1//===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Provides the Expression parsing implementation.
12///
13/// Expressions in C99 basically consist of a bunch of binary operators with
14/// unary operators and other random stuff at the leaves.
15///
16/// In the C99 grammar, these unary operators bind tightest and are represented
17/// as the 'cast-expression' production.  Everything else is either a binary
18/// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
19/// handled by ParseCastExpression, the higher level pieces are handled by
20/// ParseBinaryExpression.
21///
22//===----------------------------------------------------------------------===//
23
24#include "clang/Parse/Parser.h"
25#include "RAIIObjectsForParser.h"
26#include "clang/Basic/PrettyStackTrace.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/ParsedTemplate.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/TypoCorrection.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/SmallVector.h"
33using namespace clang;
34
35/// \brief Simple precedence-based parser for binary/ternary operators.
36///
37/// Note: we diverge from the C99 grammar when parsing the assignment-expression
38/// production.  C99 specifies that the LHS of an assignment operator should be
39/// parsed as a unary-expression, but consistency dictates that it be a
40/// conditional-expession.  In practice, the important thing here is that the
41/// LHS of an assignment has to be an l-value, which productions between
42/// unary-expression and conditional-expression don't produce.  Because we want
43/// consistency, we parse the LHS as a conditional-expression, then check for
44/// l-value-ness in semantic analysis stages.
45///
46/// \verbatim
47///       pm-expression: [C++ 5.5]
48///         cast-expression
49///         pm-expression '.*' cast-expression
50///         pm-expression '->*' cast-expression
51///
52///       multiplicative-expression: [C99 6.5.5]
53///     Note: in C++, apply pm-expression instead of cast-expression
54///         cast-expression
55///         multiplicative-expression '*' cast-expression
56///         multiplicative-expression '/' cast-expression
57///         multiplicative-expression '%' cast-expression
58///
59///       additive-expression: [C99 6.5.6]
60///         multiplicative-expression
61///         additive-expression '+' multiplicative-expression
62///         additive-expression '-' multiplicative-expression
63///
64///       shift-expression: [C99 6.5.7]
65///         additive-expression
66///         shift-expression '<<' additive-expression
67///         shift-expression '>>' additive-expression
68///
69///       relational-expression: [C99 6.5.8]
70///         shift-expression
71///         relational-expression '<' shift-expression
72///         relational-expression '>' shift-expression
73///         relational-expression '<=' shift-expression
74///         relational-expression '>=' shift-expression
75///
76///       equality-expression: [C99 6.5.9]
77///         relational-expression
78///         equality-expression '==' relational-expression
79///         equality-expression '!=' relational-expression
80///
81///       AND-expression: [C99 6.5.10]
82///         equality-expression
83///         AND-expression '&' equality-expression
84///
85///       exclusive-OR-expression: [C99 6.5.11]
86///         AND-expression
87///         exclusive-OR-expression '^' AND-expression
88///
89///       inclusive-OR-expression: [C99 6.5.12]
90///         exclusive-OR-expression
91///         inclusive-OR-expression '|' exclusive-OR-expression
92///
93///       logical-AND-expression: [C99 6.5.13]
94///         inclusive-OR-expression
95///         logical-AND-expression '&&' inclusive-OR-expression
96///
97///       logical-OR-expression: [C99 6.5.14]
98///         logical-AND-expression
99///         logical-OR-expression '||' logical-AND-expression
100///
101///       conditional-expression: [C99 6.5.15]
102///         logical-OR-expression
103///         logical-OR-expression '?' expression ':' conditional-expression
104/// [GNU]   logical-OR-expression '?' ':' conditional-expression
105/// [C++] the third operand is an assignment-expression
106///
107///       assignment-expression: [C99 6.5.16]
108///         conditional-expression
109///         unary-expression assignment-operator assignment-expression
110/// [C++]   throw-expression [C++ 15]
111///
112///       assignment-operator: one of
113///         = *= /= %= += -= <<= >>= &= ^= |=
114///
115///       expression: [C99 6.5.17]
116///         assignment-expression ...[opt]
117///         expression ',' assignment-expression ...[opt]
118/// \endverbatim
119ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
120  ExprResult LHS(ParseAssignmentExpression(isTypeCast));
121  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
122}
123
124/// This routine is called when the '@' is seen and consumed.
125/// Current token is an Identifier and is not a 'try'. This
126/// routine is necessary to disambiguate \@try-statement from,
127/// for example, \@encode-expression.
128///
129ExprResult
130Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
131  ExprResult LHS(ParseObjCAtExpression(AtLoc));
132  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
133}
134
135/// This routine is called when a leading '__extension__' is seen and
136/// consumed.  This is necessary because the token gets consumed in the
137/// process of disambiguating between an expression and a declaration.
138ExprResult
139Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
140  ExprResult LHS(true);
141  {
142    // Silence extension warnings in the sub-expression
143    ExtensionRAIIObject O(Diags);
144
145    LHS = ParseCastExpression(false);
146  }
147
148  if (!LHS.isInvalid())
149    LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
150                               LHS.take());
151
152  return ParseRHSOfBinaryExpression(LHS, prec::Comma);
153}
154
155/// \brief Parse an expr that doesn't include (top-level) commas.
156ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
157  if (Tok.is(tok::code_completion)) {
158    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
159    cutOffParsing();
160    return ExprError();
161  }
162
163  if (Tok.is(tok::kw_throw))
164    return ParseThrowExpression();
165
166  ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
167                                       /*isAddressOfOperand=*/false,
168                                       isTypeCast);
169  return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
170}
171
172/// \brief Parse an assignment expression where part of an Objective-C message
173/// send has already been parsed.
174///
175/// In this case \p LBracLoc indicates the location of the '[' of the message
176/// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
177/// the receiver of the message.
178///
179/// Since this handles full assignment-expression's, it handles postfix
180/// expressions and other binary operators for these expressions as well.
181ExprResult
182Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
183                                                    SourceLocation SuperLoc,
184                                                    ParsedType ReceiverType,
185                                                    Expr *ReceiverExpr) {
186  ExprResult R
187    = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
188                                     ReceiverType, ReceiverExpr);
189  R = ParsePostfixExpressionSuffix(R);
190  return ParseRHSOfBinaryExpression(R, prec::Assignment);
191}
192
193
194ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
195  // C++03 [basic.def.odr]p2:
196  //   An expression is potentially evaluated unless it appears where an
197  //   integral constant expression is required (see 5.19) [...].
198  // C++98 and C++11 have no such rule, but this is only a defect in C++98.
199  EnterExpressionEvaluationContext Unevaluated(Actions,
200                                               Sema::ConstantEvaluated);
201
202  ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
203  ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
204  return Actions.ActOnConstantExpression(Res);
205}
206
207bool Parser::isNotExpressionStart() {
208  tok::TokenKind K = Tok.getKind();
209  if (K == tok::l_brace || K == tok::r_brace  ||
210      K == tok::kw_for  || K == tok::kw_while ||
211      K == tok::kw_if   || K == tok::kw_else  ||
212      K == tok::kw_goto || K == tok::kw_try)
213    return true;
214  // If this is a decl-specifier, we can't be at the start of an expression.
215  return isKnownToBeDeclarationSpecifier();
216}
217
218/// \brief Parse a binary expression that starts with \p LHS and has a
219/// precedence of at least \p MinPrec.
220ExprResult
221Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
222  prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
223                                               GreaterThanIsOperator,
224                                               getLangOpts().CPlusPlus11);
225  SourceLocation ColonLoc;
226
227  while (1) {
228    // If this token has a lower precedence than we are allowed to parse (e.g.
229    // because we are called recursively, or because the token is not a binop),
230    // then we are done!
231    if (NextTokPrec < MinPrec)
232      return LHS;
233
234    // Consume the operator, saving the operator token for error reporting.
235    Token OpToken = Tok;
236    ConsumeToken();
237
238    // Bail out when encountering a comma followed by a token which can't
239    // possibly be the start of an expression. For instance:
240    //   int f() { return 1, }
241    // We can't do this before consuming the comma, because
242    // isNotExpressionStart() looks at the token stream.
243    if (OpToken.is(tok::comma) && isNotExpressionStart()) {
244      PP.EnterToken(Tok);
245      Tok = OpToken;
246      return LHS;
247    }
248
249    // Special case handling for the ternary operator.
250    ExprResult TernaryMiddle(true);
251    if (NextTokPrec == prec::Conditional) {
252      if (Tok.isNot(tok::colon)) {
253        // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
254        ColonProtectionRAIIObject X(*this);
255
256        // Handle this production specially:
257        //   logical-OR-expression '?' expression ':' conditional-expression
258        // In particular, the RHS of the '?' is 'expression', not
259        // 'logical-OR-expression' as we might expect.
260        TernaryMiddle = ParseExpression();
261        if (TernaryMiddle.isInvalid()) {
262          LHS = ExprError();
263          TernaryMiddle = 0;
264        }
265      } else {
266        // Special case handling of "X ? Y : Z" where Y is empty:
267        //   logical-OR-expression '?' ':' conditional-expression   [GNU]
268        TernaryMiddle = 0;
269        Diag(Tok, diag::ext_gnu_conditional_expr);
270      }
271
272      if (Tok.is(tok::colon)) {
273        // Eat the colon.
274        ColonLoc = ConsumeToken();
275      } else {
276        // Otherwise, we're missing a ':'.  Assume that this was a typo that
277        // the user forgot. If we're not in a macro expansion, we can suggest
278        // a fixit hint. If there were two spaces before the current token,
279        // suggest inserting the colon in between them, otherwise insert ": ".
280        SourceLocation FILoc = Tok.getLocation();
281        const char *FIText = ": ";
282        const SourceManager &SM = PP.getSourceManager();
283        if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
284          assert(FILoc.isFileID());
285          bool IsInvalid = false;
286          const char *SourcePtr =
287            SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
288          if (!IsInvalid && *SourcePtr == ' ') {
289            SourcePtr =
290              SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
291            if (!IsInvalid && *SourcePtr == ' ') {
292              FILoc = FILoc.getLocWithOffset(-1);
293              FIText = ":";
294            }
295          }
296        }
297
298        Diag(Tok, diag::err_expected_colon)
299          << FixItHint::CreateInsertion(FILoc, FIText);
300        Diag(OpToken, diag::note_matching) << "?";
301        ColonLoc = Tok.getLocation();
302      }
303    }
304
305    // Code completion for the right-hand side of an assignment expression
306    // goes through a special hook that takes the left-hand side into account.
307    if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
308      Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
309      cutOffParsing();
310      return ExprError();
311    }
312
313    // Parse another leaf here for the RHS of the operator.
314    // ParseCastExpression works here because all RHS expressions in C have it
315    // as a prefix, at least. However, in C++, an assignment-expression could
316    // be a throw-expression, which is not a valid cast-expression.
317    // Therefore we need some special-casing here.
318    // Also note that the third operand of the conditional operator is
319    // an assignment-expression in C++, and in C++11, we can have a
320    // braced-init-list on the RHS of an assignment. For better diagnostics,
321    // parse as if we were allowed braced-init-lists everywhere, and check that
322    // they only appear on the RHS of assignments later.
323    ExprResult RHS;
324    bool RHSIsInitList = false;
325    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
326      RHS = ParseBraceInitializer();
327      RHSIsInitList = true;
328    } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
329      RHS = ParseAssignmentExpression();
330    else
331      RHS = ParseCastExpression(false);
332
333    if (RHS.isInvalid())
334      LHS = ExprError();
335
336    // Remember the precedence of this operator and get the precedence of the
337    // operator immediately to the right of the RHS.
338    prec::Level ThisPrec = NextTokPrec;
339    NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
340                                     getLangOpts().CPlusPlus11);
341
342    // Assignment and conditional expressions are right-associative.
343    bool isRightAssoc = ThisPrec == prec::Conditional ||
344                        ThisPrec == prec::Assignment;
345
346    // Get the precedence of the operator to the right of the RHS.  If it binds
347    // more tightly with RHS than we do, evaluate it completely first.
348    if (ThisPrec < NextTokPrec ||
349        (ThisPrec == NextTokPrec && isRightAssoc)) {
350      if (!RHS.isInvalid() && RHSIsInitList) {
351        Diag(Tok, diag::err_init_list_bin_op)
352          << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
353        RHS = ExprError();
354      }
355      // If this is left-associative, only parse things on the RHS that bind
356      // more tightly than the current operator.  If it is left-associative, it
357      // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
358      // A=(B=(C=D)), where each paren is a level of recursion here.
359      // The function takes ownership of the RHS.
360      RHS = ParseRHSOfBinaryExpression(RHS,
361                            static_cast<prec::Level>(ThisPrec + !isRightAssoc));
362      RHSIsInitList = false;
363
364      if (RHS.isInvalid())
365        LHS = ExprError();
366
367      NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
368                                       getLangOpts().CPlusPlus11);
369    }
370    assert(NextTokPrec <= ThisPrec && "Recursion didn't work!");
371
372    if (!RHS.isInvalid() && RHSIsInitList) {
373      if (ThisPrec == prec::Assignment) {
374        Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
375          << Actions.getExprRange(RHS.get());
376      } else {
377        Diag(OpToken, diag::err_init_list_bin_op)
378          << /*RHS*/1 << PP.getSpelling(OpToken)
379          << Actions.getExprRange(RHS.get());
380        LHS = ExprError();
381      }
382    }
383
384    if (!LHS.isInvalid()) {
385      // Combine the LHS and RHS into the LHS (e.g. build AST).
386      if (TernaryMiddle.isInvalid()) {
387        // If we're using '>>' as an operator within a template
388        // argument list (in C++98), suggest the addition of
389        // parentheses so that the code remains well-formed in C++0x.
390        if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
391          SuggestParentheses(OpToken.getLocation(),
392                             diag::warn_cxx11_right_shift_in_template_arg,
393                         SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
394                                     Actions.getExprRange(RHS.get()).getEnd()));
395
396        LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
397                                 OpToken.getKind(), LHS.take(), RHS.take());
398      } else
399        LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
400                                         LHS.take(), TernaryMiddle.take(),
401                                         RHS.take());
402    }
403  }
404}
405
406/// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
407/// parse a unary-expression.
408///
409/// \p isAddressOfOperand exists because an id-expression that is the
410/// operand of address-of gets special treatment due to member pointers.
411///
412ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
413                                       bool isAddressOfOperand,
414                                       TypeCastState isTypeCast) {
415  bool NotCastExpr;
416  ExprResult Res = ParseCastExpression(isUnaryExpression,
417                                       isAddressOfOperand,
418                                       NotCastExpr,
419                                       isTypeCast);
420  if (NotCastExpr)
421    Diag(Tok, diag::err_expected_expression);
422  return Res;
423}
424
425namespace {
426class CastExpressionIdValidator : public CorrectionCandidateCallback {
427 public:
428  CastExpressionIdValidator(bool AllowTypes, bool AllowNonTypes)
429      : AllowNonTypes(AllowNonTypes) {
430    WantTypeSpecifiers = AllowTypes;
431  }
432
433  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
434    NamedDecl *ND = candidate.getCorrectionDecl();
435    if (!ND)
436      return candidate.isKeyword();
437
438    if (isa<TypeDecl>(ND))
439      return WantTypeSpecifiers;
440    return AllowNonTypes;
441  }
442
443 private:
444  bool AllowNonTypes;
445};
446}
447
448/// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
449/// a unary-expression.
450///
451/// \p isAddressOfOperand exists because an id-expression that is the operand
452/// of address-of gets special treatment due to member pointers. NotCastExpr
453/// is set to true if the token is not the start of a cast-expression, and no
454/// diagnostic is emitted in this case.
455///
456/// \verbatim
457///       cast-expression: [C99 6.5.4]
458///         unary-expression
459///         '(' type-name ')' cast-expression
460///
461///       unary-expression:  [C99 6.5.3]
462///         postfix-expression
463///         '++' unary-expression
464///         '--' unary-expression
465///         unary-operator cast-expression
466///         'sizeof' unary-expression
467///         'sizeof' '(' type-name ')'
468/// [C++11] 'sizeof' '...' '(' identifier ')'
469/// [GNU]   '__alignof' unary-expression
470/// [GNU]   '__alignof' '(' type-name ')'
471/// [C11]   '_Alignof' '(' type-name ')'
472/// [C++11] 'alignof' '(' type-id ')'
473/// [GNU]   '&&' identifier
474/// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
475/// [C++]   new-expression
476/// [C++]   delete-expression
477///
478///       unary-operator: one of
479///         '&'  '*'  '+'  '-'  '~'  '!'
480/// [GNU]   '__extension__'  '__real'  '__imag'
481///
482///       primary-expression: [C99 6.5.1]
483/// [C99]   identifier
484/// [C++]   id-expression
485///         constant
486///         string-literal
487/// [C++]   boolean-literal  [C++ 2.13.5]
488/// [C++11] 'nullptr'        [C++11 2.14.7]
489/// [C++11] user-defined-literal
490///         '(' expression ')'
491/// [C11]   generic-selection
492///         '__func__'        [C99 6.4.2.2]
493/// [GNU]   '__FUNCTION__'
494/// [GNU]   '__PRETTY_FUNCTION__'
495/// [GNU]   '(' compound-statement ')'
496/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
497/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
498/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
499///                                     assign-expr ')'
500/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
501/// [GNU]   '__null'
502/// [OBJC]  '[' objc-message-expr ']'
503/// [OBJC]  '\@selector' '(' objc-selector-arg ')'
504/// [OBJC]  '\@protocol' '(' identifier ')'
505/// [OBJC]  '\@encode' '(' type-name ')'
506/// [OBJC]  objc-string-literal
507/// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
508/// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
509/// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
510/// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
511/// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
512/// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
513/// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
514/// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
515/// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
516/// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
517/// [C++]   'this'          [C++ 9.3.2]
518/// [G++]   unary-type-trait '(' type-id ')'
519/// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
520/// [EMBT]  array-type-trait '(' type-id ',' integer ')'
521/// [clang] '^' block-literal
522///
523///       constant: [C99 6.4.4]
524///         integer-constant
525///         floating-constant
526///         enumeration-constant -> identifier
527///         character-constant
528///
529///       id-expression: [C++ 5.1]
530///                   unqualified-id
531///                   qualified-id
532///
533///       unqualified-id: [C++ 5.1]
534///                   identifier
535///                   operator-function-id
536///                   conversion-function-id
537///                   '~' class-name
538///                   template-id
539///
540///       new-expression: [C++ 5.3.4]
541///                   '::'[opt] 'new' new-placement[opt] new-type-id
542///                                     new-initializer[opt]
543///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
544///                                     new-initializer[opt]
545///
546///       delete-expression: [C++ 5.3.5]
547///                   '::'[opt] 'delete' cast-expression
548///                   '::'[opt] 'delete' '[' ']' cast-expression
549///
550/// [GNU/Embarcadero] unary-type-trait:
551///                   '__is_arithmetic'
552///                   '__is_floating_point'
553///                   '__is_integral'
554///                   '__is_lvalue_expr'
555///                   '__is_rvalue_expr'
556///                   '__is_complete_type'
557///                   '__is_void'
558///                   '__is_array'
559///                   '__is_function'
560///                   '__is_reference'
561///                   '__is_lvalue_reference'
562///                   '__is_rvalue_reference'
563///                   '__is_fundamental'
564///                   '__is_object'
565///                   '__is_scalar'
566///                   '__is_compound'
567///                   '__is_pointer'
568///                   '__is_member_object_pointer'
569///                   '__is_member_function_pointer'
570///                   '__is_member_pointer'
571///                   '__is_const'
572///                   '__is_volatile'
573///                   '__is_trivial'
574///                   '__is_standard_layout'
575///                   '__is_signed'
576///                   '__is_unsigned'
577///
578/// [GNU] unary-type-trait:
579///                   '__has_nothrow_assign'
580///                   '__has_nothrow_copy'
581///                   '__has_nothrow_constructor'
582///                   '__has_trivial_assign'                  [TODO]
583///                   '__has_trivial_copy'                    [TODO]
584///                   '__has_trivial_constructor'
585///                   '__has_trivial_destructor'
586///                   '__has_virtual_destructor'
587///                   '__is_abstract'                         [TODO]
588///                   '__is_class'
589///                   '__is_empty'                            [TODO]
590///                   '__is_enum'
591///                   '__is_final'
592///                   '__is_pod'
593///                   '__is_polymorphic'
594///                   '__is_trivial'
595///                   '__is_union'
596///
597/// [Clang] unary-type-trait:
598///                   '__trivially_copyable'
599///
600///       binary-type-trait:
601/// [GNU]             '__is_base_of'
602/// [MS]              '__is_convertible_to'
603///                   '__is_convertible'
604///                   '__is_same'
605///
606/// [Embarcadero] array-type-trait:
607///                   '__array_rank'
608///                   '__array_extent'
609///
610/// [Embarcadero] expression-trait:
611///                   '__is_lvalue_expr'
612///                   '__is_rvalue_expr'
613/// \endverbatim
614///
615ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
616                                       bool isAddressOfOperand,
617                                       bool &NotCastExpr,
618                                       TypeCastState isTypeCast) {
619  ExprResult Res;
620  tok::TokenKind SavedKind = Tok.getKind();
621  NotCastExpr = false;
622
623  // This handles all of cast-expression, unary-expression, postfix-expression,
624  // and primary-expression.  We handle them together like this for efficiency
625  // and to simplify handling of an expression starting with a '(' token: which
626  // may be one of a parenthesized expression, cast-expression, compound literal
627  // expression, or statement expression.
628  //
629  // If the parsed tokens consist of a primary-expression, the cases below
630  // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
631  // to handle the postfix expression suffixes.  Cases that cannot be followed
632  // by postfix exprs should return without invoking
633  // ParsePostfixExpressionSuffix.
634  switch (SavedKind) {
635  case tok::l_paren: {
636    // If this expression is limited to being a unary-expression, the parent can
637    // not start a cast expression.
638    ParenParseOption ParenExprType =
639      (isUnaryExpression && !getLangOpts().CPlusPlus)? CompoundLiteral : CastExpr;
640    ParsedType CastTy;
641    SourceLocation RParenLoc;
642
643    {
644      // The inside of the parens don't need to be a colon protected scope, and
645      // isn't immediately a message send.
646      ColonProtectionRAIIObject X(*this, false);
647
648      Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
649                                 isTypeCast == IsTypeCast, CastTy, RParenLoc);
650    }
651
652    switch (ParenExprType) {
653    case SimpleExpr:   break;    // Nothing else to do.
654    case CompoundStmt: break;  // Nothing else to do.
655    case CompoundLiteral:
656      // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
657      // postfix-expression exist, parse them now.
658      break;
659    case CastExpr:
660      // We have parsed the cast-expression and no postfix-expr pieces are
661      // following.
662      return Res;
663    }
664
665    break;
666  }
667
668    // primary-expression
669  case tok::numeric_constant:
670    // constant: integer-constant
671    // constant: floating-constant
672
673    Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
674    ConsumeToken();
675    break;
676
677  case tok::kw_true:
678  case tok::kw_false:
679    return ParseCXXBoolLiteral();
680
681  case tok::kw___objc_yes:
682  case tok::kw___objc_no:
683      return ParseObjCBoolLiteral();
684
685  case tok::kw_nullptr:
686    Diag(Tok, diag::warn_cxx98_compat_nullptr);
687    return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
688
689  case tok::annot_primary_expr:
690    assert(Res.get() == 0 && "Stray primary-expression annotation?");
691    Res = getExprAnnotation(Tok);
692    ConsumeToken();
693    break;
694
695  case tok::kw_decltype:
696    // Annotate the token and tail recurse.
697    if (TryAnnotateTypeOrScopeToken())
698      return ExprError();
699    assert(Tok.isNot(tok::kw_decltype));
700    return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
701
702  case tok::identifier: {      // primary-expression: identifier
703                               // unqualified-id: identifier
704                               // constant: enumeration-constant
705    // Turn a potentially qualified name into a annot_typename or
706    // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
707    if (getLangOpts().CPlusPlus) {
708      // Avoid the unnecessary parse-time lookup in the common case
709      // where the syntax forbids a type.
710      const Token &Next = NextToken();
711
712      // If this identifier was reverted from a token ID, and the next token
713      // is a parenthesis, this is likely to be a use of a type trait. Check
714      // those tokens.
715      if (Next.is(tok::l_paren) &&
716          Tok.is(tok::identifier) &&
717          Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
718        IdentifierInfo *II = Tok.getIdentifierInfo();
719        // Build up the mapping of revertable type traits, for future use.
720        if (RevertableTypeTraits.empty()) {
721#define RTT_JOIN(X,Y) X##Y
722#define REVERTABLE_TYPE_TRAIT(Name)                         \
723          RevertableTypeTraits[PP.getIdentifierInfo(#Name)] \
724            = RTT_JOIN(tok::kw_,Name)
725
726          REVERTABLE_TYPE_TRAIT(__is_arithmetic);
727          REVERTABLE_TYPE_TRAIT(__is_convertible);
728          REVERTABLE_TYPE_TRAIT(__is_empty);
729          REVERTABLE_TYPE_TRAIT(__is_floating_point);
730          REVERTABLE_TYPE_TRAIT(__is_function);
731          REVERTABLE_TYPE_TRAIT(__is_fundamental);
732          REVERTABLE_TYPE_TRAIT(__is_integral);
733          REVERTABLE_TYPE_TRAIT(__is_member_function_pointer);
734          REVERTABLE_TYPE_TRAIT(__is_member_pointer);
735          REVERTABLE_TYPE_TRAIT(__is_pod);
736          REVERTABLE_TYPE_TRAIT(__is_pointer);
737          REVERTABLE_TYPE_TRAIT(__is_same);
738          REVERTABLE_TYPE_TRAIT(__is_scalar);
739          REVERTABLE_TYPE_TRAIT(__is_signed);
740          REVERTABLE_TYPE_TRAIT(__is_unsigned);
741          REVERTABLE_TYPE_TRAIT(__is_void);
742#undef REVERTABLE_TYPE_TRAIT
743#undef RTT_JOIN
744          }
745
746          // If we find that this is in fact the name of a type trait,
747          // update the token kind in place and parse again to treat it as
748          // the appropriate kind of type trait.
749          llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
750            = RevertableTypeTraits.find(II);
751          if (Known != RevertableTypeTraits.end()) {
752            Tok.setKind(Known->second);
753            return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
754                                       NotCastExpr, isTypeCast);
755          }
756        }
757
758      if (Next.is(tok::coloncolon) ||
759          (!ColonIsSacred && Next.is(tok::colon)) ||
760          Next.is(tok::less) ||
761          Next.is(tok::l_paren) ||
762          Next.is(tok::l_brace)) {
763        // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
764        if (TryAnnotateTypeOrScopeToken())
765          return ExprError();
766        if (!Tok.is(tok::identifier))
767          return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
768      }
769    }
770
771    // Consume the identifier so that we can see if it is followed by a '(' or
772    // '.'.
773    IdentifierInfo &II = *Tok.getIdentifierInfo();
774    SourceLocation ILoc = ConsumeToken();
775
776    // Support 'Class.property' and 'super.property' notation.
777    if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
778        (Actions.getTypeName(II, ILoc, getCurScope()) ||
779         // Allow the base to be 'super' if in an objc-method.
780         (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
781      ConsumeToken();
782
783      // Allow either an identifier or the keyword 'class' (in C++).
784      if (Tok.isNot(tok::identifier) &&
785          !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
786        Diag(Tok, diag::err_expected_property_name);
787        return ExprError();
788      }
789      IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
790      SourceLocation PropertyLoc = ConsumeToken();
791
792      Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
793                                              ILoc, PropertyLoc);
794      break;
795    }
796
797    // In an Objective-C method, if we have "super" followed by an identifier,
798    // the token sequence is ill-formed. However, if there's a ':' or ']' after
799    // that identifier, this is probably a message send with a missing open
800    // bracket. Treat it as such.
801    if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
802        getCurScope()->isInObjcMethodScope() &&
803        ((Tok.is(tok::identifier) &&
804         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
805         Tok.is(tok::code_completion))) {
806      Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
807                                           0);
808      break;
809    }
810
811    // If we have an Objective-C class name followed by an identifier
812    // and either ':' or ']', this is an Objective-C class message
813    // send that's missing the opening '['. Recovery
814    // appropriately. Also take this path if we're performing code
815    // completion after an Objective-C class name.
816    if (getLangOpts().ObjC1 &&
817        ((Tok.is(tok::identifier) && !InMessageExpression) ||
818         Tok.is(tok::code_completion))) {
819      const Token& Next = NextToken();
820      if (Tok.is(tok::code_completion) ||
821          Next.is(tok::colon) || Next.is(tok::r_square))
822        if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
823          if (Typ.get()->isObjCObjectOrInterfaceType()) {
824            // Fake up a Declarator to use with ActOnTypeName.
825            DeclSpec DS(AttrFactory);
826            DS.SetRangeStart(ILoc);
827            DS.SetRangeEnd(ILoc);
828            const char *PrevSpec = 0;
829            unsigned DiagID;
830            DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ);
831
832            Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
833            TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
834                                                  DeclaratorInfo);
835            if (Ty.isInvalid())
836              break;
837
838            Res = ParseObjCMessageExpressionBody(SourceLocation(),
839                                                 SourceLocation(),
840                                                 Ty.get(), 0);
841            break;
842          }
843    }
844
845    // Make sure to pass down the right value for isAddressOfOperand.
846    if (isAddressOfOperand && isPostfixExpressionSuffixStart())
847      isAddressOfOperand = false;
848
849    // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
850    // need to know whether or not this identifier is a function designator or
851    // not.
852    UnqualifiedId Name;
853    CXXScopeSpec ScopeSpec;
854    SourceLocation TemplateKWLoc;
855    CastExpressionIdValidator Validator(isTypeCast != NotTypeCast,
856                                        isTypeCast != IsTypeCast);
857    Name.setIdentifier(&II, ILoc);
858    Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
859                                    Name, Tok.is(tok::l_paren),
860                                    isAddressOfOperand, &Validator);
861    break;
862  }
863  case tok::char_constant:     // constant: character-constant
864  case tok::wide_char_constant:
865  case tok::utf16_char_constant:
866  case tok::utf32_char_constant:
867    Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
868    ConsumeToken();
869    break;
870  case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
871  case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
872  case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
873  case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
874    Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
875    ConsumeToken();
876    break;
877  case tok::string_literal:    // primary-expression: string-literal
878  case tok::wide_string_literal:
879  case tok::utf8_string_literal:
880  case tok::utf16_string_literal:
881  case tok::utf32_string_literal:
882    Res = ParseStringLiteralExpression(true);
883    break;
884  case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
885    Res = ParseGenericSelectionExpression();
886    break;
887  case tok::kw___builtin_va_arg:
888  case tok::kw___builtin_offsetof:
889  case tok::kw___builtin_choose_expr:
890  case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
891    return ParseBuiltinPrimaryExpression();
892  case tok::kw___null:
893    return Actions.ActOnGNUNullExpr(ConsumeToken());
894
895  case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
896  case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
897    // C++ [expr.unary] has:
898    //   unary-expression:
899    //     ++ cast-expression
900    //     -- cast-expression
901    SourceLocation SavedLoc = ConsumeToken();
902    Res = ParseCastExpression(!getLangOpts().CPlusPlus);
903    if (!Res.isInvalid())
904      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
905    return Res;
906  }
907  case tok::amp: {         // unary-expression: '&' cast-expression
908    // Special treatment because of member pointers
909    SourceLocation SavedLoc = ConsumeToken();
910    Res = ParseCastExpression(false, true);
911    if (!Res.isInvalid())
912      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
913    return Res;
914  }
915
916  case tok::star:          // unary-expression: '*' cast-expression
917  case tok::plus:          // unary-expression: '+' cast-expression
918  case tok::minus:         // unary-expression: '-' cast-expression
919  case tok::tilde:         // unary-expression: '~' cast-expression
920  case tok::exclaim:       // unary-expression: '!' cast-expression
921  case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
922  case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
923    SourceLocation SavedLoc = ConsumeToken();
924    Res = ParseCastExpression(false);
925    if (!Res.isInvalid())
926      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
927    return Res;
928  }
929
930  case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
931    // __extension__ silences extension warnings in the subexpression.
932    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
933    SourceLocation SavedLoc = ConsumeToken();
934    Res = ParseCastExpression(false);
935    if (!Res.isInvalid())
936      Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
937    return Res;
938  }
939  case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
940    if (!getLangOpts().C11)
941      Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
942    // fallthrough
943  case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
944  case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
945                           // unary-expression: '__alignof' '(' type-name ')'
946  case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
947                           // unary-expression: 'sizeof' '(' type-name ')'
948  case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
949    return ParseUnaryExprOrTypeTraitExpression();
950  case tok::ampamp: {      // unary-expression: '&&' identifier
951    SourceLocation AmpAmpLoc = ConsumeToken();
952    if (Tok.isNot(tok::identifier))
953      return ExprError(Diag(Tok, diag::err_expected_ident));
954
955    if (getCurScope()->getFnParent() == 0)
956      return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
957
958    Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
959    LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
960                                                Tok.getLocation());
961    Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
962    ConsumeToken();
963    return Res;
964  }
965  case tok::kw_const_cast:
966  case tok::kw_dynamic_cast:
967  case tok::kw_reinterpret_cast:
968  case tok::kw_static_cast:
969    Res = ParseCXXCasts();
970    break;
971  case tok::kw_typeid:
972    Res = ParseCXXTypeid();
973    break;
974  case tok::kw___uuidof:
975    Res = ParseCXXUuidof();
976    break;
977  case tok::kw_this:
978    Res = ParseCXXThis();
979    break;
980
981  case tok::annot_typename:
982    if (isStartOfObjCClassMessageMissingOpenBracket()) {
983      ParsedType Type = getTypeAnnotation(Tok);
984
985      // Fake up a Declarator to use with ActOnTypeName.
986      DeclSpec DS(AttrFactory);
987      DS.SetRangeStart(Tok.getLocation());
988      DS.SetRangeEnd(Tok.getLastLoc());
989
990      const char *PrevSpec = 0;
991      unsigned DiagID;
992      DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
993                         PrevSpec, DiagID, Type);
994
995      Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
996      TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
997      if (Ty.isInvalid())
998        break;
999
1000      ConsumeToken();
1001      Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1002                                           Ty.get(), 0);
1003      break;
1004    }
1005    // Fall through
1006
1007  case tok::annot_decltype:
1008  case tok::kw_char:
1009  case tok::kw_wchar_t:
1010  case tok::kw_char16_t:
1011  case tok::kw_char32_t:
1012  case tok::kw_bool:
1013  case tok::kw_short:
1014  case tok::kw_int:
1015  case tok::kw_long:
1016  case tok::kw___int64:
1017  case tok::kw___int128:
1018  case tok::kw_signed:
1019  case tok::kw_unsigned:
1020  case tok::kw_half:
1021  case tok::kw_float:
1022  case tok::kw_double:
1023  case tok::kw_void:
1024  case tok::kw_typename:
1025  case tok::kw_typeof:
1026  case tok::kw___vector:
1027  case tok::kw_image1d_t:
1028  case tok::kw_image1d_array_t:
1029  case tok::kw_image1d_buffer_t:
1030  case tok::kw_image2d_t:
1031  case tok::kw_image2d_array_t:
1032  case tok::kw_image3d_t:
1033  case tok::kw_sampler_t:
1034  case tok::kw_event_t: {
1035    if (!getLangOpts().CPlusPlus) {
1036      Diag(Tok, diag::err_expected_expression);
1037      return ExprError();
1038    }
1039
1040    if (SavedKind == tok::kw_typename) {
1041      // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1042      //                     typename-specifier braced-init-list
1043      if (TryAnnotateTypeOrScopeToken())
1044        return ExprError();
1045    }
1046
1047    // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1048    //                     simple-type-specifier braced-init-list
1049    //
1050    DeclSpec DS(AttrFactory);
1051    ParseCXXSimpleTypeSpecifier(DS);
1052    if (Tok.isNot(tok::l_paren) &&
1053        (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1054      return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1055                         << DS.getSourceRange());
1056
1057    if (Tok.is(tok::l_brace))
1058      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1059
1060    Res = ParseCXXTypeConstructExpression(DS);
1061    break;
1062  }
1063
1064  case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1065    // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1066    // (We can end up in this situation after tentative parsing.)
1067    if (TryAnnotateTypeOrScopeToken())
1068      return ExprError();
1069    if (!Tok.is(tok::annot_cxxscope))
1070      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1071                                 NotCastExpr, isTypeCast);
1072
1073    Token Next = NextToken();
1074    if (Next.is(tok::annot_template_id)) {
1075      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1076      if (TemplateId->Kind == TNK_Type_template) {
1077        // We have a qualified template-id that we know refers to a
1078        // type, translate it into a type and continue parsing as a
1079        // cast expression.
1080        CXXScopeSpec SS;
1081        ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1082                                       /*EnteringContext=*/false);
1083        AnnotateTemplateIdTokenAsType();
1084        return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1085                                   NotCastExpr, isTypeCast);
1086      }
1087    }
1088
1089    // Parse as an id-expression.
1090    Res = ParseCXXIdExpression(isAddressOfOperand);
1091    break;
1092  }
1093
1094  case tok::annot_template_id: { // [C++]          template-id
1095    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1096    if (TemplateId->Kind == TNK_Type_template) {
1097      // We have a template-id that we know refers to a type,
1098      // translate it into a type and continue parsing as a cast
1099      // expression.
1100      AnnotateTemplateIdTokenAsType();
1101      return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1102                                 NotCastExpr, isTypeCast);
1103    }
1104
1105    // Fall through to treat the template-id as an id-expression.
1106  }
1107
1108  case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1109    Res = ParseCXXIdExpression(isAddressOfOperand);
1110    break;
1111
1112  case tok::coloncolon: {
1113    // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1114    // annotates the token, tail recurse.
1115    if (TryAnnotateTypeOrScopeToken())
1116      return ExprError();
1117    if (!Tok.is(tok::coloncolon))
1118      return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1119
1120    // ::new -> [C++] new-expression
1121    // ::delete -> [C++] delete-expression
1122    SourceLocation CCLoc = ConsumeToken();
1123    if (Tok.is(tok::kw_new))
1124      return ParseCXXNewExpression(true, CCLoc);
1125    if (Tok.is(tok::kw_delete))
1126      return ParseCXXDeleteExpression(true, CCLoc);
1127
1128    // This is not a type name or scope specifier, it is an invalid expression.
1129    Diag(CCLoc, diag::err_expected_expression);
1130    return ExprError();
1131  }
1132
1133  case tok::kw_new: // [C++] new-expression
1134    return ParseCXXNewExpression(false, Tok.getLocation());
1135
1136  case tok::kw_delete: // [C++] delete-expression
1137    return ParseCXXDeleteExpression(false, Tok.getLocation());
1138
1139  case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1140    Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1141    SourceLocation KeyLoc = ConsumeToken();
1142    BalancedDelimiterTracker T(*this, tok::l_paren);
1143
1144    if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1145      return ExprError();
1146    // C++11 [expr.unary.noexcept]p1:
1147    //   The noexcept operator determines whether the evaluation of its operand,
1148    //   which is an unevaluated operand, can throw an exception.
1149    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1150    ExprResult Result = ParseExpression();
1151
1152    T.consumeClose();
1153
1154    if (!Result.isInvalid())
1155      Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1156                                         Result.take(), T.getCloseLocation());
1157    return Result;
1158  }
1159
1160  case tok::kw___is_abstract: // [GNU] unary-type-trait
1161  case tok::kw___is_class:
1162  case tok::kw___is_empty:
1163  case tok::kw___is_enum:
1164  case tok::kw___is_interface_class:
1165  case tok::kw___is_literal:
1166  case tok::kw___is_arithmetic:
1167  case tok::kw___is_integral:
1168  case tok::kw___is_floating_point:
1169  case tok::kw___is_complete_type:
1170  case tok::kw___is_void:
1171  case tok::kw___is_array:
1172  case tok::kw___is_function:
1173  case tok::kw___is_reference:
1174  case tok::kw___is_lvalue_reference:
1175  case tok::kw___is_rvalue_reference:
1176  case tok::kw___is_fundamental:
1177  case tok::kw___is_object:
1178  case tok::kw___is_scalar:
1179  case tok::kw___is_compound:
1180  case tok::kw___is_pointer:
1181  case tok::kw___is_member_object_pointer:
1182  case tok::kw___is_member_function_pointer:
1183  case tok::kw___is_member_pointer:
1184  case tok::kw___is_const:
1185  case tok::kw___is_volatile:
1186  case tok::kw___is_standard_layout:
1187  case tok::kw___is_signed:
1188  case tok::kw___is_unsigned:
1189  case tok::kw___is_literal_type:
1190  case tok::kw___is_pod:
1191  case tok::kw___is_polymorphic:
1192  case tok::kw___is_trivial:
1193  case tok::kw___is_trivially_copyable:
1194  case tok::kw___is_union:
1195  case tok::kw___is_final:
1196  case tok::kw___has_trivial_constructor:
1197  case tok::kw___has_trivial_move_constructor:
1198  case tok::kw___has_trivial_copy:
1199  case tok::kw___has_trivial_assign:
1200  case tok::kw___has_trivial_move_assign:
1201  case tok::kw___has_trivial_destructor:
1202  case tok::kw___has_nothrow_assign:
1203  case tok::kw___has_nothrow_move_assign:
1204  case tok::kw___has_nothrow_copy:
1205  case tok::kw___has_nothrow_constructor:
1206  case tok::kw___has_virtual_destructor:
1207    return ParseUnaryTypeTrait();
1208
1209  case tok::kw___builtin_types_compatible_p:
1210  case tok::kw___is_base_of:
1211  case tok::kw___is_same:
1212  case tok::kw___is_convertible:
1213  case tok::kw___is_convertible_to:
1214  case tok::kw___is_trivially_assignable:
1215    return ParseBinaryTypeTrait();
1216
1217  case tok::kw___is_trivially_constructible:
1218    return ParseTypeTrait();
1219
1220  case tok::kw___array_rank:
1221  case tok::kw___array_extent:
1222    return ParseArrayTypeTrait();
1223
1224  case tok::kw___is_lvalue_expr:
1225  case tok::kw___is_rvalue_expr:
1226    return ParseExpressionTrait();
1227
1228  case tok::at: {
1229    SourceLocation AtLoc = ConsumeToken();
1230    return ParseObjCAtExpression(AtLoc);
1231  }
1232  case tok::caret:
1233    Res = ParseBlockLiteralExpression();
1234    break;
1235  case tok::code_completion: {
1236    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1237    cutOffParsing();
1238    return ExprError();
1239  }
1240  case tok::l_square:
1241    if (getLangOpts().CPlusPlus11) {
1242      if (getLangOpts().ObjC1) {
1243        // C++11 lambda expressions and Objective-C message sends both start with a
1244        // square bracket.  There are three possibilities here:
1245        // we have a valid lambda expression, we have an invalid lambda
1246        // expression, or we have something that doesn't appear to be a lambda.
1247        // If we're in the last case, we fall back to ParseObjCMessageExpression.
1248        Res = TryParseLambdaExpression();
1249        if (!Res.isInvalid() && !Res.get())
1250          Res = ParseObjCMessageExpression();
1251        break;
1252      }
1253      Res = ParseLambdaExpression();
1254      break;
1255    }
1256    if (getLangOpts().ObjC1) {
1257      Res = ParseObjCMessageExpression();
1258      break;
1259    }
1260    // FALL THROUGH.
1261  default:
1262    NotCastExpr = true;
1263    return ExprError();
1264  }
1265
1266  // These can be followed by postfix-expr pieces.
1267  return ParsePostfixExpressionSuffix(Res);
1268}
1269
1270/// \brief Once the leading part of a postfix-expression is parsed, this
1271/// method parses any suffixes that apply.
1272///
1273/// \verbatim
1274///       postfix-expression: [C99 6.5.2]
1275///         primary-expression
1276///         postfix-expression '[' expression ']'
1277///         postfix-expression '[' braced-init-list ']'
1278///         postfix-expression '(' argument-expression-list[opt] ')'
1279///         postfix-expression '.' identifier
1280///         postfix-expression '->' identifier
1281///         postfix-expression '++'
1282///         postfix-expression '--'
1283///         '(' type-name ')' '{' initializer-list '}'
1284///         '(' type-name ')' '{' initializer-list ',' '}'
1285///
1286///       argument-expression-list: [C99 6.5.2]
1287///         argument-expression ...[opt]
1288///         argument-expression-list ',' assignment-expression ...[opt]
1289/// \endverbatim
1290ExprResult
1291Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1292  // Now that the primary-expression piece of the postfix-expression has been
1293  // parsed, see if there are any postfix-expression pieces here.
1294  SourceLocation Loc;
1295  while (1) {
1296    switch (Tok.getKind()) {
1297    case tok::code_completion:
1298      if (InMessageExpression)
1299        return LHS;
1300
1301      Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1302      cutOffParsing();
1303      return ExprError();
1304
1305    case tok::identifier:
1306      // If we see identifier: after an expression, and we're not already in a
1307      // message send, then this is probably a message send with a missing
1308      // opening bracket '['.
1309      if (getLangOpts().ObjC1 && !InMessageExpression &&
1310          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1311        LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1312                                             ParsedType(), LHS.get());
1313        break;
1314      }
1315
1316      // Fall through; this isn't a message send.
1317
1318    default:  // Not a postfix-expression suffix.
1319      return LHS;
1320    case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1321      // If we have a array postfix expression that starts on a new line and
1322      // Objective-C is enabled, it is highly likely that the user forgot a
1323      // semicolon after the base expression and that the array postfix-expr is
1324      // actually another message send.  In this case, do some look-ahead to see
1325      // if the contents of the square brackets are obviously not a valid
1326      // expression and recover by pretending there is no suffix.
1327      if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1328          isSimpleObjCMessageExpression())
1329        return LHS;
1330
1331      // Reject array indices starting with a lambda-expression. '[[' is
1332      // reserved for attributes.
1333      if (CheckProhibitedCXX11Attribute())
1334        return ExprError();
1335
1336      BalancedDelimiterTracker T(*this, tok::l_square);
1337      T.consumeOpen();
1338      Loc = T.getOpenLocation();
1339      ExprResult Idx;
1340      if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1341        Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1342        Idx = ParseBraceInitializer();
1343      } else
1344        Idx = ParseExpression();
1345
1346      SourceLocation RLoc = Tok.getLocation();
1347
1348      if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1349        LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.take(), Loc,
1350                                              Idx.take(), RLoc);
1351      } else
1352        LHS = ExprError();
1353
1354      // Match the ']'.
1355      T.consumeClose();
1356      break;
1357    }
1358
1359    case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1360    case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1361                               //   '(' argument-expression-list[opt] ')'
1362      tok::TokenKind OpKind = Tok.getKind();
1363      InMessageExpressionRAIIObject InMessage(*this, false);
1364
1365      Expr *ExecConfig = 0;
1366
1367      BalancedDelimiterTracker PT(*this, tok::l_paren);
1368
1369      if (OpKind == tok::lesslessless) {
1370        ExprVector ExecConfigExprs;
1371        CommaLocsTy ExecConfigCommaLocs;
1372        SourceLocation OpenLoc = ConsumeToken();
1373
1374        if (ParseExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1375          LHS = ExprError();
1376        }
1377
1378        SourceLocation CloseLoc = Tok.getLocation();
1379        if (Tok.is(tok::greatergreatergreater)) {
1380          ConsumeToken();
1381        } else if (LHS.isInvalid()) {
1382          SkipUntil(tok::greatergreatergreater);
1383        } else {
1384          // There was an error closing the brackets
1385          Diag(Tok, diag::err_expected_ggg);
1386          Diag(OpenLoc, diag::note_matching) << "<<<";
1387          SkipUntil(tok::greatergreatergreater);
1388          LHS = ExprError();
1389        }
1390
1391        if (!LHS.isInvalid()) {
1392          if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen, ""))
1393            LHS = ExprError();
1394          else
1395            Loc = PrevTokLocation;
1396        }
1397
1398        if (!LHS.isInvalid()) {
1399          ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1400                                    OpenLoc,
1401                                    ExecConfigExprs,
1402                                    CloseLoc);
1403          if (ECResult.isInvalid())
1404            LHS = ExprError();
1405          else
1406            ExecConfig = ECResult.get();
1407        }
1408      } else {
1409        PT.consumeOpen();
1410        Loc = PT.getOpenLocation();
1411      }
1412
1413      ExprVector ArgExprs;
1414      CommaLocsTy CommaLocs;
1415
1416      if (Tok.is(tok::code_completion)) {
1417        Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1418        cutOffParsing();
1419        return ExprError();
1420      }
1421
1422      if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1423        if (Tok.isNot(tok::r_paren)) {
1424          if (ParseExpressionList(ArgExprs, CommaLocs, &Sema::CodeCompleteCall,
1425                                  LHS.get())) {
1426            LHS = ExprError();
1427          }
1428        }
1429      }
1430
1431      // Match the ')'.
1432      if (LHS.isInvalid()) {
1433        SkipUntil(tok::r_paren);
1434      } else if (Tok.isNot(tok::r_paren)) {
1435        PT.consumeClose();
1436        LHS = ExprError();
1437      } else {
1438        assert((ArgExprs.size() == 0 ||
1439                ArgExprs.size()-1 == CommaLocs.size())&&
1440               "Unexpected number of commas!");
1441        LHS = Actions.ActOnCallExpr(getCurScope(), LHS.take(), Loc,
1442                                    ArgExprs, Tok.getLocation(),
1443                                    ExecConfig);
1444        PT.consumeClose();
1445      }
1446
1447      break;
1448    }
1449    case tok::arrow:
1450    case tok::period: {
1451      // postfix-expression: p-e '->' template[opt] id-expression
1452      // postfix-expression: p-e '.' template[opt] id-expression
1453      tok::TokenKind OpKind = Tok.getKind();
1454      SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1455
1456      CXXScopeSpec SS;
1457      ParsedType ObjectType;
1458      bool MayBePseudoDestructor = false;
1459      if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1460        Expr *Base = LHS.take();
1461        const Type* BaseType = Base->getType().getTypePtrOrNull();
1462        if (BaseType && Tok.is(tok::l_paren) &&
1463            (BaseType->isFunctionType() ||
1464             BaseType->getAsPlaceholderType()->getKind() ==
1465                 BuiltinType::BoundMember)) {
1466          Diag(OpLoc, diag::err_function_is_not_record)
1467            << (OpKind == tok::arrow) << Base->getSourceRange()
1468            << FixItHint::CreateRemoval(OpLoc);
1469          return ParsePostfixExpressionSuffix(Base);
1470        }
1471
1472        LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1473                                                   OpLoc, OpKind, ObjectType,
1474                                                   MayBePseudoDestructor);
1475        if (LHS.isInvalid())
1476          break;
1477
1478        ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1479                                       /*EnteringContext=*/false,
1480                                       &MayBePseudoDestructor);
1481        if (SS.isNotEmpty())
1482          ObjectType = ParsedType();
1483      }
1484
1485      if (Tok.is(tok::code_completion)) {
1486        // Code completion for a member access expression.
1487        Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1488                                                OpLoc, OpKind == tok::arrow);
1489
1490        cutOffParsing();
1491        return ExprError();
1492      }
1493
1494      if (MayBePseudoDestructor && !LHS.isInvalid()) {
1495        LHS = ParseCXXPseudoDestructor(LHS.take(), OpLoc, OpKind, SS,
1496                                       ObjectType);
1497        break;
1498      }
1499
1500      // Either the action has told is that this cannot be a
1501      // pseudo-destructor expression (based on the type of base
1502      // expression), or we didn't see a '~' in the right place. We
1503      // can still parse a destructor name here, but in that case it
1504      // names a real destructor.
1505      // Allow explicit constructor calls in Microsoft mode.
1506      // FIXME: Add support for explicit call of template constructor.
1507      SourceLocation TemplateKWLoc;
1508      UnqualifiedId Name;
1509      if (getLangOpts().ObjC2 && OpKind == tok::period && Tok.is(tok::kw_class)) {
1510        // Objective-C++:
1511        //   After a '.' in a member access expression, treat the keyword
1512        //   'class' as if it were an identifier.
1513        //
1514        // This hack allows property access to the 'class' method because it is
1515        // such a common method name. For other C++ keywords that are
1516        // Objective-C method names, one must use the message send syntax.
1517        IdentifierInfo *Id = Tok.getIdentifierInfo();
1518        SourceLocation Loc = ConsumeToken();
1519        Name.setIdentifier(Id, Loc);
1520      } else if (ParseUnqualifiedId(SS,
1521                                    /*EnteringContext=*/false,
1522                                    /*AllowDestructorName=*/true,
1523                                    /*AllowConstructorName=*/
1524                                      getLangOpts().MicrosoftExt,
1525                                    ObjectType, TemplateKWLoc, Name))
1526        LHS = ExprError();
1527
1528      if (!LHS.isInvalid())
1529        LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.take(), OpLoc,
1530                                            OpKind, SS, TemplateKWLoc, Name,
1531                                 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl : 0,
1532                                            Tok.is(tok::l_paren));
1533      break;
1534    }
1535    case tok::plusplus:    // postfix-expression: postfix-expression '++'
1536    case tok::minusminus:  // postfix-expression: postfix-expression '--'
1537      if (!LHS.isInvalid()) {
1538        LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1539                                          Tok.getKind(), LHS.take());
1540      }
1541      ConsumeToken();
1542      break;
1543    }
1544  }
1545}
1546
1547/// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1548/// vec_step and we are at the start of an expression or a parenthesized
1549/// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1550/// expression (isCastExpr == false) or the type (isCastExpr == true).
1551///
1552/// \verbatim
1553///       unary-expression:  [C99 6.5.3]
1554///         'sizeof' unary-expression
1555///         'sizeof' '(' type-name ')'
1556/// [GNU]   '__alignof' unary-expression
1557/// [GNU]   '__alignof' '(' type-name ')'
1558/// [C11]   '_Alignof' '(' type-name ')'
1559/// [C++0x] 'alignof' '(' type-id ')'
1560///
1561/// [GNU]   typeof-specifier:
1562///           typeof ( expressions )
1563///           typeof ( type-name )
1564/// [GNU/C++] typeof unary-expression
1565///
1566/// [OpenCL 1.1 6.11.12] vec_step built-in function:
1567///           vec_step ( expressions )
1568///           vec_step ( type-name )
1569/// \endverbatim
1570ExprResult
1571Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1572                                           bool &isCastExpr,
1573                                           ParsedType &CastTy,
1574                                           SourceRange &CastRange) {
1575
1576  assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
1577          OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1578          OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
1579          "Not a typeof/sizeof/alignof/vec_step expression!");
1580
1581  ExprResult Operand;
1582
1583  // If the operand doesn't start with an '(', it must be an expression.
1584  if (Tok.isNot(tok::l_paren)) {
1585    isCastExpr = false;
1586    if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1587      Diag(Tok,diag::err_expected_lparen_after_id) << OpTok.getIdentifierInfo();
1588      return ExprError();
1589    }
1590
1591    Operand = ParseCastExpression(true/*isUnaryExpression*/);
1592  } else {
1593    // If it starts with a '(', we know that it is either a parenthesized
1594    // type-name, or it is a unary-expression that starts with a compound
1595    // literal, or starts with a primary-expression that is a parenthesized
1596    // expression.
1597    ParenParseOption ExprType = CastExpr;
1598    SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1599
1600    Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1601                                   false, CastTy, RParenLoc);
1602    CastRange = SourceRange(LParenLoc, RParenLoc);
1603
1604    // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1605    // a type.
1606    if (ExprType == CastExpr) {
1607      isCastExpr = true;
1608      return ExprEmpty();
1609    }
1610
1611    if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1612      // GNU typeof in C requires the expression to be parenthesized. Not so for
1613      // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1614      // the start of a unary-expression, but doesn't include any postfix
1615      // pieces. Parse these now if present.
1616      if (!Operand.isInvalid())
1617        Operand = ParsePostfixExpressionSuffix(Operand.get());
1618    }
1619  }
1620
1621  // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1622  isCastExpr = false;
1623  return Operand;
1624}
1625
1626
1627/// \brief Parse a sizeof or alignof expression.
1628///
1629/// \verbatim
1630///       unary-expression:  [C99 6.5.3]
1631///         'sizeof' unary-expression
1632///         'sizeof' '(' type-name ')'
1633/// [C++11] 'sizeof' '...' '(' identifier ')'
1634/// [GNU]   '__alignof' unary-expression
1635/// [GNU]   '__alignof' '(' type-name ')'
1636/// [C11]   '_Alignof' '(' type-name ')'
1637/// [C++11] 'alignof' '(' type-id ')'
1638/// \endverbatim
1639ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1640  assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1641          Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1642          Tok.is(tok::kw_vec_step)) &&
1643         "Not a sizeof/alignof/vec_step expression!");
1644  Token OpTok = Tok;
1645  ConsumeToken();
1646
1647  // [C++11] 'sizeof' '...' '(' identifier ')'
1648  if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1649    SourceLocation EllipsisLoc = ConsumeToken();
1650    SourceLocation LParenLoc, RParenLoc;
1651    IdentifierInfo *Name = 0;
1652    SourceLocation NameLoc;
1653    if (Tok.is(tok::l_paren)) {
1654      BalancedDelimiterTracker T(*this, tok::l_paren);
1655      T.consumeOpen();
1656      LParenLoc = T.getOpenLocation();
1657      if (Tok.is(tok::identifier)) {
1658        Name = Tok.getIdentifierInfo();
1659        NameLoc = ConsumeToken();
1660        T.consumeClose();
1661        RParenLoc = T.getCloseLocation();
1662        if (RParenLoc.isInvalid())
1663          RParenLoc = PP.getLocForEndOfToken(NameLoc);
1664      } else {
1665        Diag(Tok, diag::err_expected_parameter_pack);
1666        SkipUntil(tok::r_paren);
1667      }
1668    } else if (Tok.is(tok::identifier)) {
1669      Name = Tok.getIdentifierInfo();
1670      NameLoc = ConsumeToken();
1671      LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1672      RParenLoc = PP.getLocForEndOfToken(NameLoc);
1673      Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1674        << Name
1675        << FixItHint::CreateInsertion(LParenLoc, "(")
1676        << FixItHint::CreateInsertion(RParenLoc, ")");
1677    } else {
1678      Diag(Tok, diag::err_sizeof_parameter_pack);
1679    }
1680
1681    if (!Name)
1682      return ExprError();
1683
1684    return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1685                                                OpTok.getLocation(),
1686                                                *Name, NameLoc,
1687                                                RParenLoc);
1688  }
1689
1690  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1691    Diag(OpTok, diag::warn_cxx98_compat_alignof);
1692
1693  EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1694                                               Sema::ReuseLambdaContextDecl);
1695
1696  bool isCastExpr;
1697  ParsedType CastTy;
1698  SourceRange CastRange;
1699  ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1700                                                          isCastExpr,
1701                                                          CastTy,
1702                                                          CastRange);
1703
1704  UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1705  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1706      OpTok.is(tok::kw__Alignof))
1707    ExprKind = UETT_AlignOf;
1708  else if (OpTok.is(tok::kw_vec_step))
1709    ExprKind = UETT_VecStep;
1710
1711  if (isCastExpr)
1712    return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1713                                                 ExprKind,
1714                                                 /*isType=*/true,
1715                                                 CastTy.getAsOpaquePtr(),
1716                                                 CastRange);
1717
1718  if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1719    Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1720
1721  // If we get here, the operand to the sizeof/alignof was an expresion.
1722  if (!Operand.isInvalid())
1723    Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1724                                                    ExprKind,
1725                                                    /*isType=*/false,
1726                                                    Operand.release(),
1727                                                    CastRange);
1728  return Operand;
1729}
1730
1731/// ParseBuiltinPrimaryExpression
1732///
1733/// \verbatim
1734///       primary-expression: [C99 6.5.1]
1735/// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1736/// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1737/// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1738///                                     assign-expr ')'
1739/// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1740/// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
1741///
1742/// [GNU] offsetof-member-designator:
1743/// [GNU]   identifier
1744/// [GNU]   offsetof-member-designator '.' identifier
1745/// [GNU]   offsetof-member-designator '[' expression ']'
1746/// \endverbatim
1747ExprResult Parser::ParseBuiltinPrimaryExpression() {
1748  ExprResult Res;
1749  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1750
1751  tok::TokenKind T = Tok.getKind();
1752  SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
1753
1754  // All of these start with an open paren.
1755  if (Tok.isNot(tok::l_paren))
1756    return ExprError(Diag(Tok, diag::err_expected_lparen_after_id)
1757                       << BuiltinII);
1758
1759  BalancedDelimiterTracker PT(*this, tok::l_paren);
1760  PT.consumeOpen();
1761
1762  // TODO: Build AST.
1763
1764  switch (T) {
1765  default: llvm_unreachable("Not a builtin primary expression!");
1766  case tok::kw___builtin_va_arg: {
1767    ExprResult Expr(ParseAssignmentExpression());
1768
1769    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1770      Expr = ExprError();
1771
1772    TypeResult Ty = ParseTypeName();
1773
1774    if (Tok.isNot(tok::r_paren)) {
1775      Diag(Tok, diag::err_expected_rparen);
1776      Expr = ExprError();
1777    }
1778
1779    if (Expr.isInvalid() || Ty.isInvalid())
1780      Res = ExprError();
1781    else
1782      Res = Actions.ActOnVAArg(StartLoc, Expr.take(), Ty.get(), ConsumeParen());
1783    break;
1784  }
1785  case tok::kw___builtin_offsetof: {
1786    SourceLocation TypeLoc = Tok.getLocation();
1787    TypeResult Ty = ParseTypeName();
1788    if (Ty.isInvalid()) {
1789      SkipUntil(tok::r_paren);
1790      return ExprError();
1791    }
1792
1793    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1794      return ExprError();
1795
1796    // We must have at least one identifier here.
1797    if (Tok.isNot(tok::identifier)) {
1798      Diag(Tok, diag::err_expected_ident);
1799      SkipUntil(tok::r_paren);
1800      return ExprError();
1801    }
1802
1803    // Keep track of the various subcomponents we see.
1804    SmallVector<Sema::OffsetOfComponent, 4> Comps;
1805
1806    Comps.push_back(Sema::OffsetOfComponent());
1807    Comps.back().isBrackets = false;
1808    Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1809    Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1810
1811    // FIXME: This loop leaks the index expressions on error.
1812    while (1) {
1813      if (Tok.is(tok::period)) {
1814        // offsetof-member-designator: offsetof-member-designator '.' identifier
1815        Comps.push_back(Sema::OffsetOfComponent());
1816        Comps.back().isBrackets = false;
1817        Comps.back().LocStart = ConsumeToken();
1818
1819        if (Tok.isNot(tok::identifier)) {
1820          Diag(Tok, diag::err_expected_ident);
1821          SkipUntil(tok::r_paren);
1822          return ExprError();
1823        }
1824        Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1825        Comps.back().LocEnd = ConsumeToken();
1826
1827      } else if (Tok.is(tok::l_square)) {
1828        if (CheckProhibitedCXX11Attribute())
1829          return ExprError();
1830
1831        // offsetof-member-designator: offsetof-member-design '[' expression ']'
1832        Comps.push_back(Sema::OffsetOfComponent());
1833        Comps.back().isBrackets = true;
1834        BalancedDelimiterTracker ST(*this, tok::l_square);
1835        ST.consumeOpen();
1836        Comps.back().LocStart = ST.getOpenLocation();
1837        Res = ParseExpression();
1838        if (Res.isInvalid()) {
1839          SkipUntil(tok::r_paren);
1840          return Res;
1841        }
1842        Comps.back().U.E = Res.release();
1843
1844        ST.consumeClose();
1845        Comps.back().LocEnd = ST.getCloseLocation();
1846      } else {
1847        if (Tok.isNot(tok::r_paren)) {
1848          PT.consumeClose();
1849          Res = ExprError();
1850        } else if (Ty.isInvalid()) {
1851          Res = ExprError();
1852        } else {
1853          PT.consumeClose();
1854          Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1855                                             Ty.get(), &Comps[0], Comps.size(),
1856                                             PT.getCloseLocation());
1857        }
1858        break;
1859      }
1860    }
1861    break;
1862  }
1863  case tok::kw___builtin_choose_expr: {
1864    ExprResult Cond(ParseAssignmentExpression());
1865    if (Cond.isInvalid()) {
1866      SkipUntil(tok::r_paren);
1867      return Cond;
1868    }
1869    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1870      return ExprError();
1871
1872    ExprResult Expr1(ParseAssignmentExpression());
1873    if (Expr1.isInvalid()) {
1874      SkipUntil(tok::r_paren);
1875      return Expr1;
1876    }
1877    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",tok::r_paren))
1878      return ExprError();
1879
1880    ExprResult Expr2(ParseAssignmentExpression());
1881    if (Expr2.isInvalid()) {
1882      SkipUntil(tok::r_paren);
1883      return Expr2;
1884    }
1885    if (Tok.isNot(tok::r_paren)) {
1886      Diag(Tok, diag::err_expected_rparen);
1887      return ExprError();
1888    }
1889    Res = Actions.ActOnChooseExpr(StartLoc, Cond.take(), Expr1.take(),
1890                                  Expr2.take(), ConsumeParen());
1891    break;
1892  }
1893  case tok::kw___builtin_astype: {
1894    // The first argument is an expression to be converted, followed by a comma.
1895    ExprResult Expr(ParseAssignmentExpression());
1896    if (Expr.isInvalid()) {
1897      SkipUntil(tok::r_paren);
1898      return ExprError();
1899    }
1900
1901    if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "",
1902                         tok::r_paren))
1903      return ExprError();
1904
1905    // Second argument is the type to bitcast to.
1906    TypeResult DestTy = ParseTypeName();
1907    if (DestTy.isInvalid())
1908      return ExprError();
1909
1910    // Attempt to consume the r-paren.
1911    if (Tok.isNot(tok::r_paren)) {
1912      Diag(Tok, diag::err_expected_rparen);
1913      SkipUntil(tok::r_paren);
1914      return ExprError();
1915    }
1916
1917    Res = Actions.ActOnAsTypeExpr(Expr.take(), DestTy.get(), StartLoc,
1918                                  ConsumeParen());
1919    break;
1920  }
1921  }
1922
1923  if (Res.isInvalid())
1924    return ExprError();
1925
1926  // These can be followed by postfix-expr pieces because they are
1927  // primary-expressions.
1928  return ParsePostfixExpressionSuffix(Res.take());
1929}
1930
1931/// ParseParenExpression - This parses the unit that starts with a '(' token,
1932/// based on what is allowed by ExprType.  The actual thing parsed is returned
1933/// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
1934/// not the parsed cast-expression.
1935///
1936/// \verbatim
1937///       primary-expression: [C99 6.5.1]
1938///         '(' expression ')'
1939/// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
1940///       postfix-expression: [C99 6.5.2]
1941///         '(' type-name ')' '{' initializer-list '}'
1942///         '(' type-name ')' '{' initializer-list ',' '}'
1943///       cast-expression: [C99 6.5.4]
1944///         '(' type-name ')' cast-expression
1945/// [ARC]   bridged-cast-expression
1946///
1947/// [ARC] bridged-cast-expression:
1948///         (__bridge type-name) cast-expression
1949///         (__bridge_transfer type-name) cast-expression
1950///         (__bridge_retained type-name) cast-expression
1951/// \endverbatim
1952ExprResult
1953Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
1954                             bool isTypeCast, ParsedType &CastTy,
1955                             SourceLocation &RParenLoc) {
1956  assert(Tok.is(tok::l_paren) && "Not a paren expr!");
1957  BalancedDelimiterTracker T(*this, tok::l_paren);
1958  if (T.consumeOpen())
1959    return ExprError();
1960  SourceLocation OpenLoc = T.getOpenLocation();
1961
1962  ExprResult Result(true);
1963  bool isAmbiguousTypeId;
1964  CastTy = ParsedType();
1965
1966  if (Tok.is(tok::code_completion)) {
1967    Actions.CodeCompleteOrdinaryName(getCurScope(),
1968                 ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
1969                                            : Sema::PCC_Expression);
1970    cutOffParsing();
1971    return ExprError();
1972  }
1973
1974  // Diagnose use of bridge casts in non-arc mode.
1975  bool BridgeCast = (getLangOpts().ObjC2 &&
1976                     (Tok.is(tok::kw___bridge) ||
1977                      Tok.is(tok::kw___bridge_transfer) ||
1978                      Tok.is(tok::kw___bridge_retained) ||
1979                      Tok.is(tok::kw___bridge_retain)));
1980  if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
1981    if (Tok.isNot(tok::kw___bridge)) {
1982      StringRef BridgeCastName = Tok.getName();
1983      SourceLocation BridgeKeywordLoc = ConsumeToken();
1984      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
1985        Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
1986          << BridgeCastName
1987          << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
1988    }
1989    else
1990      ConsumeToken(); // consume __bridge
1991    BridgeCast = false;
1992  }
1993
1994  // None of these cases should fall through with an invalid Result
1995  // unless they've already reported an error.
1996  if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
1997    Diag(Tok, diag::ext_gnu_statement_expr);
1998    Actions.ActOnStartStmtExpr();
1999
2000    StmtResult Stmt(ParseCompoundStatement(true));
2001    ExprType = CompoundStmt;
2002
2003    // If the substmt parsed correctly, build the AST node.
2004    if (!Stmt.isInvalid()) {
2005      Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.take(), Tok.getLocation());
2006    } else {
2007      Actions.ActOnStmtExprError();
2008    }
2009  } else if (ExprType >= CompoundLiteral && BridgeCast) {
2010    tok::TokenKind tokenKind = Tok.getKind();
2011    SourceLocation BridgeKeywordLoc = ConsumeToken();
2012
2013    // Parse an Objective-C ARC ownership cast expression.
2014    ObjCBridgeCastKind Kind;
2015    if (tokenKind == tok::kw___bridge)
2016      Kind = OBC_Bridge;
2017    else if (tokenKind == tok::kw___bridge_transfer)
2018      Kind = OBC_BridgeTransfer;
2019    else if (tokenKind == tok::kw___bridge_retained)
2020      Kind = OBC_BridgeRetained;
2021    else {
2022      // As a hopefully temporary workaround, allow __bridge_retain as
2023      // a synonym for __bridge_retained, but only in system headers.
2024      assert(tokenKind == tok::kw___bridge_retain);
2025      Kind = OBC_BridgeRetained;
2026      if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2027        Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2028          << FixItHint::CreateReplacement(BridgeKeywordLoc,
2029                                          "__bridge_retained");
2030    }
2031
2032    TypeResult Ty = ParseTypeName();
2033    T.consumeClose();
2034    RParenLoc = T.getCloseLocation();
2035    ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2036
2037    if (Ty.isInvalid() || SubExpr.isInvalid())
2038      return ExprError();
2039
2040    return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2041                                        BridgeKeywordLoc, Ty.get(),
2042                                        RParenLoc, SubExpr.get());
2043  } else if (ExprType >= CompoundLiteral &&
2044             isTypeIdInParens(isAmbiguousTypeId)) {
2045
2046    // Otherwise, this is a compound literal expression or cast expression.
2047
2048    // In C++, if the type-id is ambiguous we disambiguate based on context.
2049    // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2050    // in which case we should treat it as type-id.
2051    // if stopIfCastExpr is false, we need to determine the context past the
2052    // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2053    if (isAmbiguousTypeId && !stopIfCastExpr) {
2054      ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T);
2055      RParenLoc = T.getCloseLocation();
2056      return res;
2057    }
2058
2059    // Parse the type declarator.
2060    DeclSpec DS(AttrFactory);
2061    ParseSpecifierQualifierList(DS);
2062    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2063    ParseDeclarator(DeclaratorInfo);
2064
2065    // If our type is followed by an identifier and either ':' or ']', then
2066    // this is probably an Objective-C message send where the leading '[' is
2067    // missing. Recover as if that were the case.
2068    if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2069        !InMessageExpression && getLangOpts().ObjC1 &&
2070        (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2071      TypeResult Ty;
2072      {
2073        InMessageExpressionRAIIObject InMessage(*this, false);
2074        Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2075      }
2076      Result = ParseObjCMessageExpressionBody(SourceLocation(),
2077                                              SourceLocation(),
2078                                              Ty.get(), 0);
2079    } else {
2080      // Match the ')'.
2081      T.consumeClose();
2082      RParenLoc = T.getCloseLocation();
2083      if (Tok.is(tok::l_brace)) {
2084        ExprType = CompoundLiteral;
2085        TypeResult Ty;
2086        {
2087          InMessageExpressionRAIIObject InMessage(*this, false);
2088          Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2089        }
2090        return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2091      }
2092
2093      if (ExprType == CastExpr) {
2094        // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2095
2096        if (DeclaratorInfo.isInvalidType())
2097          return ExprError();
2098
2099        // Note that this doesn't parse the subsequent cast-expression, it just
2100        // returns the parsed type to the callee.
2101        if (stopIfCastExpr) {
2102          TypeResult Ty;
2103          {
2104            InMessageExpressionRAIIObject InMessage(*this, false);
2105            Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2106          }
2107          CastTy = Ty.get();
2108          return ExprResult();
2109        }
2110
2111        // Reject the cast of super idiom in ObjC.
2112        if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2113            Tok.getIdentifierInfo() == Ident_super &&
2114            getCurScope()->isInObjcMethodScope() &&
2115            GetLookAheadToken(1).isNot(tok::period)) {
2116          Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2117            << SourceRange(OpenLoc, RParenLoc);
2118          return ExprError();
2119        }
2120
2121        // Parse the cast-expression that follows it next.
2122        // TODO: For cast expression with CastTy.
2123        Result = ParseCastExpression(/*isUnaryExpression=*/false,
2124                                     /*isAddressOfOperand=*/false,
2125                                     /*isTypeCast=*/IsTypeCast);
2126        if (!Result.isInvalid()) {
2127          Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2128                                         DeclaratorInfo, CastTy,
2129                                         RParenLoc, Result.take());
2130        }
2131        return Result;
2132      }
2133
2134      Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2135      return ExprError();
2136    }
2137  } else if (isTypeCast) {
2138    // Parse the expression-list.
2139    InMessageExpressionRAIIObject InMessage(*this, false);
2140
2141    ExprVector ArgExprs;
2142    CommaLocsTy CommaLocs;
2143
2144    if (!ParseExpressionList(ArgExprs, CommaLocs)) {
2145      ExprType = SimpleExpr;
2146      Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2147                                          ArgExprs);
2148    }
2149  } else {
2150    InMessageExpressionRAIIObject InMessage(*this, false);
2151
2152    Result = ParseExpression(MaybeTypeCast);
2153    ExprType = SimpleExpr;
2154
2155    // Don't build a paren expression unless we actually match a ')'.
2156    if (!Result.isInvalid() && Tok.is(tok::r_paren))
2157      Result = Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.take());
2158  }
2159
2160  // Match the ')'.
2161  if (Result.isInvalid()) {
2162    SkipUntil(tok::r_paren);
2163    return ExprError();
2164  }
2165
2166  T.consumeClose();
2167  RParenLoc = T.getCloseLocation();
2168  return Result;
2169}
2170
2171/// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2172/// and we are at the left brace.
2173///
2174/// \verbatim
2175///       postfix-expression: [C99 6.5.2]
2176///         '(' type-name ')' '{' initializer-list '}'
2177///         '(' type-name ')' '{' initializer-list ',' '}'
2178/// \endverbatim
2179ExprResult
2180Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2181                                       SourceLocation LParenLoc,
2182                                       SourceLocation RParenLoc) {
2183  assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2184  if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2185    Diag(LParenLoc, diag::ext_c99_compound_literal);
2186  ExprResult Result = ParseInitializer();
2187  if (!Result.isInvalid() && Ty)
2188    return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.take());
2189  return Result;
2190}
2191
2192/// ParseStringLiteralExpression - This handles the various token types that
2193/// form string literals, and also handles string concatenation [C99 5.1.1.2,
2194/// translation phase #6].
2195///
2196/// \verbatim
2197///       primary-expression: [C99 6.5.1]
2198///         string-literal
2199/// \verbatim
2200ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2201  assert(isTokenStringLiteral() && "Not a string literal!");
2202
2203  // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2204  // considered to be strings for concatenation purposes.
2205  SmallVector<Token, 4> StringToks;
2206
2207  do {
2208    StringToks.push_back(Tok);
2209    ConsumeStringToken();
2210  } while (isTokenStringLiteral());
2211
2212  // Pass the set of string tokens, ready for concatenation, to the actions.
2213  return Actions.ActOnStringLiteral(&StringToks[0], StringToks.size(),
2214                                   AllowUserDefinedLiteral ? getCurScope() : 0);
2215}
2216
2217/// ParseGenericSelectionExpression - Parse a C11 generic-selection
2218/// [C11 6.5.1.1].
2219///
2220/// \verbatim
2221///    generic-selection:
2222///           _Generic ( assignment-expression , generic-assoc-list )
2223///    generic-assoc-list:
2224///           generic-association
2225///           generic-assoc-list , generic-association
2226///    generic-association:
2227///           type-name : assignment-expression
2228///           default : assignment-expression
2229/// \endverbatim
2230ExprResult Parser::ParseGenericSelectionExpression() {
2231  assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2232  SourceLocation KeyLoc = ConsumeToken();
2233
2234  if (!getLangOpts().C11)
2235    Diag(KeyLoc, diag::ext_c11_generic_selection);
2236
2237  BalancedDelimiterTracker T(*this, tok::l_paren);
2238  if (T.expectAndConsume(diag::err_expected_lparen))
2239    return ExprError();
2240
2241  ExprResult ControllingExpr;
2242  {
2243    // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2244    // not evaluated."
2245    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2246    ControllingExpr = ParseAssignmentExpression();
2247    if (ControllingExpr.isInvalid()) {
2248      SkipUntil(tok::r_paren);
2249      return ExprError();
2250    }
2251  }
2252
2253  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "")) {
2254    SkipUntil(tok::r_paren);
2255    return ExprError();
2256  }
2257
2258  SourceLocation DefaultLoc;
2259  TypeVector Types;
2260  ExprVector Exprs;
2261  while (1) {
2262    ParsedType Ty;
2263    if (Tok.is(tok::kw_default)) {
2264      // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2265      // generic association."
2266      if (!DefaultLoc.isInvalid()) {
2267        Diag(Tok, diag::err_duplicate_default_assoc);
2268        Diag(DefaultLoc, diag::note_previous_default_assoc);
2269        SkipUntil(tok::r_paren);
2270        return ExprError();
2271      }
2272      DefaultLoc = ConsumeToken();
2273      Ty = ParsedType();
2274    } else {
2275      ColonProtectionRAIIObject X(*this);
2276      TypeResult TR = ParseTypeName();
2277      if (TR.isInvalid()) {
2278        SkipUntil(tok::r_paren);
2279        return ExprError();
2280      }
2281      Ty = TR.release();
2282    }
2283    Types.push_back(Ty);
2284
2285    if (ExpectAndConsume(tok::colon, diag::err_expected_colon, "")) {
2286      SkipUntil(tok::r_paren);
2287      return ExprError();
2288    }
2289
2290    // FIXME: These expressions should be parsed in a potentially potentially
2291    // evaluated context.
2292    ExprResult ER(ParseAssignmentExpression());
2293    if (ER.isInvalid()) {
2294      SkipUntil(tok::r_paren);
2295      return ExprError();
2296    }
2297    Exprs.push_back(ER.release());
2298
2299    if (Tok.isNot(tok::comma))
2300      break;
2301    ConsumeToken();
2302  }
2303
2304  T.consumeClose();
2305  if (T.getCloseLocation().isInvalid())
2306    return ExprError();
2307
2308  return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2309                                           T.getCloseLocation(),
2310                                           ControllingExpr.release(),
2311                                           Types, Exprs);
2312}
2313
2314/// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2315///
2316/// \verbatim
2317///       argument-expression-list:
2318///         assignment-expression
2319///         argument-expression-list , assignment-expression
2320///
2321/// [C++] expression-list:
2322/// [C++]   assignment-expression
2323/// [C++]   expression-list , assignment-expression
2324///
2325/// [C++0x] expression-list:
2326/// [C++0x]   initializer-list
2327///
2328/// [C++0x] initializer-list
2329/// [C++0x]   initializer-clause ...[opt]
2330/// [C++0x]   initializer-list , initializer-clause ...[opt]
2331///
2332/// [C++0x] initializer-clause:
2333/// [C++0x]   assignment-expression
2334/// [C++0x]   braced-init-list
2335/// \endverbatim
2336bool Parser::ParseExpressionList(SmallVectorImpl<Expr*> &Exprs,
2337                                 SmallVectorImpl<SourceLocation> &CommaLocs,
2338                                 void (Sema::*Completer)(Scope *S,
2339                                                         Expr *Data,
2340                                                         ArrayRef<Expr *> Args),
2341                                 Expr *Data) {
2342  while (1) {
2343    if (Tok.is(tok::code_completion)) {
2344      if (Completer)
2345        (Actions.*Completer)(getCurScope(), Data, Exprs);
2346      else
2347        Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2348      cutOffParsing();
2349      return true;
2350    }
2351
2352    ExprResult Expr;
2353    if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2354      Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2355      Expr = ParseBraceInitializer();
2356    } else
2357      Expr = ParseAssignmentExpression();
2358
2359    if (Tok.is(tok::ellipsis))
2360      Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2361    if (Expr.isInvalid())
2362      return true;
2363
2364    Exprs.push_back(Expr.release());
2365
2366    if (Tok.isNot(tok::comma))
2367      return false;
2368    // Move to the next argument, remember where the comma was.
2369    CommaLocs.push_back(ConsumeToken());
2370  }
2371}
2372
2373/// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2374///
2375/// \verbatim
2376/// [clang] block-id:
2377/// [clang]   specifier-qualifier-list block-declarator
2378/// \endverbatim
2379void Parser::ParseBlockId(SourceLocation CaretLoc) {
2380  if (Tok.is(tok::code_completion)) {
2381    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2382    return cutOffParsing();
2383  }
2384
2385  // Parse the specifier-qualifier-list piece.
2386  DeclSpec DS(AttrFactory);
2387  ParseSpecifierQualifierList(DS);
2388
2389  // Parse the block-declarator.
2390  Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2391  ParseDeclarator(DeclaratorInfo);
2392
2393  // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2394  DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2395
2396  MaybeParseGNUAttributes(DeclaratorInfo);
2397
2398  // Inform sema that we are starting a block.
2399  Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2400}
2401
2402/// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2403/// like ^(int x){ return x+1; }
2404///
2405/// \verbatim
2406///         block-literal:
2407/// [clang]   '^' block-args[opt] compound-statement
2408/// [clang]   '^' block-id compound-statement
2409/// [clang] block-args:
2410/// [clang]   '(' parameter-list ')'
2411/// \endverbatim
2412ExprResult Parser::ParseBlockLiteralExpression() {
2413  assert(Tok.is(tok::caret) && "block literal starts with ^");
2414  SourceLocation CaretLoc = ConsumeToken();
2415
2416  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2417                                "block literal parsing");
2418
2419  // Enter a scope to hold everything within the block.  This includes the
2420  // argument decls, decls within the compound expression, etc.  This also
2421  // allows determining whether a variable reference inside the block is
2422  // within or outside of the block.
2423  ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2424                              Scope::DeclScope);
2425
2426  // Inform sema that we are starting a block.
2427  Actions.ActOnBlockStart(CaretLoc, getCurScope());
2428
2429  // Parse the return type if present.
2430  DeclSpec DS(AttrFactory);
2431  Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2432  // FIXME: Since the return type isn't actually parsed, it can't be used to
2433  // fill ParamInfo with an initial valid range, so do it manually.
2434  ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2435
2436  // If this block has arguments, parse them.  There is no ambiguity here with
2437  // the expression case, because the expression case requires a parameter list.
2438  if (Tok.is(tok::l_paren)) {
2439    ParseParenDeclarator(ParamInfo);
2440    // Parse the pieces after the identifier as if we had "int(...)".
2441    // SetIdentifier sets the source range end, but in this case we're past
2442    // that location.
2443    SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2444    ParamInfo.SetIdentifier(0, CaretLoc);
2445    ParamInfo.SetRangeEnd(Tmp);
2446    if (ParamInfo.isInvalidType()) {
2447      // If there was an error parsing the arguments, they may have
2448      // tried to use ^(x+y) which requires an argument list.  Just
2449      // skip the whole block literal.
2450      Actions.ActOnBlockError(CaretLoc, getCurScope());
2451      return ExprError();
2452    }
2453
2454    MaybeParseGNUAttributes(ParamInfo);
2455
2456    // Inform sema that we are starting a block.
2457    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2458  } else if (!Tok.is(tok::l_brace)) {
2459    ParseBlockId(CaretLoc);
2460  } else {
2461    // Otherwise, pretend we saw (void).
2462    ParsedAttributes attrs(AttrFactory);
2463    SourceLocation NoLoc;
2464    ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2465                                             /*IsAmbiguous=*/false,
2466                                             /*RParenLoc=*/NoLoc,
2467                                             /*ArgInfo=*/0,
2468                                             /*NumArgs=*/0,
2469                                             /*EllipsisLoc=*/NoLoc,
2470                                             /*RParenLoc=*/NoLoc,
2471                                             /*TypeQuals=*/0,
2472                                             /*RefQualifierIsLvalueRef=*/true,
2473                                             /*RefQualifierLoc=*/NoLoc,
2474                                             /*ConstQualifierLoc=*/NoLoc,
2475                                             /*VolatileQualifierLoc=*/NoLoc,
2476                                             /*MutableLoc=*/NoLoc,
2477                                             EST_None,
2478                                             /*ESpecLoc=*/NoLoc,
2479                                             /*Exceptions=*/0,
2480                                             /*ExceptionRanges=*/0,
2481                                             /*NumExceptions=*/0,
2482                                             /*NoexceptExpr=*/0,
2483                                             CaretLoc, CaretLoc,
2484                                             ParamInfo),
2485                          attrs, CaretLoc);
2486
2487    MaybeParseGNUAttributes(ParamInfo);
2488
2489    // Inform sema that we are starting a block.
2490    Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2491  }
2492
2493
2494  ExprResult Result(true);
2495  if (!Tok.is(tok::l_brace)) {
2496    // Saw something like: ^expr
2497    Diag(Tok, diag::err_expected_expression);
2498    Actions.ActOnBlockError(CaretLoc, getCurScope());
2499    return ExprError();
2500  }
2501
2502  StmtResult Stmt(ParseCompoundStatementBody());
2503  BlockScope.Exit();
2504  if (!Stmt.isInvalid())
2505    Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.take(), getCurScope());
2506  else
2507    Actions.ActOnBlockError(CaretLoc, getCurScope());
2508  return Result;
2509}
2510
2511/// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2512///
2513///         '__objc_yes'
2514///         '__objc_no'
2515ExprResult Parser::ParseObjCBoolLiteral() {
2516  tok::TokenKind Kind = Tok.getKind();
2517  return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2518}
2519