBlock(Cont);
2517  }
2518  if (callOrInvoke)
2519    *callOrInvoke = CS.getInstruction();
2520
2521  CS.setAttributes(Attrs);
2522  CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2523
2524  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2525  // optimizer it can aggressively ignore unwind edges.
2526  if (CGM.getLangOpts().ObjCAutoRefCount)
2527    AddObjCARCExceptionMetadata(CS.getInstruction());
2528
2529  // If the call doesn't return, finish the basic block and clear the
2530  // insertion point; this allows the rest of IRgen to discard
2531  // unreachable code.
2532  if (CS.doesNotReturn()) {
2533    Builder.CreateUnreachable();
2534    Builder.ClearInsertionPoint();
2535
2536    // FIXME: For now, emit a dummy basic block because expr emitters in
2537    // generally are not ready to handle emitting expressions at unreachable
2538    // points.
2539    EnsureInsertPoint();
2540
2541    // Return a reasonable RValue.
2542    return GetUndefRValue(RetTy);
2543  }
2544
2545  llvm::Instruction *CI = CS.getInstruction();
2546  if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2547    CI->setName("call");
2548
2549  // Emit any writebacks immediately.  Arguably this should happen
2550  // after any return-value munging.
2551  if (CallArgs.hasWritebacks())
2552    emitWritebacks(*this, CallArgs);
2553
2554  switch (RetAI.getKind()) {
2555  case ABIArgInfo::Indirect:
2556    return convertTempToRValue(Args[0], RetTy);
2557
2558  case ABIArgInfo::Ignore:
2559    // If we are ignoring an argument that had a result, make sure to
2560    // construct the appropriate return value for our caller.
2561    return GetUndefRValue(RetTy);
2562
2563  case ABIArgInfo::Extend:
2564  case ABIArgInfo::Direct: {
2565    llvm::Type *RetIRTy = ConvertType(RetTy);
2566    if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2567      switch (getEvaluationKind(RetTy)) {
2568      case TEK_Complex: {
2569        llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2570        llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2571        return RValue::getComplex(std::make_pair(Real, Imag));
2572      }
2573      case TEK_Aggregate: {
2574        llvm::Value *DestPtr = ReturnValue.getValue();
2575        bool DestIsVolatile = ReturnValue.isVolatile();
2576
2577        if (!DestPtr) {
2578          DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2579          DestIsVolatile = false;
2580        }
2581        BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2582        return RValue::getAggregate(DestPtr);
2583      }
2584      case TEK_Scalar: {
2585        // If the argument doesn't match, perform a bitcast to coerce it.  This
2586        // can happen due to trivial type mismatches.
2587        llvm::Value *V = CI;
2588        if (V->getType() != RetIRTy)
2589          V = Builder.CreateBitCast(V, RetIRTy);
2590        return RValue::get(V);
2591      }
2592      }
2593      llvm_unreachable("bad evaluation kind");
2594    }
2595
2596    llvm::Value *DestPtr = ReturnValue.getValue();
2597    bool DestIsVolatile = ReturnValue.isVolatile();
2598
2599    if (!DestPtr) {
2600      DestPtr = CreateMemTemp(RetTy, "coerce");
2601      DestIsVolatile = false;
2602    }
2603
2604    // If the value is offset in memory, apply the offset now.
2605    llvm::Value *StorePtr = DestPtr;
2606    if (unsigned Offs = RetAI.getDirectOffset()) {
2607      StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2608      StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2609      StorePtr = Builder.CreateBitCast(StorePtr,
2610                         llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2611    }
2612    CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2613
2614    return convertTempToRValue(DestPtr, RetTy);
2615  }
2616
2617  case ABIArgInfo::Expand:
2618    llvm_unreachable("Invalid ABI kind for return argument");
2619  }
2620
2621  llvm_unreachable("Unhandled ABIArgInfo::Kind");
2622}
2623
2624/* VarArg handling */
2625
2626llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2627  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2628}
2629