1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code dealing with code generation of C++ expressions
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "clang/Frontend/CodeGenOptions.h"
20#include "llvm/IR/Intrinsics.h"
21#include "llvm/Support/CallSite.h"
22
23using namespace clang;
24using namespace CodeGen;
25
26RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
27                                          SourceLocation CallLoc,
28                                          llvm::Value *Callee,
29                                          ReturnValueSlot ReturnValue,
30                                          llvm::Value *This,
31                                          llvm::Value *ImplicitParam,
32                                          QualType ImplicitParamTy,
33                                          CallExpr::const_arg_iterator ArgBeg,
34                                          CallExpr::const_arg_iterator ArgEnd) {
35  assert(MD->isInstance() &&
36         "Trying to emit a member call expr on a static method!");
37
38  // C++11 [class.mfct.non-static]p2:
39  //   If a non-static member function of a class X is called for an object that
40  //   is not of type X, or of a type derived from X, the behavior is undefined.
41  EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
42                                            : TCK_MemberCall,
43                CallLoc, This, getContext().getRecordType(MD->getParent()));
44
45  CallArgList Args;
46
47  // Push the this ptr.
48  Args.add(RValue::get(This), MD->getThisType(getContext()));
49
50  // If there is an implicit parameter (e.g. VTT), emit it.
51  if (ImplicitParam) {
52    Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53  }
54
55  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57
58  // And the rest of the call args.
59  EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
60
61  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
62                  Callee, ReturnValue, Args, MD);
63}
64
65// FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
66// quite what we want.
67static const Expr *skipNoOpCastsAndParens(const Expr *E) {
68  while (true) {
69    if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
70      E = PE->getSubExpr();
71      continue;
72    }
73
74    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
75      if (CE->getCastKind() == CK_NoOp) {
76        E = CE->getSubExpr();
77        continue;
78      }
79    }
80    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
81      if (UO->getOpcode() == UO_Extension) {
82        E = UO->getSubExpr();
83        continue;
84      }
85    }
86    return E;
87  }
88}
89
90/// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
91/// expr can be devirtualized.
92static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
93                                               const Expr *Base,
94                                               const CXXMethodDecl *MD) {
95
96  // When building with -fapple-kext, all calls must go through the vtable since
97  // the kernel linker can do runtime patching of vtables.
98  if (Context.getLangOpts().AppleKext)
99    return false;
100
101  // If the most derived class is marked final, we know that no subclass can
102  // override this member function and so we can devirtualize it. For example:
103  //
104  // struct A { virtual void f(); }
105  // struct B final : A { };
106  //
107  // void f(B *b) {
108  //   b->f();
109  // }
110  //
111  const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
112  if (MostDerivedClassDecl->hasAttr<FinalAttr>())
113    return true;
114
115  // If the member function is marked 'final', we know that it can't be
116  // overridden and can therefore devirtualize it.
117  if (MD->hasAttr<FinalAttr>())
118    return true;
119
120  // Similarly, if the class itself is marked 'final' it can't be overridden
121  // and we can therefore devirtualize the member function call.
122  if (MD->getParent()->hasAttr<FinalAttr>())
123    return true;
124
125  Base = skipNoOpCastsAndParens(Base);
126  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
127    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
128      // This is a record decl. We know the type and can devirtualize it.
129      return VD->getType()->isRecordType();
130    }
131
132    return false;
133  }
134
135  // We can devirtualize calls on an object accessed by a class member access
136  // expression, since by C++11 [basic.life]p6 we know that it can't refer to
137  // a derived class object constructed in the same location.
138  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
139    if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
140      return VD->getType()->isRecordType();
141
142  // We can always devirtualize calls on temporary object expressions.
143  if (isa<CXXConstructExpr>(Base))
144    return true;
145
146  // And calls on bound temporaries.
147  if (isa<CXXBindTemporaryExpr>(Base))
148    return true;
149
150  // Check if this is a call expr that returns a record type.
151  if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
152    return CE->getCallReturnType()->isRecordType();
153
154  // We can't devirtualize the call.
155  return false;
156}
157
158static CXXRecordDecl *getCXXRecord(const Expr *E) {
159  QualType T = E->getType();
160  if (const PointerType *PTy = T->getAs<PointerType>())
161    T = PTy->getPointeeType();
162  const RecordType *Ty = T->castAs<RecordType>();
163  return cast<CXXRecordDecl>(Ty->getDecl());
164}
165
166// Note: This function also emit constructor calls to support a MSVC
167// extensions allowing explicit constructor function call.
168RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
169                                              ReturnValueSlot ReturnValue) {
170  const Expr *callee = CE->getCallee()->IgnoreParens();
171
172  if (isa<BinaryOperator>(callee))
173    return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174
175  const MemberExpr *ME = cast<MemberExpr>(callee);
176  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177
178  if (MD->isStatic()) {
179    // The method is static, emit it as we would a regular call.
180    llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
181    return EmitCall(getContext().getPointerType(MD->getType()), Callee,
182                    ReturnValue, CE->arg_begin(), CE->arg_end());
183  }
184
185  // Compute the object pointer.
186  const Expr *Base = ME->getBase();
187  bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
188
189  const CXXMethodDecl *DevirtualizedMethod = NULL;
190  if (CanUseVirtualCall &&
191      canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) {
192    const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
193    DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
194    assert(DevirtualizedMethod);
195    const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
196    const Expr *Inner = Base->ignoreParenBaseCasts();
197    if (getCXXRecord(Inner) == DevirtualizedClass)
198      // If the class of the Inner expression is where the dynamic method
199      // is defined, build the this pointer from it.
200      Base = Inner;
201    else if (getCXXRecord(Base) != DevirtualizedClass) {
202      // If the method is defined in a class that is not the best dynamic
203      // one or the one of the full expression, we would have to build
204      // a derived-to-base cast to compute the correct this pointer, but
205      // we don't have support for that yet, so do a virtual call.
206      DevirtualizedMethod = NULL;
207    }
208    // If the return types are not the same, this might be a case where more
209    // code needs to run to compensate for it. For example, the derived
210    // method might return a type that inherits form from the return
211    // type of MD and has a prefix.
212    // For now we just avoid devirtualizing these covariant cases.
213    if (DevirtualizedMethod &&
214        DevirtualizedMethod->getResultType().getCanonicalType() !=
215        MD->getResultType().getCanonicalType())
216      DevirtualizedMethod = NULL;
217  }
218
219  llvm::Value *This;
220  if (ME->isArrow())
221    This = EmitScalarExpr(Base);
222  else
223    This = EmitLValue(Base).getAddress();
224
225
226  if (MD->isTrivial()) {
227    if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
228    if (isa<CXXConstructorDecl>(MD) &&
229        cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
230      return RValue::get(0);
231
232    if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
233      // We don't like to generate the trivial copy/move assignment operator
234      // when it isn't necessary; just produce the proper effect here.
235      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
236      EmitAggregateAssign(This, RHS, CE->getType());
237      return RValue::get(This);
238    }
239
240    if (isa<CXXConstructorDecl>(MD) &&
241        cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
242      // Trivial move and copy ctor are the same.
243      llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
244      EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
245                                     CE->arg_begin(), CE->arg_end());
246      return RValue::get(This);
247    }
248    llvm_unreachable("unknown trivial member function");
249  }
250
251  // Compute the function type we're calling.
252  const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
253  const CGFunctionInfo *FInfo = 0;
254  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
255    FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
256                                                 Dtor_Complete);
257  else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
258    FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
259                                                             Ctor_Complete);
260  else
261    FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
262
263  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
264
265  // C++ [class.virtual]p12:
266  //   Explicit qualification with the scope operator (5.1) suppresses the
267  //   virtual call mechanism.
268  //
269  // We also don't emit a virtual call if the base expression has a record type
270  // because then we know what the type is.
271  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
272  llvm::Value *Callee;
273
274  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
275    assert(CE->arg_begin() == CE->arg_end() &&
276           "Destructor shouldn't have explicit parameters");
277    assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
278    if (UseVirtualCall) {
279      CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
280                                                CE->getExprLoc(), This);
281    } else {
282      if (getLangOpts().AppleKext &&
283          MD->isVirtual() &&
284          ME->hasQualifier())
285        Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
286      else if (!DevirtualizedMethod)
287        Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
288      else {
289        const CXXDestructorDecl *DDtor =
290          cast<CXXDestructorDecl>(DevirtualizedMethod);
291        Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
292      }
293      EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
294                        /*ImplicitParam=*/0, QualType(), 0, 0);
295    }
296    return RValue::get(0);
297  }
298
299  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
300    Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
301  } else if (UseVirtualCall) {
302    Callee = BuildVirtualCall(MD, This, Ty);
303  } else {
304    if (getLangOpts().AppleKext &&
305        MD->isVirtual() &&
306        ME->hasQualifier())
307      Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
308    else if (!DevirtualizedMethod)
309      Callee = CGM.GetAddrOfFunction(MD, Ty);
310    else {
311      Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
312    }
313  }
314
315  return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
316                           /*ImplicitParam=*/0, QualType(),
317                           CE->arg_begin(), CE->arg_end());
318}
319
320RValue
321CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
322                                              ReturnValueSlot ReturnValue) {
323  const BinaryOperator *BO =
324      cast<BinaryOperator>(E->getCallee()->IgnoreParens());
325  const Expr *BaseExpr = BO->getLHS();
326  const Expr *MemFnExpr = BO->getRHS();
327
328  const MemberPointerType *MPT =
329    MemFnExpr->getType()->castAs<MemberPointerType>();
330
331  const FunctionProtoType *FPT =
332    MPT->getPointeeType()->castAs<FunctionProtoType>();
333  const CXXRecordDecl *RD =
334    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
335
336  // Get the member function pointer.
337  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
338
339  // Emit the 'this' pointer.
340  llvm::Value *This;
341
342  if (BO->getOpcode() == BO_PtrMemI)
343    This = EmitScalarExpr(BaseExpr);
344  else
345    This = EmitLValue(BaseExpr).getAddress();
346
347  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
348                QualType(MPT->getClass(), 0));
349
350  // Ask the ABI to load the callee.  Note that This is modified.
351  llvm::Value *Callee =
352    CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
353
354  CallArgList Args;
355
356  QualType ThisType =
357    getContext().getPointerType(getContext().getTagDeclType(RD));
358
359  // Push the this ptr.
360  Args.add(RValue::get(This), ThisType);
361
362  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
363
364  // And the rest of the call args
365  EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
366  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee,
367                  ReturnValue, Args);
368}
369
370RValue
371CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
372                                               const CXXMethodDecl *MD,
373                                               ReturnValueSlot ReturnValue) {
374  assert(MD->isInstance() &&
375         "Trying to emit a member call expr on a static method!");
376  LValue LV = EmitLValue(E->getArg(0));
377  llvm::Value *This = LV.getAddress();
378
379  if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
380      MD->isTrivial()) {
381    llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
382    QualType Ty = E->getType();
383    EmitAggregateAssign(This, Src, Ty);
384    return RValue::get(This);
385  }
386
387  llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
388  return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
389                           /*ImplicitParam=*/0, QualType(),
390                           E->arg_begin() + 1, E->arg_end());
391}
392
393RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
394                                               ReturnValueSlot ReturnValue) {
395  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
396}
397
398static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
399                                            llvm::Value *DestPtr,
400                                            const CXXRecordDecl *Base) {
401  if (Base->isEmpty())
402    return;
403
404  DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
405
406  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
407  CharUnits Size = Layout.getNonVirtualSize();
408  CharUnits Align = Layout.getNonVirtualAlign();
409
410  llvm::Value *SizeVal = CGF.CGM.getSize(Size);
411
412  // If the type contains a pointer to data member we can't memset it to zero.
413  // Instead, create a null constant and copy it to the destination.
414  // TODO: there are other patterns besides zero that we can usefully memset,
415  // like -1, which happens to be the pattern used by member-pointers.
416  // TODO: isZeroInitializable can be over-conservative in the case where a
417  // virtual base contains a member pointer.
418  if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
419    llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
420
421    llvm::GlobalVariable *NullVariable =
422      new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
423                               /*isConstant=*/true,
424                               llvm::GlobalVariable::PrivateLinkage,
425                               NullConstant, Twine());
426    NullVariable->setAlignment(Align.getQuantity());
427    llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
428
429    // Get and call the appropriate llvm.memcpy overload.
430    CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
431    return;
432  }
433
434  // Otherwise, just memset the whole thing to zero.  This is legal
435  // because in LLVM, all default initializers (other than the ones we just
436  // handled above) are guaranteed to have a bit pattern of all zeros.
437  CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
438                           Align.getQuantity());
439}
440
441void
442CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
443                                      AggValueSlot Dest) {
444  assert(!Dest.isIgnored() && "Must have a destination!");
445  const CXXConstructorDecl *CD = E->getConstructor();
446
447  // If we require zero initialization before (or instead of) calling the
448  // constructor, as can be the case with a non-user-provided default
449  // constructor, emit the zero initialization now, unless destination is
450  // already zeroed.
451  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
452    switch (E->getConstructionKind()) {
453    case CXXConstructExpr::CK_Delegating:
454    case CXXConstructExpr::CK_Complete:
455      EmitNullInitialization(Dest.getAddr(), E->getType());
456      break;
457    case CXXConstructExpr::CK_VirtualBase:
458    case CXXConstructExpr::CK_NonVirtualBase:
459      EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
460      break;
461    }
462  }
463
464  // If this is a call to a trivial default constructor, do nothing.
465  if (CD->isTrivial() && CD->isDefaultConstructor())
466    return;
467
468  // Elide the constructor if we're constructing from a temporary.
469  // The temporary check is required because Sema sets this on NRVO
470  // returns.
471  if (getLangOpts().ElideConstructors && E->isElidable()) {
472    assert(getContext().hasSameUnqualifiedType(E->getType(),
473                                               E->getArg(0)->getType()));
474    if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
475      EmitAggExpr(E->getArg(0), Dest);
476      return;
477    }
478  }
479
480  if (const ConstantArrayType *arrayType
481        = getContext().getAsConstantArrayType(E->getType())) {
482    EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
483                               E->arg_begin(), E->arg_end());
484  } else {
485    CXXCtorType Type = Ctor_Complete;
486    bool ForVirtualBase = false;
487    bool Delegating = false;
488
489    switch (E->getConstructionKind()) {
490     case CXXConstructExpr::CK_Delegating:
491      // We should be emitting a constructor; GlobalDecl will assert this
492      Type = CurGD.getCtorType();
493      Delegating = true;
494      break;
495
496     case CXXConstructExpr::CK_Complete:
497      Type = Ctor_Complete;
498      break;
499
500     case CXXConstructExpr::CK_VirtualBase:
501      ForVirtualBase = true;
502      // fall-through
503
504     case CXXConstructExpr::CK_NonVirtualBase:
505      Type = Ctor_Base;
506    }
507
508    // Call the constructor.
509    EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
510                           E->arg_begin(), E->arg_end());
511  }
512}
513
514void
515CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
516                                            llvm::Value *Src,
517                                            const Expr *Exp) {
518  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
519    Exp = E->getSubExpr();
520  assert(isa<CXXConstructExpr>(Exp) &&
521         "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
522  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
523  const CXXConstructorDecl *CD = E->getConstructor();
524  RunCleanupsScope Scope(*this);
525
526  // If we require zero initialization before (or instead of) calling the
527  // constructor, as can be the case with a non-user-provided default
528  // constructor, emit the zero initialization now.
529  // FIXME. Do I still need this for a copy ctor synthesis?
530  if (E->requiresZeroInitialization())
531    EmitNullInitialization(Dest, E->getType());
532
533  assert(!getContext().getAsConstantArrayType(E->getType())
534         && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
535  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
536                                 E->arg_begin(), E->arg_end());
537}
538
539static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
540                                        const CXXNewExpr *E) {
541  if (!E->isArray())
542    return CharUnits::Zero();
543
544  // No cookie is required if the operator new[] being used is the
545  // reserved placement operator new[].
546  if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
547    return CharUnits::Zero();
548
549  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
550}
551
552static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
553                                        const CXXNewExpr *e,
554                                        unsigned minElements,
555                                        llvm::Value *&numElements,
556                                        llvm::Value *&sizeWithoutCookie) {
557  QualType type = e->getAllocatedType();
558
559  if (!e->isArray()) {
560    CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
561    sizeWithoutCookie
562      = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
563    return sizeWithoutCookie;
564  }
565
566  // The width of size_t.
567  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
568
569  // Figure out the cookie size.
570  llvm::APInt cookieSize(sizeWidth,
571                         CalculateCookiePadding(CGF, e).getQuantity());
572
573  // Emit the array size expression.
574  // We multiply the size of all dimensions for NumElements.
575  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
576  numElements = CGF.EmitScalarExpr(e->getArraySize());
577  assert(isa<llvm::IntegerType>(numElements->getType()));
578
579  // The number of elements can be have an arbitrary integer type;
580  // essentially, we need to multiply it by a constant factor, add a
581  // cookie size, and verify that the result is representable as a
582  // size_t.  That's just a gloss, though, and it's wrong in one
583  // important way: if the count is negative, it's an error even if
584  // the cookie size would bring the total size >= 0.
585  bool isSigned
586    = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
587  llvm::IntegerType *numElementsType
588    = cast<llvm::IntegerType>(numElements->getType());
589  unsigned numElementsWidth = numElementsType->getBitWidth();
590
591  // Compute the constant factor.
592  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
593  while (const ConstantArrayType *CAT
594             = CGF.getContext().getAsConstantArrayType(type)) {
595    type = CAT->getElementType();
596    arraySizeMultiplier *= CAT->getSize();
597  }
598
599  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
600  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
601  typeSizeMultiplier *= arraySizeMultiplier;
602
603  // This will be a size_t.
604  llvm::Value *size;
605
606  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
607  // Don't bloat the -O0 code.
608  if (llvm::ConstantInt *numElementsC =
609        dyn_cast<llvm::ConstantInt>(numElements)) {
610    const llvm::APInt &count = numElementsC->getValue();
611
612    bool hasAnyOverflow = false;
613
614    // If 'count' was a negative number, it's an overflow.
615    if (isSigned && count.isNegative())
616      hasAnyOverflow = true;
617
618    // We want to do all this arithmetic in size_t.  If numElements is
619    // wider than that, check whether it's already too big, and if so,
620    // overflow.
621    else if (numElementsWidth > sizeWidth &&
622             numElementsWidth - sizeWidth > count.countLeadingZeros())
623      hasAnyOverflow = true;
624
625    // Okay, compute a count at the right width.
626    llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
627
628    // If there is a brace-initializer, we cannot allocate fewer elements than
629    // there are initializers. If we do, that's treated like an overflow.
630    if (adjustedCount.ult(minElements))
631      hasAnyOverflow = true;
632
633    // Scale numElements by that.  This might overflow, but we don't
634    // care because it only overflows if allocationSize does, too, and
635    // if that overflows then we shouldn't use this.
636    numElements = llvm::ConstantInt::get(CGF.SizeTy,
637                                         adjustedCount * arraySizeMultiplier);
638
639    // Compute the size before cookie, and track whether it overflowed.
640    bool overflow;
641    llvm::APInt allocationSize
642      = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
643    hasAnyOverflow |= overflow;
644
645    // Add in the cookie, and check whether it's overflowed.
646    if (cookieSize != 0) {
647      // Save the current size without a cookie.  This shouldn't be
648      // used if there was overflow.
649      sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
650
651      allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
652      hasAnyOverflow |= overflow;
653    }
654
655    // On overflow, produce a -1 so operator new will fail.
656    if (hasAnyOverflow) {
657      size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
658    } else {
659      size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
660    }
661
662  // Otherwise, we might need to use the overflow intrinsics.
663  } else {
664    // There are up to five conditions we need to test for:
665    // 1) if isSigned, we need to check whether numElements is negative;
666    // 2) if numElementsWidth > sizeWidth, we need to check whether
667    //   numElements is larger than something representable in size_t;
668    // 3) if minElements > 0, we need to check whether numElements is smaller
669    //    than that.
670    // 4) we need to compute
671    //      sizeWithoutCookie := numElements * typeSizeMultiplier
672    //    and check whether it overflows; and
673    // 5) if we need a cookie, we need to compute
674    //      size := sizeWithoutCookie + cookieSize
675    //    and check whether it overflows.
676
677    llvm::Value *hasOverflow = 0;
678
679    // If numElementsWidth > sizeWidth, then one way or another, we're
680    // going to have to do a comparison for (2), and this happens to
681    // take care of (1), too.
682    if (numElementsWidth > sizeWidth) {
683      llvm::APInt threshold(numElementsWidth, 1);
684      threshold <<= sizeWidth;
685
686      llvm::Value *thresholdV
687        = llvm::ConstantInt::get(numElementsType, threshold);
688
689      hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
690      numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
691
692    // Otherwise, if we're signed, we want to sext up to size_t.
693    } else if (isSigned) {
694      if (numElementsWidth < sizeWidth)
695        numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
696
697      // If there's a non-1 type size multiplier, then we can do the
698      // signedness check at the same time as we do the multiply
699      // because a negative number times anything will cause an
700      // unsigned overflow.  Otherwise, we have to do it here. But at least
701      // in this case, we can subsume the >= minElements check.
702      if (typeSizeMultiplier == 1)
703        hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
704                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
705
706    // Otherwise, zext up to size_t if necessary.
707    } else if (numElementsWidth < sizeWidth) {
708      numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
709    }
710
711    assert(numElements->getType() == CGF.SizeTy);
712
713    if (minElements) {
714      // Don't allow allocation of fewer elements than we have initializers.
715      if (!hasOverflow) {
716        hasOverflow = CGF.Builder.CreateICmpULT(numElements,
717                              llvm::ConstantInt::get(CGF.SizeTy, minElements));
718      } else if (numElementsWidth > sizeWidth) {
719        // The other existing overflow subsumes this check.
720        // We do an unsigned comparison, since any signed value < -1 is
721        // taken care of either above or below.
722        hasOverflow = CGF.Builder.CreateOr(hasOverflow,
723                          CGF.Builder.CreateICmpULT(numElements,
724                              llvm::ConstantInt::get(CGF.SizeTy, minElements)));
725      }
726    }
727
728    size = numElements;
729
730    // Multiply by the type size if necessary.  This multiplier
731    // includes all the factors for nested arrays.
732    //
733    // This step also causes numElements to be scaled up by the
734    // nested-array factor if necessary.  Overflow on this computation
735    // can be ignored because the result shouldn't be used if
736    // allocation fails.
737    if (typeSizeMultiplier != 1) {
738      llvm::Value *umul_with_overflow
739        = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
740
741      llvm::Value *tsmV =
742        llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
743      llvm::Value *result =
744        CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
745
746      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
747      if (hasOverflow)
748        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
749      else
750        hasOverflow = overflowed;
751
752      size = CGF.Builder.CreateExtractValue(result, 0);
753
754      // Also scale up numElements by the array size multiplier.
755      if (arraySizeMultiplier != 1) {
756        // If the base element type size is 1, then we can re-use the
757        // multiply we just did.
758        if (typeSize.isOne()) {
759          assert(arraySizeMultiplier == typeSizeMultiplier);
760          numElements = size;
761
762        // Otherwise we need a separate multiply.
763        } else {
764          llvm::Value *asmV =
765            llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
766          numElements = CGF.Builder.CreateMul(numElements, asmV);
767        }
768      }
769    } else {
770      // numElements doesn't need to be scaled.
771      assert(arraySizeMultiplier == 1);
772    }
773
774    // Add in the cookie size if necessary.
775    if (cookieSize != 0) {
776      sizeWithoutCookie = size;
777
778      llvm::Value *uadd_with_overflow
779        = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
780
781      llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
782      llvm::Value *result =
783        CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
784
785      llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
786      if (hasOverflow)
787        hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
788      else
789        hasOverflow = overflowed;
790
791      size = CGF.Builder.CreateExtractValue(result, 0);
792    }
793
794    // If we had any possibility of dynamic overflow, make a select to
795    // overwrite 'size' with an all-ones value, which should cause
796    // operator new to throw.
797    if (hasOverflow)
798      size = CGF.Builder.CreateSelect(hasOverflow,
799                                 llvm::Constant::getAllOnesValue(CGF.SizeTy),
800                                      size);
801  }
802
803  if (cookieSize == 0)
804    sizeWithoutCookie = size;
805  else
806    assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
807
808  return size;
809}
810
811static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
812                                    QualType AllocType, llvm::Value *NewPtr) {
813
814  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
815  switch (CGF.getEvaluationKind(AllocType)) {
816  case TEK_Scalar:
817    CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
818                                                   Alignment),
819                       false);
820    return;
821  case TEK_Complex:
822    CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
823                                                           Alignment),
824                                  /*isInit*/ true);
825    return;
826  case TEK_Aggregate: {
827    AggValueSlot Slot
828      = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
829                              AggValueSlot::IsDestructed,
830                              AggValueSlot::DoesNotNeedGCBarriers,
831                              AggValueSlot::IsNotAliased);
832    CGF.EmitAggExpr(Init, Slot);
833    return;
834  }
835  }
836  llvm_unreachable("bad evaluation kind");
837}
838
839void
840CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
841                                         QualType elementType,
842                                         llvm::Value *beginPtr,
843                                         llvm::Value *numElements) {
844  if (!E->hasInitializer())
845    return; // We have a POD type.
846
847  llvm::Value *explicitPtr = beginPtr;
848  // Find the end of the array, hoisted out of the loop.
849  llvm::Value *endPtr =
850    Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
851
852  unsigned initializerElements = 0;
853
854  const Expr *Init = E->getInitializer();
855  llvm::AllocaInst *endOfInit = 0;
856  QualType::DestructionKind dtorKind = elementType.isDestructedType();
857  EHScopeStack::stable_iterator cleanup;
858  llvm::Instruction *cleanupDominator = 0;
859  // If the initializer is an initializer list, first do the explicit elements.
860  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
861    initializerElements = ILE->getNumInits();
862
863    // Enter a partial-destruction cleanup if necessary.
864    if (needsEHCleanup(dtorKind)) {
865      // In principle we could tell the cleanup where we are more
866      // directly, but the control flow can get so varied here that it
867      // would actually be quite complex.  Therefore we go through an
868      // alloca.
869      endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
870      cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
871      pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
872                                       getDestroyer(dtorKind));
873      cleanup = EHStack.stable_begin();
874    }
875
876    for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
877      // Tell the cleanup that it needs to destroy up to this
878      // element.  TODO: some of these stores can be trivially
879      // observed to be unnecessary.
880      if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
881      StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
882      explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
883    }
884
885    // The remaining elements are filled with the array filler expression.
886    Init = ILE->getArrayFiller();
887  }
888
889  // Create the continuation block.
890  llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
891
892  // If the number of elements isn't constant, we have to now check if there is
893  // anything left to initialize.
894  if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
895    // If all elements have already been initialized, skip the whole loop.
896    if (constNum->getZExtValue() <= initializerElements) {
897      // If there was a cleanup, deactivate it.
898      if (cleanupDominator)
899        DeactivateCleanupBlock(cleanup, cleanupDominator);
900      return;
901    }
902  } else {
903    llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
904    llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
905                                                "array.isempty");
906    Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
907    EmitBlock(nonEmptyBB);
908  }
909
910  // Enter the loop.
911  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
912  llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
913
914  EmitBlock(loopBB);
915
916  // Set up the current-element phi.
917  llvm::PHINode *curPtr =
918    Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
919  curPtr->addIncoming(explicitPtr, entryBB);
920
921  // Store the new cleanup position for irregular cleanups.
922  if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
923
924  // Enter a partial-destruction cleanup if necessary.
925  if (!cleanupDominator && needsEHCleanup(dtorKind)) {
926    pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
927                                   getDestroyer(dtorKind));
928    cleanup = EHStack.stable_begin();
929    cleanupDominator = Builder.CreateUnreachable();
930  }
931
932  // Emit the initializer into this element.
933  StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
934
935  // Leave the cleanup if we entered one.
936  if (cleanupDominator) {
937    DeactivateCleanupBlock(cleanup, cleanupDominator);
938    cleanupDominator->eraseFromParent();
939  }
940
941  // Advance to the next element.
942  llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
943
944  // Check whether we've gotten to the end of the array and, if so,
945  // exit the loop.
946  llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
947  Builder.CreateCondBr(isEnd, contBB, loopBB);
948  curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
949
950  EmitBlock(contBB);
951}
952
953static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
954                           llvm::Value *NewPtr, llvm::Value *Size) {
955  CGF.EmitCastToVoidPtr(NewPtr);
956  CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
957  CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
958                           Alignment.getQuantity(), false);
959}
960
961static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
962                               QualType ElementType,
963                               llvm::Value *NewPtr,
964                               llvm::Value *NumElements,
965                               llvm::Value *AllocSizeWithoutCookie) {
966  const Expr *Init = E->getInitializer();
967  if (E->isArray()) {
968    if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
969      CXXConstructorDecl *Ctor = CCE->getConstructor();
970      if (Ctor->isTrivial()) {
971        // If new expression did not specify value-initialization, then there
972        // is no initialization.
973        if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
974          return;
975
976        if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
977          // Optimization: since zero initialization will just set the memory
978          // to all zeroes, generate a single memset to do it in one shot.
979          EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
980          return;
981        }
982      }
983
984      CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
985                                     CCE->arg_begin(),  CCE->arg_end(),
986                                     CCE->requiresZeroInitialization());
987      return;
988    } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
989               CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
990      // Optimization: since zero initialization will just set the memory
991      // to all zeroes, generate a single memset to do it in one shot.
992      EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
993      return;
994    }
995    CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
996    return;
997  }
998
999  if (!Init)
1000    return;
1001
1002  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1003}
1004
1005/// Emit a call to an operator new or operator delete function, as implicitly
1006/// created by new-expressions and delete-expressions.
1007static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1008                                const FunctionDecl *Callee,
1009                                const FunctionProtoType *CalleeType,
1010                                const CallArgList &Args) {
1011  llvm::Instruction *CallOrInvoke;
1012  llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1013  RValue RV =
1014      CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
1015                   CalleeAddr, ReturnValueSlot(), Args,
1016                   Callee, &CallOrInvoke);
1017
1018  /// C++1y [expr.new]p10:
1019  ///   [In a new-expression,] an implementation is allowed to omit a call
1020  ///   to a replaceable global allocation function.
1021  ///
1022  /// We model such elidable calls with the 'builtin' attribute.
1023  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1024  if (Callee->isReplaceableGlobalAllocationFunction() &&
1025      Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1026    // FIXME: Add addAttribute to CallSite.
1027    if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1028      CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1029                       llvm::Attribute::Builtin);
1030    else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1031      II->addAttribute(llvm::AttributeSet::FunctionIndex,
1032                       llvm::Attribute::Builtin);
1033    else
1034      llvm_unreachable("unexpected kind of call instruction");
1035  }
1036
1037  return RV;
1038}
1039
1040namespace {
1041  /// A cleanup to call the given 'operator delete' function upon
1042  /// abnormal exit from a new expression.
1043  class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1044    size_t NumPlacementArgs;
1045    const FunctionDecl *OperatorDelete;
1046    llvm::Value *Ptr;
1047    llvm::Value *AllocSize;
1048
1049    RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1050
1051  public:
1052    static size_t getExtraSize(size_t NumPlacementArgs) {
1053      return NumPlacementArgs * sizeof(RValue);
1054    }
1055
1056    CallDeleteDuringNew(size_t NumPlacementArgs,
1057                        const FunctionDecl *OperatorDelete,
1058                        llvm::Value *Ptr,
1059                        llvm::Value *AllocSize)
1060      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1061        Ptr(Ptr), AllocSize(AllocSize) {}
1062
1063    void setPlacementArg(unsigned I, RValue Arg) {
1064      assert(I < NumPlacementArgs && "index out of range");
1065      getPlacementArgs()[I] = Arg;
1066    }
1067
1068    void Emit(CodeGenFunction &CGF, Flags flags) {
1069      const FunctionProtoType *FPT
1070        = OperatorDelete->getType()->getAs<FunctionProtoType>();
1071      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1072             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1073
1074      CallArgList DeleteArgs;
1075
1076      // The first argument is always a void*.
1077      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1078      DeleteArgs.add(RValue::get(Ptr), *AI++);
1079
1080      // A member 'operator delete' can take an extra 'size_t' argument.
1081      if (FPT->getNumArgs() == NumPlacementArgs + 2)
1082        DeleteArgs.add(RValue::get(AllocSize), *AI++);
1083
1084      // Pass the rest of the arguments, which must match exactly.
1085      for (unsigned I = 0; I != NumPlacementArgs; ++I)
1086        DeleteArgs.add(getPlacementArgs()[I], *AI++);
1087
1088      // Call 'operator delete'.
1089      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1090    }
1091  };
1092
1093  /// A cleanup to call the given 'operator delete' function upon
1094  /// abnormal exit from a new expression when the new expression is
1095  /// conditional.
1096  class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1097    size_t NumPlacementArgs;
1098    const FunctionDecl *OperatorDelete;
1099    DominatingValue<RValue>::saved_type Ptr;
1100    DominatingValue<RValue>::saved_type AllocSize;
1101
1102    DominatingValue<RValue>::saved_type *getPlacementArgs() {
1103      return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1104    }
1105
1106  public:
1107    static size_t getExtraSize(size_t NumPlacementArgs) {
1108      return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1109    }
1110
1111    CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1112                                   const FunctionDecl *OperatorDelete,
1113                                   DominatingValue<RValue>::saved_type Ptr,
1114                              DominatingValue<RValue>::saved_type AllocSize)
1115      : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1116        Ptr(Ptr), AllocSize(AllocSize) {}
1117
1118    void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1119      assert(I < NumPlacementArgs && "index out of range");
1120      getPlacementArgs()[I] = Arg;
1121    }
1122
1123    void Emit(CodeGenFunction &CGF, Flags flags) {
1124      const FunctionProtoType *FPT
1125        = OperatorDelete->getType()->getAs<FunctionProtoType>();
1126      assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
1127             (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
1128
1129      CallArgList DeleteArgs;
1130
1131      // The first argument is always a void*.
1132      FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
1133      DeleteArgs.add(Ptr.restore(CGF), *AI++);
1134
1135      // A member 'operator delete' can take an extra 'size_t' argument.
1136      if (FPT->getNumArgs() == NumPlacementArgs + 2) {
1137        RValue RV = AllocSize.restore(CGF);
1138        DeleteArgs.add(RV, *AI++);
1139      }
1140
1141      // Pass the rest of the arguments, which must match exactly.
1142      for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1143        RValue RV = getPlacementArgs()[I].restore(CGF);
1144        DeleteArgs.add(RV, *AI++);
1145      }
1146
1147      // Call 'operator delete'.
1148      EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1149    }
1150  };
1151}
1152
1153/// Enter a cleanup to call 'operator delete' if the initializer in a
1154/// new-expression throws.
1155static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1156                                  const CXXNewExpr *E,
1157                                  llvm::Value *NewPtr,
1158                                  llvm::Value *AllocSize,
1159                                  const CallArgList &NewArgs) {
1160  // If we're not inside a conditional branch, then the cleanup will
1161  // dominate and we can do the easier (and more efficient) thing.
1162  if (!CGF.isInConditionalBranch()) {
1163    CallDeleteDuringNew *Cleanup = CGF.EHStack
1164      .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1165                                                 E->getNumPlacementArgs(),
1166                                                 E->getOperatorDelete(),
1167                                                 NewPtr, AllocSize);
1168    for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1169      Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1170
1171    return;
1172  }
1173
1174  // Otherwise, we need to save all this stuff.
1175  DominatingValue<RValue>::saved_type SavedNewPtr =
1176    DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1177  DominatingValue<RValue>::saved_type SavedAllocSize =
1178    DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1179
1180  CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1181    .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1182                                                 E->getNumPlacementArgs(),
1183                                                 E->getOperatorDelete(),
1184                                                 SavedNewPtr,
1185                                                 SavedAllocSize);
1186  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1187    Cleanup->setPlacementArg(I,
1188                     DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1189
1190  CGF.initFullExprCleanup();
1191}
1192
1193llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1194  // The element type being allocated.
1195  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1196
1197  // 1. Build a call to the allocation function.
1198  FunctionDecl *allocator = E->getOperatorNew();
1199  const FunctionProtoType *allocatorType =
1200    allocator->getType()->castAs<FunctionProtoType>();
1201
1202  CallArgList allocatorArgs;
1203
1204  // The allocation size is the first argument.
1205  QualType sizeType = getContext().getSizeType();
1206
1207  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1208  unsigned minElements = 0;
1209  if (E->isArray() && E->hasInitializer()) {
1210    if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1211      minElements = ILE->getNumInits();
1212  }
1213
1214  llvm::Value *numElements = 0;
1215  llvm::Value *allocSizeWithoutCookie = 0;
1216  llvm::Value *allocSize =
1217    EmitCXXNewAllocSize(*this, E, minElements, numElements,
1218                        allocSizeWithoutCookie);
1219
1220  allocatorArgs.add(RValue::get(allocSize), sizeType);
1221
1222  // Emit the rest of the arguments.
1223  // FIXME: Ideally, this should just use EmitCallArgs.
1224  CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
1225
1226  // First, use the types from the function type.
1227  // We start at 1 here because the first argument (the allocation size)
1228  // has already been emitted.
1229  for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
1230       ++i, ++placementArg) {
1231    QualType argType = allocatorType->getArgType(i);
1232
1233    assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
1234                                               placementArg->getType()) &&
1235           "type mismatch in call argument!");
1236
1237    EmitCallArg(allocatorArgs, *placementArg, argType);
1238  }
1239
1240  // Either we've emitted all the call args, or we have a call to a
1241  // variadic function.
1242  assert((placementArg == E->placement_arg_end() ||
1243          allocatorType->isVariadic()) &&
1244         "Extra arguments to non-variadic function!");
1245
1246  // If we still have any arguments, emit them using the type of the argument.
1247  for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
1248       placementArg != placementArgsEnd; ++placementArg) {
1249    EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
1250  }
1251
1252  // Emit the allocation call.  If the allocator is a global placement
1253  // operator, just "inline" it directly.
1254  RValue RV;
1255  if (allocator->isReservedGlobalPlacementOperator()) {
1256    assert(allocatorArgs.size() == 2);
1257    RV = allocatorArgs[1].RV;
1258    // TODO: kill any unnecessary computations done for the size
1259    // argument.
1260  } else {
1261    RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1262  }
1263
1264  // Emit a null check on the allocation result if the allocation
1265  // function is allowed to return null (because it has a non-throwing
1266  // exception spec; for this part, we inline
1267  // CXXNewExpr::shouldNullCheckAllocation()) and we have an
1268  // interesting initializer.
1269  bool nullCheck = allocatorType->isNothrow(getContext()) &&
1270    (!allocType.isPODType(getContext()) || E->hasInitializer());
1271
1272  llvm::BasicBlock *nullCheckBB = 0;
1273  llvm::BasicBlock *contBB = 0;
1274
1275  llvm::Value *allocation = RV.getScalarVal();
1276  unsigned AS = allocation->getType()->getPointerAddressSpace();
1277
1278  // The null-check means that the initializer is conditionally
1279  // evaluated.
1280  ConditionalEvaluation conditional(*this);
1281
1282  if (nullCheck) {
1283    conditional.begin(*this);
1284
1285    nullCheckBB = Builder.GetInsertBlock();
1286    llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1287    contBB = createBasicBlock("new.cont");
1288
1289    llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1290    Builder.CreateCondBr(isNull, contBB, notNullBB);
1291    EmitBlock(notNullBB);
1292  }
1293
1294  // If there's an operator delete, enter a cleanup to call it if an
1295  // exception is thrown.
1296  EHScopeStack::stable_iterator operatorDeleteCleanup;
1297  llvm::Instruction *cleanupDominator = 0;
1298  if (E->getOperatorDelete() &&
1299      !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1300    EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1301    operatorDeleteCleanup = EHStack.stable_begin();
1302    cleanupDominator = Builder.CreateUnreachable();
1303  }
1304
1305  assert((allocSize == allocSizeWithoutCookie) ==
1306         CalculateCookiePadding(*this, E).isZero());
1307  if (allocSize != allocSizeWithoutCookie) {
1308    assert(E->isArray());
1309    allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1310                                                       numElements,
1311                                                       E, allocType);
1312  }
1313
1314  llvm::Type *elementPtrTy
1315    = ConvertTypeForMem(allocType)->getPointerTo(AS);
1316  llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1317
1318  EmitNewInitializer(*this, E, allocType, result, numElements,
1319                     allocSizeWithoutCookie);
1320  if (E->isArray()) {
1321    // NewPtr is a pointer to the base element type.  If we're
1322    // allocating an array of arrays, we'll need to cast back to the
1323    // array pointer type.
1324    llvm::Type *resultType = ConvertTypeForMem(E->getType());
1325    if (result->getType() != resultType)
1326      result = Builder.CreateBitCast(result, resultType);
1327  }
1328
1329  // Deactivate the 'operator delete' cleanup if we finished
1330  // initialization.
1331  if (operatorDeleteCleanup.isValid()) {
1332    DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1333    cleanupDominator->eraseFromParent();
1334  }
1335
1336  if (nullCheck) {
1337    conditional.end(*this);
1338
1339    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1340    EmitBlock(contBB);
1341
1342    llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1343    PHI->addIncoming(result, notNullBB);
1344    PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1345                     nullCheckBB);
1346
1347    result = PHI;
1348  }
1349
1350  return result;
1351}
1352
1353void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1354                                     llvm::Value *Ptr,
1355                                     QualType DeleteTy) {
1356  assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1357
1358  const FunctionProtoType *DeleteFTy =
1359    DeleteFD->getType()->getAs<FunctionProtoType>();
1360
1361  CallArgList DeleteArgs;
1362
1363  // Check if we need to pass the size to the delete operator.
1364  llvm::Value *Size = 0;
1365  QualType SizeTy;
1366  if (DeleteFTy->getNumArgs() == 2) {
1367    SizeTy = DeleteFTy->getArgType(1);
1368    CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1369    Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1370                                  DeleteTypeSize.getQuantity());
1371  }
1372
1373  QualType ArgTy = DeleteFTy->getArgType(0);
1374  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1375  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1376
1377  if (Size)
1378    DeleteArgs.add(RValue::get(Size), SizeTy);
1379
1380  // Emit the call to delete.
1381  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1382}
1383
1384namespace {
1385  /// Calls the given 'operator delete' on a single object.
1386  struct CallObjectDelete : EHScopeStack::Cleanup {
1387    llvm::Value *Ptr;
1388    const FunctionDecl *OperatorDelete;
1389    QualType ElementType;
1390
1391    CallObjectDelete(llvm::Value *Ptr,
1392                     const FunctionDecl *OperatorDelete,
1393                     QualType ElementType)
1394      : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1395
1396    void Emit(CodeGenFunction &CGF, Flags flags) {
1397      CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1398    }
1399  };
1400}
1401
1402/// Emit the code for deleting a single object.
1403static void EmitObjectDelete(CodeGenFunction &CGF,
1404                             const FunctionDecl *OperatorDelete,
1405                             llvm::Value *Ptr,
1406                             QualType ElementType,
1407                             bool UseGlobalDelete) {
1408  // Find the destructor for the type, if applicable.  If the
1409  // destructor is virtual, we'll just emit the vcall and return.
1410  const CXXDestructorDecl *Dtor = 0;
1411  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1412    CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1413    if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1414      Dtor = RD->getDestructor();
1415
1416      if (Dtor->isVirtual()) {
1417        if (UseGlobalDelete) {
1418          // If we're supposed to call the global delete, make sure we do so
1419          // even if the destructor throws.
1420
1421          // Derive the complete-object pointer, which is what we need
1422          // to pass to the deallocation function.
1423          llvm::Value *completePtr =
1424            CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
1425
1426          CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1427                                                    completePtr, OperatorDelete,
1428                                                    ElementType);
1429        }
1430
1431        // FIXME: Provide a source location here.
1432        CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
1433        CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
1434                                                      SourceLocation(), Ptr);
1435
1436        if (UseGlobalDelete) {
1437          CGF.PopCleanupBlock();
1438        }
1439
1440        return;
1441      }
1442    }
1443  }
1444
1445  // Make sure that we call delete even if the dtor throws.
1446  // This doesn't have to a conditional cleanup because we're going
1447  // to pop it off in a second.
1448  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1449                                            Ptr, OperatorDelete, ElementType);
1450
1451  if (Dtor)
1452    CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1453                              /*ForVirtualBase=*/false,
1454                              /*Delegating=*/false,
1455                              Ptr);
1456  else if (CGF.getLangOpts().ObjCAutoRefCount &&
1457           ElementType->isObjCLifetimeType()) {
1458    switch (ElementType.getObjCLifetime()) {
1459    case Qualifiers::OCL_None:
1460    case Qualifiers::OCL_ExplicitNone:
1461    case Qualifiers::OCL_Autoreleasing:
1462      break;
1463
1464    case Qualifiers::OCL_Strong: {
1465      // Load the pointer value.
1466      llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1467                                             ElementType.isVolatileQualified());
1468
1469      CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1470      break;
1471    }
1472
1473    case Qualifiers::OCL_Weak:
1474      CGF.EmitARCDestroyWeak(Ptr);
1475      break;
1476    }
1477  }
1478
1479  CGF.PopCleanupBlock();
1480}
1481
1482namespace {
1483  /// Calls the given 'operator delete' on an array of objects.
1484  struct CallArrayDelete : EHScopeStack::Cleanup {
1485    llvm::Value *Ptr;
1486    const FunctionDecl *OperatorDelete;
1487    llvm::Value *NumElements;
1488    QualType ElementType;
1489    CharUnits CookieSize;
1490
1491    CallArrayDelete(llvm::Value *Ptr,
1492                    const FunctionDecl *OperatorDelete,
1493                    llvm::Value *NumElements,
1494                    QualType ElementType,
1495                    CharUnits CookieSize)
1496      : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1497        ElementType(ElementType), CookieSize(CookieSize) {}
1498
1499    void Emit(CodeGenFunction &CGF, Flags flags) {
1500      const FunctionProtoType *DeleteFTy =
1501        OperatorDelete->getType()->getAs<FunctionProtoType>();
1502      assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
1503
1504      CallArgList Args;
1505
1506      // Pass the pointer as the first argument.
1507      QualType VoidPtrTy = DeleteFTy->getArgType(0);
1508      llvm::Value *DeletePtr
1509        = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1510      Args.add(RValue::get(DeletePtr), VoidPtrTy);
1511
1512      // Pass the original requested size as the second argument.
1513      if (DeleteFTy->getNumArgs() == 2) {
1514        QualType size_t = DeleteFTy->getArgType(1);
1515        llvm::IntegerType *SizeTy
1516          = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1517
1518        CharUnits ElementTypeSize =
1519          CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1520
1521        // The size of an element, multiplied by the number of elements.
1522        llvm::Value *Size
1523          = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1524        Size = CGF.Builder.CreateMul(Size, NumElements);
1525
1526        // Plus the size of the cookie if applicable.
1527        if (!CookieSize.isZero()) {
1528          llvm::Value *CookieSizeV
1529            = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1530          Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1531        }
1532
1533        Args.add(RValue::get(Size), size_t);
1534      }
1535
1536      // Emit the call to delete.
1537      EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1538    }
1539  };
1540}
1541
1542/// Emit the code for deleting an array of objects.
1543static void EmitArrayDelete(CodeGenFunction &CGF,
1544                            const CXXDeleteExpr *E,
1545                            llvm::Value *deletedPtr,
1546                            QualType elementType) {
1547  llvm::Value *numElements = 0;
1548  llvm::Value *allocatedPtr = 0;
1549  CharUnits cookieSize;
1550  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1551                                      numElements, allocatedPtr, cookieSize);
1552
1553  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1554
1555  // Make sure that we call delete even if one of the dtors throws.
1556  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1557  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1558                                           allocatedPtr, operatorDelete,
1559                                           numElements, elementType,
1560                                           cookieSize);
1561
1562  // Destroy the elements.
1563  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1564    assert(numElements && "no element count for a type with a destructor!");
1565
1566    llvm::Value *arrayEnd =
1567      CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1568
1569    // Note that it is legal to allocate a zero-length array, and we
1570    // can never fold the check away because the length should always
1571    // come from a cookie.
1572    CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1573                         CGF.getDestroyer(dtorKind),
1574                         /*checkZeroLength*/ true,
1575                         CGF.needsEHCleanup(dtorKind));
1576  }
1577
1578  // Pop the cleanup block.
1579  CGF.PopCleanupBlock();
1580}
1581
1582void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1583  const Expr *Arg = E->getArgument();
1584  llvm::Value *Ptr = EmitScalarExpr(Arg);
1585
1586  // Null check the pointer.
1587  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1588  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1589
1590  llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1591
1592  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1593  EmitBlock(DeleteNotNull);
1594
1595  // We might be deleting a pointer to array.  If so, GEP down to the
1596  // first non-array element.
1597  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1598  QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1599  if (DeleteTy->isConstantArrayType()) {
1600    llvm::Value *Zero = Builder.getInt32(0);
1601    SmallVector<llvm::Value*,8> GEP;
1602
1603    GEP.push_back(Zero); // point at the outermost array
1604
1605    // For each layer of array type we're pointing at:
1606    while (const ConstantArrayType *Arr
1607             = getContext().getAsConstantArrayType(DeleteTy)) {
1608      // 1. Unpeel the array type.
1609      DeleteTy = Arr->getElementType();
1610
1611      // 2. GEP to the first element of the array.
1612      GEP.push_back(Zero);
1613    }
1614
1615    Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1616  }
1617
1618  assert(ConvertTypeForMem(DeleteTy) ==
1619         cast<llvm::PointerType>(Ptr->getType())->getElementType());
1620
1621  if (E->isArrayForm()) {
1622    EmitArrayDelete(*this, E, Ptr, DeleteTy);
1623  } else {
1624    EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
1625                     E->isGlobalDelete());
1626  }
1627
1628  EmitBlock(DeleteEnd);
1629}
1630
1631static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
1632  // void __cxa_bad_typeid();
1633  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1634
1635  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
1636}
1637
1638static void EmitBadTypeidCall(CodeGenFunction &CGF) {
1639  llvm::Value *Fn = getBadTypeidFn(CGF);
1640  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1641  CGF.Builder.CreateUnreachable();
1642}
1643
1644static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
1645                                         const Expr *E,
1646                                         llvm::Type *StdTypeInfoPtrTy) {
1647  // Get the vtable pointer.
1648  llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1649
1650  // C++ [expr.typeid]p2:
1651  //   If the glvalue expression is obtained by applying the unary * operator to
1652  //   a pointer and the pointer is a null pointer value, the typeid expression
1653  //   throws the std::bad_typeid exception.
1654  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
1655    if (UO->getOpcode() == UO_Deref) {
1656      llvm::BasicBlock *BadTypeidBlock =
1657        CGF.createBasicBlock("typeid.bad_typeid");
1658      llvm::BasicBlock *EndBlock =
1659        CGF.createBasicBlock("typeid.end");
1660
1661      llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1662      CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1663
1664      CGF.EmitBlock(BadTypeidBlock);
1665      EmitBadTypeidCall(CGF);
1666      CGF.EmitBlock(EndBlock);
1667    }
1668  }
1669
1670  llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
1671                                        StdTypeInfoPtrTy->getPointerTo());
1672
1673  // Load the type info.
1674  Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
1675  return CGF.Builder.CreateLoad(Value);
1676}
1677
1678llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1679  llvm::Type *StdTypeInfoPtrTy =
1680    ConvertType(E->getType())->getPointerTo();
1681
1682  if (E->isTypeOperand()) {
1683    llvm::Constant *TypeInfo =
1684      CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
1685    return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1686  }
1687
1688  // C++ [expr.typeid]p2:
1689  //   When typeid is applied to a glvalue expression whose type is a
1690  //   polymorphic class type, the result refers to a std::type_info object
1691  //   representing the type of the most derived object (that is, the dynamic
1692  //   type) to which the glvalue refers.
1693  if (E->isPotentiallyEvaluated())
1694    return EmitTypeidFromVTable(*this, E->getExprOperand(),
1695                                StdTypeInfoPtrTy);
1696
1697  QualType OperandTy = E->getExprOperand()->getType();
1698  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1699                               StdTypeInfoPtrTy);
1700}
1701
1702static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
1703  // void *__dynamic_cast(const void *sub,
1704  //                      const abi::__class_type_info *src,
1705  //                      const abi::__class_type_info *dst,
1706  //                      std::ptrdiff_t src2dst_offset);
1707
1708  llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
1709  llvm::Type *PtrDiffTy =
1710    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1711
1712  llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
1713
1714  llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
1715
1716  // Mark the function as nounwind readonly.
1717  llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
1718                                            llvm::Attribute::ReadOnly };
1719  llvm::AttributeSet Attrs = llvm::AttributeSet::get(
1720      CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
1721
1722  return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
1723}
1724
1725static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
1726  // void __cxa_bad_cast();
1727  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
1728  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
1729}
1730
1731static void EmitBadCastCall(CodeGenFunction &CGF) {
1732  llvm::Value *Fn = getBadCastFn(CGF);
1733  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
1734  CGF.Builder.CreateUnreachable();
1735}
1736
1737/// \brief Compute the src2dst_offset hint as described in the
1738/// Itanium C++ ABI [2.9.7]
1739static CharUnits computeOffsetHint(ASTContext &Context,
1740                                   const CXXRecordDecl *Src,
1741                                   const CXXRecordDecl *Dst) {
1742  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1743                     /*DetectVirtual=*/false);
1744
1745  // If Dst is not derived from Src we can skip the whole computation below and
1746  // return that Src is not a public base of Dst.  Record all inheritance paths.
1747  if (!Dst->isDerivedFrom(Src, Paths))
1748    return CharUnits::fromQuantity(-2ULL);
1749
1750  unsigned NumPublicPaths = 0;
1751  CharUnits Offset;
1752
1753  // Now walk all possible inheritance paths.
1754  for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
1755       I != E; ++I) {
1756    if (I->Access != AS_public) // Ignore non-public inheritance.
1757      continue;
1758
1759    ++NumPublicPaths;
1760
1761    for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
1762      // If the path contains a virtual base class we can't give any hint.
1763      // -1: no hint.
1764      if (J->Base->isVirtual())
1765        return CharUnits::fromQuantity(-1ULL);
1766
1767      if (NumPublicPaths > 1) // Won't use offsets, skip computation.
1768        continue;
1769
1770      // Accumulate the base class offsets.
1771      const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
1772      Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
1773    }
1774  }
1775
1776  // -2: Src is not a public base of Dst.
1777  if (NumPublicPaths == 0)
1778    return CharUnits::fromQuantity(-2ULL);
1779
1780  // -3: Src is a multiple public base type but never a virtual base type.
1781  if (NumPublicPaths > 1)
1782    return CharUnits::fromQuantity(-3ULL);
1783
1784  // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
1785  // Return the offset of Src from the origin of Dst.
1786  return Offset;
1787}
1788
1789static llvm::Value *
1790EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
1791                    QualType SrcTy, QualType DestTy,
1792                    llvm::BasicBlock *CastEnd) {
1793  llvm::Type *PtrDiffLTy =
1794    CGF.ConvertType(CGF.getContext().getPointerDiffType());
1795  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1796
1797  if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
1798    if (PTy->getPointeeType()->isVoidType()) {
1799      // C++ [expr.dynamic.cast]p7:
1800      //   If T is "pointer to cv void," then the result is a pointer to the
1801      //   most derived object pointed to by v.
1802
1803      // Get the vtable pointer.
1804      llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
1805
1806      // Get the offset-to-top from the vtable.
1807      llvm::Value *OffsetToTop =
1808        CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
1809      OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
1810
1811      // Finally, add the offset to the pointer.
1812      Value = CGF.EmitCastToVoidPtr(Value);
1813      Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
1814
1815      return CGF.Builder.CreateBitCast(Value, DestLTy);
1816    }
1817  }
1818
1819  QualType SrcRecordTy;
1820  QualType DestRecordTy;
1821
1822  if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
1823    SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1824    DestRecordTy = DestPTy->getPointeeType();
1825  } else {
1826    SrcRecordTy = SrcTy;
1827    DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1828  }
1829
1830  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1831  assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
1832
1833  llvm::Value *SrcRTTI =
1834    CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1835  llvm::Value *DestRTTI =
1836    CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1837
1838  // Compute the offset hint.
1839  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1840  const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
1841  llvm::Value *OffsetHint =
1842    llvm::ConstantInt::get(PtrDiffLTy,
1843                           computeOffsetHint(CGF.getContext(), SrcDecl,
1844                                             DestDecl).getQuantity());
1845
1846  // Emit the call to __dynamic_cast.
1847  Value = CGF.EmitCastToVoidPtr(Value);
1848
1849  llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint };
1850  Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args);
1851  Value = CGF.Builder.CreateBitCast(Value, DestLTy);
1852
1853  /// C++ [expr.dynamic.cast]p9:
1854  ///   A failed cast to reference type throws std::bad_cast
1855  if (DestTy->isReferenceType()) {
1856    llvm::BasicBlock *BadCastBlock =
1857      CGF.createBasicBlock("dynamic_cast.bad_cast");
1858
1859    llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
1860    CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
1861
1862    CGF.EmitBlock(BadCastBlock);
1863    EmitBadCastCall(CGF);
1864  }
1865
1866  return Value;
1867}
1868
1869static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1870                                          QualType DestTy) {
1871  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1872  if (DestTy->isPointerType())
1873    return llvm::Constant::getNullValue(DestLTy);
1874
1875  /// C++ [expr.dynamic.cast]p9:
1876  ///   A failed cast to reference type throws std::bad_cast
1877  EmitBadCastCall(CGF);
1878
1879  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1880  return llvm::UndefValue::get(DestLTy);
1881}
1882
1883llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1884                                              const CXXDynamicCastExpr *DCE) {
1885  QualType DestTy = DCE->getTypeAsWritten();
1886
1887  if (DCE->isAlwaysNull())
1888    return EmitDynamicCastToNull(*this, DestTy);
1889
1890  QualType SrcTy = DCE->getSubExpr()->getType();
1891
1892  // C++ [expr.dynamic.cast]p4:
1893  //   If the value of v is a null pointer value in the pointer case, the result
1894  //   is the null pointer value of type T.
1895  bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
1896
1897  llvm::BasicBlock *CastNull = 0;
1898  llvm::BasicBlock *CastNotNull = 0;
1899  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1900
1901  if (ShouldNullCheckSrcValue) {
1902    CastNull = createBasicBlock("dynamic_cast.null");
1903    CastNotNull = createBasicBlock("dynamic_cast.notnull");
1904
1905    llvm::Value *IsNull = Builder.CreateIsNull(Value);
1906    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1907    EmitBlock(CastNotNull);
1908  }
1909
1910  Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
1911
1912  if (ShouldNullCheckSrcValue) {
1913    EmitBranch(CastEnd);
1914
1915    EmitBlock(CastNull);
1916    EmitBranch(CastEnd);
1917  }
1918
1919  EmitBlock(CastEnd);
1920
1921  if (ShouldNullCheckSrcValue) {
1922    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1923    PHI->addIncoming(Value, CastNotNull);
1924    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1925
1926    Value = PHI;
1927  }
1928
1929  return Value;
1930}
1931
1932void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1933  RunCleanupsScope Scope(*this);
1934  LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
1935                                 Slot.getAlignment());
1936
1937  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1938  for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1939                                         e = E->capture_init_end();
1940       i != e; ++i, ++CurField) {
1941    // Emit initialization
1942
1943    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1944    ArrayRef<VarDecl *> ArrayIndexes;
1945    if (CurField->getType()->isArrayType())
1946      ArrayIndexes = E->getCaptureInitIndexVars(i);
1947    EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1948  }
1949}
1950