CGCall.cpp revision b11fa0d25d86169f0e0a29d5398116c0212bb787
1//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CGCall.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/RecordLayout.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Attributes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetData.h"
31
32#include "ABIInfo.h"
33
34using namespace clang;
35using namespace CodeGen;
36
37/***/
38
39// FIXME: Use iterator and sidestep silly type array creation.
40
41const
42CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionNoProtoType *FTNP) {
43  return getFunctionInfo(FTNP->getResultType(),
44                         llvm::SmallVector<QualType, 16>());
45}
46
47const
48CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionProtoType *FTP) {
49  llvm::SmallVector<QualType, 16> ArgTys;
50  // FIXME: Kill copy.
51  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
52    ArgTys.push_back(FTP->getArgType(i));
53  return getFunctionInfo(FTP->getResultType(), ArgTys);
54}
55
56const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
57  llvm::SmallVector<QualType, 16> ArgTys;
58  // Add the 'this' pointer.
59  ArgTys.push_back(MD->getThisType(Context));
60
61  const FunctionProtoType *FTP = MD->getType()->getAsFunctionProtoType();
62  for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
63    ArgTys.push_back(FTP->getArgType(i));
64  return getFunctionInfo(FTP->getResultType(), ArgTys);
65}
66
67const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
68  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
69    if (MD->isInstance())
70      return getFunctionInfo(MD);
71  }
72
73  const FunctionType *FTy = FD->getType()->getAsFunctionType();
74  if (const FunctionProtoType *FTP = dyn_cast<FunctionProtoType>(FTy))
75    return getFunctionInfo(FTP);
76  return getFunctionInfo(cast<FunctionNoProtoType>(FTy));
77}
78
79const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
80  llvm::SmallVector<QualType, 16> ArgTys;
81  ArgTys.push_back(MD->getSelfDecl()->getType());
82  ArgTys.push_back(Context.getObjCSelType());
83  // FIXME: Kill copy?
84  for (ObjCMethodDecl::param_iterator i = MD->param_begin(),
85         e = MD->param_end(); i != e; ++i)
86    ArgTys.push_back((*i)->getType());
87  return getFunctionInfo(MD->getResultType(), ArgTys);
88}
89
90const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
91                                                    const CallArgList &Args) {
92  // FIXME: Kill copy.
93  llvm::SmallVector<QualType, 16> ArgTys;
94  for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
95       i != e; ++i)
96    ArgTys.push_back(i->second);
97  return getFunctionInfo(ResTy, ArgTys);
98}
99
100const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
101                                                  const FunctionArgList &Args) {
102  // FIXME: Kill copy.
103  llvm::SmallVector<QualType, 16> ArgTys;
104  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
105       i != e; ++i)
106    ArgTys.push_back(i->second);
107  return getFunctionInfo(ResTy, ArgTys);
108}
109
110const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
111                               const llvm::SmallVector<QualType, 16> &ArgTys) {
112  // Lookup or create unique function info.
113  llvm::FoldingSetNodeID ID;
114  CGFunctionInfo::Profile(ID, ResTy, ArgTys.begin(), ArgTys.end());
115
116  void *InsertPos = 0;
117  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
118  if (FI)
119    return *FI;
120
121  // Construct the function info.
122  FI = new CGFunctionInfo(ResTy, ArgTys);
123  FunctionInfos.InsertNode(FI, InsertPos);
124
125  // Compute ABI information.
126  getABIInfo().computeInfo(*FI, getContext());
127
128  return *FI;
129}
130
131/***/
132
133ABIInfo::~ABIInfo() {}
134
135void ABIArgInfo::dump() const {
136  fprintf(stderr, "(ABIArgInfo Kind=");
137  switch (TheKind) {
138  case Direct:
139    fprintf(stderr, "Direct");
140    break;
141  case Ignore:
142    fprintf(stderr, "Ignore");
143    break;
144  case Coerce:
145    fprintf(stderr, "Coerce Type=");
146    getCoerceToType()->print(llvm::errs());
147    break;
148  case Indirect:
149    fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
150    break;
151  case Expand:
152    fprintf(stderr, "Expand");
153    break;
154  }
155  fprintf(stderr, ")\n");
156}
157
158/***/
159
160/// isEmptyRecord - Return true iff a structure has no non-empty
161/// members. Note that a structure with a flexible array member is not
162/// considered empty.
163static bool isEmptyRecord(ASTContext &Context, QualType T) {
164  const RecordType *RT = T->getAsRecordType();
165  if (!RT)
166    return 0;
167  const RecordDecl *RD = RT->getDecl();
168  if (RD->hasFlexibleArrayMember())
169    return false;
170  for (RecordDecl::field_iterator i = RD->field_begin(Context),
171         e = RD->field_end(Context); i != e; ++i) {
172    const FieldDecl *FD = *i;
173    if (!isEmptyRecord(Context, FD->getType()))
174      return false;
175  }
176  return true;
177}
178
179/// isSingleElementStruct - Determine if a structure is a "single
180/// element struct", i.e. it has exactly one non-empty field or
181/// exactly one field which is itself a single element
182/// struct. Structures with flexible array members are never
183/// considered single element structs.
184///
185/// \return The field declaration for the single non-empty field, if
186/// it exists.
187static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
188  const RecordType *RT = T->getAsStructureType();
189  if (!RT)
190    return 0;
191
192  const RecordDecl *RD = RT->getDecl();
193  if (RD->hasFlexibleArrayMember())
194    return 0;
195
196  const Type *Found = 0;
197  for (RecordDecl::field_iterator i = RD->field_begin(Context),
198         e = RD->field_end(Context); i != e; ++i) {
199    const FieldDecl *FD = *i;
200    QualType FT = FD->getType();
201
202    // Treat single element arrays as the element
203    if (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
204      if (AT->getSize().getZExtValue() == 1)
205        FT = AT->getElementType();
206
207    if (isEmptyRecord(Context, FT)) {
208      // Ignore
209    } else if (Found) {
210      return 0;
211    } else if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
212      Found = FT.getTypePtr();
213    } else {
214      Found = isSingleElementStruct(FT, Context);
215      if (!Found)
216        return 0;
217    }
218  }
219
220  return Found;
221}
222
223static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
224  if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
225    return false;
226
227  uint64_t Size = Context.getTypeSize(Ty);
228  return Size == 32 || Size == 64;
229}
230
231static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
232                                           ASTContext &Context) {
233  for (RecordDecl::field_iterator i = RD->field_begin(Context),
234         e = RD->field_end(Context); i != e; ++i) {
235    const FieldDecl *FD = *i;
236
237    if (!is32Or64BitBasicType(FD->getType(), Context))
238      return false;
239
240    // FIXME: Reject bitfields wholesale; there are two problems, we
241    // don't know how to expand them yet, and the predicate for
242    // telling if a bitfield still counts as "basic" is more
243    // complicated than what we were doing previously.
244    if (FD->isBitField())
245      return false;
246  }
247
248  return true;
249}
250
251namespace {
252/// DefaultABIInfo - The default implementation for ABI specific
253/// details. This implementation provides information which results in
254/// self-consistent and sensible LLVM IR generation, but does not
255/// conform to any particular ABI.
256class DefaultABIInfo : public ABIInfo {
257  ABIArgInfo classifyReturnType(QualType RetTy,
258                                ASTContext &Context) const;
259
260  ABIArgInfo classifyArgumentType(QualType RetTy,
261                                  ASTContext &Context) const;
262
263  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
264    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
265    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
266         it != ie; ++it)
267      it->info = classifyArgumentType(it->type, Context);
268  }
269
270  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
271                                 CodeGenFunction &CGF) const;
272};
273
274/// X86_32ABIInfo - The X86-32 ABI information.
275class X86_32ABIInfo : public ABIInfo {
276  ASTContext &Context;
277  bool IsDarwin;
278
279  static bool isRegisterSize(unsigned Size) {
280    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
281  }
282
283  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
284
285public:
286  ABIArgInfo classifyReturnType(QualType RetTy,
287                                ASTContext &Context) const;
288
289  ABIArgInfo classifyArgumentType(QualType RetTy,
290                                  ASTContext &Context) const;
291
292  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
293    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
294    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
295         it != ie; ++it)
296      it->info = classifyArgumentType(it->type, Context);
297  }
298
299  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
300                                 CodeGenFunction &CGF) const;
301
302  X86_32ABIInfo(ASTContext &Context, bool d)
303    : ABIInfo(), Context(Context), IsDarwin(d) {}
304};
305}
306
307
308/// shouldReturnTypeInRegister - Determine if the given type should be
309/// passed in a register (for the Darwin ABI).
310bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
311                                               ASTContext &Context) {
312  uint64_t Size = Context.getTypeSize(Ty);
313
314  // Type must be register sized.
315  if (!isRegisterSize(Size))
316    return false;
317
318  if (Ty->isVectorType()) {
319    // 64- and 128- bit vectors inside structures are not returned in
320    // registers.
321    if (Size == 64 || Size == 128)
322      return false;
323
324    return true;
325  }
326
327  // If this is a builtin, pointer, or complex type, it is ok.
328  if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
329    return true;
330
331  // Arrays are treated like records.
332  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
333    return shouldReturnTypeInRegister(AT->getElementType(), Context);
334
335  // Otherwise, it must be a record type.
336  const RecordType *RT = Ty->getAsRecordType();
337  if (!RT) return false;
338
339  // Structure types are passed in register if all fields would be
340  // passed in a register.
341  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
342         e = RT->getDecl()->field_end(Context); i != e; ++i) {
343    const FieldDecl *FD = *i;
344
345    // FIXME: Reject bitfields wholesale for now; this is incorrect.
346    if (FD->isBitField())
347      return false;
348
349    // Empty structures are ignored.
350    if (isEmptyRecord(Context, FD->getType()))
351      continue;
352
353    // Check fields recursively.
354    if (!shouldReturnTypeInRegister(FD->getType(), Context))
355      return false;
356  }
357
358  return true;
359}
360
361ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
362                                            ASTContext &Context) const {
363  if (RetTy->isVoidType()) {
364    return ABIArgInfo::getIgnore();
365  } else if (const VectorType *VT = RetTy->getAsVectorType()) {
366    // On Darwin, some vectors are returned in registers.
367    if (IsDarwin) {
368      uint64_t Size = Context.getTypeSize(RetTy);
369
370      // 128-bit vectors are a special case; they are returned in
371      // registers and we need to make sure to pick a type the LLVM
372      // backend will like.
373      if (Size == 128)
374        return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
375                                                           2));
376
377      // Always return in register if it fits in a general purpose
378      // register, or if it is 64 bits and has a single element.
379      if ((Size == 8 || Size == 16 || Size == 32) ||
380          (Size == 64 && VT->getNumElements() == 1))
381        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
382
383      return ABIArgInfo::getIndirect(0);
384    }
385
386    return ABIArgInfo::getDirect();
387  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
388    // Outside of Darwin, structs and unions are always indirect.
389    if (!IsDarwin && !RetTy->isAnyComplexType())
390      return ABIArgInfo::getIndirect(0);
391    // Classify "single element" structs as their element type.
392    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
393      if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
394        // FIXME: This is gross, it would be nice if we could just
395        // pass back SeltTy and have clients deal with it. Is it worth
396        // supporting coerce to both LLVM and clang Types?
397        if (BT->isIntegerType()) {
398          uint64_t Size = Context.getTypeSize(SeltTy);
399          return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
400        } else if (BT->getKind() == BuiltinType::Float) {
401          return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
402        } else if (BT->getKind() == BuiltinType::Double) {
403          return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
404        }
405      } else if (SeltTy->isPointerType()) {
406        // FIXME: It would be really nice if this could come out as
407        // the proper pointer type.
408        llvm::Type *PtrTy =
409          llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
410        return ABIArgInfo::getCoerce(PtrTy);
411      } else if (SeltTy->isVectorType()) {
412        // 64- and 128-bit vectors are never returned in a
413        // register when inside a structure.
414        uint64_t Size = Context.getTypeSize(RetTy);
415        if (Size == 64 || Size == 128)
416          return ABIArgInfo::getIndirect(0);
417
418        return classifyReturnType(QualType(SeltTy, 0), Context);
419      }
420    }
421
422    uint64_t Size = Context.getTypeSize(RetTy);
423    if (isRegisterSize(Size)) {
424      // Always return in register for unions for now.
425      // FIXME: This is wrong, but better than treating as a
426      // structure.
427      if (RetTy->isUnionType())
428        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
429
430      // Small structures which are register sized are generally returned
431      // in a register.
432      if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context))
433        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
434    }
435
436    return ABIArgInfo::getIndirect(0);
437  } else {
438    return ABIArgInfo::getDirect();
439  }
440}
441
442ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
443                                               ASTContext &Context) const {
444  // FIXME: Set alignment on indirect arguments.
445  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
446    // Structures with flexible arrays are always indirect.
447    if (const RecordType *RT = Ty->getAsStructureType())
448      if (RT->getDecl()->hasFlexibleArrayMember())
449        return ABIArgInfo::getIndirect(0);
450
451    // Ignore empty structs.
452    uint64_t Size = Context.getTypeSize(Ty);
453    if (Ty->isStructureType() && Size == 0)
454      return ABIArgInfo::getIgnore();
455
456    // Expand structs with size <= 128-bits which consist only of
457    // basic types (int, long long, float, double, xxx*). This is
458    // non-recursive and does not ignore empty fields.
459    if (const RecordType *RT = Ty->getAsStructureType()) {
460      if (Context.getTypeSize(Ty) <= 4*32 &&
461          areAllFields32Or64BitBasicType(RT->getDecl(), Context))
462        return ABIArgInfo::getExpand();
463    }
464
465    return ABIArgInfo::getIndirect(0);
466  } else {
467    return ABIArgInfo::getDirect();
468  }
469}
470
471llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
472                                      CodeGenFunction &CGF) const {
473  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
474  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
475
476  CGBuilderTy &Builder = CGF.Builder;
477  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
478                                                       "ap");
479  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
480  llvm::Type *PTy =
481    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
482  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
483
484  uint64_t Offset =
485    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
486  llvm::Value *NextAddr =
487    Builder.CreateGEP(Addr,
488                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
489                      "ap.next");
490  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
491
492  return AddrTyped;
493}
494
495namespace {
496/// X86_64ABIInfo - The X86_64 ABI information.
497class X86_64ABIInfo : public ABIInfo {
498  enum Class {
499    Integer = 0,
500    SSE,
501    SSEUp,
502    X87,
503    X87Up,
504    ComplexX87,
505    NoClass,
506    Memory
507  };
508
509  /// merge - Implement the X86_64 ABI merging algorithm.
510  ///
511  /// Merge an accumulating classification \arg Accum with a field
512  /// classification \arg Field.
513  ///
514  /// \param Accum - The accumulating classification. This should
515  /// always be either NoClass or the result of a previous merge
516  /// call. In addition, this should never be Memory (the caller
517  /// should just return Memory for the aggregate).
518  Class merge(Class Accum, Class Field) const;
519
520  /// classify - Determine the x86_64 register classes in which the
521  /// given type T should be passed.
522  ///
523  /// \param Lo - The classification for the parts of the type
524  /// residing in the low word of the containing object.
525  ///
526  /// \param Hi - The classification for the parts of the type
527  /// residing in the high word of the containing object.
528  ///
529  /// \param OffsetBase - The bit offset of this type in the
530  /// containing object.  Some parameters are classified different
531  /// depending on whether they straddle an eightbyte boundary.
532  ///
533  /// If a word is unused its result will be NoClass; if a type should
534  /// be passed in Memory then at least the classification of \arg Lo
535  /// will be Memory.
536  ///
537  /// The \arg Lo class will be NoClass iff the argument is ignored.
538  ///
539  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
540  /// also be ComplexX87.
541  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
542                Class &Lo, Class &Hi) const;
543
544  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
545  /// to coerce to, chose the best way to pass Ty in the same place
546  /// that \arg CoerceTo would be passed, but while keeping the
547  /// emitted code as simple as possible.
548  ///
549  /// FIXME: Note, this should be cleaned up to just take an
550  /// enumeration of all the ways we might want to pass things,
551  /// instead of constructing an LLVM type. This makes this code more
552  /// explicit, and it makes it clearer that we are also doing this
553  /// for correctness in the case of passing scalar types.
554  ABIArgInfo getCoerceResult(QualType Ty,
555                             const llvm::Type *CoerceTo,
556                             ASTContext &Context) const;
557
558  ABIArgInfo classifyReturnType(QualType RetTy,
559                                ASTContext &Context) const;
560
561  ABIArgInfo classifyArgumentType(QualType Ty,
562                                  ASTContext &Context,
563                                  unsigned &neededInt,
564                                  unsigned &neededSSE) const;
565
566public:
567  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
568
569  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
570                                 CodeGenFunction &CGF) const;
571};
572}
573
574X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
575                                          Class Field) const {
576  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
577  // classified recursively so that always two fields are
578  // considered. The resulting class is calculated according to
579  // the classes of the fields in the eightbyte:
580  //
581  // (a) If both classes are equal, this is the resulting class.
582  //
583  // (b) If one of the classes is NO_CLASS, the resulting class is
584  // the other class.
585  //
586  // (c) If one of the classes is MEMORY, the result is the MEMORY
587  // class.
588  //
589  // (d) If one of the classes is INTEGER, the result is the
590  // INTEGER.
591  //
592  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
593  // MEMORY is used as class.
594  //
595  // (f) Otherwise class SSE is used.
596
597  // Accum should never be memory (we should have returned) or
598  // ComplexX87 (because this cannot be passed in a structure).
599  assert((Accum != Memory && Accum != ComplexX87) &&
600         "Invalid accumulated classification during merge.");
601  if (Accum == Field || Field == NoClass)
602    return Accum;
603  else if (Field == Memory)
604    return Memory;
605  else if (Accum == NoClass)
606    return Field;
607  else if (Accum == Integer || Field == Integer)
608    return Integer;
609  else if (Field == X87 || Field == X87Up || Field == ComplexX87)
610    return Memory;
611  else
612    return SSE;
613}
614
615void X86_64ABIInfo::classify(QualType Ty,
616                             ASTContext &Context,
617                             uint64_t OffsetBase,
618                             Class &Lo, Class &Hi) const {
619  // FIXME: This code can be simplified by introducing a simple value
620  // class for Class pairs with appropriate constructor methods for
621  // the various situations.
622
623  // FIXME: Some of the split computations are wrong; unaligned
624  // vectors shouldn't be passed in registers for example, so there is
625  // no chance they can straddle an eightbyte. Verify & simplify.
626
627  Lo = Hi = NoClass;
628
629  Class &Current = OffsetBase < 64 ? Lo : Hi;
630  Current = Memory;
631
632  if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
633    BuiltinType::Kind k = BT->getKind();
634
635    if (k == BuiltinType::Void) {
636      Current = NoClass;
637    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
638      Current = Integer;
639    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
640      Current = SSE;
641    } else if (k == BuiltinType::LongDouble) {
642      Lo = X87;
643      Hi = X87Up;
644    }
645    // FIXME: _Decimal32 and _Decimal64 are SSE.
646    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
647    // FIXME: __int128 is (Integer, Integer).
648  } else if (const EnumType *ET = Ty->getAsEnumType()) {
649    // Classify the underlying integer type.
650    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
651  } else if (Ty->hasPointerRepresentation()) {
652    Current = Integer;
653  } else if (const VectorType *VT = Ty->getAsVectorType()) {
654    uint64_t Size = Context.getTypeSize(VT);
655    if (Size == 32) {
656      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
657      // float> as integer.
658      Current = Integer;
659
660      // If this type crosses an eightbyte boundary, it should be
661      // split.
662      uint64_t EB_Real = (OffsetBase) / 64;
663      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
664      if (EB_Real != EB_Imag)
665        Hi = Lo;
666    } else if (Size == 64) {
667      // gcc passes <1 x double> in memory. :(
668      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
669        return;
670
671      // gcc passes <1 x long long> as INTEGER.
672      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
673        Current = Integer;
674      else
675        Current = SSE;
676
677      // If this type crosses an eightbyte boundary, it should be
678      // split.
679      if (OffsetBase && OffsetBase != 64)
680        Hi = Lo;
681    } else if (Size == 128) {
682      Lo = SSE;
683      Hi = SSEUp;
684    }
685  } else if (const ComplexType *CT = Ty->getAsComplexType()) {
686    QualType ET = Context.getCanonicalType(CT->getElementType());
687
688    uint64_t Size = Context.getTypeSize(Ty);
689    if (ET->isIntegralType()) {
690      if (Size <= 64)
691        Current = Integer;
692      else if (Size <= 128)
693        Lo = Hi = Integer;
694    } else if (ET == Context.FloatTy)
695      Current = SSE;
696    else if (ET == Context.DoubleTy)
697      Lo = Hi = SSE;
698    else if (ET == Context.LongDoubleTy)
699      Current = ComplexX87;
700
701    // If this complex type crosses an eightbyte boundary then it
702    // should be split.
703    uint64_t EB_Real = (OffsetBase) / 64;
704    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
705    if (Hi == NoClass && EB_Real != EB_Imag)
706      Hi = Lo;
707  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
708    // Arrays are treated like structures.
709
710    uint64_t Size = Context.getTypeSize(Ty);
711
712    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
713    // than two eightbytes, ..., it has class MEMORY.
714    if (Size > 128)
715      return;
716
717    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
718    // fields, it has class MEMORY.
719    //
720    // Only need to check alignment of array base.
721    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
722      return;
723
724    // Otherwise implement simplified merge. We could be smarter about
725    // this, but it isn't worth it and would be harder to verify.
726    Current = NoClass;
727    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
728    uint64_t ArraySize = AT->getSize().getZExtValue();
729    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
730      Class FieldLo, FieldHi;
731      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
732      Lo = merge(Lo, FieldLo);
733      Hi = merge(Hi, FieldHi);
734      if (Lo == Memory || Hi == Memory)
735        break;
736    }
737
738    // Do post merger cleanup (see below). Only case we worry about is Memory.
739    if (Hi == Memory)
740      Lo = Memory;
741    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
742  } else if (const RecordType *RT = Ty->getAsRecordType()) {
743    uint64_t Size = Context.getTypeSize(Ty);
744
745    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
746    // than two eightbytes, ..., it has class MEMORY.
747    if (Size > 128)
748      return;
749
750    const RecordDecl *RD = RT->getDecl();
751
752    // Assume variable sized types are passed in memory.
753    if (RD->hasFlexibleArrayMember())
754      return;
755
756    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
757
758    // Reset Lo class, this will be recomputed.
759    Current = NoClass;
760    unsigned idx = 0;
761    for (RecordDecl::field_iterator i = RD->field_begin(Context),
762           e = RD->field_end(Context); i != e; ++i, ++idx) {
763      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
764      bool BitField = i->isBitField();
765
766      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
767      // fields, it has class MEMORY.
768      //
769      // Note, skip this test for bitfields, see below.
770      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
771        Lo = Memory;
772        return;
773      }
774
775      // Classify this field.
776      //
777      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
778      // exceeds a single eightbyte, each is classified
779      // separately. Each eightbyte gets initialized to class
780      // NO_CLASS.
781      Class FieldLo, FieldHi;
782
783      // Bitfields require special handling, they do not force the
784      // structure to be passed in memory even if unaligned, and
785      // therefore they can straddle an eightbyte.
786      if (BitField) {
787        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
788        uint64_t Size =
789          i->getBitWidth()->getIntegerConstantExprValue(Context).getZExtValue();
790
791        uint64_t EB_Lo = Offset / 64;
792        uint64_t EB_Hi = (Offset + Size - 1) / 64;
793        FieldLo = FieldHi = NoClass;
794        if (EB_Lo) {
795          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
796          FieldLo = NoClass;
797          FieldHi = Integer;
798        } else {
799          FieldLo = Integer;
800          FieldHi = EB_Hi ? Integer : NoClass;
801        }
802      } else
803        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
804      Lo = merge(Lo, FieldLo);
805      Hi = merge(Hi, FieldHi);
806      if (Lo == Memory || Hi == Memory)
807        break;
808    }
809
810    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
811    //
812    // (a) If one of the classes is MEMORY, the whole argument is
813    // passed in memory.
814    //
815    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
816
817    // The first of these conditions is guaranteed by how we implement
818    // the merge (just bail).
819    //
820    // The second condition occurs in the case of unions; for example
821    // union { _Complex double; unsigned; }.
822    if (Hi == Memory)
823      Lo = Memory;
824    if (Hi == SSEUp && Lo != SSE)
825      Hi = SSE;
826  }
827}
828
829ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
830                                          const llvm::Type *CoerceTo,
831                                          ASTContext &Context) const {
832  if (CoerceTo == llvm::Type::Int64Ty) {
833    // Integer and pointer types will end up in a general purpose
834    // register.
835    if (Ty->isIntegralType() || Ty->isPointerType())
836      return ABIArgInfo::getDirect();
837
838  } else if (CoerceTo == llvm::Type::DoubleTy) {
839    // FIXME: It would probably be better to make CGFunctionInfo only
840    // map using canonical types than to canonize here.
841    QualType CTy = Context.getCanonicalType(Ty);
842
843    // Float and double end up in a single SSE reg.
844    if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
845      return ABIArgInfo::getDirect();
846
847  }
848
849  return ABIArgInfo::getCoerce(CoerceTo);
850}
851
852ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
853                                            ASTContext &Context) const {
854  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
855  // classification algorithm.
856  X86_64ABIInfo::Class Lo, Hi;
857  classify(RetTy, Context, 0, Lo, Hi);
858
859  // Check some invariants.
860  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
861  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
862  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
863
864  const llvm::Type *ResType = 0;
865  switch (Lo) {
866  case NoClass:
867    return ABIArgInfo::getIgnore();
868
869  case SSEUp:
870  case X87Up:
871    assert(0 && "Invalid classification for lo word.");
872
873    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
874    // hidden argument.
875  case Memory:
876    return ABIArgInfo::getIndirect(0);
877
878    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
879    // available register of the sequence %rax, %rdx is used.
880  case Integer:
881    ResType = llvm::Type::Int64Ty; break;
882
883    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
884    // available SSE register of the sequence %xmm0, %xmm1 is used.
885  case SSE:
886    ResType = llvm::Type::DoubleTy; break;
887
888    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
889    // returned on the X87 stack in %st0 as 80-bit x87 number.
890  case X87:
891    ResType = llvm::Type::X86_FP80Ty; break;
892
893    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
894    // part of the value is returned in %st0 and the imaginary part in
895    // %st1.
896  case ComplexX87:
897    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
898    ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
899                                    llvm::Type::X86_FP80Ty,
900                                    NULL);
901    break;
902  }
903
904  switch (Hi) {
905    // Memory was handled previously and X87 should
906    // never occur as a hi class.
907  case Memory:
908  case X87:
909    assert(0 && "Invalid classification for hi word.");
910
911  case ComplexX87: // Previously handled.
912  case NoClass: break;
913
914  case Integer:
915    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
916    break;
917  case SSE:
918    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
919    break;
920
921    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
922    // is passed in the upper half of the last used SSE register.
923    //
924    // SSEUP should always be preceeded by SSE, just widen.
925  case SSEUp:
926    assert(Lo == SSE && "Unexpected SSEUp classification.");
927    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
928    break;
929
930    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
931    // returned together with the previous X87 value in %st0.
932  case X87Up:
933    // If X87Up is preceeded by X87, we don't need to do
934    // anything. However, in some cases with unions it may not be
935    // preceeded by X87. In such situations we follow gcc and pass the
936    // extra bits in an SSE reg.
937    if (Lo != X87)
938      ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
939    break;
940  }
941
942  return getCoerceResult(RetTy, ResType, Context);
943}
944
945ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
946                                               unsigned &neededInt,
947                                               unsigned &neededSSE) const {
948  X86_64ABIInfo::Class Lo, Hi;
949  classify(Ty, Context, 0, Lo, Hi);
950
951  // Check some invariants.
952  // FIXME: Enforce these by construction.
953  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
954  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
955  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
956
957  neededInt = 0;
958  neededSSE = 0;
959  const llvm::Type *ResType = 0;
960  switch (Lo) {
961  case NoClass:
962    return ABIArgInfo::getIgnore();
963
964    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
965    // on the stack.
966  case Memory:
967
968    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
969    // COMPLEX_X87, it is passed in memory.
970  case X87:
971  case ComplexX87:
972    return ABIArgInfo::getIndirect(0);
973
974  case SSEUp:
975  case X87Up:
976    assert(0 && "Invalid classification for lo word.");
977
978    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
979    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
980    // and %r9 is used.
981  case Integer:
982    ++neededInt;
983    ResType = llvm::Type::Int64Ty;
984    break;
985
986    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
987    // available SSE register is used, the registers are taken in the
988    // order from %xmm0 to %xmm7.
989  case SSE:
990    ++neededSSE;
991    ResType = llvm::Type::DoubleTy;
992    break;
993  }
994
995  switch (Hi) {
996    // Memory was handled previously, ComplexX87 and X87 should
997    // never occur as hi classes, and X87Up must be preceed by X87,
998    // which is passed in memory.
999  case Memory:
1000  case X87:
1001  case ComplexX87:
1002    assert(0 && "Invalid classification for hi word.");
1003    break;
1004
1005  case NoClass: break;
1006  case Integer:
1007    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
1008    ++neededInt;
1009    break;
1010
1011    // X87Up generally doesn't occur here (long double is passed in
1012    // memory), except in situations involving unions.
1013  case X87Up:
1014  case SSE:
1015    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
1016    ++neededSSE;
1017    break;
1018
1019    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1020    // eightbyte is passed in the upper half of the last used SSE
1021    // register.
1022  case SSEUp:
1023    assert(Lo == SSE && "Unexpected SSEUp classification.");
1024    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
1025    break;
1026  }
1027
1028  return getCoerceResult(Ty, ResType, Context);
1029}
1030
1031void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1032  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1033
1034  // Keep track of the number of assigned registers.
1035  unsigned freeIntRegs = 6, freeSSERegs = 8;
1036
1037  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1038  // get assigned (in left-to-right order) for passing as follows...
1039  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1040       it != ie; ++it) {
1041    unsigned neededInt, neededSSE;
1042    it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);
1043
1044    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1045    // eightbyte of an argument, the whole argument is passed on the
1046    // stack. If registers have already been assigned for some
1047    // eightbytes of such an argument, the assignments get reverted.
1048    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1049      freeIntRegs -= neededInt;
1050      freeSSERegs -= neededSSE;
1051    } else {
1052      it->info = ABIArgInfo::getIndirect(0);
1053    }
1054  }
1055}
1056
1057static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1058                                        QualType Ty,
1059                                        CodeGenFunction &CGF) {
1060  llvm::Value *overflow_arg_area_p =
1061    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1062  llvm::Value *overflow_arg_area =
1063    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1064
1065  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1066  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1067  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1068  if (Align > 8) {
1069    // Note that we follow the ABI & gcc here, even though the type
1070    // could in theory have an alignment greater than 16. This case
1071    // shouldn't ever matter in practice.
1072
1073    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1074    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
1075    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1076    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1077                                                    llvm::Type::Int64Ty);
1078    llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
1079    overflow_arg_area =
1080      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1081                                 overflow_arg_area->getType(),
1082                                 "overflow_arg_area.align");
1083  }
1084
1085  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1086  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1087  llvm::Value *Res =
1088    CGF.Builder.CreateBitCast(overflow_arg_area,
1089                              llvm::PointerType::getUnqual(LTy));
1090
1091  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1092  // l->overflow_arg_area + sizeof(type).
1093  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1094  // an 8 byte boundary.
1095
1096  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1097  llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1098                                               (SizeInBytes + 7)  & ~7);
1099  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1100                                            "overflow_arg_area.next");
1101  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1102
1103  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1104  return Res;
1105}
1106
1107llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1108                                      CodeGenFunction &CGF) const {
1109  // Assume that va_list type is correct; should be pointer to LLVM type:
1110  // struct {
1111  //   i32 gp_offset;
1112  //   i32 fp_offset;
1113  //   i8* overflow_arg_area;
1114  //   i8* reg_save_area;
1115  // };
1116  unsigned neededInt, neededSSE;
1117  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
1118                                       neededInt, neededSSE);
1119
1120  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1121  // in the registers. If not go to step 7.
1122  if (!neededInt && !neededSSE)
1123    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1124
1125  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1126  // general purpose registers needed to pass type and num_fp to hold
1127  // the number of floating point registers needed.
1128
1129  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1130  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1131  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1132  //
1133  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1134  // register save space).
1135
1136  llvm::Value *InRegs = 0;
1137  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1138  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1139  if (neededInt) {
1140    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1141    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1142    InRegs =
1143      CGF.Builder.CreateICmpULE(gp_offset,
1144                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
1145                                                       48 - neededInt * 8),
1146                                "fits_in_gp");
1147  }
1148
1149  if (neededSSE) {
1150    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1151    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1152    llvm::Value *FitsInFP =
1153      CGF.Builder.CreateICmpULE(fp_offset,
1154                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
1155                                                       176 - neededSSE * 16),
1156                                "fits_in_fp");
1157    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1158  }
1159
1160  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1161  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1162  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1163  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1164
1165  // Emit code to load the value if it was passed in registers.
1166
1167  CGF.EmitBlock(InRegBlock);
1168
1169  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1170  // an offset of l->gp_offset and/or l->fp_offset. This may require
1171  // copying to a temporary location in case the parameter is passed
1172  // in different register classes or requires an alignment greater
1173  // than 8 for general purpose registers and 16 for XMM registers.
1174  //
1175  // FIXME: This really results in shameful code when we end up
1176  // needing to collect arguments from different places; often what
1177  // should result in a simple assembling of a structure from
1178  // scattered addresses has many more loads than necessary. Can we
1179  // clean this up?
1180  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1181  llvm::Value *RegAddr =
1182    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1183                           "reg_save_area");
1184  if (neededInt && neededSSE) {
1185    // FIXME: Cleanup.
1186    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
1187    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1188    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1189    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1190    const llvm::Type *TyLo = ST->getElementType(0);
1191    const llvm::Type *TyHi = ST->getElementType(1);
1192    assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
1193           "Unexpected ABI info for mixed regs");
1194    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1195    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1196    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1197    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1198    llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
1199    llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
1200    llvm::Value *V =
1201      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1202    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1203    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1204    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1205
1206    RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
1207  } else if (neededInt) {
1208    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1209    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1210                                        llvm::PointerType::getUnqual(LTy));
1211  } else {
1212    if (neededSSE == 1) {
1213      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1214      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1215                                          llvm::PointerType::getUnqual(LTy));
1216    } else {
1217      assert(neededSSE == 2 && "Invalid number of needed registers!");
1218      // SSE registers are spaced 16 bytes apart in the register save
1219      // area, we need to collect the two eightbytes together.
1220      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1221      llvm::Value *RegAddrHi =
1222        CGF.Builder.CreateGEP(RegAddrLo,
1223                              llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
1224      const llvm::Type *DblPtrTy =
1225        llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
1226      const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
1227                                                         llvm::Type::DoubleTy,
1228                                                         NULL);
1229      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1230      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1231                                                           DblPtrTy));
1232      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1233      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1234                                                           DblPtrTy));
1235      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1236      RegAddr = CGF.Builder.CreateBitCast(Tmp,
1237                                          llvm::PointerType::getUnqual(LTy));
1238    }
1239  }
1240
1241  // AMD64-ABI 3.5.7p5: Step 5. Set:
1242  // l->gp_offset = l->gp_offset + num_gp * 8
1243  // l->fp_offset = l->fp_offset + num_fp * 16.
1244  if (neededInt) {
1245    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1246                                                 neededInt * 8);
1247    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1248                            gp_offset_p);
1249  }
1250  if (neededSSE) {
1251    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
1252                                                 neededSSE * 16);
1253    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1254                            fp_offset_p);
1255  }
1256  CGF.EmitBranch(ContBlock);
1257
1258  // Emit code to load the value if it was passed in memory.
1259
1260  CGF.EmitBlock(InMemBlock);
1261  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1262
1263  // Return the appropriate result.
1264
1265  CGF.EmitBlock(ContBlock);
1266  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1267                                                 "vaarg.addr");
1268  ResAddr->reserveOperandSpace(2);
1269  ResAddr->addIncoming(RegAddr, InRegBlock);
1270  ResAddr->addIncoming(MemAddr, InMemBlock);
1271
1272  return ResAddr;
1273}
1274
1275class ARMABIInfo : public ABIInfo {
1276  ABIArgInfo classifyReturnType(QualType RetTy,
1277                                ASTContext &Context) const;
1278
1279  ABIArgInfo classifyArgumentType(QualType RetTy,
1280                                  ASTContext &Context) const;
1281
1282  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
1283
1284  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1285                                 CodeGenFunction &CGF) const;
1286};
1287
1288void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
1289  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
1290  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1291       it != ie; ++it) {
1292    it->info = classifyArgumentType(it->type, Context);
1293  }
1294}
1295
1296ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
1297                                            ASTContext &Context) const {
1298  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1299    return ABIArgInfo::getDirect();
1300  }
1301  // FIXME: This is kind of nasty... but there isn't much choice
1302  // because the ARM backend doesn't support byval.
1303  // FIXME: This doesn't handle alignment > 64 bits.
1304  const llvm::Type* ElemTy;
1305  unsigned SizeRegs;
1306  if (Context.getTypeAlign(Ty) > 32) {
1307    ElemTy = llvm::Type::Int64Ty;
1308    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
1309  } else {
1310    ElemTy = llvm::Type::Int32Ty;
1311    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
1312  }
1313  std::vector<const llvm::Type*> LLVMFields;
1314  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
1315  const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
1316  return ABIArgInfo::getCoerce(STy);
1317}
1318
1319ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
1320                                          ASTContext &Context) const {
1321  if (RetTy->isVoidType()) {
1322    return ABIArgInfo::getIgnore();
1323  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1324    // Aggregates <= 4 bytes are returned in r0; other aggregates
1325    // are returned indirectly.
1326    uint64_t Size = Context.getTypeSize(RetTy);
1327    if (Size <= 32)
1328      return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
1329    return ABIArgInfo::getIndirect(0);
1330  } else {
1331    return ABIArgInfo::getDirect();
1332  }
1333}
1334
1335llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1336                                      CodeGenFunction &CGF) const {
1337  // FIXME: Need to handle alignment
1338  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
1339  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1340
1341  CGBuilderTy &Builder = CGF.Builder;
1342  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1343                                                       "ap");
1344  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1345  llvm::Type *PTy =
1346    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1347  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1348
1349  uint64_t Offset =
1350    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
1351  llvm::Value *NextAddr =
1352    Builder.CreateGEP(Addr,
1353                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
1354                      "ap.next");
1355  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1356
1357  return AddrTyped;
1358}
1359
1360ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
1361                                              ASTContext &Context) const {
1362  if (RetTy->isVoidType()) {
1363    return ABIArgInfo::getIgnore();
1364  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1365    return ABIArgInfo::getIndirect(0);
1366  } else {
1367    return ABIArgInfo::getDirect();
1368  }
1369}
1370
1371ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
1372                                                ASTContext &Context) const {
1373  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
1374    return ABIArgInfo::getIndirect(0);
1375  } else {
1376    return ABIArgInfo::getDirect();
1377  }
1378}
1379
1380llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1381                                       CodeGenFunction &CGF) const {
1382  return 0;
1383}
1384
1385const ABIInfo &CodeGenTypes::getABIInfo() const {
1386  if (TheABIInfo)
1387    return *TheABIInfo;
1388
1389  // For now we just cache this in the CodeGenTypes and don't bother
1390  // to free it.
1391  const char *TargetPrefix = getContext().Target.getTargetPrefix();
1392  if (strcmp(TargetPrefix, "x86") == 0) {
1393    bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
1394    switch (getContext().Target.getPointerWidth(0)) {
1395    case 32:
1396      return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
1397    case 64:
1398      return *(TheABIInfo = new X86_64ABIInfo());
1399    }
1400  } else if (strcmp(TargetPrefix, "arm") == 0) {
1401    // FIXME: Support for OABI?
1402    return *(TheABIInfo = new ARMABIInfo());
1403  }
1404
1405  return *(TheABIInfo = new DefaultABIInfo);
1406}
1407
1408/***/
1409
1410CGFunctionInfo::CGFunctionInfo(QualType ResTy,
1411                               const llvm::SmallVector<QualType, 16> &ArgTys) {
1412  NumArgs = ArgTys.size();
1413  Args = new ArgInfo[1 + NumArgs];
1414  Args[0].type = ResTy;
1415  for (unsigned i = 0; i < NumArgs; ++i)
1416    Args[1 + i].type = ArgTys[i];
1417}
1418
1419/***/
1420
1421void CodeGenTypes::GetExpandedTypes(QualType Ty,
1422                                    std::vector<const llvm::Type*> &ArgTys) {
1423  const RecordType *RT = Ty->getAsStructureType();
1424  assert(RT && "Can only expand structure types.");
1425  const RecordDecl *RD = RT->getDecl();
1426  assert(!RD->hasFlexibleArrayMember() &&
1427         "Cannot expand structure with flexible array.");
1428
1429  for (RecordDecl::field_iterator i = RD->field_begin(Context),
1430         e = RD->field_end(Context); i != e; ++i) {
1431    const FieldDecl *FD = *i;
1432    assert(!FD->isBitField() &&
1433           "Cannot expand structure with bit-field members.");
1434
1435    QualType FT = FD->getType();
1436    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1437      GetExpandedTypes(FT, ArgTys);
1438    } else {
1439      ArgTys.push_back(ConvertType(FT));
1440    }
1441  }
1442}
1443
1444llvm::Function::arg_iterator
1445CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1446                                    llvm::Function::arg_iterator AI) {
1447  const RecordType *RT = Ty->getAsStructureType();
1448  assert(RT && "Can only expand structure types.");
1449
1450  RecordDecl *RD = RT->getDecl();
1451  assert(LV.isSimple() &&
1452         "Unexpected non-simple lvalue during struct expansion.");
1453  llvm::Value *Addr = LV.getAddress();
1454  for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
1455         e = RD->field_end(getContext()); i != e; ++i) {
1456    FieldDecl *FD = *i;
1457    QualType FT = FD->getType();
1458
1459    // FIXME: What are the right qualifiers here?
1460    LValue LV = EmitLValueForField(Addr, FD, false, 0);
1461    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1462      AI = ExpandTypeFromArgs(FT, LV, AI);
1463    } else {
1464      EmitStoreThroughLValue(RValue::get(AI), LV, FT);
1465      ++AI;
1466    }
1467  }
1468
1469  return AI;
1470}
1471
1472void
1473CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1474                                  llvm::SmallVector<llvm::Value*, 16> &Args) {
1475  const RecordType *RT = Ty->getAsStructureType();
1476  assert(RT && "Can only expand structure types.");
1477
1478  RecordDecl *RD = RT->getDecl();
1479  assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1480  llvm::Value *Addr = RV.getAggregateAddr();
1481  for (RecordDecl::field_iterator i = RD->field_begin(getContext()),
1482         e = RD->field_end(getContext()); i != e; ++i) {
1483    FieldDecl *FD = *i;
1484    QualType FT = FD->getType();
1485
1486    // FIXME: What are the right qualifiers here?
1487    LValue LV = EmitLValueForField(Addr, FD, false, 0);
1488    if (CodeGenFunction::hasAggregateLLVMType(FT)) {
1489      ExpandTypeToArgs(FT, RValue::getAggregate(LV.getAddress()), Args);
1490    } else {
1491      RValue RV = EmitLoadOfLValue(LV, FT);
1492      assert(RV.isScalar() &&
1493             "Unexpected non-scalar rvalue during struct expansion.");
1494      Args.push_back(RV.getScalarVal());
1495    }
1496  }
1497}
1498
1499/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1500/// a pointer to an object of type \arg Ty.
1501///
1502/// This safely handles the case when the src type is smaller than the
1503/// destination type; in this situation the values of bits which not
1504/// present in the src are undefined.
1505static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
1506                                      const llvm::Type *Ty,
1507                                      CodeGenFunction &CGF) {
1508  const llvm::Type *SrcTy =
1509    cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
1510  uint64_t SrcSize = CGF.CGM.getTargetData().getTypePaddedSize(SrcTy);
1511  uint64_t DstSize = CGF.CGM.getTargetData().getTypePaddedSize(Ty);
1512
1513  // If load is legal, just bitcast the src pointer.
1514  if (SrcSize == DstSize) {
1515    llvm::Value *Casted =
1516      CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
1517    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
1518    // FIXME: Use better alignment / avoid requiring aligned load.
1519    Load->setAlignment(1);
1520    return Load;
1521  } else {
1522    assert(SrcSize < DstSize && "Coercion is losing source bits!");
1523
1524    // Otherwise do coercion through memory. This is stupid, but
1525    // simple.
1526    llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
1527    llvm::Value *Casted =
1528      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
1529    llvm::StoreInst *Store =
1530      CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
1531    // FIXME: Use better alignment / avoid requiring aligned store.
1532    Store->setAlignment(1);
1533    return CGF.Builder.CreateLoad(Tmp);
1534  }
1535}
1536
1537/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1538/// where the source and destination may have different types.
1539///
1540/// This safely handles the case when the src type is larger than the
1541/// destination type; the upper bits of the src will be lost.
1542static void CreateCoercedStore(llvm::Value *Src,
1543                               llvm::Value *DstPtr,
1544                               CodeGenFunction &CGF) {
1545  const llvm::Type *SrcTy = Src->getType();
1546  const llvm::Type *DstTy =
1547    cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1548
1549  uint64_t SrcSize = CGF.CGM.getTargetData().getTypePaddedSize(SrcTy);
1550  uint64_t DstSize = CGF.CGM.getTargetData().getTypePaddedSize(DstTy);
1551
1552  // If store is legal, just bitcast the src pointer.
1553  if (SrcSize == DstSize) {
1554    llvm::Value *Casted =
1555      CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1556    // FIXME: Use better alignment / avoid requiring aligned store.
1557    CGF.Builder.CreateStore(Src, Casted)->setAlignment(1);
1558  } else {
1559    assert(SrcSize > DstSize && "Coercion is missing bits!");
1560
1561    // Otherwise do coercion through memory. This is stupid, but
1562    // simple.
1563    llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1564    CGF.Builder.CreateStore(Src, Tmp);
1565    llvm::Value *Casted =
1566      CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
1567    llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
1568    // FIXME: Use better alignment / avoid requiring aligned load.
1569    Load->setAlignment(1);
1570    CGF.Builder.CreateStore(Load, DstPtr);
1571  }
1572}
1573
1574/***/
1575
1576bool CodeGenModule::ReturnTypeUsesSret(const CGFunctionInfo &FI) {
1577  return FI.getReturnInfo().isIndirect();
1578}
1579
1580const llvm::FunctionType *
1581CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool IsVariadic) {
1582  std::vector<const llvm::Type*> ArgTys;
1583
1584  const llvm::Type *ResultType = 0;
1585
1586  QualType RetTy = FI.getReturnType();
1587  const ABIArgInfo &RetAI = FI.getReturnInfo();
1588  switch (RetAI.getKind()) {
1589  case ABIArgInfo::Expand:
1590    assert(0 && "Invalid ABI kind for return argument");
1591
1592  case ABIArgInfo::Direct:
1593    ResultType = ConvertType(RetTy);
1594    break;
1595
1596  case ABIArgInfo::Indirect: {
1597    assert(!RetAI.getIndirectAlign() && "Align unused on indirect return.");
1598    ResultType = llvm::Type::VoidTy;
1599    const llvm::Type *STy = ConvertType(RetTy);
1600    ArgTys.push_back(llvm::PointerType::get(STy, RetTy.getAddressSpace()));
1601    break;
1602  }
1603
1604  case ABIArgInfo::Ignore:
1605    ResultType = llvm::Type::VoidTy;
1606    break;
1607
1608  case ABIArgInfo::Coerce:
1609    ResultType = RetAI.getCoerceToType();
1610    break;
1611  }
1612
1613  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1614         ie = FI.arg_end(); it != ie; ++it) {
1615    const ABIArgInfo &AI = it->info;
1616
1617    switch (AI.getKind()) {
1618    case ABIArgInfo::Ignore:
1619      break;
1620
1621    case ABIArgInfo::Coerce:
1622      ArgTys.push_back(AI.getCoerceToType());
1623      break;
1624
1625    case ABIArgInfo::Indirect: {
1626      // indirect arguments are always on the stack, which is addr space #0.
1627      const llvm::Type *LTy = ConvertTypeForMem(it->type);
1628      ArgTys.push_back(llvm::PointerType::getUnqual(LTy));
1629      break;
1630    }
1631
1632    case ABIArgInfo::Direct:
1633      ArgTys.push_back(ConvertType(it->type));
1634      break;
1635
1636    case ABIArgInfo::Expand:
1637      GetExpandedTypes(it->type, ArgTys);
1638      break;
1639    }
1640  }
1641
1642  return llvm::FunctionType::get(ResultType, ArgTys, IsVariadic);
1643}
1644
1645void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1646                                           const Decl *TargetDecl,
1647                                           AttributeListType &PAL) {
1648  unsigned FuncAttrs = 0;
1649  unsigned RetAttrs = 0;
1650
1651  // FIXME: handle sseregparm someday...
1652  if (TargetDecl) {
1653    if (TargetDecl->hasAttr<NoThrowAttr>())
1654      FuncAttrs |= llvm::Attribute::NoUnwind;
1655    if (TargetDecl->hasAttr<NoReturnAttr>())
1656      FuncAttrs |= llvm::Attribute::NoReturn;
1657    if (TargetDecl->hasAttr<ConstAttr>())
1658      FuncAttrs |= llvm::Attribute::ReadNone;
1659    else if (TargetDecl->hasAttr<PureAttr>())
1660      FuncAttrs |= llvm::Attribute::ReadOnly;
1661  }
1662
1663  QualType RetTy = FI.getReturnType();
1664  unsigned Index = 1;
1665  const ABIArgInfo &RetAI = FI.getReturnInfo();
1666  switch (RetAI.getKind()) {
1667  case ABIArgInfo::Direct:
1668    if (RetTy->isPromotableIntegerType()) {
1669      if (RetTy->isSignedIntegerType()) {
1670        RetAttrs |= llvm::Attribute::SExt;
1671      } else if (RetTy->isUnsignedIntegerType()) {
1672        RetAttrs |= llvm::Attribute::ZExt;
1673      }
1674    }
1675    break;
1676
1677  case ABIArgInfo::Indirect:
1678    PAL.push_back(llvm::AttributeWithIndex::get(Index,
1679                                                llvm::Attribute::StructRet |
1680                                                llvm::Attribute::NoAlias));
1681    ++Index;
1682    // sret disables readnone and readonly
1683    FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1684                   llvm::Attribute::ReadNone);
1685    break;
1686
1687  case ABIArgInfo::Ignore:
1688  case ABIArgInfo::Coerce:
1689    break;
1690
1691  case ABIArgInfo::Expand:
1692    assert(0 && "Invalid ABI kind for return argument");
1693  }
1694
1695  if (RetAttrs)
1696    PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
1697
1698  // FIXME: we need to honour command line settings also...
1699  // FIXME: RegParm should be reduced in case of nested functions and/or global
1700  // register variable.
1701  signed RegParm = 0;
1702  if (TargetDecl)
1703    if (const RegparmAttr *RegParmAttr = TargetDecl->getAttr<RegparmAttr>())
1704      RegParm = RegParmAttr->getNumParams();
1705
1706  unsigned PointerWidth = getContext().Target.getPointerWidth(0);
1707  for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1708         ie = FI.arg_end(); it != ie; ++it) {
1709    QualType ParamType = it->type;
1710    const ABIArgInfo &AI = it->info;
1711    unsigned Attributes = 0;
1712
1713    switch (AI.getKind()) {
1714    case ABIArgInfo::Coerce:
1715      break;
1716
1717    case ABIArgInfo::Indirect:
1718      Attributes |= llvm::Attribute::ByVal;
1719      Attributes |=
1720        llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
1721      // byval disables readnone and readonly.
1722      FuncAttrs &= ~(llvm::Attribute::ReadOnly |
1723                     llvm::Attribute::ReadNone);
1724      break;
1725
1726    case ABIArgInfo::Direct:
1727      if (ParamType->isPromotableIntegerType()) {
1728        if (ParamType->isSignedIntegerType()) {
1729          Attributes |= llvm::Attribute::SExt;
1730        } else if (ParamType->isUnsignedIntegerType()) {
1731          Attributes |= llvm::Attribute::ZExt;
1732        }
1733      }
1734      if (RegParm > 0 &&
1735          (ParamType->isIntegerType() || ParamType->isPointerType())) {
1736        RegParm -=
1737          (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
1738        if (RegParm >= 0)
1739          Attributes |= llvm::Attribute::InReg;
1740      }
1741      // FIXME: handle sseregparm someday...
1742      break;
1743
1744    case ABIArgInfo::Ignore:
1745      // Skip increment, no matching LLVM parameter.
1746      continue;
1747
1748    case ABIArgInfo::Expand: {
1749      std::vector<const llvm::Type*> Tys;
1750      // FIXME: This is rather inefficient. Do we ever actually need
1751      // to do anything here? The result should be just reconstructed
1752      // on the other side, so extension should be a non-issue.
1753      getTypes().GetExpandedTypes(ParamType, Tys);
1754      Index += Tys.size();
1755      continue;
1756    }
1757    }
1758
1759    if (Attributes)
1760      PAL.push_back(llvm::AttributeWithIndex::get(Index, Attributes));
1761    ++Index;
1762  }
1763  if (FuncAttrs)
1764    PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
1765}
1766
1767void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1768                                         llvm::Function *Fn,
1769                                         const FunctionArgList &Args) {
1770  // FIXME: We no longer need the types from FunctionArgList; lift up
1771  // and simplify.
1772
1773  // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1774  llvm::Function::arg_iterator AI = Fn->arg_begin();
1775
1776  // Name the struct return argument.
1777  if (CGM.ReturnTypeUsesSret(FI)) {
1778    AI->setName("agg.result");
1779    ++AI;
1780  }
1781
1782  assert(FI.arg_size() == Args.size() &&
1783         "Mismatch between function signature & arguments.");
1784  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1785  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1786       i != e; ++i, ++info_it) {
1787    const VarDecl *Arg = i->first;
1788    QualType Ty = info_it->type;
1789    const ABIArgInfo &ArgI = info_it->info;
1790
1791    switch (ArgI.getKind()) {
1792    case ABIArgInfo::Indirect: {
1793      llvm::Value* V = AI;
1794      if (hasAggregateLLVMType(Ty)) {
1795        // Do nothing, aggregates and complex variables are accessed by
1796        // reference.
1797      } else {
1798        // Load scalar value from indirect argument.
1799        V = EmitLoadOfScalar(V, false, Ty);
1800        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1801          // This must be a promotion, for something like
1802          // "void a(x) short x; {..."
1803          V = EmitScalarConversion(V, Ty, Arg->getType());
1804        }
1805      }
1806      EmitParmDecl(*Arg, V);
1807      break;
1808    }
1809
1810    case ABIArgInfo::Direct: {
1811      assert(AI != Fn->arg_end() && "Argument mismatch!");
1812      llvm::Value* V = AI;
1813      if (hasAggregateLLVMType(Ty)) {
1814        // Create a temporary alloca to hold the argument; the rest of
1815        // codegen expects to access aggregates & complex values by
1816        // reference.
1817        V = CreateTempAlloca(ConvertTypeForMem(Ty));
1818        Builder.CreateStore(AI, V);
1819      } else {
1820        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1821          // This must be a promotion, for something like
1822          // "void a(x) short x; {..."
1823          V = EmitScalarConversion(V, Ty, Arg->getType());
1824        }
1825      }
1826      EmitParmDecl(*Arg, V);
1827      break;
1828    }
1829
1830    case ABIArgInfo::Expand: {
1831      // If this structure was expanded into multiple arguments then
1832      // we need to create a temporary and reconstruct it from the
1833      // arguments.
1834      std::string Name = Arg->getNameAsString();
1835      llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(Ty),
1836                                           (Name + ".addr").c_str());
1837      // FIXME: What are the right qualifiers here?
1838      llvm::Function::arg_iterator End =
1839        ExpandTypeFromArgs(Ty, LValue::MakeAddr(Temp,0), AI);
1840      EmitParmDecl(*Arg, Temp);
1841
1842      // Name the arguments used in expansion and increment AI.
1843      unsigned Index = 0;
1844      for (; AI != End; ++AI, ++Index)
1845        AI->setName(Name + "." + llvm::utostr(Index));
1846      continue;
1847    }
1848
1849    case ABIArgInfo::Ignore:
1850      // Initialize the local variable appropriately.
1851      if (hasAggregateLLVMType(Ty)) {
1852        EmitParmDecl(*Arg, CreateTempAlloca(ConvertTypeForMem(Ty)));
1853      } else {
1854        EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())));
1855      }
1856
1857      // Skip increment, no matching LLVM parameter.
1858      continue;
1859
1860    case ABIArgInfo::Coerce: {
1861      assert(AI != Fn->arg_end() && "Argument mismatch!");
1862      // FIXME: This is very wasteful; EmitParmDecl is just going to
1863      // drop the result in a new alloca anyway, so we could just
1864      // store into that directly if we broke the abstraction down
1865      // more.
1866      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(Ty), "coerce");
1867      CreateCoercedStore(AI, V, *this);
1868      // Match to what EmitParmDecl is expecting for this type.
1869      if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1870        V = EmitLoadOfScalar(V, false, Ty);
1871        if (!getContext().typesAreCompatible(Ty, Arg->getType())) {
1872          // This must be a promotion, for something like
1873          // "void a(x) short x; {..."
1874          V = EmitScalarConversion(V, Ty, Arg->getType());
1875        }
1876      }
1877      EmitParmDecl(*Arg, V);
1878      break;
1879    }
1880    }
1881
1882    ++AI;
1883  }
1884  assert(AI == Fn->arg_end() && "Argument mismatch!");
1885}
1886
1887void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1888                                         llvm::Value *ReturnValue) {
1889  llvm::Value *RV = 0;
1890
1891  // Functions with no result always return void.
1892  if (ReturnValue) {
1893    QualType RetTy = FI.getReturnType();
1894    const ABIArgInfo &RetAI = FI.getReturnInfo();
1895
1896    switch (RetAI.getKind()) {
1897    case ABIArgInfo::Indirect:
1898      if (RetTy->isAnyComplexType()) {
1899        ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1900        StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1901      } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1902        EmitAggregateCopy(CurFn->arg_begin(), ReturnValue, RetTy);
1903      } else {
1904        EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1905                          false);
1906      }
1907      break;
1908
1909    case ABIArgInfo::Direct:
1910      // The internal return value temp always will have
1911      // pointer-to-return-type type.
1912      RV = Builder.CreateLoad(ReturnValue);
1913      break;
1914
1915    case ABIArgInfo::Ignore:
1916      break;
1917
1918    case ABIArgInfo::Coerce:
1919      RV = CreateCoercedLoad(ReturnValue, RetAI.getCoerceToType(), *this);
1920      break;
1921
1922    case ABIArgInfo::Expand:
1923      assert(0 && "Invalid ABI kind for return argument");
1924    }
1925  }
1926
1927  if (RV) {
1928    Builder.CreateRet(RV);
1929  } else {
1930    Builder.CreateRetVoid();
1931  }
1932}
1933
1934RValue CodeGenFunction::EmitCallArg(const Expr *E, QualType ArgType) {
1935  return EmitAnyExprToTemp(E);
1936}
1937
1938void CodeGenFunction::EmitCallArgs(CallArgList& Args,
1939                                   const FunctionProtoType *FPT,
1940                                   CallExpr::const_arg_iterator ArgBeg,
1941                                   CallExpr::const_arg_iterator ArgEnd) {
1942  CallExpr::const_arg_iterator Arg = ArgBeg;
1943
1944  // First, use the function argument types.
1945  if (FPT) {
1946    for (FunctionProtoType::arg_type_iterator I = FPT->arg_type_begin(),
1947         E = FPT->arg_type_end(); I != E; ++I, ++Arg) {
1948      assert(getContext().getCanonicalType(I->getNonReferenceType()).
1949             getTypePtr() ==
1950             getContext().getCanonicalType(Arg->getType()).getTypePtr() &&
1951             "type mismatch in call argument!");
1952
1953      QualType ArgType = *I;
1954      Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
1955                                    ArgType));
1956    }
1957
1958    assert(Arg == ArgEnd || FPT->isVariadic() &&
1959           "Extra arguments in non-variadic function!");
1960  }
1961
1962  // If we still have any arguments, emit them using the type of the argument.
1963  for (; Arg != ArgEnd; ++Arg) {
1964    QualType ArgType = Arg->getType();
1965    Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
1966                                  ArgType));
1967  }
1968}
1969
1970RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1971                                 llvm::Value *Callee,
1972                                 const CallArgList &CallArgs,
1973                                 const Decl *TargetDecl) {
1974  // FIXME: We no longer need the types from CallArgs; lift up and
1975  // simplify.
1976  llvm::SmallVector<llvm::Value*, 16> Args;
1977
1978  // Handle struct-return functions by passing a pointer to the
1979  // location that we would like to return into.
1980  QualType RetTy = CallInfo.getReturnType();
1981  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1982  if (CGM.ReturnTypeUsesSret(CallInfo)) {
1983    // Create a temporary alloca to hold the result of the call. :(
1984    Args.push_back(CreateTempAlloca(ConvertTypeForMem(RetTy)));
1985  }
1986
1987  assert(CallInfo.arg_size() == CallArgs.size() &&
1988         "Mismatch between function signature & arguments.");
1989  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1990  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1991       I != E; ++I, ++info_it) {
1992    const ABIArgInfo &ArgInfo = info_it->info;
1993    RValue RV = I->first;
1994
1995    switch (ArgInfo.getKind()) {
1996    case ABIArgInfo::Indirect:
1997      if (RV.isScalar() || RV.isComplex()) {
1998        // Make a temporary alloca to pass the argument.
1999        Args.push_back(CreateTempAlloca(ConvertTypeForMem(I->second)));
2000        if (RV.isScalar())
2001          EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false);
2002        else
2003          StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
2004      } else {
2005        Args.push_back(RV.getAggregateAddr());
2006      }
2007      break;
2008
2009    case ABIArgInfo::Direct:
2010      if (RV.isScalar()) {
2011        Args.push_back(RV.getScalarVal());
2012      } else if (RV.isComplex()) {
2013        llvm::Value *Tmp = llvm::UndefValue::get(ConvertType(I->second));
2014        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().first, 0);
2015        Tmp = Builder.CreateInsertValue(Tmp, RV.getComplexVal().second, 1);
2016        Args.push_back(Tmp);
2017      } else {
2018        Args.push_back(Builder.CreateLoad(RV.getAggregateAddr()));
2019      }
2020      break;
2021
2022    case ABIArgInfo::Ignore:
2023      break;
2024
2025    case ABIArgInfo::Coerce: {
2026      // FIXME: Avoid the conversion through memory if possible.
2027      llvm::Value *SrcPtr;
2028      if (RV.isScalar()) {
2029        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
2030        EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false);
2031      } else if (RV.isComplex()) {
2032        SrcPtr = CreateTempAlloca(ConvertTypeForMem(I->second), "coerce");
2033        StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
2034      } else
2035        SrcPtr = RV.getAggregateAddr();
2036      Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2037                                       *this));
2038      break;
2039    }
2040
2041    case ABIArgInfo::Expand:
2042      ExpandTypeToArgs(I->second, RV, Args);
2043      break;
2044    }
2045  }
2046
2047  llvm::BasicBlock *InvokeDest = getInvokeDest();
2048  CodeGen::AttributeListType AttributeList;
2049  CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList);
2050  llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
2051                                                   AttributeList.end());
2052
2053  llvm::CallSite CS;
2054  if (!InvokeDest || (Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) {
2055    CS = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
2056  } else {
2057    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2058    CS = Builder.CreateInvoke(Callee, Cont, InvokeDest,
2059                              &Args[0], &Args[0]+Args.size());
2060    EmitBlock(Cont);
2061  }
2062
2063  CS.setAttributes(Attrs);
2064  if (const llvm::Function *F = dyn_cast<llvm::Function>(Callee))
2065    CS.setCallingConv(F->getCallingConv());
2066
2067  // If the call doesn't return, finish the basic block and clear the
2068  // insertion point; this allows the rest of IRgen to discard
2069  // unreachable code.
2070  if (CS.doesNotReturn()) {
2071    Builder.CreateUnreachable();
2072    Builder.ClearInsertionPoint();
2073
2074    // FIXME: For now, emit a dummy basic block because expr
2075    // emitters in generally are not ready to handle emitting
2076    // expressions at unreachable points.
2077    EnsureInsertPoint();
2078
2079    // Return a reasonable RValue.
2080    return GetUndefRValue(RetTy);
2081  }
2082
2083  llvm::Instruction *CI = CS.getInstruction();
2084  if (Builder.isNamePreserving() && CI->getType() != llvm::Type::VoidTy)
2085    CI->setName("call");
2086
2087  switch (RetAI.getKind()) {
2088  case ABIArgInfo::Indirect:
2089    if (RetTy->isAnyComplexType())
2090      return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2091    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2092      return RValue::getAggregate(Args[0]);
2093    return RValue::get(EmitLoadOfScalar(Args[0], false, RetTy));
2094
2095  case ABIArgInfo::Direct:
2096    if (RetTy->isAnyComplexType()) {
2097      llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2098      llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2099      return RValue::getComplex(std::make_pair(Real, Imag));
2100    }
2101    if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2102      llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "agg.tmp");
2103      Builder.CreateStore(CI, V);
2104      return RValue::getAggregate(V);
2105    }
2106    return RValue::get(CI);
2107
2108  case ABIArgInfo::Ignore:
2109    // If we are ignoring an argument that had a result, make sure to
2110    // construct the appropriate return value for our caller.
2111    return GetUndefRValue(RetTy);
2112
2113  case ABIArgInfo::Coerce: {
2114    // FIXME: Avoid the conversion through memory if possible.
2115    llvm::Value *V = CreateTempAlloca(ConvertTypeForMem(RetTy), "coerce");
2116    CreateCoercedStore(CI, V, *this);
2117    if (RetTy->isAnyComplexType())
2118      return RValue::getComplex(LoadComplexFromAddr(V, false));
2119    if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2120      return RValue::getAggregate(V);
2121    return RValue::get(EmitLoadOfScalar(V, false, RetTy));
2122  }
2123
2124  case ABIArgInfo::Expand:
2125    assert(0 && "Invalid ABI kind for return argument");
2126  }
2127
2128  assert(0 && "Unhandled ABIArgInfo::Kind");
2129  return RValue::get(0);
2130}
2131
2132/* VarArg handling */
2133
2134llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2135  return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2136}
2137