1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This contains code dealing with code generation of C++ expressions 11// 12//===----------------------------------------------------------------------===// 13 14#include "CodeGenFunction.h" 15#include "CGCUDARuntime.h" 16#include "CGCXXABI.h" 17#include "CGDebugInfo.h" 18#include "CGObjCRuntime.h" 19#include "clang/Frontend/CodeGenOptions.h" 20#include "llvm/IR/Intrinsics.h" 21#include "llvm/Support/CallSite.h" 22 23using namespace clang; 24using namespace CodeGen; 25 26RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD, 27 SourceLocation CallLoc, 28 llvm::Value *Callee, 29 ReturnValueSlot ReturnValue, 30 llvm::Value *This, 31 llvm::Value *ImplicitParam, 32 QualType ImplicitParamTy, 33 CallExpr::const_arg_iterator ArgBeg, 34 CallExpr::const_arg_iterator ArgEnd) { 35 assert(MD->isInstance() && 36 "Trying to emit a member call expr on a static method!"); 37 38 // C++11 [class.mfct.non-static]p2: 39 // If a non-static member function of a class X is called for an object that 40 // is not of type X, or of a type derived from X, the behavior is undefined. 41 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 42 : TCK_MemberCall, 43 CallLoc, This, getContext().getRecordType(MD->getParent())); 44 45 CallArgList Args; 46 47 // Push the this ptr. 48 Args.add(RValue::get(This), MD->getThisType(getContext())); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 58 // And the rest of the call args. 59 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd); 60 61 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), 62 Callee, ReturnValue, Args, MD); 63} 64 65// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 66// quite what we want. 67static const Expr *skipNoOpCastsAndParens(const Expr *E) { 68 while (true) { 69 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 70 E = PE->getSubExpr(); 71 continue; 72 } 73 74 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 75 if (CE->getCastKind() == CK_NoOp) { 76 E = CE->getSubExpr(); 77 continue; 78 } 79 } 80 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 81 if (UO->getOpcode() == UO_Extension) { 82 E = UO->getSubExpr(); 83 continue; 84 } 85 } 86 return E; 87 } 88} 89 90/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 91/// expr can be devirtualized. 92static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context, 93 const Expr *Base, 94 const CXXMethodDecl *MD) { 95 96 // When building with -fapple-kext, all calls must go through the vtable since 97 // the kernel linker can do runtime patching of vtables. 98 if (Context.getLangOpts().AppleKext) 99 return false; 100 101 // If the most derived class is marked final, we know that no subclass can 102 // override this member function and so we can devirtualize it. For example: 103 // 104 // struct A { virtual void f(); } 105 // struct B final : A { }; 106 // 107 // void f(B *b) { 108 // b->f(); 109 // } 110 // 111 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 112 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 113 return true; 114 115 // If the member function is marked 'final', we know that it can't be 116 // overridden and can therefore devirtualize it. 117 if (MD->hasAttr<FinalAttr>()) 118 return true; 119 120 // Similarly, if the class itself is marked 'final' it can't be overridden 121 // and we can therefore devirtualize the member function call. 122 if (MD->getParent()->hasAttr<FinalAttr>()) 123 return true; 124 125 Base = skipNoOpCastsAndParens(Base); 126 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 127 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 128 // This is a record decl. We know the type and can devirtualize it. 129 return VD->getType()->isRecordType(); 130 } 131 132 return false; 133 } 134 135 // We can devirtualize calls on an object accessed by a class member access 136 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 137 // a derived class object constructed in the same location. 138 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 139 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 140 return VD->getType()->isRecordType(); 141 142 // We can always devirtualize calls on temporary object expressions. 143 if (isa<CXXConstructExpr>(Base)) 144 return true; 145 146 // And calls on bound temporaries. 147 if (isa<CXXBindTemporaryExpr>(Base)) 148 return true; 149 150 // Check if this is a call expr that returns a record type. 151 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 152 return CE->getCallReturnType()->isRecordType(); 153 154 // We can't devirtualize the call. 155 return false; 156} 157 158static CXXRecordDecl *getCXXRecord(const Expr *E) { 159 QualType T = E->getType(); 160 if (const PointerType *PTy = T->getAs<PointerType>()) 161 T = PTy->getPointeeType(); 162 const RecordType *Ty = T->castAs<RecordType>(); 163 return cast<CXXRecordDecl>(Ty->getDecl()); 164} 165 166// Note: This function also emit constructor calls to support a MSVC 167// extensions allowing explicit constructor function call. 168RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 169 ReturnValueSlot ReturnValue) { 170 const Expr *callee = CE->getCallee()->IgnoreParens(); 171 172 if (isa<BinaryOperator>(callee)) 173 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 174 175 const MemberExpr *ME = cast<MemberExpr>(callee); 176 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 177 178 if (MD->isStatic()) { 179 // The method is static, emit it as we would a regular call. 180 llvm::Value *Callee = CGM.GetAddrOfFunction(MD); 181 return EmitCall(getContext().getPointerType(MD->getType()), Callee, 182 ReturnValue, CE->arg_begin(), CE->arg_end()); 183 } 184 185 // Compute the object pointer. 186 const Expr *Base = ME->getBase(); 187 bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier(); 188 189 const CXXMethodDecl *DevirtualizedMethod = NULL; 190 if (CanUseVirtualCall && 191 canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) { 192 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 193 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 194 assert(DevirtualizedMethod); 195 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 196 const Expr *Inner = Base->ignoreParenBaseCasts(); 197 if (getCXXRecord(Inner) == DevirtualizedClass) 198 // If the class of the Inner expression is where the dynamic method 199 // is defined, build the this pointer from it. 200 Base = Inner; 201 else if (getCXXRecord(Base) != DevirtualizedClass) { 202 // If the method is defined in a class that is not the best dynamic 203 // one or the one of the full expression, we would have to build 204 // a derived-to-base cast to compute the correct this pointer, but 205 // we don't have support for that yet, so do a virtual call. 206 DevirtualizedMethod = NULL; 207 } 208 // If the return types are not the same, this might be a case where more 209 // code needs to run to compensate for it. For example, the derived 210 // method might return a type that inherits form from the return 211 // type of MD and has a prefix. 212 // For now we just avoid devirtualizing these covariant cases. 213 if (DevirtualizedMethod && 214 DevirtualizedMethod->getResultType().getCanonicalType() != 215 MD->getResultType().getCanonicalType()) 216 DevirtualizedMethod = NULL; 217 } 218 219 llvm::Value *This; 220 if (ME->isArrow()) 221 This = EmitScalarExpr(Base); 222 else 223 This = EmitLValue(Base).getAddress(); 224 225 226 if (MD->isTrivial()) { 227 if (isa<CXXDestructorDecl>(MD)) return RValue::get(0); 228 if (isa<CXXConstructorDecl>(MD) && 229 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) 230 return RValue::get(0); 231 232 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) { 233 // We don't like to generate the trivial copy/move assignment operator 234 // when it isn't necessary; just produce the proper effect here. 235 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 236 EmitAggregateAssign(This, RHS, CE->getType()); 237 return RValue::get(This); 238 } 239 240 if (isa<CXXConstructorDecl>(MD) && 241 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) { 242 // Trivial move and copy ctor are the same. 243 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress(); 244 EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS, 245 CE->arg_begin(), CE->arg_end()); 246 return RValue::get(This); 247 } 248 llvm_unreachable("unknown trivial member function"); 249 } 250 251 // Compute the function type we're calling. 252 const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD; 253 const CGFunctionInfo *FInfo = 0; 254 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 255 FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor, 256 Dtor_Complete); 257 else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl)) 258 FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, 259 Ctor_Complete); 260 else 261 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 262 263 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 264 265 // C++ [class.virtual]p12: 266 // Explicit qualification with the scope operator (5.1) suppresses the 267 // virtual call mechanism. 268 // 269 // We also don't emit a virtual call if the base expression has a record type 270 // because then we know what the type is. 271 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 272 llvm::Value *Callee; 273 274 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) { 275 assert(CE->arg_begin() == CE->arg_end() && 276 "Destructor shouldn't have explicit parameters"); 277 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 278 if (UseVirtualCall) { 279 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 280 CE->getExprLoc(), This); 281 } else { 282 if (getLangOpts().AppleKext && 283 MD->isVirtual() && 284 ME->hasQualifier()) 285 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 286 else if (!DevirtualizedMethod) 287 Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty); 288 else { 289 const CXXDestructorDecl *DDtor = 290 cast<CXXDestructorDecl>(DevirtualizedMethod); 291 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty); 292 } 293 EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 294 /*ImplicitParam=*/0, QualType(), 0, 0); 295 } 296 return RValue::get(0); 297 } 298 299 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 300 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty); 301 } else if (UseVirtualCall) { 302 Callee = BuildVirtualCall(MD, This, Ty); 303 } else { 304 if (getLangOpts().AppleKext && 305 MD->isVirtual() && 306 ME->hasQualifier()) 307 Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty); 308 else if (!DevirtualizedMethod) 309 Callee = CGM.GetAddrOfFunction(MD, Ty); 310 else { 311 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty); 312 } 313 } 314 315 return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This, 316 /*ImplicitParam=*/0, QualType(), 317 CE->arg_begin(), CE->arg_end()); 318} 319 320RValue 321CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 322 ReturnValueSlot ReturnValue) { 323 const BinaryOperator *BO = 324 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 325 const Expr *BaseExpr = BO->getLHS(); 326 const Expr *MemFnExpr = BO->getRHS(); 327 328 const MemberPointerType *MPT = 329 MemFnExpr->getType()->castAs<MemberPointerType>(); 330 331 const FunctionProtoType *FPT = 332 MPT->getPointeeType()->castAs<FunctionProtoType>(); 333 const CXXRecordDecl *RD = 334 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl()); 335 336 // Get the member function pointer. 337 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 338 339 // Emit the 'this' pointer. 340 llvm::Value *This; 341 342 if (BO->getOpcode() == BO_PtrMemI) 343 This = EmitScalarExpr(BaseExpr); 344 else 345 This = EmitLValue(BaseExpr).getAddress(); 346 347 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This, 348 QualType(MPT->getClass(), 0)); 349 350 // Ask the ABI to load the callee. Note that This is modified. 351 llvm::Value *Callee = 352 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT); 353 354 CallArgList Args; 355 356 QualType ThisType = 357 getContext().getPointerType(getContext().getTagDeclType(RD)); 358 359 // Push the this ptr. 360 Args.add(RValue::get(This), ThisType); 361 362 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 363 364 // And the rest of the call args 365 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end()); 366 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee, 367 ReturnValue, Args); 368} 369 370RValue 371CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 372 const CXXMethodDecl *MD, 373 ReturnValueSlot ReturnValue) { 374 assert(MD->isInstance() && 375 "Trying to emit a member call expr on a static method!"); 376 LValue LV = EmitLValue(E->getArg(0)); 377 llvm::Value *This = LV.getAddress(); 378 379 if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 380 MD->isTrivial()) { 381 llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress(); 382 QualType Ty = E->getType(); 383 EmitAggregateAssign(This, Src, Ty); 384 return RValue::get(This); 385 } 386 387 llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This); 388 return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This, 389 /*ImplicitParam=*/0, QualType(), 390 E->arg_begin() + 1, E->arg_end()); 391} 392 393RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 394 ReturnValueSlot ReturnValue) { 395 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 396} 397 398static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 399 llvm::Value *DestPtr, 400 const CXXRecordDecl *Base) { 401 if (Base->isEmpty()) 402 return; 403 404 DestPtr = CGF.EmitCastToVoidPtr(DestPtr); 405 406 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 407 CharUnits Size = Layout.getNonVirtualSize(); 408 CharUnits Align = Layout.getNonVirtualAlign(); 409 410 llvm::Value *SizeVal = CGF.CGM.getSize(Size); 411 412 // If the type contains a pointer to data member we can't memset it to zero. 413 // Instead, create a null constant and copy it to the destination. 414 // TODO: there are other patterns besides zero that we can usefully memset, 415 // like -1, which happens to be the pattern used by member-pointers. 416 // TODO: isZeroInitializable can be over-conservative in the case where a 417 // virtual base contains a member pointer. 418 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) { 419 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base); 420 421 llvm::GlobalVariable *NullVariable = 422 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(), 423 /*isConstant=*/true, 424 llvm::GlobalVariable::PrivateLinkage, 425 NullConstant, Twine()); 426 NullVariable->setAlignment(Align.getQuantity()); 427 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable); 428 429 // Get and call the appropriate llvm.memcpy overload. 430 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity()); 431 return; 432 } 433 434 // Otherwise, just memset the whole thing to zero. This is legal 435 // because in LLVM, all default initializers (other than the ones we just 436 // handled above) are guaranteed to have a bit pattern of all zeros. 437 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal, 438 Align.getQuantity()); 439} 440 441void 442CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 443 AggValueSlot Dest) { 444 assert(!Dest.isIgnored() && "Must have a destination!"); 445 const CXXConstructorDecl *CD = E->getConstructor(); 446 447 // If we require zero initialization before (or instead of) calling the 448 // constructor, as can be the case with a non-user-provided default 449 // constructor, emit the zero initialization now, unless destination is 450 // already zeroed. 451 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 452 switch (E->getConstructionKind()) { 453 case CXXConstructExpr::CK_Delegating: 454 case CXXConstructExpr::CK_Complete: 455 EmitNullInitialization(Dest.getAddr(), E->getType()); 456 break; 457 case CXXConstructExpr::CK_VirtualBase: 458 case CXXConstructExpr::CK_NonVirtualBase: 459 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent()); 460 break; 461 } 462 } 463 464 // If this is a call to a trivial default constructor, do nothing. 465 if (CD->isTrivial() && CD->isDefaultConstructor()) 466 return; 467 468 // Elide the constructor if we're constructing from a temporary. 469 // The temporary check is required because Sema sets this on NRVO 470 // returns. 471 if (getLangOpts().ElideConstructors && E->isElidable()) { 472 assert(getContext().hasSameUnqualifiedType(E->getType(), 473 E->getArg(0)->getType())); 474 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) { 475 EmitAggExpr(E->getArg(0), Dest); 476 return; 477 } 478 } 479 480 if (const ConstantArrayType *arrayType 481 = getContext().getAsConstantArrayType(E->getType())) { 482 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), 483 E->arg_begin(), E->arg_end()); 484 } else { 485 CXXCtorType Type = Ctor_Complete; 486 bool ForVirtualBase = false; 487 bool Delegating = false; 488 489 switch (E->getConstructionKind()) { 490 case CXXConstructExpr::CK_Delegating: 491 // We should be emitting a constructor; GlobalDecl will assert this 492 Type = CurGD.getCtorType(); 493 Delegating = true; 494 break; 495 496 case CXXConstructExpr::CK_Complete: 497 Type = Ctor_Complete; 498 break; 499 500 case CXXConstructExpr::CK_VirtualBase: 501 ForVirtualBase = true; 502 // fall-through 503 504 case CXXConstructExpr::CK_NonVirtualBase: 505 Type = Ctor_Base; 506 } 507 508 // Call the constructor. 509 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(), 510 E->arg_begin(), E->arg_end()); 511 } 512} 513 514void 515CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, 516 llvm::Value *Src, 517 const Expr *Exp) { 518 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 519 Exp = E->getSubExpr(); 520 assert(isa<CXXConstructExpr>(Exp) && 521 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 522 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 523 const CXXConstructorDecl *CD = E->getConstructor(); 524 RunCleanupsScope Scope(*this); 525 526 // If we require zero initialization before (or instead of) calling the 527 // constructor, as can be the case with a non-user-provided default 528 // constructor, emit the zero initialization now. 529 // FIXME. Do I still need this for a copy ctor synthesis? 530 if (E->requiresZeroInitialization()) 531 EmitNullInitialization(Dest, E->getType()); 532 533 assert(!getContext().getAsConstantArrayType(E->getType()) 534 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 535 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, 536 E->arg_begin(), E->arg_end()); 537} 538 539static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 540 const CXXNewExpr *E) { 541 if (!E->isArray()) 542 return CharUnits::Zero(); 543 544 // No cookie is required if the operator new[] being used is the 545 // reserved placement operator new[]. 546 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 547 return CharUnits::Zero(); 548 549 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 550} 551 552static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 553 const CXXNewExpr *e, 554 unsigned minElements, 555 llvm::Value *&numElements, 556 llvm::Value *&sizeWithoutCookie) { 557 QualType type = e->getAllocatedType(); 558 559 if (!e->isArray()) { 560 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 561 sizeWithoutCookie 562 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 563 return sizeWithoutCookie; 564 } 565 566 // The width of size_t. 567 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 568 569 // Figure out the cookie size. 570 llvm::APInt cookieSize(sizeWidth, 571 CalculateCookiePadding(CGF, e).getQuantity()); 572 573 // Emit the array size expression. 574 // We multiply the size of all dimensions for NumElements. 575 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 576 numElements = CGF.EmitScalarExpr(e->getArraySize()); 577 assert(isa<llvm::IntegerType>(numElements->getType())); 578 579 // The number of elements can be have an arbitrary integer type; 580 // essentially, we need to multiply it by a constant factor, add a 581 // cookie size, and verify that the result is representable as a 582 // size_t. That's just a gloss, though, and it's wrong in one 583 // important way: if the count is negative, it's an error even if 584 // the cookie size would bring the total size >= 0. 585 bool isSigned 586 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType(); 587 llvm::IntegerType *numElementsType 588 = cast<llvm::IntegerType>(numElements->getType()); 589 unsigned numElementsWidth = numElementsType->getBitWidth(); 590 591 // Compute the constant factor. 592 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 593 while (const ConstantArrayType *CAT 594 = CGF.getContext().getAsConstantArrayType(type)) { 595 type = CAT->getElementType(); 596 arraySizeMultiplier *= CAT->getSize(); 597 } 598 599 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 600 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 601 typeSizeMultiplier *= arraySizeMultiplier; 602 603 // This will be a size_t. 604 llvm::Value *size; 605 606 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 607 // Don't bloat the -O0 code. 608 if (llvm::ConstantInt *numElementsC = 609 dyn_cast<llvm::ConstantInt>(numElements)) { 610 const llvm::APInt &count = numElementsC->getValue(); 611 612 bool hasAnyOverflow = false; 613 614 // If 'count' was a negative number, it's an overflow. 615 if (isSigned && count.isNegative()) 616 hasAnyOverflow = true; 617 618 // We want to do all this arithmetic in size_t. If numElements is 619 // wider than that, check whether it's already too big, and if so, 620 // overflow. 621 else if (numElementsWidth > sizeWidth && 622 numElementsWidth - sizeWidth > count.countLeadingZeros()) 623 hasAnyOverflow = true; 624 625 // Okay, compute a count at the right width. 626 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 627 628 // If there is a brace-initializer, we cannot allocate fewer elements than 629 // there are initializers. If we do, that's treated like an overflow. 630 if (adjustedCount.ult(minElements)) 631 hasAnyOverflow = true; 632 633 // Scale numElements by that. This might overflow, but we don't 634 // care because it only overflows if allocationSize does, too, and 635 // if that overflows then we shouldn't use this. 636 numElements = llvm::ConstantInt::get(CGF.SizeTy, 637 adjustedCount * arraySizeMultiplier); 638 639 // Compute the size before cookie, and track whether it overflowed. 640 bool overflow; 641 llvm::APInt allocationSize 642 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 643 hasAnyOverflow |= overflow; 644 645 // Add in the cookie, and check whether it's overflowed. 646 if (cookieSize != 0) { 647 // Save the current size without a cookie. This shouldn't be 648 // used if there was overflow. 649 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 650 651 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 652 hasAnyOverflow |= overflow; 653 } 654 655 // On overflow, produce a -1 so operator new will fail. 656 if (hasAnyOverflow) { 657 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 658 } else { 659 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 660 } 661 662 // Otherwise, we might need to use the overflow intrinsics. 663 } else { 664 // There are up to five conditions we need to test for: 665 // 1) if isSigned, we need to check whether numElements is negative; 666 // 2) if numElementsWidth > sizeWidth, we need to check whether 667 // numElements is larger than something representable in size_t; 668 // 3) if minElements > 0, we need to check whether numElements is smaller 669 // than that. 670 // 4) we need to compute 671 // sizeWithoutCookie := numElements * typeSizeMultiplier 672 // and check whether it overflows; and 673 // 5) if we need a cookie, we need to compute 674 // size := sizeWithoutCookie + cookieSize 675 // and check whether it overflows. 676 677 llvm::Value *hasOverflow = 0; 678 679 // If numElementsWidth > sizeWidth, then one way or another, we're 680 // going to have to do a comparison for (2), and this happens to 681 // take care of (1), too. 682 if (numElementsWidth > sizeWidth) { 683 llvm::APInt threshold(numElementsWidth, 1); 684 threshold <<= sizeWidth; 685 686 llvm::Value *thresholdV 687 = llvm::ConstantInt::get(numElementsType, threshold); 688 689 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 690 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 691 692 // Otherwise, if we're signed, we want to sext up to size_t. 693 } else if (isSigned) { 694 if (numElementsWidth < sizeWidth) 695 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 696 697 // If there's a non-1 type size multiplier, then we can do the 698 // signedness check at the same time as we do the multiply 699 // because a negative number times anything will cause an 700 // unsigned overflow. Otherwise, we have to do it here. But at least 701 // in this case, we can subsume the >= minElements check. 702 if (typeSizeMultiplier == 1) 703 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 704 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 705 706 // Otherwise, zext up to size_t if necessary. 707 } else if (numElementsWidth < sizeWidth) { 708 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 709 } 710 711 assert(numElements->getType() == CGF.SizeTy); 712 713 if (minElements) { 714 // Don't allow allocation of fewer elements than we have initializers. 715 if (!hasOverflow) { 716 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 717 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 718 } else if (numElementsWidth > sizeWidth) { 719 // The other existing overflow subsumes this check. 720 // We do an unsigned comparison, since any signed value < -1 is 721 // taken care of either above or below. 722 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 723 CGF.Builder.CreateICmpULT(numElements, 724 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 725 } 726 } 727 728 size = numElements; 729 730 // Multiply by the type size if necessary. This multiplier 731 // includes all the factors for nested arrays. 732 // 733 // This step also causes numElements to be scaled up by the 734 // nested-array factor if necessary. Overflow on this computation 735 // can be ignored because the result shouldn't be used if 736 // allocation fails. 737 if (typeSizeMultiplier != 1) { 738 llvm::Value *umul_with_overflow 739 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 740 741 llvm::Value *tsmV = 742 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 743 llvm::Value *result = 744 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV); 745 746 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 747 if (hasOverflow) 748 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 749 else 750 hasOverflow = overflowed; 751 752 size = CGF.Builder.CreateExtractValue(result, 0); 753 754 // Also scale up numElements by the array size multiplier. 755 if (arraySizeMultiplier != 1) { 756 // If the base element type size is 1, then we can re-use the 757 // multiply we just did. 758 if (typeSize.isOne()) { 759 assert(arraySizeMultiplier == typeSizeMultiplier); 760 numElements = size; 761 762 // Otherwise we need a separate multiply. 763 } else { 764 llvm::Value *asmV = 765 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 766 numElements = CGF.Builder.CreateMul(numElements, asmV); 767 } 768 } 769 } else { 770 // numElements doesn't need to be scaled. 771 assert(arraySizeMultiplier == 1); 772 } 773 774 // Add in the cookie size if necessary. 775 if (cookieSize != 0) { 776 sizeWithoutCookie = size; 777 778 llvm::Value *uadd_with_overflow 779 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 780 781 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 782 llvm::Value *result = 783 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV); 784 785 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 786 if (hasOverflow) 787 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 788 else 789 hasOverflow = overflowed; 790 791 size = CGF.Builder.CreateExtractValue(result, 0); 792 } 793 794 // If we had any possibility of dynamic overflow, make a select to 795 // overwrite 'size' with an all-ones value, which should cause 796 // operator new to throw. 797 if (hasOverflow) 798 size = CGF.Builder.CreateSelect(hasOverflow, 799 llvm::Constant::getAllOnesValue(CGF.SizeTy), 800 size); 801 } 802 803 if (cookieSize == 0) 804 sizeWithoutCookie = size; 805 else 806 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 807 808 return size; 809} 810 811static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 812 QualType AllocType, llvm::Value *NewPtr) { 813 814 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType); 815 switch (CGF.getEvaluationKind(AllocType)) { 816 case TEK_Scalar: 817 CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType, 818 Alignment), 819 false); 820 return; 821 case TEK_Complex: 822 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType, 823 Alignment), 824 /*isInit*/ true); 825 return; 826 case TEK_Aggregate: { 827 AggValueSlot Slot 828 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(), 829 AggValueSlot::IsDestructed, 830 AggValueSlot::DoesNotNeedGCBarriers, 831 AggValueSlot::IsNotAliased); 832 CGF.EmitAggExpr(Init, Slot); 833 return; 834 } 835 } 836 llvm_unreachable("bad evaluation kind"); 837} 838 839void 840CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E, 841 QualType elementType, 842 llvm::Value *beginPtr, 843 llvm::Value *numElements) { 844 if (!E->hasInitializer()) 845 return; // We have a POD type. 846 847 llvm::Value *explicitPtr = beginPtr; 848 // Find the end of the array, hoisted out of the loop. 849 llvm::Value *endPtr = 850 Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end"); 851 852 unsigned initializerElements = 0; 853 854 const Expr *Init = E->getInitializer(); 855 llvm::AllocaInst *endOfInit = 0; 856 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 857 EHScopeStack::stable_iterator cleanup; 858 llvm::Instruction *cleanupDominator = 0; 859 // If the initializer is an initializer list, first do the explicit elements. 860 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 861 initializerElements = ILE->getNumInits(); 862 863 // Enter a partial-destruction cleanup if necessary. 864 if (needsEHCleanup(dtorKind)) { 865 // In principle we could tell the cleanup where we are more 866 // directly, but the control flow can get so varied here that it 867 // would actually be quite complex. Therefore we go through an 868 // alloca. 869 endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit"); 870 cleanupDominator = Builder.CreateStore(beginPtr, endOfInit); 871 pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType, 872 getDestroyer(dtorKind)); 873 cleanup = EHStack.stable_begin(); 874 } 875 876 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 877 // Tell the cleanup that it needs to destroy up to this 878 // element. TODO: some of these stores can be trivially 879 // observed to be unnecessary. 880 if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit); 881 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr); 882 explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next"); 883 } 884 885 // The remaining elements are filled with the array filler expression. 886 Init = ILE->getArrayFiller(); 887 } 888 889 // Create the continuation block. 890 llvm::BasicBlock *contBB = createBasicBlock("new.loop.end"); 891 892 // If the number of elements isn't constant, we have to now check if there is 893 // anything left to initialize. 894 if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) { 895 // If all elements have already been initialized, skip the whole loop. 896 if (constNum->getZExtValue() <= initializerElements) { 897 // If there was a cleanup, deactivate it. 898 if (cleanupDominator) 899 DeactivateCleanupBlock(cleanup, cleanupDominator); 900 return; 901 } 902 } else { 903 llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty"); 904 llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr, 905 "array.isempty"); 906 Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB); 907 EmitBlock(nonEmptyBB); 908 } 909 910 // Enter the loop. 911 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 912 llvm::BasicBlock *loopBB = createBasicBlock("new.loop"); 913 914 EmitBlock(loopBB); 915 916 // Set up the current-element phi. 917 llvm::PHINode *curPtr = 918 Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur"); 919 curPtr->addIncoming(explicitPtr, entryBB); 920 921 // Store the new cleanup position for irregular cleanups. 922 if (endOfInit) Builder.CreateStore(curPtr, endOfInit); 923 924 // Enter a partial-destruction cleanup if necessary. 925 if (!cleanupDominator && needsEHCleanup(dtorKind)) { 926 pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType, 927 getDestroyer(dtorKind)); 928 cleanup = EHStack.stable_begin(); 929 cleanupDominator = Builder.CreateUnreachable(); 930 } 931 932 // Emit the initializer into this element. 933 StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr); 934 935 // Leave the cleanup if we entered one. 936 if (cleanupDominator) { 937 DeactivateCleanupBlock(cleanup, cleanupDominator); 938 cleanupDominator->eraseFromParent(); 939 } 940 941 // Advance to the next element. 942 llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next"); 943 944 // Check whether we've gotten to the end of the array and, if so, 945 // exit the loop. 946 llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend"); 947 Builder.CreateCondBr(isEnd, contBB, loopBB); 948 curPtr->addIncoming(nextPtr, Builder.GetInsertBlock()); 949 950 EmitBlock(contBB); 951} 952 953static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T, 954 llvm::Value *NewPtr, llvm::Value *Size) { 955 CGF.EmitCastToVoidPtr(NewPtr); 956 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T); 957 CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size, 958 Alignment.getQuantity(), false); 959} 960 961static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 962 QualType ElementType, 963 llvm::Value *NewPtr, 964 llvm::Value *NumElements, 965 llvm::Value *AllocSizeWithoutCookie) { 966 const Expr *Init = E->getInitializer(); 967 if (E->isArray()) { 968 if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){ 969 CXXConstructorDecl *Ctor = CCE->getConstructor(); 970 if (Ctor->isTrivial()) { 971 // If new expression did not specify value-initialization, then there 972 // is no initialization. 973 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 974 return; 975 976 if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 977 // Optimization: since zero initialization will just set the memory 978 // to all zeroes, generate a single memset to do it in one shot. 979 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 980 return; 981 } 982 } 983 984 CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr, 985 CCE->arg_begin(), CCE->arg_end(), 986 CCE->requiresZeroInitialization()); 987 return; 988 } else if (Init && isa<ImplicitValueInitExpr>(Init) && 989 CGF.CGM.getTypes().isZeroInitializable(ElementType)) { 990 // Optimization: since zero initialization will just set the memory 991 // to all zeroes, generate a single memset to do it in one shot. 992 EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie); 993 return; 994 } 995 CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements); 996 return; 997 } 998 999 if (!Init) 1000 return; 1001 1002 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr); 1003} 1004 1005/// Emit a call to an operator new or operator delete function, as implicitly 1006/// created by new-expressions and delete-expressions. 1007static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1008 const FunctionDecl *Callee, 1009 const FunctionProtoType *CalleeType, 1010 const CallArgList &Args) { 1011 llvm::Instruction *CallOrInvoke; 1012 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee); 1013 RValue RV = 1014 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType), 1015 CalleeAddr, ReturnValueSlot(), Args, 1016 Callee, &CallOrInvoke); 1017 1018 /// C++1y [expr.new]p10: 1019 /// [In a new-expression,] an implementation is allowed to omit a call 1020 /// to a replaceable global allocation function. 1021 /// 1022 /// We model such elidable calls with the 'builtin' attribute. 1023 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr); 1024 if (Callee->isReplaceableGlobalAllocationFunction() && 1025 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1026 // FIXME: Add addAttribute to CallSite. 1027 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke)) 1028 CI->addAttribute(llvm::AttributeSet::FunctionIndex, 1029 llvm::Attribute::Builtin); 1030 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke)) 1031 II->addAttribute(llvm::AttributeSet::FunctionIndex, 1032 llvm::Attribute::Builtin); 1033 else 1034 llvm_unreachable("unexpected kind of call instruction"); 1035 } 1036 1037 return RV; 1038} 1039 1040namespace { 1041 /// A cleanup to call the given 'operator delete' function upon 1042 /// abnormal exit from a new expression. 1043 class CallDeleteDuringNew : public EHScopeStack::Cleanup { 1044 size_t NumPlacementArgs; 1045 const FunctionDecl *OperatorDelete; 1046 llvm::Value *Ptr; 1047 llvm::Value *AllocSize; 1048 1049 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); } 1050 1051 public: 1052 static size_t getExtraSize(size_t NumPlacementArgs) { 1053 return NumPlacementArgs * sizeof(RValue); 1054 } 1055 1056 CallDeleteDuringNew(size_t NumPlacementArgs, 1057 const FunctionDecl *OperatorDelete, 1058 llvm::Value *Ptr, 1059 llvm::Value *AllocSize) 1060 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1061 Ptr(Ptr), AllocSize(AllocSize) {} 1062 1063 void setPlacementArg(unsigned I, RValue Arg) { 1064 assert(I < NumPlacementArgs && "index out of range"); 1065 getPlacementArgs()[I] = Arg; 1066 } 1067 1068 void Emit(CodeGenFunction &CGF, Flags flags) { 1069 const FunctionProtoType *FPT 1070 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1071 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1072 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1073 1074 CallArgList DeleteArgs; 1075 1076 // The first argument is always a void*. 1077 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1078 DeleteArgs.add(RValue::get(Ptr), *AI++); 1079 1080 // A member 'operator delete' can take an extra 'size_t' argument. 1081 if (FPT->getNumArgs() == NumPlacementArgs + 2) 1082 DeleteArgs.add(RValue::get(AllocSize), *AI++); 1083 1084 // Pass the rest of the arguments, which must match exactly. 1085 for (unsigned I = 0; I != NumPlacementArgs; ++I) 1086 DeleteArgs.add(getPlacementArgs()[I], *AI++); 1087 1088 // Call 'operator delete'. 1089 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1090 } 1091 }; 1092 1093 /// A cleanup to call the given 'operator delete' function upon 1094 /// abnormal exit from a new expression when the new expression is 1095 /// conditional. 1096 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup { 1097 size_t NumPlacementArgs; 1098 const FunctionDecl *OperatorDelete; 1099 DominatingValue<RValue>::saved_type Ptr; 1100 DominatingValue<RValue>::saved_type AllocSize; 1101 1102 DominatingValue<RValue>::saved_type *getPlacementArgs() { 1103 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1); 1104 } 1105 1106 public: 1107 static size_t getExtraSize(size_t NumPlacementArgs) { 1108 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type); 1109 } 1110 1111 CallDeleteDuringConditionalNew(size_t NumPlacementArgs, 1112 const FunctionDecl *OperatorDelete, 1113 DominatingValue<RValue>::saved_type Ptr, 1114 DominatingValue<RValue>::saved_type AllocSize) 1115 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete), 1116 Ptr(Ptr), AllocSize(AllocSize) {} 1117 1118 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) { 1119 assert(I < NumPlacementArgs && "index out of range"); 1120 getPlacementArgs()[I] = Arg; 1121 } 1122 1123 void Emit(CodeGenFunction &CGF, Flags flags) { 1124 const FunctionProtoType *FPT 1125 = OperatorDelete->getType()->getAs<FunctionProtoType>(); 1126 assert(FPT->getNumArgs() == NumPlacementArgs + 1 || 1127 (FPT->getNumArgs() == 2 && NumPlacementArgs == 0)); 1128 1129 CallArgList DeleteArgs; 1130 1131 // The first argument is always a void*. 1132 FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin(); 1133 DeleteArgs.add(Ptr.restore(CGF), *AI++); 1134 1135 // A member 'operator delete' can take an extra 'size_t' argument. 1136 if (FPT->getNumArgs() == NumPlacementArgs + 2) { 1137 RValue RV = AllocSize.restore(CGF); 1138 DeleteArgs.add(RV, *AI++); 1139 } 1140 1141 // Pass the rest of the arguments, which must match exactly. 1142 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1143 RValue RV = getPlacementArgs()[I].restore(CGF); 1144 DeleteArgs.add(RV, *AI++); 1145 } 1146 1147 // Call 'operator delete'. 1148 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1149 } 1150 }; 1151} 1152 1153/// Enter a cleanup to call 'operator delete' if the initializer in a 1154/// new-expression throws. 1155static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1156 const CXXNewExpr *E, 1157 llvm::Value *NewPtr, 1158 llvm::Value *AllocSize, 1159 const CallArgList &NewArgs) { 1160 // If we're not inside a conditional branch, then the cleanup will 1161 // dominate and we can do the easier (and more efficient) thing. 1162 if (!CGF.isInConditionalBranch()) { 1163 CallDeleteDuringNew *Cleanup = CGF.EHStack 1164 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup, 1165 E->getNumPlacementArgs(), 1166 E->getOperatorDelete(), 1167 NewPtr, AllocSize); 1168 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1169 Cleanup->setPlacementArg(I, NewArgs[I+1].RV); 1170 1171 return; 1172 } 1173 1174 // Otherwise, we need to save all this stuff. 1175 DominatingValue<RValue>::saved_type SavedNewPtr = 1176 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr)); 1177 DominatingValue<RValue>::saved_type SavedAllocSize = 1178 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1179 1180 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack 1181 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup, 1182 E->getNumPlacementArgs(), 1183 E->getOperatorDelete(), 1184 SavedNewPtr, 1185 SavedAllocSize); 1186 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) 1187 Cleanup->setPlacementArg(I, 1188 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV)); 1189 1190 CGF.initFullExprCleanup(); 1191} 1192 1193llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1194 // The element type being allocated. 1195 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1196 1197 // 1. Build a call to the allocation function. 1198 FunctionDecl *allocator = E->getOperatorNew(); 1199 const FunctionProtoType *allocatorType = 1200 allocator->getType()->castAs<FunctionProtoType>(); 1201 1202 CallArgList allocatorArgs; 1203 1204 // The allocation size is the first argument. 1205 QualType sizeType = getContext().getSizeType(); 1206 1207 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1208 unsigned minElements = 0; 1209 if (E->isArray() && E->hasInitializer()) { 1210 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer())) 1211 minElements = ILE->getNumInits(); 1212 } 1213 1214 llvm::Value *numElements = 0; 1215 llvm::Value *allocSizeWithoutCookie = 0; 1216 llvm::Value *allocSize = 1217 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1218 allocSizeWithoutCookie); 1219 1220 allocatorArgs.add(RValue::get(allocSize), sizeType); 1221 1222 // Emit the rest of the arguments. 1223 // FIXME: Ideally, this should just use EmitCallArgs. 1224 CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin(); 1225 1226 // First, use the types from the function type. 1227 // We start at 1 here because the first argument (the allocation size) 1228 // has already been emitted. 1229 for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e; 1230 ++i, ++placementArg) { 1231 QualType argType = allocatorType->getArgType(i); 1232 1233 assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(), 1234 placementArg->getType()) && 1235 "type mismatch in call argument!"); 1236 1237 EmitCallArg(allocatorArgs, *placementArg, argType); 1238 } 1239 1240 // Either we've emitted all the call args, or we have a call to a 1241 // variadic function. 1242 assert((placementArg == E->placement_arg_end() || 1243 allocatorType->isVariadic()) && 1244 "Extra arguments to non-variadic function!"); 1245 1246 // If we still have any arguments, emit them using the type of the argument. 1247 for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end(); 1248 placementArg != placementArgsEnd; ++placementArg) { 1249 EmitCallArg(allocatorArgs, *placementArg, placementArg->getType()); 1250 } 1251 1252 // Emit the allocation call. If the allocator is a global placement 1253 // operator, just "inline" it directly. 1254 RValue RV; 1255 if (allocator->isReservedGlobalPlacementOperator()) { 1256 assert(allocatorArgs.size() == 2); 1257 RV = allocatorArgs[1].RV; 1258 // TODO: kill any unnecessary computations done for the size 1259 // argument. 1260 } else { 1261 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1262 } 1263 1264 // Emit a null check on the allocation result if the allocation 1265 // function is allowed to return null (because it has a non-throwing 1266 // exception spec; for this part, we inline 1267 // CXXNewExpr::shouldNullCheckAllocation()) and we have an 1268 // interesting initializer. 1269 bool nullCheck = allocatorType->isNothrow(getContext()) && 1270 (!allocType.isPODType(getContext()) || E->hasInitializer()); 1271 1272 llvm::BasicBlock *nullCheckBB = 0; 1273 llvm::BasicBlock *contBB = 0; 1274 1275 llvm::Value *allocation = RV.getScalarVal(); 1276 unsigned AS = allocation->getType()->getPointerAddressSpace(); 1277 1278 // The null-check means that the initializer is conditionally 1279 // evaluated. 1280 ConditionalEvaluation conditional(*this); 1281 1282 if (nullCheck) { 1283 conditional.begin(*this); 1284 1285 nullCheckBB = Builder.GetInsertBlock(); 1286 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1287 contBB = createBasicBlock("new.cont"); 1288 1289 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull"); 1290 Builder.CreateCondBr(isNull, contBB, notNullBB); 1291 EmitBlock(notNullBB); 1292 } 1293 1294 // If there's an operator delete, enter a cleanup to call it if an 1295 // exception is thrown. 1296 EHScopeStack::stable_iterator operatorDeleteCleanup; 1297 llvm::Instruction *cleanupDominator = 0; 1298 if (E->getOperatorDelete() && 1299 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1300 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs); 1301 operatorDeleteCleanup = EHStack.stable_begin(); 1302 cleanupDominator = Builder.CreateUnreachable(); 1303 } 1304 1305 assert((allocSize == allocSizeWithoutCookie) == 1306 CalculateCookiePadding(*this, E).isZero()); 1307 if (allocSize != allocSizeWithoutCookie) { 1308 assert(E->isArray()); 1309 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1310 numElements, 1311 E, allocType); 1312 } 1313 1314 llvm::Type *elementPtrTy 1315 = ConvertTypeForMem(allocType)->getPointerTo(AS); 1316 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy); 1317 1318 EmitNewInitializer(*this, E, allocType, result, numElements, 1319 allocSizeWithoutCookie); 1320 if (E->isArray()) { 1321 // NewPtr is a pointer to the base element type. If we're 1322 // allocating an array of arrays, we'll need to cast back to the 1323 // array pointer type. 1324 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1325 if (result->getType() != resultType) 1326 result = Builder.CreateBitCast(result, resultType); 1327 } 1328 1329 // Deactivate the 'operator delete' cleanup if we finished 1330 // initialization. 1331 if (operatorDeleteCleanup.isValid()) { 1332 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1333 cleanupDominator->eraseFromParent(); 1334 } 1335 1336 if (nullCheck) { 1337 conditional.end(*this); 1338 1339 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1340 EmitBlock(contBB); 1341 1342 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2); 1343 PHI->addIncoming(result, notNullBB); 1344 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()), 1345 nullCheckBB); 1346 1347 result = PHI; 1348 } 1349 1350 return result; 1351} 1352 1353void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1354 llvm::Value *Ptr, 1355 QualType DeleteTy) { 1356 assert(DeleteFD->getOverloadedOperator() == OO_Delete); 1357 1358 const FunctionProtoType *DeleteFTy = 1359 DeleteFD->getType()->getAs<FunctionProtoType>(); 1360 1361 CallArgList DeleteArgs; 1362 1363 // Check if we need to pass the size to the delete operator. 1364 llvm::Value *Size = 0; 1365 QualType SizeTy; 1366 if (DeleteFTy->getNumArgs() == 2) { 1367 SizeTy = DeleteFTy->getArgType(1); 1368 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1369 Size = llvm::ConstantInt::get(ConvertType(SizeTy), 1370 DeleteTypeSize.getQuantity()); 1371 } 1372 1373 QualType ArgTy = DeleteFTy->getArgType(0); 1374 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1375 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1376 1377 if (Size) 1378 DeleteArgs.add(RValue::get(Size), SizeTy); 1379 1380 // Emit the call to delete. 1381 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1382} 1383 1384namespace { 1385 /// Calls the given 'operator delete' on a single object. 1386 struct CallObjectDelete : EHScopeStack::Cleanup { 1387 llvm::Value *Ptr; 1388 const FunctionDecl *OperatorDelete; 1389 QualType ElementType; 1390 1391 CallObjectDelete(llvm::Value *Ptr, 1392 const FunctionDecl *OperatorDelete, 1393 QualType ElementType) 1394 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1395 1396 void Emit(CodeGenFunction &CGF, Flags flags) { 1397 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1398 } 1399 }; 1400} 1401 1402/// Emit the code for deleting a single object. 1403static void EmitObjectDelete(CodeGenFunction &CGF, 1404 const FunctionDecl *OperatorDelete, 1405 llvm::Value *Ptr, 1406 QualType ElementType, 1407 bool UseGlobalDelete) { 1408 // Find the destructor for the type, if applicable. If the 1409 // destructor is virtual, we'll just emit the vcall and return. 1410 const CXXDestructorDecl *Dtor = 0; 1411 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1412 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1413 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1414 Dtor = RD->getDestructor(); 1415 1416 if (Dtor->isVirtual()) { 1417 if (UseGlobalDelete) { 1418 // If we're supposed to call the global delete, make sure we do so 1419 // even if the destructor throws. 1420 1421 // Derive the complete-object pointer, which is what we need 1422 // to pass to the deallocation function. 1423 llvm::Value *completePtr = 1424 CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType); 1425 1426 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1427 completePtr, OperatorDelete, 1428 ElementType); 1429 } 1430 1431 // FIXME: Provide a source location here. 1432 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 1433 CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType, 1434 SourceLocation(), Ptr); 1435 1436 if (UseGlobalDelete) { 1437 CGF.PopCleanupBlock(); 1438 } 1439 1440 return; 1441 } 1442 } 1443 } 1444 1445 // Make sure that we call delete even if the dtor throws. 1446 // This doesn't have to a conditional cleanup because we're going 1447 // to pop it off in a second. 1448 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1449 Ptr, OperatorDelete, ElementType); 1450 1451 if (Dtor) 1452 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1453 /*ForVirtualBase=*/false, 1454 /*Delegating=*/false, 1455 Ptr); 1456 else if (CGF.getLangOpts().ObjCAutoRefCount && 1457 ElementType->isObjCLifetimeType()) { 1458 switch (ElementType.getObjCLifetime()) { 1459 case Qualifiers::OCL_None: 1460 case Qualifiers::OCL_ExplicitNone: 1461 case Qualifiers::OCL_Autoreleasing: 1462 break; 1463 1464 case Qualifiers::OCL_Strong: { 1465 // Load the pointer value. 1466 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr, 1467 ElementType.isVolatileQualified()); 1468 1469 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime); 1470 break; 1471 } 1472 1473 case Qualifiers::OCL_Weak: 1474 CGF.EmitARCDestroyWeak(Ptr); 1475 break; 1476 } 1477 } 1478 1479 CGF.PopCleanupBlock(); 1480} 1481 1482namespace { 1483 /// Calls the given 'operator delete' on an array of objects. 1484 struct CallArrayDelete : EHScopeStack::Cleanup { 1485 llvm::Value *Ptr; 1486 const FunctionDecl *OperatorDelete; 1487 llvm::Value *NumElements; 1488 QualType ElementType; 1489 CharUnits CookieSize; 1490 1491 CallArrayDelete(llvm::Value *Ptr, 1492 const FunctionDecl *OperatorDelete, 1493 llvm::Value *NumElements, 1494 QualType ElementType, 1495 CharUnits CookieSize) 1496 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 1497 ElementType(ElementType), CookieSize(CookieSize) {} 1498 1499 void Emit(CodeGenFunction &CGF, Flags flags) { 1500 const FunctionProtoType *DeleteFTy = 1501 OperatorDelete->getType()->getAs<FunctionProtoType>(); 1502 assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2); 1503 1504 CallArgList Args; 1505 1506 // Pass the pointer as the first argument. 1507 QualType VoidPtrTy = DeleteFTy->getArgType(0); 1508 llvm::Value *DeletePtr 1509 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy)); 1510 Args.add(RValue::get(DeletePtr), VoidPtrTy); 1511 1512 // Pass the original requested size as the second argument. 1513 if (DeleteFTy->getNumArgs() == 2) { 1514 QualType size_t = DeleteFTy->getArgType(1); 1515 llvm::IntegerType *SizeTy 1516 = cast<llvm::IntegerType>(CGF.ConvertType(size_t)); 1517 1518 CharUnits ElementTypeSize = 1519 CGF.CGM.getContext().getTypeSizeInChars(ElementType); 1520 1521 // The size of an element, multiplied by the number of elements. 1522 llvm::Value *Size 1523 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity()); 1524 Size = CGF.Builder.CreateMul(Size, NumElements); 1525 1526 // Plus the size of the cookie if applicable. 1527 if (!CookieSize.isZero()) { 1528 llvm::Value *CookieSizeV 1529 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()); 1530 Size = CGF.Builder.CreateAdd(Size, CookieSizeV); 1531 } 1532 1533 Args.add(RValue::get(Size), size_t); 1534 } 1535 1536 // Emit the call to delete. 1537 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args); 1538 } 1539 }; 1540} 1541 1542/// Emit the code for deleting an array of objects. 1543static void EmitArrayDelete(CodeGenFunction &CGF, 1544 const CXXDeleteExpr *E, 1545 llvm::Value *deletedPtr, 1546 QualType elementType) { 1547 llvm::Value *numElements = 0; 1548 llvm::Value *allocatedPtr = 0; 1549 CharUnits cookieSize; 1550 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 1551 numElements, allocatedPtr, cookieSize); 1552 1553 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 1554 1555 // Make sure that we call delete even if one of the dtors throws. 1556 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 1557 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 1558 allocatedPtr, operatorDelete, 1559 numElements, elementType, 1560 cookieSize); 1561 1562 // Destroy the elements. 1563 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 1564 assert(numElements && "no element count for a type with a destructor!"); 1565 1566 llvm::Value *arrayEnd = 1567 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end"); 1568 1569 // Note that it is legal to allocate a zero-length array, and we 1570 // can never fold the check away because the length should always 1571 // come from a cookie. 1572 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType, 1573 CGF.getDestroyer(dtorKind), 1574 /*checkZeroLength*/ true, 1575 CGF.needsEHCleanup(dtorKind)); 1576 } 1577 1578 // Pop the cleanup block. 1579 CGF.PopCleanupBlock(); 1580} 1581 1582void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 1583 const Expr *Arg = E->getArgument(); 1584 llvm::Value *Ptr = EmitScalarExpr(Arg); 1585 1586 // Null check the pointer. 1587 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 1588 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 1589 1590 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull"); 1591 1592 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 1593 EmitBlock(DeleteNotNull); 1594 1595 // We might be deleting a pointer to array. If so, GEP down to the 1596 // first non-array element. 1597 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 1598 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType(); 1599 if (DeleteTy->isConstantArrayType()) { 1600 llvm::Value *Zero = Builder.getInt32(0); 1601 SmallVector<llvm::Value*,8> GEP; 1602 1603 GEP.push_back(Zero); // point at the outermost array 1604 1605 // For each layer of array type we're pointing at: 1606 while (const ConstantArrayType *Arr 1607 = getContext().getAsConstantArrayType(DeleteTy)) { 1608 // 1. Unpeel the array type. 1609 DeleteTy = Arr->getElementType(); 1610 1611 // 2. GEP to the first element of the array. 1612 GEP.push_back(Zero); 1613 } 1614 1615 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first"); 1616 } 1617 1618 assert(ConvertTypeForMem(DeleteTy) == 1619 cast<llvm::PointerType>(Ptr->getType())->getElementType()); 1620 1621 if (E->isArrayForm()) { 1622 EmitArrayDelete(*this, E, Ptr, DeleteTy); 1623 } else { 1624 EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy, 1625 E->isGlobalDelete()); 1626 } 1627 1628 EmitBlock(DeleteEnd); 1629} 1630 1631static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) { 1632 // void __cxa_bad_typeid(); 1633 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1634 1635 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); 1636} 1637 1638static void EmitBadTypeidCall(CodeGenFunction &CGF) { 1639 llvm::Value *Fn = getBadTypeidFn(CGF); 1640 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1641 CGF.Builder.CreateUnreachable(); 1642} 1643 1644static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, 1645 const Expr *E, 1646 llvm::Type *StdTypeInfoPtrTy) { 1647 // Get the vtable pointer. 1648 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress(); 1649 1650 // C++ [expr.typeid]p2: 1651 // If the glvalue expression is obtained by applying the unary * operator to 1652 // a pointer and the pointer is a null pointer value, the typeid expression 1653 // throws the std::bad_typeid exception. 1654 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) { 1655 if (UO->getOpcode() == UO_Deref) { 1656 llvm::BasicBlock *BadTypeidBlock = 1657 CGF.createBasicBlock("typeid.bad_typeid"); 1658 llvm::BasicBlock *EndBlock = 1659 CGF.createBasicBlock("typeid.end"); 1660 1661 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr); 1662 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 1663 1664 CGF.EmitBlock(BadTypeidBlock); 1665 EmitBadTypeidCall(CGF); 1666 CGF.EmitBlock(EndBlock); 1667 } 1668 } 1669 1670 llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, 1671 StdTypeInfoPtrTy->getPointerTo()); 1672 1673 // Load the type info. 1674 Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); 1675 return CGF.Builder.CreateLoad(Value); 1676} 1677 1678llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 1679 llvm::Type *StdTypeInfoPtrTy = 1680 ConvertType(E->getType())->getPointerTo(); 1681 1682 if (E->isTypeOperand()) { 1683 llvm::Constant *TypeInfo = 1684 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand()); 1685 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 1686 } 1687 1688 // C++ [expr.typeid]p2: 1689 // When typeid is applied to a glvalue expression whose type is a 1690 // polymorphic class type, the result refers to a std::type_info object 1691 // representing the type of the most derived object (that is, the dynamic 1692 // type) to which the glvalue refers. 1693 if (E->isPotentiallyEvaluated()) 1694 return EmitTypeidFromVTable(*this, E->getExprOperand(), 1695 StdTypeInfoPtrTy); 1696 1697 QualType OperandTy = E->getExprOperand()->getType(); 1698 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 1699 StdTypeInfoPtrTy); 1700} 1701 1702static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) { 1703 // void *__dynamic_cast(const void *sub, 1704 // const abi::__class_type_info *src, 1705 // const abi::__class_type_info *dst, 1706 // std::ptrdiff_t src2dst_offset); 1707 1708 llvm::Type *Int8PtrTy = CGF.Int8PtrTy; 1709 llvm::Type *PtrDiffTy = 1710 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1711 1712 llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; 1713 1714 llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); 1715 1716 // Mark the function as nounwind readonly. 1717 llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, 1718 llvm::Attribute::ReadOnly }; 1719 llvm::AttributeSet Attrs = llvm::AttributeSet::get( 1720 CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs); 1721 1722 return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); 1723} 1724 1725static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) { 1726 // void __cxa_bad_cast(); 1727 llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); 1728 return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); 1729} 1730 1731static void EmitBadCastCall(CodeGenFunction &CGF) { 1732 llvm::Value *Fn = getBadCastFn(CGF); 1733 CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn(); 1734 CGF.Builder.CreateUnreachable(); 1735} 1736 1737/// \brief Compute the src2dst_offset hint as described in the 1738/// Itanium C++ ABI [2.9.7] 1739static CharUnits computeOffsetHint(ASTContext &Context, 1740 const CXXRecordDecl *Src, 1741 const CXXRecordDecl *Dst) { 1742 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1743 /*DetectVirtual=*/false); 1744 1745 // If Dst is not derived from Src we can skip the whole computation below and 1746 // return that Src is not a public base of Dst. Record all inheritance paths. 1747 if (!Dst->isDerivedFrom(Src, Paths)) 1748 return CharUnits::fromQuantity(-2ULL); 1749 1750 unsigned NumPublicPaths = 0; 1751 CharUnits Offset; 1752 1753 // Now walk all possible inheritance paths. 1754 for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end(); 1755 I != E; ++I) { 1756 if (I->Access != AS_public) // Ignore non-public inheritance. 1757 continue; 1758 1759 ++NumPublicPaths; 1760 1761 for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 1762 // If the path contains a virtual base class we can't give any hint. 1763 // -1: no hint. 1764 if (J->Base->isVirtual()) 1765 return CharUnits::fromQuantity(-1ULL); 1766 1767 if (NumPublicPaths > 1) // Won't use offsets, skip computation. 1768 continue; 1769 1770 // Accumulate the base class offsets. 1771 const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class); 1772 Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl()); 1773 } 1774 } 1775 1776 // -2: Src is not a public base of Dst. 1777 if (NumPublicPaths == 0) 1778 return CharUnits::fromQuantity(-2ULL); 1779 1780 // -3: Src is a multiple public base type but never a virtual base type. 1781 if (NumPublicPaths > 1) 1782 return CharUnits::fromQuantity(-3ULL); 1783 1784 // Otherwise, the Src type is a unique public nonvirtual base type of Dst. 1785 // Return the offset of Src from the origin of Dst. 1786 return Offset; 1787} 1788 1789static llvm::Value * 1790EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value, 1791 QualType SrcTy, QualType DestTy, 1792 llvm::BasicBlock *CastEnd) { 1793 llvm::Type *PtrDiffLTy = 1794 CGF.ConvertType(CGF.getContext().getPointerDiffType()); 1795 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1796 1797 if (const PointerType *PTy = DestTy->getAs<PointerType>()) { 1798 if (PTy->getPointeeType()->isVoidType()) { 1799 // C++ [expr.dynamic.cast]p7: 1800 // If T is "pointer to cv void," then the result is a pointer to the 1801 // most derived object pointed to by v. 1802 1803 // Get the vtable pointer. 1804 llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo()); 1805 1806 // Get the offset-to-top from the vtable. 1807 llvm::Value *OffsetToTop = 1808 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); 1809 OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top"); 1810 1811 // Finally, add the offset to the pointer. 1812 Value = CGF.EmitCastToVoidPtr(Value); 1813 Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); 1814 1815 return CGF.Builder.CreateBitCast(Value, DestLTy); 1816 } 1817 } 1818 1819 QualType SrcRecordTy; 1820 QualType DestRecordTy; 1821 1822 if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) { 1823 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 1824 DestRecordTy = DestPTy->getPointeeType(); 1825 } else { 1826 SrcRecordTy = SrcTy; 1827 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 1828 } 1829 1830 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 1831 assert(DestRecordTy->isRecordType() && "dest type must be a record type!"); 1832 1833 llvm::Value *SrcRTTI = 1834 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1835 llvm::Value *DestRTTI = 1836 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1837 1838 // Compute the offset hint. 1839 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 1840 const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); 1841 llvm::Value *OffsetHint = 1842 llvm::ConstantInt::get(PtrDiffLTy, 1843 computeOffsetHint(CGF.getContext(), SrcDecl, 1844 DestDecl).getQuantity()); 1845 1846 // Emit the call to __dynamic_cast. 1847 Value = CGF.EmitCastToVoidPtr(Value); 1848 1849 llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint }; 1850 Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args); 1851 Value = CGF.Builder.CreateBitCast(Value, DestLTy); 1852 1853 /// C++ [expr.dynamic.cast]p9: 1854 /// A failed cast to reference type throws std::bad_cast 1855 if (DestTy->isReferenceType()) { 1856 llvm::BasicBlock *BadCastBlock = 1857 CGF.createBasicBlock("dynamic_cast.bad_cast"); 1858 1859 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); 1860 CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); 1861 1862 CGF.EmitBlock(BadCastBlock); 1863 EmitBadCastCall(CGF); 1864 } 1865 1866 return Value; 1867} 1868 1869static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 1870 QualType DestTy) { 1871 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1872 if (DestTy->isPointerType()) 1873 return llvm::Constant::getNullValue(DestLTy); 1874 1875 /// C++ [expr.dynamic.cast]p9: 1876 /// A failed cast to reference type throws std::bad_cast 1877 EmitBadCastCall(CGF); 1878 1879 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 1880 return llvm::UndefValue::get(DestLTy); 1881} 1882 1883llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value, 1884 const CXXDynamicCastExpr *DCE) { 1885 QualType DestTy = DCE->getTypeAsWritten(); 1886 1887 if (DCE->isAlwaysNull()) 1888 return EmitDynamicCastToNull(*this, DestTy); 1889 1890 QualType SrcTy = DCE->getSubExpr()->getType(); 1891 1892 // C++ [expr.dynamic.cast]p4: 1893 // If the value of v is a null pointer value in the pointer case, the result 1894 // is the null pointer value of type T. 1895 bool ShouldNullCheckSrcValue = SrcTy->isPointerType(); 1896 1897 llvm::BasicBlock *CastNull = 0; 1898 llvm::BasicBlock *CastNotNull = 0; 1899 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 1900 1901 if (ShouldNullCheckSrcValue) { 1902 CastNull = createBasicBlock("dynamic_cast.null"); 1903 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 1904 1905 llvm::Value *IsNull = Builder.CreateIsNull(Value); 1906 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 1907 EmitBlock(CastNotNull); 1908 } 1909 1910 Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd); 1911 1912 if (ShouldNullCheckSrcValue) { 1913 EmitBranch(CastEnd); 1914 1915 EmitBlock(CastNull); 1916 EmitBranch(CastEnd); 1917 } 1918 1919 EmitBlock(CastEnd); 1920 1921 if (ShouldNullCheckSrcValue) { 1922 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 1923 PHI->addIncoming(Value, CastNotNull); 1924 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 1925 1926 Value = PHI; 1927 } 1928 1929 return Value; 1930} 1931 1932void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) { 1933 RunCleanupsScope Scope(*this); 1934 LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(), 1935 Slot.getAlignment()); 1936 1937 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1938 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(), 1939 e = E->capture_init_end(); 1940 i != e; ++i, ++CurField) { 1941 // Emit initialization 1942 1943 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 1944 ArrayRef<VarDecl *> ArrayIndexes; 1945 if (CurField->getType()->isArrayType()) 1946 ArrayIndexes = E->getCaptureInitIndexVars(i); 1947 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes); 1948 } 1949} 1950